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Model Reprogramming Outperforms Fine-tuning on
Out-of-distribution Data in Text-Image Encoders

Abstract—When evaluating the performance of a pre-trained
model transferred to a downstream task, it is imperative to assess
not only the in-distribution (ID) accuracy of the downstream
model but also its capacity to generalize and identify out-of-
distribution (OOD) samples. In this paper, we unveil the hidden
costs associated with intrusive fine-tuning techniques. Specifically,
we demonstrate that commonly used fine-tuning methods not
only distort the representations necessary for generalizing to
covariate-shifted OOD samples (OOD generalization) but also
distort the representations necessary for detecting semantically-
shifted OOD samples (OOD detection). To address these chal-
lenges, we introduce a new model reprogramming approach for
fine-tuning, which we name REPROGRAMMER. REPROGRAMMER
aims to improve the holistic performance of the downstream
model across ID, OOD generalization, and OOD detection tasks.
Our empirical evidence reveals that REPROGRAMMER is less
intrusive and yields superior downstream models. Furthermore,
we demonstrate that by appending an additional representation
residual connection to REPROGRAMMER, we can further preserve
pre-training representations, resulting in an even more safe
and robust downstream model capable of excelling in many ID
classification, OOD generalization, and OOD detection settings.

Index Terms—Fine-tuning, Robustness, Out-of-distribution De-
tection, Distribution Shift

I. INTRODUCTION

As pre-trained models become increasingly adopted for
addressing complex downstream tasks, it has become progres-
sively more important to ensure not only the in-distribution
accuracy of the downstream model but also its robustness
and safety when confronted with distribution shifts. In real-
world applications, models often encounter samples that de-
viate to varying degrees from the expected in-distribution
dataset. For samples exhibiting covariate shifts (non-semantic)
from the in-distribution, we assess robustness by measuring
the OOD generalization, where a robust model should con-
sistently maintain high accuracy across all covariate-shifted
OOD samples. Alternatively, for samples exhibiting semantic
shifts from the in-distribution, we evaluate safety through
OOD detection, where a safe and robust model should be
capable of distinguishing semantically shifted OOD samples
from the ID samples. Recently, both of these problems have
been rigorously studied with a plethora of new and exciting
literature aimed at addressing these issues [1]–[15].

However, several fundamental challenges still impede re-
searchers from improving ID, OOD generalization, and OOD
detection performances. These challenges range from difficul-
ties in encapsulating covariant (domain) shifts, to overconfi-
dence when predicting semantically shifted samples [10], [14],
[16]. One framework, for training deep learning models, that
has demonstrated strong performance in both ID classification
and OOD generalization settings is large text-image supervised

pre-trained models [13], [17], [18]. However, it has recently
become apparent that common fine-tuning methods can distort
the robust representations acquired during multi-modal pre-
training, which can result in a decline in the fine-tuned model’s
OOD generalization performance [4], [15], [19]. Moreover,
it also remains unclear whether these distortions, induced by
fine-tuning, will adversely affect OOD detection tasks in the
same way observed in OOD generalization.

In this paper, we present evidence demonstrating that com-
mon fine-tuning techniques, such as linear-probing (optimizing
only the classification head), full fine-tuning (optimizing all
model parameters), LP-FT (optimizing classification head first
before full fine-tuning) [4], regularized fine-tuning (optimizing
all model parameters while applying regularization to the
zero-shot weights) [20], model soups (average the weights of
zero-shot and fine-tuned models) [15], and prompt learning
(optimizing adjustable tokens in the caption) [21], can not only
degrade OOD generalization performance but also compro-
mise OOD detection capabilities. Furthermore, we illustrate
that each of these common fine-tuning techniques possesses
distinct strengths and hidden costs associated with their ID,
OOD generalization, and OOD detection capabilities. This
raises the question can we develop an alternative fine-tuning
technique that is less intrusive, more robust, and safer on both
covariate and semantically shifted OOD samples?

We tackle this question by exploring and altering an alterna-
tive approach to transfer learning called model reprogramming
[22]. By leveraging and altering key components of model
reprogramming, we present a new method for reprogramming
a text-image pre-trained model to a downstream ID task. We
also show that due to the less intrusive nature of model repro-
gramming (no adjustments to the pre-trained model parameter)
our approach is less distortive, leading to improved OOD
generalization and OOD detection performances. In addition,
our findings also reveal that by incorporating a representation
residual connection into REPROGRAMMER, we can further
promote the retention of pre-training representations. Our
operating hypotheses are

[H1] Traditional fine-tuning techniques can degrade both
OOD generalization and OOD detection performances
in CLIP-like models, leading to worse OOD perfor-
mance when compared to the untuned zero-shot model.

[H2] By solely employing model reprogramming techniques,
which are less intrusive and do not impose any changes
to the pre-trained model parameters, our REPROGRAM-
MER will lead to more pre-training representations being
maintained throughout the fine-tuning process.

[H3] The addition of a representation residual connection to
the zero-shot model can further maintain pre-training



2

(a) Linear-probing (b) Full Fine-tuning (c) Reprogrammer (d) Residual Reprogrammer

Fig. 1: Radar charts illustrating the trade-offs between ID, OOD generalization, and OOD detection performances across linear-
probing, full fine-tuning, REPROGRAMMER, and RESIDUAL REPROGRAMMER. All results are based on the CIFAR benchmarks.
To quantify the cost-performance trade-offs, we report the average scores normalized across all metrics.

representations, leading to enhanced OOD generaliza-
tion and detection performances.

[H4] Reprogramming the image encoder on ID samples
enables REPROGRAMMER to more effectively align
covariate-shifted OOD samples with the in-distribution
space during inference, consequently resulting in en-
hanced ID classification and OOD generalization.

More formally, we introduce REPROGRAMMER and RESID-
UAL REPROGRAMMER, a pair of model reprogramming tech-
niques that leverage two distinct modalities of reprogramming
functions to simultaneously reprogram the image encoder and
the text encoder. Subsequently, we conduct a comprehensive
set of evaluations demonstrating the superiority of our REPRO-
GRAMMER and RESIDUAL REPROGRAMMER methods. To the
best of our knowledge, we are the first to venture into applying
model reprogramming techniques to multi-modal joint text-
image encoder models. An illustration depicting the trade-offs
between cost and performance associated with intrusive fine-
tuning techniques can be found in Figure 1. Our key results
and contributions are summarized as follows:

• We demonstrate that common fine-tuning techniques can
degrade OOD performances, resulting in trade-offs between
ID, OOD generalization, and OOD detection. A visual com-
parison of these trade-offs in terms of cost and performance
is provided in Figure 1.

• We introduce REPROGRAMMER and RESIDUAL REPRO-
GRAMMER, a pair of simple yet effective fine-tuning tech-
niques designed to fully maintain and harness pre-training
representations in CLIP-like models.

• Our results show that RESIDUAL REPROGRAMMER con-
sistently outperforms all other methods holistically when
evaluating ID, OOD generalization, and OOD detection
tasks. Improving the aggregated performance by +2.78%
on CIFAR benchmarks and +0.69% on ImageNet-1k
benchmarks when compared to the next best method.

