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Abstract—In this work, we explore the use of Gaussian
processes (GP) as function approximators for Reinforcement
Learning (RL), and build estimates of the value function and
Q-function using GPs. Such a representation allows us to learn
Q-functions, and thereby policies, conditioned on uncertainty in
the system dynamics, and can be useful in sample efficiently
transferring policies learned in simulation to hardware. We use
two approaches GPTD and GPSARSA, from Engel et al. [1] to
build approximate value functions and Q-functions, respectively.
While for simple, continuous problems, we found these to
be effective at approximating the value function and the Q-
function, for discontinuous landscapes GPSARSA deteriorates
in performance, even on simple problems. As the problem
complexity increases, for example, for an inverted pendulum,
we find that both approaches are extremely sensitive to the GP
hyperparameters, and do not scale well. We experiment with
a sparse variant of the algorithm, but find that GPSARSA
still converges to poor solutions. Our experiments show that
while GPTD and GPSARSA are nice theoretical formulations,
they are not suitable for complex domains without extensive
hyperparameter tuning.

I. INTRODUCTION

Reinforcement learning has shown great promise and suc-
cess in discrete problems like such as AlphaGo by Silver
et al. [9], as well as high-dimensional continuous problems,
like Lillicrap et al. [5]. In general, for continuous state
and action spaces, RL algorithms use function approximators
for approximating the value function, as well as the policy.
Common function approximators used in RL include neural
networks [3], or linear basis functions [11], or Gaussian Pro-
cesses [2]. However, the sample-efficiency of RL algorithms
for continuous problems can be very poor, partially due to
the data-hungry nature of function approximators, like neural
networks, making their deployment on real-world problems
hard.

Especially for robotics problems, near-exhaustive search in
the large state and action space of robots is infeasible. In such
cases, using simulation for warm-starting the approximation
of the value function, Q-function or policy can be beneficial.
However, due to mismatch between simulation and hardware,
policies learned in simulation do not successfully transfer
to hardware, especially for complex dynamical systems like
legged robots, as pointed out by Li et al. [4]. An alternative
in literature is to learn conservative policies using domain

randomization as in Tobin et al. [13], by randomizing the
physics and noise parameters of the simulator. Such policies
can be successful on hardware directly, as shown by Tan et al.
[12] but also might fail, as Yu et al. [14] point out. In cases
of failure, there isn’t a ‘recovery’ strategy that can lead to
reasonable learning of policies on hardware.

Instead of learning policies robust to dynamics uncertainties,
we explore the possibility of learning a Q-function in simula-
tion, and sample efficiently adapting it on hardware. This can
be used to generate a policy by maximizing the Q-function at
each state. Such an approach can recover from cases where
the policy learned in simulation fails on hardware.

For effectively updating the Q-function online, we identified
two key characteristics in our chosen function approximator:
• An estimate of the accuracy of the Q-function in different

parts of the space : Assuming that the simulation is inac-
curate around certain states, example involving contacts,
but accurate around others, like during free-space motion,
an estimate of the accuracy of the simulated Q-function
could be used for guiding the optimization on hardware.

• Quick update and reliable extrapolation on hardware :
Once new data is gathered on hardware, we would like
that the simulated Q-function can be updated quickly
and sample-efficiently, and extrapolates to other states
that have not been seen on hardware yet. Moreover, the
policy should be updated fast based on updates to the
Q-function.

With both these considerations, we decided to use a Gaus-
sian Process (GP) for approximating our Q-function. To im-
prve sample-efficiency, a Q-function learned in simulation
can serve as prior for learning on hardware. To investigate
the feasibility of using GPs as function approximators we
experimented with the GPTD and GPSARSA algorithms from
Engel et al. [1]. GPTD is a temporal-difference (TD) learning
based algorithm for computing the value function of a given
policy. GPSARSA builds a GP based estimate of the optimal
Q-function, in a fashion similar to SARSA from Rummery
and Niranjan [8]. We describe these methods in Section II.