• Additionally, we conduct supporting ablations to improve
our understanding of REPROGRAMMER under (1) varying
degrees of reprogramming strength and (2) visualizing the
reprogrammed feature space under covariate shifts.

II. BACKGROUND AND RELATED WORK

Pre-trained and CLIP-like Models: Pre-trained models,
trained on vast and diverse datasets, have become a popular
technique for constructing robust machine learning models
capable of efficient transfer to downstream tasks [23]–[32]. In
this paper, we primarily focus on the Contrastive Language-
Image Pre-training (CLIP) model [13]. CLIP is a multi-modal
model pre-trained on a large dataset of 400 million image-
caption pairs collected from the web. More specifically, given
a set of image-caption pairs D = {(X1, T1)..., (Xn, Tn)},
CLIP-like models train an image-encoder f and a text-encoder
g such that the cosine similarity between the features f(xk)
and h(tk) are maximized with respect to each pair k.

Out-of-distribution Generalization: To assess the OOD gen-
eralization performance of our downstream models, we fine-
tune and compare the accuracy of our tuned models using two
distinct yet interconnected datasets Din and Dout. The dataset
Din corresponds to the in-distribution dataset to which our
pre-trained model is tuned on. The OOD dataset Dout repre-
sents a covariate (domain) shifted out-of-distribution dataset,
comprising samples that share the same semantic classifica-
tions as those in the in-distribution dataset Din but manifested
under different domains. These domains can include sketches,
origami, and other variations of the in-distribution classes
[33]–[36].

In an OOD generalization context, the goal of an effective
fine-tuning technique is to attain high accuracy across both
Din and Dout. Being able to achieve high accuracy across
both datasets is paramount, as an intelligent and robust model
should be agnostic to the covariate shifts of a given sample.

Out-of-distribution Detection: Out-of-distribution detection
can be formulated as a binary classification problem where,
given some classifier f̃ tasked on the in-distribution dataset
Din, our objective is to design a function estimator

h(x̂) =

(
in, if S(x̂) � �

out, if S(x̂) < �,

such that h(x̂) can determine whether a sample x̂ is in-
distribution Din or out-of-distribution Qout.

Critically, in the OOD detection setting, our goal is to
detect semantically shifted samples. For instance, if the in-



3

Fig. 2: Visual diagrams illustrating the image reprogramming and text reprogramming functions. In the image reprogramming
function, an input image undergoes resizing and padding, followed by the addition of a learnable edge perturbation. Similarly,
in the text reprogramming function, an input caption is tokenized before a lookup table and bias embedding are applied.
Subsequently, both the reprogrammed image and caption embeddings are passed through the fixed image-text encoder during
a model forward pass.

distribution encapsulates samples of {“cats”, “dogs”} then
the goal of our detector h, given a “car” sample x̂, is to
detect that the x̂ sample does not belong to the in-distribution
set x̂ /2 Din, or equivalently that the sample is out-of-
distribution x̂ 2 Qout. To evaluate OOD detection, we employ
the commonly used maximum softmax probability (msp)
detector hmsp [37], which measures the confidence of our
classifier f̃ towards a given input x̂. The goal, of a strong fine-
tuning method, is to produce a downstream model f̃ that is
more uncertainty aware. Specifically, we want the downstream
model f̃ to not confidently classify on semantically shifted
OOD samples, whilst maintaining confidence when predicting
ID samples. This goal is again immediately apparent, as we
want a safe and robust model to not (overconfidently) find a
semantically dissociated OOD sample to be indistinguishable
from ID samples [2], [7], [9], [37].

Model Reprogramming: Model reprogramming is a resource-
efficient, cross-domain, framework used to re-purpose models
for different task-specific scenarios [22]. The framework draws
significant inspiration from adversarial reprogramming, which
was first introduced by Elsayed et al [38]. The aim of model re-
programming is to re-use and re-align the data representation,
from an existing model, for a separate task without funda-
mental changes to the model’s parameters [39]. In particular,
model reprogramming utilizes a trainable input transformation
(reprogramming function) that maps the input to a new form
for the model to ingest. Following a forward pass, model
reprogramming employs a label mapping function to generate
final classification predictions. It is important to note that
reprogramming functions are not specific to any singular input;
instead, the reprogramming function is consistently applied

to all inputs. Traditionally, model reprogramming methods
operate by training an image/audio reprogramming function
to optimally transform continuous input data, such that the
output of the model can be used to perform some other desired
task [38], [39]. Model reprogramming methods have also been
proven to be successful in both white-box and black-box
settings [40]. Additionally, Neekhara et al [41] presented a
reprogramming method for sequence classification models, by
utilizing a context-based vocabulary remapping function [41],
[42]. To the best of our knowledge, this paper is the first model
reprogramming method tackling joint text-image encoders in
a multi-modal setting.

III. METHODOLOGY

In this section, we begin by introducing the image and text
reprogramming modules as presented in Figure 2, followed by
the full REPROGRAMMER and RESIDUAL REPROGRAMMER
fine-tuning techniques. Additionally, we offer further details
on our methodology in Appendix B.

A. Image Reprogramming

Consider just the CLIP image encoder f : I ! Rb⇥k

where b is the input image batch size and k = 512 is the
CLIP feature size. To apply reprogramming, we leverage the
commonly used adversarial program first described by Elsayed
et al [38], which we define as the reprogramming function
 . The reprogramming function  is applied to the input
image pre-forward pass through the CLIP image encoder f .
Critically, the reprogramming function  is not specific to any
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Fig. 3: Visual diagram illustrating the REPROGRAMMER and RESIDUAL REPROGRAMMER training schema based on the CLIP
joint image and text encoder setting. During REPROGRAMMER training, an image and caption pair each independently undergoes
their respective reprogramming functions before being passed into the CLIP image and text encoders. A loss is then computed
based on the cosine similarity of the two reprogrammed features. Then we subsequently backpropagate and optimize each
parameter associated with the image and text reprogramming function. During inference time, RESIDUAL REPROGRAMMER
leverages a residual connection that combines the reprogrammed representation and zero-shot representations.

singular input image, rather  will be consistently applied to
all images. We define our reprogramming function  as

 (X) = U(X) + tanh(W �M) (1)

where U denotes an image up-sampling then zero-padding
function, W 2 Rd⇥d⇥3 is the image reprogrammer parameters
that is to be learned, d is the size of CLIP’s input width and
height, � denotes the Hadamard product, and M is a binary
masking matrix. We define the binary masking matrix M as
0 for positions where we wish to implant the original image,
and 1 for positions that we choose to reprogram.

B. Text Reprogramming

Now we consider the CLIP text encoder g : S ! Rb⇥k

where b is the input text batch size and k = 512 is the
CLIP feature size. Additionally, we define our text input s
as a sequence of tokens s = {s1, ..., s|s|} where si is the
vocabulary index of the ith token in the vocabulary list VS .
To apply reprogramming to a text input, we leverage and
alter a version of the adversarial program as first described
by Neekhara et al [41].