In our initial experiments we used grid world environments
with discrete state and action space (Fig. 1). We observed that
both GPTD and GPSARSA could approximate the optimal
value function when the value function is smooth, as shown
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in Figure 3c. However, for more complex discrete problems,
like grid world with holes, we observed that GPSARSA
had trouble approximating the optimal Q-function. As we
moved to continuous domains, we observed that both GPTD
and GPSARSA could be highly sensitive to hyperparameter
selection, and performed significantly worse than exact value
function computation. When we learned GP hyperparameters
from the true value-function, and used these for learning,
we observed that we could converge to the true value. But
using different, but close, hyperparameters would lead to much
poorer learning. In retrospective, the GPTD and GPSARSA
approaches have only been tested on simplistic 2D navigation
environments, and did not generalize to more complex dynam-
ical systems. While this is a nice theoretical formulation, the
applicability to practical problems is limited.

II. BACKGROUND

A. Temporal difference learning with Gaussian processes
(GPTD)

GPTD uses Gaussian Processes (GPs) to construct an esti-
mate of the value function for a given fixed policy π using
TD learning. The algorithm uses the Bellman equation (Eq.
(1)) to build a posterior of the value function V

r(s) = V π(s)− γV π(s′) (1)

from observed rewards r for current state s and next state s′.
Assuming a Gaussian prior N (0,Σ) over the value function,
the posterior after t time-steps, on observing a sequence of
rewards rt−1 = [r1, r2, · · · rt−1] can be described as in Eq.
(2). Refer to Engel et al. [1] for details.

where,

k(s, s′) = σ2
fe

(s−s′)Σ−1
SqExp(s−s

′)T

kt(s) =
[
k(s, s1) · · · k(s, st)

]T
Kt =

k(s1, s1) · · · k(s1, st)
...

...
k(st, s1) · · · k(st, st)



Ht =


1 −γ 0 · · · 0
0 1 −γ · · · 0
...

...
0 0 · · · 1 −γ



(2)

The kernel function k characterizes an interpolation scheme
which together with the length scale ΣSqExp determines how
different points in the GP influence the prediction V at a new
query state s.

However, the posterior update can quickly become in-
tractable if every encountered state st is added to the GP.
To mitigate this, GPTD maintains a dictionary of ‘unique’
states D = {s̃i|i ∈ {1, · · · , n}} which are used as a set of
basis vectors for the entire state space. D is initialized to be
empty and a state s is added to D if the projection error
(mina k(s,

∑
i ais̃i)) is greater than a threshold ν. Let Dt be

the dictionary at time-step t and At of size (t × |Dt|) the
projection matrix. The jth row in At denotes the projection
coefficients of state sj onto the states in Dt. The posterior
update of the value function given the dictionary Dt is
described in Eq. (3).

V π(s)|rt−1 ∼N
(
k̃t(s)T H̃T

t (H̃tK̃tH̃
T
t + Σ)−1rt−1,

k(s, s)− k̃t(s)T H̃T
t (H̃tK̃tH̃

T
t + Σ)−1H̃tk̃t(s)

)
where,

k̃t(s) =
[
k(s, s̃1) · · · k(s, s̃|Dt|)

]T
K̃t = ATt KtAt

H̃t = HtAt
(3)

We compute this posterior after each episode. Note that,
GPTD computes the value function V πGPTD for a given policy
π and does not actually compute the optimal policy π∗. In
our experiments we compute V π

∗

GPTD using the optimal policy
obtained from policy iteration. We compare the mean of the
GP approximating V π

∗

GPTD with V ∗ to estimate its accuracy. In
future text, we drop π∗ for simplicity of notation and refer to
V π

∗

GPTD as VGPTD

B. Approximating Q-function with GPs

In similar spirit to TD learning, the SARSA algorithm [8]
constructs Q-function estimates from the observed rewards
(Eq. (4)).

Q(s,a) = r(s,a) + γQ(s′,a′) (4)

GPSARSA builds a GP based estimate of the Q-function
using this relation. The approach is similar to GPTD except
GPSARSA constructs a GP over states and actions, and uses
the current Q-function estimate to sample actions during roll-
outs (Eq. 5). We sample

π(s) = arg min
a”∼[amin,amax]

Q(s,a”)

where Q(s,a”) ∼ N (µ(s,a),Σ(s,a))
(5)

a fixed number of actions from a continuous range to evaluate
the minima in Eq. (5). Furthermore, we compute the value
function for the optimal policy as shown in Eq. (6).

VGPSARSA(s) = min
a”∼[amin,amax]

µ(s,a”) (6)

III. EXPERIMENTS

A. Experimental setting

The environments studied in our experiments were:
1) Grid world: An environment with discrete state and

action space shown in Fig. 1. The objective is to reach
the goal without landing into a hole. The agent is
initialized at a random location, and in each step can
choose to move up, down, left or right. It receives a
reward of +1 on reaching the goal and -1 on landing in
a hole.
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(a) Without holes

Goal

Hole

Safe

(b) With holes

Fig. 1: Grid world environment.
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Fig. 2: Pendulum with mass mp = 1kg, length l = 0.9m under
the influence of gravity (g = 9.81ms−2) and input τ such that
|τ | ≤ 9Nm

2) Inverted pendulum: The system is shown in Fig. 2,
and the objective is to design a control policy for τ to
swing up the pendulum to an upright position (θ = π)
under gravity. This is an environment with a continuous
state (s = [θ, θ̇]) and action (a = τ) space. We use a
quadratic cost function (s−[π, 0])Q(s−[π, 0])T+aRaT

where Q = diag([25, 0.02]) and R = 0.001, to train
policies.

We compared the efficacy of the following approaches at ap-
proximating the value function of the environments described
above:

1) Policy Iteration: We use a tabular representation for the
optimal policy (π∗) and value function (V ∗). For the
inverted pendulum environment, we discretize the state
space into a grid and sample actions from a continuous
range to compute a policy.

2) GPTD with optimal policy: Using π∗ learned from
policy iteration, we compute a GP based representation
(VGPTD) for V ∗.

3) GPSARSA : We compute a GP based representation
for the optimal Q-function and compare the resulting
value function (VGPSARSA) with V ∗ by maximizing the Q-
function at discretized states.

B. Experimental results

1) Frozen lake: Fig. 3c depicts V ∗ for the grid world
environment without holes shown in Fig. 1a. (VGPTD) and
(VGPSARSA) are show in Fig. 3a and Fig. 3b respectively. In this
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(b) VGPSARSA
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(c) Optimal value function (V ∗) obtained using vanilla policy
iteration

Fig. 3: Value functions for grid world environment without
holes depicted in Fig. 1a

Algorithm

Environment
∑

s∈S |V − V ∗|/|S|

Without holes With holes
GPTD 0.0016 0.046
GPSARSA 0.064 0.34

TABLE I: Mean error in value functions for the grid world
environments computed using GPTD and GPSARSA

experimental setting, both GPTD and GPSARSA are effective
at learning the optimal policy and value function. Without
holes the value function and Q-function are continuous and
smooth, and the GPs are good at estimating them (Fig. 3).

Next, we obtained value function estimates for the envi-
ronment with holes, shown in Fig. 1b. The qualitative results
are shown in Fig. 4. Table I compares the accuracy of the
two algorithms in estimating the optimal value functions.
Despite the sharp discontinuities in V ∗, GPTD computes a
reasonable estimate for the optimal value function (Fig. 4a).
However, GPSARSA fails to converge to the optimal Q-
function (Fig. 4b).

2) Inverted pendulum: The optimal value function for in-
verted pendulum is shown in Fig. 5e. We use the squared
exponential kernel (Eq. (3)) with different length-scales per
dimension for the GP (ΣSqExp = diag([σθ, σθ̇]) for GPTD and
ΣSqExp = diag([σθ, σθ̇, στ ]) for GPSARSA). The length scales
σθ, σθ̇ (and στ ) describe how close a state (or state-action pair)
has to be to a query point along the corresponding dimensions
to influence the interpolated value. We observe the quality of
fit to be highly sensitive to the choice of kernel parameters
(ΣSqExp, σf ).

With manually tuned kernel parameters based on the state
discretization resolution used in policy iteration, we observe
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(b) VGPSARSA
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(c) Optimal value function (V ∗) obtained using vanilla policy
iteration

Fig. 4: Value functions for frozen lake environment with holes
depicted in Fig. 1b

poor performance with GPTD. Fig. 5a depicts the value
function estimate obtained using GPTD in this case. Next, we
optimized the kernel parameters by maximizing the marginal
likelihood of observing V ∗ at a few sampled points in the
state-space. With tuned kernel parameters GPTD approximates
the optimal value function quite well (Fig. 5b).