Formally, we define our text reprogramming function as
�✓,b where �✓,b is a simple look-up embedding and bias on
the tokens {si} that can be parameterized by the learnable
embedding tensor ✓ and the bias parameter b. Specifically,
we define our ✓ 2 R|VS |⇥d and b 2 Rd where our default
vocabulary size is |VS | = 49408, which is the expected
vocabulary size for the CLIP text encoder. Similarly, as with
all reprogramming functions, the text reprogramming function
is not specific to any singular text input, rather �✓,b will be
consistently applied to all text inputs.

An example of the text reprogramming function goes as
follows. First, we set si = “a photo of a {ci}” where ci is
the given sample class label. Our text reprogramming then
tokenizes the string s = “a photo of a Labrador Retriever”
into tokens ts. Subsequently, the tokens ts are passed into the
�✓ function to embed the tokens into a matrix v0s 2 R|ts|⇥e

where each token in ts becomes an embedding vector of size
e. Then we apply a bias parameter b to v0s in the form of
vs = v0s + b, before finally passing the vector vs through the
CLIP text encoder g to get the reprogrammed text features.

C. Reprogrammer

Finally, to train our given image and text reprogramming
functions  and �✓,b, we define our training objective as

W ⇤, ✓⇤, b⇤ = argmax
W,✓,b

(sim(f( W (x)), g(�✓,b(s)))) (2)

where (x, s) is an image and caption pair obtained from our
training set Din, f and g are the CLIP image and text encoders
respectively, sim is the cosine-similarity function, and W, ✓, b
are the learnable parameters encapsulating our reprogramming
functions  W ,�✓,b. In practice, rather than directly optimizing
for cosine similarity, we follow the optimization schema of a
symmetric cross-entropy loss as implemented in CLIP pre-
training [13]. It is important to note that throughout the
REPROGRAMMER training process, we impose no adjustments
to any pre-trained model parameters. Thereby fundamentally
limiting any distortion to the pre-training representations.

After tuning our REPROGRAMMER parameters W, ✓, b we
perform classification, on an input image x̂ with m class
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Method CIFAR Benchmark ImageNet Benchmark
Aggregate (") Aggregate (")

No Tuning ZS 88.22 51.54

Fine-tuned

LP 89.80 55.13
FFT 81.66 51.88

LP-FT 89.85 55.06
L2-SP 87.49 53.39

WiSE-FT 89.58 55.75
CoOp 83.13 54.35

RP 91.44 55.11
RRP 92.69 56.64

TABLE I: Aggregate Results of the fine-tuned downstream
model’s performance across ID classification, OOD general-
ization, and OOD detection tasks. To quantify the holistic
performance, we report the average score normalized across
all benchmarks as described in the Experimental Setup in
Section IV-A. All values are percentages and bold values are
the superior results.

labels C = {c1, ..., cm}, similar to that of zero-shot CLIP.
Specifically, we make a prediction y through

y = argmax
i

(sim(f( W⇤(x̂)), g(�✓⇤,b⇤(si)) (3)

where si is the class-wise captions such that si =
“a photo of a {ci}” and  W⇤ and �✓⇤,b⇤ are our learned
reprogramming functions parameterized by W ⇤, ✓⇤, and b⇤.

D. Residual Reprogrammer
To further retain pre-training representations, we propose

RESIDUAL REPROGRAMMER which seeks to fuse prior pre-
training representations alongside our reprogrammed repre-
sentations. These representation residual connections have
been utilized in different formulations and settings [43], [44]
however they have never been applied in the context of model
reprogramming. Additionally, it is important to note that the
representation residual connections employed in RESIDUAL
REPROGRAMMER are not the residual connections defined
in the ResNet architecture [45]. Furthermore, we provide
some intuition in Appendix C showcasing how RESIDUAL
REPROGRAMMER can be interpreted as an inference time
regularizer for our image and text reprogramming functions.

Consider a tuned REPROGRAMMER model with parameters
W, ✓, b and an input image x̂ with m class labels {c1, ..., cm}.
We define our residual reprogramming functions as

F (x̂) = (1� ↵)f( W⇤(x̂)) + ↵f(x̂) (4)
G(si) = (1� ↵)g(�✓⇤,b⇤(si)) + ↵g(si) (5)

where  W⇤ and �✓⇤,b⇤ are our learned reprogramming func-
tions parameterized by W ⇤, ✓⇤, and b⇤. Subsequently, during
inference time, we perform classification with RESIDUAL
REPROGRAMMER through

y = argmax
i

(sim(F (x̂), G(si)) (6)

where si is the class-wise captions such that si =
“a photo of a {ci}”.

Din Method CIFAR-10 CIFAR10.1 STL10
Accuracy (") Accuracy (") Accuracy (")

No Tuning ZS 89.23 83.30 97.40

CIFAR-10

LP 94.89 90.05 96.34
FFT 96.24 91.05 55.90

LP-FT 96.38 91.53 95.93
L2-SP 95.46 90.71 87.59

WiSE-FT 97.63 92.65 91.27
CoOp 94.50 90.45 68.94

RP 95.23±0.1 91.42±0.1 96.58±0.3

RRP 95.56±0.1 92.67±0.1 97.86±0.1

TABLE II: CIFAR Generalization Results OOD generaliza-
tion performance comparison between zero-shot (ZS), linear-
probing (LP), full fine-tuning (FFT), LP-FT, L2-SP, WiSE-FT,
CoOp, REPROGRAMMER (RP), and RESIDUAL REPROGRAM-
MER (RRP) methods with CIFAR-10 as the in-distribution
dataset. RP and RRP results are averaged over 3 random seeds.
Values are percentages and bold values are the superior results.

IV. EXPERIMENTS

In this section, we first outline our experimental setup for
OOD generalization and OOD detection in Section IV-A,
before evaluating our REPROGRAMMER and RESIDUAL RE-
PROGRAMMER methods against other common fine-tuning
techniques in Section IV-B. Furthermore, we conduct addi-
tional ablations in Section IV-C and provide supplementary
experiments which can be found in Appendix E.

A. Experimental Setup

In-distribution dataset: We tune our model with CIFAR-10
[46] and ImageNet-1k [47] as the in-distribution (ID)
datasets. These datasets are widely employed as ID datasets
for OOD generalization and OOD detection experiments.
The CIFAR-10 dataset contains labeled (32⇥32) resolution
images covering a range of real-world objects such as horses,
cats, and airplanes. The ImagetNet-1k dataset contains over
1.2 million training images spanning 1000 different real-world
objects such as species of dogs and automotive vehicles.

Out-of-distribution Generalization: For models fine-tuned
on CIFAR-10, we evaluate the OOD generalization per-
formance on two standard covariate-shifted OOD datasets.
Specifically, we evaluate generalization accuracy with the
CIFAR-10.1 [48] and STL10 [49] datasets. For mod-
els fine-tuned with ImageNet-1k, we evaluate the OOD
generalization performance across four widely used bench-
marks. In particular, we evaluate generalization accuracy with
ImageNetV2 [35], ImageNet-R [33], ImageNet-A [34],
and ImageNet-Sketch [36]. All of these datasets contain
images derived from the same semantic labels as those in
the ID dataset. For example, these datasets may encompass a
sketched version of a Labrador Retriever, a cartoon depiction
of a strawberry, or a photograph of a toy duck (for more details
refer to Appendix A-A).

Out-of-distribution Detection: For models fine-tuned on
CIFAR-10, we evaluate using the msp detector against
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Din Method ImageNet-1k ImageNetV2 ImageNet-A ImageNet-R ImageNet-S
Accuracy (") Accuracy (") Accuracy (") Accuracy (") Accuracy (")

No Tuning Zero-shot (ZS) 59.44 52.79 11.82 43.48 38.61

ImageNet

Linear-probing (LP) 72.43 61.35 10.71 41.58 38.19
Full Fine-tuning (FFT) 73.14 60.98 6.41 32.71 32.83

LP-FT [4] 73.30 62.04 11.38 43.30 39.10
L2-SP [20] 72.79 61.13 9.21 37.24 35.29

WiSE-FT [15] 73.86 61.50 11.27 42.18 37.92
CoOp [21] 70.64 58.12 13.89 43.26 39.28

Reprogrammer (RP) 72.02±0.1 61.15±0.2 12.61±0.3 44.18±0.2 39.64±0.3

Residual Reprogrammer (RRP) 72.63±0.1 61.74±0.1 13.06±0.3 45.38±0.2 40.12±0.2

TABLE III: ImageNet Generalization Results. OOD generalization performance comparison between zero-shot, linear-probing,
full fine-tuning, L2-SP, WiSE-FT, CoOp, REPROGRAMMER, and RESIDUAL REPROGRAMMER methods. All methods utilize
the CLIP B/32 architecture fine-tuned on ImageNet-1k as the in-distribution dataset. An additional description of the four
covariate-shifted OOD datasets is provided in Appendix A-A. " indicates larger values are better, while # indicates smaller
values are better. All values are percentages and bold values are the superior results.

four commonly used CIFAR OOD detection benchmarks.
More specifically, we evaluate on the iSUN [50], LSUN
Resized [51], Places365 [52], and Textures [53]
datasets. These OOD datasets span a wide range of objects
including fine-grained images, scene images, and textural
images. Importantly, these datasets are carefully chosen so
that there is no semantic overlapping with respect to the
CIFAR-10 dataset. For models tuned with ImageNet-1k,
we use the large-scale ImageNet OOD detection benchmark
proposed by Huang et al [3]. Specifically, we evaluate on four
OOD datasets which are subsets from the iNaturalist
[54], SUN [55], Places [52], and Textures [53] datasets.
These datasets are again carefully curated so that there is no
semantic overlap with respect to the ImageNet-1k dataset
(for more details refer to Appendix A-A).

Evaluation Metrics: In the context of OOD generalization, we
measure all methods across the designated covariate-shifted
OOD datasets using accuracy as the evaluation metric. For
OOD detection, we measure all methods across each seman-
tically shifted dataset using the false positive rate, when the
true positive rate of ID samples is 95% (FPR95), and the area
under the receiver operating characteristic curve (AUROC) as
evaluation metrics.

Compared Methods: We compared our REPROGRAMMER
(RP) and RESIDUAL REPROGRAMMER (RRP) fine-tuned mod-
els against zero-shot (ZS), linear-probed (LP), full fine-tuned
(FFT), LP-FT [4], L2-SP [20], WiSE-FT [15], and CoOp
[21] fine-tuned models. Each of these fine-tuning methods is
commonly used in CLIP-based OOD evaluations. Zero-shot
refers to applying the CLIP pre-trained model directly to the
designated downstream task without making any alterations to
the CLIP model. Linear probing involves optimizing a linear
regression classifier directly on the frozen features extracted
from the penultimate layer of the CLIP image encoder. To
obtain a fully fine-tuned model, we fine-tuned all parameters
in the image encoder and classification head to fit the in-
distribution dataset. Subsequently, both L2-SP and WiSE-
FT can be considered more sophisticated alternatives to full
fine-tuning. Specifically, L2-SP is a regularized full fine-
tuning method that applies L2 regularization to the model’s

parameters with respect to the zero-shot model parameters
[20]. WiSE-FT is a model souping approach that combines the
weights of a fully fine-tuned model with the zero-shot model
[15]. Finally, CoOp is a prompt learning approach to fine-
tuning where the learned parameters consist solely of class-
wise captions as defined by si [21].

Learning Details: All presented experiments were conducted
using the CLIP B/32 architecture unless otherwise specified.
Additional experiments with higher capacity models can be
found in Appendix E. We conducted a simple hyperparam-
eter sweep for RESIDUAL REPROGRAMMER, varying ↵ from
{0.0, 0.1, . . . , 1.0}, based on ID test accuracy. The final chosen
value used during the evaluation was ↵ = 0.4. For images with
a resolution higher than 128⇥128, we downscaled and cropped
them to 128⇥ 128. We did this to accommodate CLIP’s input
size limitations, ensure paddable pixels, and maintain a fair
comparison across all datasets, considering the information
loss due to downsampling. Additional experiments with vari-
ous degrees of downsampling, ranging from no downsampling
to heavy downsampling, are presented in Appendix G. In all
fine-tuning training processes, we initialized the model with
the pre-trained CLIP B/32 model and performed a hyperpa-
rameter sweep over three learning rates using a cosine learning
rate scheduler. For linear probing, we directly optimized a lin-
ear regression classifier on the frozen features extracted from
the penultimate layer of the CLIP image encoder, sweeping
over learning rates of {0.005, 0.002, 0.001} for 5 epochs. For
full fine-tuning, we initialized the classification head with text
encoder features derived from class-wise captions, as specified
by Wortsman [15]. We then conducted a sweep over learning
rates of {0.00001, 0.00003, 0.0001} for 5 epochs, optimizing
all parameters in the image encoder and classification head.
For LP-FT, we initialize the classification head using linear
probing before full fine-tuning the model. Additionally, for
WiSE-FT, we utilized ↵ = 0.5. For REPROGRAMMER, we
randomly initialized both the image and text reprogramming
functions and conducted a sweep over learning rates of
{0.0005, 0.001, 0.005} for 5 epochs. In all experiments, we
set the batch size to 128 and included a warm-up period
of 500 iterations. Further details regarding hyperparameter
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Din Method iSUN LSUN Resize Places365 Textures Average
FPR95 (#) AUROC (") FPR95 (#) AUROC (") FPR95 (#) AUROC (") FPR95 (#) AUROC (") FPR95 (#) AUROC (")

No Tuning ZS 27.15 95.08 24.41 95.61 15.87 97.12 32.36 92.60 24.95 95.10

CIFAR-10

LP 36.74 94.57 28.38 95.75 24.65 96.73 39.67 92.93 32.36 94.99
FFT 45.47 92.78 42.95 93.41 40.92 94.06 44.85 92.30 42.89 93.40

LP-FT 37.24 94.69 36.80 95.23 28.77 95.85 40.43 93.06 35.81 94.71
L2-SP 40.20 93.76 34.94 94.47 35.09 94.84 42.72 92.71 38.24 93.95

WiSE-FT 37.93 94.22 31.23 95.10 34.73 95.06 40.36 93.15 36.06 94.38
CoOp 35.38 94.48 30.53 95.37 57.77 86.72 44.72 93.52 42.10 92.52