We also attempted to learn the optimal Q-function us-
ing GPSARSA with little success (Fig. 5d and 5c), both
with optimized and hand-tuned parameters. These experiments
demonstrated that the GPSARSA algorithm has even poorer
convergence properties than GPTD, even with carefully tuned
kernel parameters.

3) Sparse GPs with inverted pendulum: Our experiments
with GPTD and GPSARSA showed that the kernel parameters
not only affect the quality of fit but also the amount of
samples required to build these estimates. The GPTD and
GPSARSA algorithms construct a dictionary of states to fit
the GP using the kernel-based distance metric to decide which
state samples to incorporate in this dictionary (Section II).
Therefore, a poor choice of kernel parameters could lead
to a really large sample set which slows down learning, or
a very small sample set which degrades the quality of fit.
To overcome these problems, we experimented with Sparse
Gaussian Processes using Pseudo Inputs (SPGPs) [10]. SPGPs
compress the number of data points in a GP with a set
of representative pseudo points. The location and values of
these pseudo points along with the kernel parameters are
computed such that they maximize the marginal likelihood
of the observed data. In literature, Martin et al. use SPGPs for
computing value functions for parameterized policies.

We attempted to use SPGPs in the GPTD and GPSARSA
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(a) VGPTD computed with manually
tuned kernel parameters
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(b) VGPTD computed with opti-
mized kernel parameters
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ally tuned kernel parameters
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(d) VGPSARSA computed with opti-
mized kernel parameters
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(e) Optimal value function (V ∗) obtained using vanilla policy
iteration

Fig. 5: Value functions for the pendulum system

Algorithm

∑
s∈S |V − V ∗|/|S|

Optimized
parameters

Hand tuned
parameters

SPGP

GPTD 0.41 168 1.68
GPSARSA 20.8 20.4 6

TABLE II: Mean error in value functions for the pendulum
system computed using GPTD and GPSARSA

algorithms. If the GP exceeds a certain size, we sparsify it and
continue with vanilla GPTD/GPSARSA treating the sparsified
GP as a prior over the value function/Q-function. Fig. 6 show-
cases the resultant value functions. Table II summarizes the
quantitative results. Our experiments and the ensuing results
highlight the sensitivity of GPTD and GPSARSA to kernel
parameters. Finding suitable parameters without knowing the
value function or Q-function landscape is very difficult and
an iterative procedure to refine them, such as SPGP, seems to
help. GPSARSA uses the Q-function to infer the policy which
is computationally expensive especially as the size of the GP
grows. Instead, using an explicit representation for the policy
would provide a speedup in learning.
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(a) Obtained using GPTD
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(b) Obtained using GPSARSA

Fig. 6: Sparse Gaussian Processes using Pseudo Inputs (SPGP)
based value function estimates for the pendulum system .

IV. CONCLUSION

In this work, we experimented with Gaussian Processes
(GPs) as function approximators in RL. To build a value
function and a Q-function using GPs, we used the GPTD
and GPSARSA algorithms from [1]. In problems where we
expect the optimal value function to be continuous and smooth,
both algorithms perform well. However, when discontinuities
arise, as in the case of the grid world environment with holes,
GPSARSA converges to poor solutions. For an inverted pendu-
lum, a continuous space problem, both GPTD and GPSARSA
prove to be highly sensitive to kernel parameters.

Through our experiments we could identify two main bot-
tlenecks to using GPs as function approximators. First, the
sensitivity to chosen kernel function. Second, inference is
computationally expensive as size of the GP grows. The first
bottleneck can be addressed by choosing domain informed
kernel functions [7] or by tuning kernel parameters. However,
for a general problem appropriate kernel functions are difficult
to find. Furthermore, tuning kernel parameters is difficult
without knowing the value function landscape apriori. The
second bottleneck makes it difficult to use GPs for implicitly
representing policies, such as in GPSARSA. To tackle this
issue, building an explicit representation for the policy while
learning a GP based estimate for the value function can be
useful.

Using GPs to represent value functions provides uncer-
tainty estimates that may be useful in improving exploration.
However, the above two bottlenecks limit its applicability to
complex continuous control problems.
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