RP 29.86±0.7 95.36±0.5 26.31±0.6 95.88±0.4 15.95±0.5 97.60±0.3 30.68±0.8 93.65±0.5 25.70±0.7 95.62±0.4

RRP 24.87±0.6 96.19±0.4 20.52±0.6 97.12±0.3 15.22±0.5 97.86±0.2 26.37±0.6 94.87±0.5 21.75±0.6 96.51±0.4

Din Method iNaturalist SUN Places Textures Average
FPR95 (#) AUROC (") FPR95 (#) AUROC (") FPR95 (#) AUROC (") FPR95 (#) AUROC (") FPR95 (#) AUROC (")

No Tuning ZS 53.96 85.15 64.89 81.26 65.76 79.30 70.05 77.03 63.67 80.69

ImageNet

LP 51.15 88.25 78.68 74.58 76.42 75.15 70.25 78.71 69.12 79.17
FFT 71.94 81.37 80.29 74.01 79.97 74.54 78.28 74.80 77.62 76.18

LP-FT 59.28 85.51 78.74 74.56 76.51 75.01 73.88 76.67 72.10 77.94
L2-SP 64.74 85.01 77.84 74.50 77.59 74.93 75.98 75.05 74.04 77.37

WiSE-FT 52.21 88.63 77.08 74.89 75.70 75.91 71.05 77.92 69.01 79.34
CoOp 60.51 82.91 77.63 73.88 76.12 73.71 64.70 78.68 69.74 77.30

RP 57.13±1.1 85.82±0.7 76.68±1.5 74.31±1.0 75.89±1.8 74.32±1.1 70.53±1.6 77.09±1.0 70.06±1.5 77.89±1.0

RRP 51.46±0.9 87.82±0.6 69.95±1.1 77.29±0.9 70.93±1.5 76.58±1.0 69.10±1.5 77.48±1.0 65.36±1.3 79.79±0.9

TABLE IV: OOD Detection Results. OOD detection performance comparison between zero-shot (ZS), linear-probing (LP),
full fine-tuning (FFT), L2-SP, WiSE-FT, CoOp, REPROGRAMMER (RP), and RESIDUAL REPROGRAMMER (RRP) using the
msp [37] detector. All methods utilize the CLIP B/32 architecture fine-tuned on CIFAR-10 or ImageNet-1k as the in-
distribution dataset. " indicates larger values are better, while # indicates smaller values are better. All values are percentages
and bold values are the superior results.

settings can be found in the provided source code. In addition,
when tuning on CIFAR-10 and ImageNet-1k, we set
the image up-sampling for REPROGRAMMER and RESIDUAL
REPROGRAMMER to 160 ⇥ 160 and 224 ⇥ 224 pixels, re-
spectively, with padding sizes of 64 and 32. As previously
mentioned, images with resolutions higher than 128⇥128 were
downscaled and cropped to 128⇥128 to accommodate CLIP’s
input size limitations and ensure consistent comparisons across
datasets. Additional experiments featuring varying degrees
of downsampling, from none to heavy downsampling, are
presented in the Appendix G.

B. Results

Holistic Performance: We present a holistic evaluation in
Table I, showcasing an aggregated score based on the aver-
age normalized performance across ID, OOD generalization,
and OOD detection tasks for REPROGRAMMER, RESIDUAL
REPROGRAMMER, and other common fine-tuning techniques.
More specifically, these aggregated scores are presented in
relation to the specified in-distribution dataset (CIFAR-10
or ImageNet-1k) utilized for fine-tuning the pre-trained
model.

We observe that the base REPROGRAMMER method gen-
erally outperforms all other compared fine-tuning methods in
terms of its aggregated performance. Furthermore, it is evident
that the RESIDUAL REPROGRAMMER method surpasses even
REPROGRAMMER, enhancing the holistic aggregate score by

+1.01% in our CIFAR-10 benchmarks and +1.13% in our
ImageNet-1k benchmarks. These aggregated performances
provide strong support for our hypotheses that less intrusive
fine-tuning techniques, such as REPROGRAMMER, will yield
more holistically robust downstream models that are better
equipped to handle covariate and semantically shifted OOD
samples.

Out-of-distribution Generalization: We provide a detailed
evaluation in Table II and Table III, focusing on the general-
ization accuracy of our REPROGRAMMER and RESIDUAL RE-
PROGRAMMER methods after fine-tuning on the CIFAR-10
and ImageNet-1k ID datasets, respectively. We note that
WiSE-FT exceeds most other methods specifically in the ID
classification task. This is in line with expectations set by prior
works [15]. However, in the context of OOD generalization
tasks, RESIDUAL REPROGRAMMER consistently outperforms
all other fine-tuning techniques across all benchmarks. This
observation substantiates our hypothesis that maintaining di-
verse pre-trained representations is crucial for effectively gen-
eralizing to covariate-shifted OOD samples. Furthermore, we
notice that full fine-tuning in particular yields significantly
worse results compared to all other fine-tuning techniques.
This observation also aligns with prior works that have shown
naive full fine-tuning to negatively distort the pre-training
representations necessary for robust OOD generalization [4].

Out-of-distribution Detection: We provide a detailed evalu-
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(a) Reprogrammer Padding Size
(CIFAR Benchmarks)

(b) Reprogrammer Padding Size
(ImageNet Benchmarks)

(c) Linear-probing Feature Space (d) Reprogrammer Feature Space

Fig. 4: Ablation Studies. Figures 4a, 4b illustrate the effectiveness of our REPROGRAMMER method as we adjust the
image reprogramming padding size. A larger padding size indicates that more of the input image is being subjected to the
reprogramming function. Additionally, we present UMAP visualization comparing the feature spaces between linear-probed
and REPROGRAMMER models using 500 randomly sampled covariate shifted (CIFAR-10.1) images in Figures 4c, 4d.

ation of OOD detection in Table IV. Specifically, we present
the OOD detection performances of our fine-tuned models
across four semantically shifted OOD datasets, as well as
the averaged performance across all four datasets in both the
CIFAR-10 and the ImageNet-1k ID settings. To ensure
fair comparisons, we employ the commonly used baseline msp
detector [37] across all experiments as a measure to assess
the level of overconfidence exhibited by each downstream
model when dealing with semantically shifted OOD samples.
Firstly, it is very apparent that all non-reprogrammer fine-
tuning techniques exhibit worse OOD detection performance
in comparison to the zero-shot model. This observation re-
inforces our hypothesis that fine-tuning techniques have an
adverse impact on the downstream model’s ability to detect
semantically shifted OOD samples.

Secondly, we also note that RESIDUAL REPROGRAM-
MER outperforms all other fine-tuning techniques in both
ImageNet-1k and CIFAR-10 OOD detection benchmarks.
However, in the ImageNet-1k benchmarks, neither RE-
PROGRAMMER nor RESIDUAL REPROGRAMMER manages to
surpass the OOD detection capabilities of the zero-shot model.
The superiority of the zero-shot model for OOD detection,
when compared to fine-tuned models is expected as recent
research has also demonstrated the effectiveness of the zero-
shot CLIP model for OOD detection tasks [56]. This implies
that while REPROGRAMMER and RESIDUAL REPROGRAMMER
lead to improved downstream models compared to other fine-
tuning techniques, there remains an inherent OOD detection
cost associated with fine-tuning a pre-trained model. Subse-
quently, this hidden cost can further materialize as a trade-off
between generalization capabilities (ID & OOD generaliza-
tion) and detection capabilities (OOD detection) when fine-
tuning a pre-trained model.

C. Ablation Studies

Reprogrammer Padding Size: In this ablation study, we
evaluate the effectiveness of our REPROGRAMMER training as
we adjust the image reprogramming padding size. The image
reprogramming padding size refers to a set of hyperparameters
within our image reprogramming module  that control the
extent of border and padding perturbations applied to the

image. Consequently, a larger image reprogramming padding
size results in more extensive perturbations being applied
through the image reprogramming module. We illustrate the
effects of varying reprogramming padding sizes, increasing
the permissible border pixels from 30 to 140, in Figure 4.
More specifically, we present the impacts of padding size
adjustments on both our CIFAR-10 benchmarks (Figure 4a)
and ImageNet-1k benchmarks (Figure 4b). Comparing the
results of our ablation study, we observe that the optimal
range of padding sizes for our CIFAR-10 reprogrammed
model tends to be larger than that for our ImageNet-1k
reprogrammed model. We hypothesize that this discrepancy is
due to the lower-resolution images present in the CIFAR-10
dataset, which compels our REPROGRAMMER to adopt a more
aggressive perturbation strategy to compensate for the lower-
resolution samples.

Reprogrammed Feature Space: In this ablation study, we
offer additional insights to illustrate how reprogramming can
enhance the alignment of covariate-shifted OOD samples.
Figures 4c and 4d present UMAP visualizations comparing the
feature space between the linear-probed and reprogrammed
models on covariate-shifted OOD samples [57]. Observing
these visualizations, it becomes evident that REPROGRAMMER
generates more class-conditionally distinct and compact clus-
ters of covariate features. This observation further substan-
tiates our hypothesis that model reprogramming techniques
can effectively align OOD samples with the strongly tuned
in-distribution space, thereby enabling REPROGRAMMER and
RESIDUAL REPROGRAMMER to more accurately distinguish
and classify covariate-shifted OOD samples.

V. DISCUSSION

In this section, we discuss the limitations and computational
efficiency of our REPROGRAMMER and RESIDUAL REPRO-
GRAMMER methods. Specifically, we explore some of the in-
herent limitations relating to Text-Image Encoder architectures
in Section V-A, discuss the challenges associated with learn-
ing under high output space dimensionality in Section V-B,
discuss our work with relation to some recent advancements
in Section V-C, and elaborate on the computational efficiency
of our methods in Section V-D.



9

A. Text-Image Encoders

Our proposed REPROGRAMMER and RESIDUAL REPRO-
GRAMMER methods aim to reprogram both the image and text
encoders in CLIP-like models. Due in part to the necessity for
there to be paired image and text encoders, our methods are
limited to these joint text-image encoder models. However,
diverging from our REPROGRAMMER and RESIDUAL REPRO-
GRAMMER methods, we can harness components from our
approach in combination with other fine-tuning techniques.
Specifically, Kumar [4] demonstrated how to mitigate full fine-
tuning distortions by initially tuning the classification head
before proceeding with full fine-tuning of the model. Likewise,
the image reprogramming function can be integrated with
linear-probing or full fine-tuning to develop another set of
fine-tuning techniques. These supplementary methods could
potentially yield similar out-of-distribution benefits to those
observed in our paper and may also be applicable to other non-
CLIP pre-trained models. We leave this area open for future
exploration.

B. Output Space Dimensionality

A potential limitation of REPROGRAMMER and RESID-
UAL REPROGRAMMER is their effectiveness in tasks with
higher output dimensionality. Specifically, model reprogram-
ming techniques generally perform better on tasks with lower
output dimensionality, such as the 10-way classification in
CIFAR-10. However, when dealing with tasks with higher
output dimensionality, like the 1000-way classification in
ImageNet-1k, model reprogramming techniques typically
require more extensive tuning and tend to be less capable of
outperforming other fine-tuning techniques. This limitation is
reflected in our methods as, although REPROGRAMMER and
RESIDUAL REPROGRAMMER still demonstrate improvements
in the showcased ImageNet benchmarks, these improvements
are less significant when compared to the CIFAR benchmarks.
An intuitive initial approach to addressing this issue would be
to replace our traditional and simple reprogramming functions
with more robust functions. However, this topic is beyond the
scope of this paper, and we will leave this problem open for
future model reprogramming research.

C. Comparison to MaPLe

Khattak et al. proposed a new prompt learning technique
called MaPLe, specifically designed for multi-modal models
[58]. MaPLe was developed concurrently with REPROGRAM-
MER and RESIDUAL REPROGRAMMER, and both methodolo-
gies address the same domain of multi-modal model fine-
tuning.

However, there are significant methodological differences
that distinguish REPROGRAMMER and RESIDUAL REPRO-
GRAMMER from MaPLe. In particular, the Deep Vision
Prompting in MaPLe utilizes multi-layer prompting, where
each layer of the transformer undergoes an independent
prompt learning module [58]. This approach differs from both
traditional model reprogramming and RP, as they employ
solely an input-level transformation function. Subsequently,

this enables RP to be more lightweight, easier to implement in
real-world applications, and versatile for settings like black-
box optimization. Additionally, the Vision Language Prompt
Coupling proposed in MaPLe establishes fixed prompting pairs
between all layers of the Image and Text encoders [58]. This
deviates from RP, where each modality is provided with its
reprogramming function that is independently learned. This
design proves to be particularly advantageous for diverse
multi-modal models, where the paired modalities may not be
image-text. For example, multi-modal models of text-audio
will prove challenging for MaPLe to adapt to.

We would like to reiterate that MaPLe is specifically
designed to enhance prompt tuning for In-Distribution (ID)
classification and generalization settings. In contrast, our work
focuses on addressing robustness through Out-of-Distribution
(OOD) detection and generalization. Furthermore, our goal
is to shed light on the challenging trade-off between In-
Distribution (ID) and OOD performances that can arise dur-
ing the fine-tuning process. Additionally, MaPLe focuses on
ID classification and generalization settings, while our work
specifically addresses the OOD generalization and OOD detec-
tion settings. Consequently, a substantial portion of our paper
aims to shed light on the challenging trade-off between ID
and OOD performance that can arise during fine-tuning, and
we also provide an in-depth discussion on how to measure
and address these trade-off concerns. In summary, there are
significant methodological and setting differences between our
work and MaPLe, making direct comparisons between the
methods challenging.

D. Reprogramming Computational Efficiency
One of the key advantages of using model reprogram-

ming techniques lies in their minimal resource and data
requirements, as demonstrated by Tsai et al [40]. Specifically,
the computational overhead introduced by the incorporation
of REPROGRAMMER is minimal. The image reprogramming
function can be broken down into a masking function involving
matrix addition, and the text reprogramming function is a
simple lookup operation with vector addition. As a result, the
training process incurs negligible overhead due to the small set
of parameters needed to be learned. Furthermore, the memory
complexity associated with maintaining the reprogramming
functions is also minimal. It only necessitates the storage of
matrices proportional to the fixed padding and vocabulary sizes
specified by the REPROGRAMMER methods. This efficiency in
resource utilization makes REPROGRAMMER and RESIDUAL
REPROGRAMMER an appealing choice for various real-world
applications.

VI. SOCIETAL IMPACT

The goal of our project is to enhance the safety and ro-
bustness of fine-tuning techniques applied to large pre-trained
machine learning models. We believe that these improvements
can have a profound impact across various societal domains.
Given that many modern real-world applications heavily de-
pend on classification, addressing these safety and robustness
concerns is of paramount importance, spanning from consumer
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and business applications to autonomous vehicles and medical
imaging. Through this endeavor, we aim to provide researchers
with an additional tool to address these complex challenges.
While we do not foresee any adverse consequences stemming
from our work, we aspire to continue monitoring and building
upon this method in the future.

VII. CONCLUSION

In this paper, we demonstrated that preserving pre-training
representations is critical for improving the holistic capabilities
(ID classification, robustness to covariate shifts, and safety
under semantic shifts) of the downstream model. To this end,
we introduced an alternative approach for fine-tuning text-
image encoder models called REPROGRAMMER, which aims
to minimize distortion to the model’s pre-trained representa-
tions through model reprogramming techniques. Experimental
results further highlight the effectiveness of both REPRO-
GRAMMER and RESIDUAL REPROGRAMMER when compared
to other common fine-tuning techniques. We hope that our
study illuminates the hidden costs associated with common
fine-tuning techniques and inspires future research to leverage
reprogramming approaches for fine-tuning. Moreover, we hope
that our study helps to underscore the importance of measuring
holistic ID and OOD performances (Table I) when evaluating
the effectiveness of different fine-tuning techniques.

REFERENCES

[1] J. Chen, Y. Li, X. Wu, Y. Liang, and S. Jha, “Atom: Robustifying
out-of-distribution detection using outlier mining,” In Proceedings of
European Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases (ECML PKDD), 2021.

[2] Y.-C. Hsu, Y. Shen, H. Jin, and Z. Kira, “Generalized odin: Detecting
out-of-distribution image without learning from out-of-distribution data,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 10 951–10 960.

[3] R. Huang and Y. Li, “Towards scaling out-of-distribution detection for
large semantic space,” Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021.

[4] A. Kumar, A. Raghunathan, R. Jones, T. Ma, and P. Liang, “Fine-tuning
can distort pretrained features and underperform out-of-distribution,”
International Conference on Learning Representations, 2022.

[5] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” in Advances in
neural information processing systems, 2017, pp. 6402–6413.

[6] K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified framework
for detecting out-of-distribution samples and adversarial attacks,” in
Advances in Neural Information Processing Systems, 2018, pp. 7167–
7177.

[7] S. Liang, Y. Li, and R. Srikant, “Enhancing the reliability of out-of-
distribution image detection in neural networks,” in 6th International
Conference on Learning Representations, ICLR 2018, 2018.

[8] Z. Lin, S. D. Roy, and Y. Li, “Mood: Multi-level out-of-distribution
detection,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021.

[9] W. Liu, X. Wang, J. Owens, and Y. Li, “Energy-based out-of-distribution
detection,” Advances in Neural Information Processing Systems, 2020.

[10] J. P. Miller, R. Taori, A. Raghunathan, S. Sagawa, P. W. Koh, V. Shankar,
P. Liang, Y. Carmon, and L. Schmidt, “Accuracy on the line: on
the strong correlation between out-ofdistribution and in-distribution
generalization,” International Conference on Machine Learning, 2021.

[11] S. Mohseni, M. Pitale, J. Yadawa, and Z. Wang, “Self-supervised
learning for generalizable out-of-distribution detection,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, 2020,
pp. 5216–5223.

[12] E. Nalisnick, A. Matsukawa, Y. W. Teh, D. Gorur, and B. Lakshmi-
narayanan, “Do deep generative models know what they don’t know?”
in International Conference on Learning Representations, 2018.

[13] A. Radford, J. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever,
“Learning transferable visual models from natural language supervi-
sion,” International Conference on Machine Learning (ICML), vol. 139,
pp. 8748–8763, 2021.

[14] R. Taori, A. Dave, V. Shankar, N. Carlini, B. Recht, and L. Schmidt,
“Measuring robustness to natural distribution shifts in image classifica-
tion,” Advances in Neural Information Processing Systems, 2020.

[15] M. Wortsman, G. Ilharco, J. W. Kim, M. Li, S. Kornblith, R. Roelofs,
R. G. Lopes, H. Hajishirzi, A. Farhadi, H. Namkoong, and L. Schmidt,
“Robust fine-tuning of zero-shot models,” arXiv, 2021. [Online].
Available: https://arxiv.org/abs/2109.01903

[16] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 427–436.

[17] C. Jia, Y. Yang, Y. Xia, Y.-T. Chen, Z. Parekh, H. Pham, Q. V. Le,
Y. Sung, Z. Li, and T. Duerig, “Scaling up visual and vision-language
representation learning with noisy text supervision,” International Con-
ference on Machine Learning, 2021.

[18] H. Pham, Z. Dai, G. Ghiasi, K. Kawaguchi, H. Liu, A. W. Yu,
J. Yu, Y.-T. Chen, M.-T. Luong, Y. Wu, M. Tan, and Q. V. Le,
“Combined scaling for open-vocabulary image classification,” 2021.
[Online]. Available: https://arxiv.org/abs/2111.10050

[19] A. Andreassen, Y. Bahri, B. Neyshabur, and R. Roelofs, “The evolution
of out-of-distribution robustness throughout fine-tuning,” arXiv, 2021.
[Online]. Available: https://arxiv.org/abs/2106.15831

[20] X. Li, Y. Grandvalet, and F. Davoine, “Explicit inductive bias for transfer
learning with convolutional networks,” in International Conference on
Machine Learning, 2018.

[21] K. Zhou, J. Yang, C. C. Loy, and Z. Liu, “Learning to prompt for vision-
language models,” International Journal of Computer Vision (IJCV),
2022.

[22] P.-Y. Chen, “Model reprogramming: Resource-efficient cross-
domain machine learning,” arXiv, 2022. [Online]. Available:
https://arxiv.org/abs/2202.10629

[23] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” Advances in
Neural Information Processing Systems, 2020.

[24] S. Chen, Y. Hou, Y. Cui, W. Che, T. Liu, and X. Yu, “Recall and
learn: Fine-tuning deep pretrained language models with less forgetting,”
Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing, 2020.

[25] K. Desai and J. Johnson, “Virtex: Learning visual representations
from textual annotations,” Conference on Computer Vision and Pattern
Recognition, 2021.

[26] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” International Conference on Learning Representations, 2021.

[27] C. Jia, Y. Yang, Y. Xia, Y.-T. Chen, Z. Parekh, H. Pham, Q. V. Le,
Y. Sung, Z. Li, and T. Duerig, “Scaling up visual and vision-language
representation learning with noisy text supervision,” International Con-
ference on Machine Learning, 2021.

[28] A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, and
N. Houlsby, “Big transfer (bit): General visual representation learning,”
European Conference on Computer Vision, 2020.

[29] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” arXiv, 2019.

[30] M. B. Sariyildiz, J. Perez, and D. Larlus, “Learning visual represen-
tations with caption annotations,” European Conference on Computer
Vision, 2020.

[31] X. Zhai, X. Wang, B. Mustafa, A. Steiner, D. Keysers, A. Kolesnikov,
and L. Beyer, “Lit: Zero-shot transfer with locked-image text tuning,”
Conference on Computer Vision and Pattern Recognition, 2022.

[32] Y. Zhang, H. Jiang, Y. Miura, C. D. Manning, and C. P.
Langlotz, “Contrastive learning of medical visual representations
from paired images and text,” arXiv, 2020. [Online]. Available:
https://arxiv.org/abs/2010.00747

[33] D. Hendrycks, S. Basart, N. Mu, S. Kadavath, F. Wang, E. Dorundo,
R. Desai, T. Zhu, S. Parajuli, M. Guo, D. Song, J. Steinhardt, and
J. Gilmer, “The many faces of robustness: A critical analysis of out-



11

of-distribution generalization,” International Conference on Computer
Vision, 2021.

[34] D. Hendrycks, K. Zhao, S. Basart, J. Steinhardt, and D. Song, “Natural
adversarial examples,” Conference on Computer Vision and Pattern
Recognition, 2021.

[35] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar, “Do imagenet clas-
sifiers generalize to imagenet?” International Conference on Machine
Learning, 2019.

[36] H. Wang, S. Ge, Z. Lipton, and E. P. Xing, “Learning robust global
representations by penalizing local predictive power,” Advances in
Neural Information Processing Systems, pp. 10 506–10 518, 2019.

[37] D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified and
out-of-distribution examples in neural networks,” in 5th International
Conference on Learning Representations, ICLR 2017, 2017.

[38] G. F. Elsayed, I. Goodfellow, and J. Sohl-Dickstein, “Adversarial repro-
gramming of neural networks,” International Conference on Learning
Representations, 2019.

[39] C.-H. H. Yang, Y.-Y. Tsai, and P.-Y. Chen, “Voice2series: Reprogram-
ming acoustic models for time series classification,” in International
Conference on Machine Learning. PMLR, 2021, pp. 11 808–11 819.

[40] Y.-Y. T. Tsai, P.-Y. Chen, and T.-Y. Ho, “Transfer learning without
knowing: Reprogramming black-box machine learning models with
scarce data and limited resources,” International Conference on Machine
Learning, 2020.

[41] P. Neekhara, S. Hussain, S. Dubnov, and F. Koushanfar, “Adversarial
reprogramming of text classification neural networks,” Conference on
Empirical Methods in Natural Language Processing and 9th Interna-
tional Joint Conference on Natural Language Processing, 2019.

[42] P. Neekhara, S. Hussain, J. Du, S. Dubnov, F. Koushanfar, and
J. McAuley, “Cross-modal adversarial reprogramming,” IEEE/CVF Win-
ter Conference on Applications of Computer Vision, pp. 2427—-2435,
2022.

[43] P. Gao, S. Geng, R. Zhang, T. Ma, R. Fang, Y. Zhang, H. Li, and
Y. Qiao, “Clip-adapter: Better vision-language models with feature
adapters,” 2021. [Online]. Available: https://arxiv.org/abs/2110.04544

[44] R. Zhang, Z. Wei, R. Fang, P. Gao, K. Li, J. Dai, Y. Qiao, and
H. Li, “Tip-adapter: Training-free adaption of clip for few-shot clas-
sification,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2022.

[45] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[46] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” arXiv, 2009.

[47] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[48] A. Torralba, R. Fergus, and W. T. Freeman, “80 million tiny images: A
large data set for nonparametric object and scene recognition,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 30,
no. 11, pp. 1958–1970, 2008.

[49] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks in
unsupervised feature learning,” Fourteenth International Conference on
Artificial Intelligence and Statistics, vol. 15, pp. 215—-223, 2011.

[50] P. Xu, K. A. Ehinger, Y. Zhang, A. Finkelstein, S. R. Kulkarni,
and J. Xiao, “Turkergaze: Crowdsourcing saliency with webcam based
eye tracking,” CoRR, vol. abs/1504.06755, 2015. [Online]. Available:
http://arxiv.org/abs/1504.06755

[51] F. Yu, Y. Zhang, S. Song, A. Seff, and J. Xiao, “Lsun: Construction of a
large-scale image dataset using deep learning with humans in the loop,”
arXiv preprint arXiv:1506.03365, 2015.

[52] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, “Places: A
10 million image database for scene recognition,” IEEE transactions on
pattern analysis and machine intelligence, vol. 40, no. 6, pp. 1452–1464,
2017.

[53] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A. Vedaldi,
“Describing textures in the wild,” in Proceedings of the IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2014.

[54] G. Van Horn, O. Mac Aodha, Y. Song, Y. Cui, C. Sun, A. Shepard,
H. Adam, P. Perona, and S. Belongie, “The inaturalist species classifi-
cation and detection dataset,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 8769–8778.

[55] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, “Sun
database: Large-scale scene recognition from abbey to zoo,” in 2010
IEEE computer society conference on computer vision and pattern
recognition. IEEE, 2010, pp. 3485–3492.

[56] Y. Ming, Z. Cai, J. Gu, Y. Sun, W. Li, and Y. Li, “Delving into out-of-
distribution detection with vision-language representations,” in Advances
in Neural Information Processing Systems, 2022.

[57] L. McInnes, J. Healy, N. Saul, and L. Grossberger, “Umap: Uniform
manifold approximation and projection,” The Journal of Open Source
Software, vol. 3, no. 29, p. 861, 2018.

[58] M. U. khattak, H. Rasheed, M. Maaz, S. Khan, and F. S. Khan, “Maple:
Multi-modal prompt learning,” Conference on Computer Vision and
Pattern Recognition, 2023.

[59] D. Hendrycks, M. Mazeika, and T. Dietterich, “Deep anomaly detec-
tion with outlier exposure,” in International Conference on Learning
Representations, 2018.

[60] A. Torralba, R. Fergus, and W. T. Freeman, “80 million tiny images: A
large data set for nonparametric object and scene recognition,” IEEE
transactions on pattern analysis and machine intelligence, vol. 30,
no. 11, pp. 1958–1970, 2008.

[61] H. Bahng, A. Jahanian, S. Sankaranarayanan, and P. Isola, “Explor-
ing visual prompts for adapting large-scale models,” arXiv preprint
arXiv:2203.17274, 2022.



12

APPENDIX A
DETAILS OF EXPERIMENTS

In this Appendix, we present a detailed description of the chosen OOD generalization and OOD detection datasets in
Appendix A-A and a description of our software and hardware specifications in Appendix A-B.

A. Datasets

We present a detailed list of our OOD generalization and OOD detection evaluation datasets, along with a brief description
of each dataset.

CIFAR-10 OOD Generalization Benchmarks::
• CIFAR-10.1 [48] is a collection of over 2,000 test images, sampled from TinyImages, which are designed to be a

minute distributional shift from the CIFAR-10 dataset.
• STL10 [49] is a collection of over 8,000 test images, sampled from ImageNet-1k, that is commonly used in domain

adaptation studies. We carefully curate the STL10 dataset to evaluate with only the 9 semantically overlapping classes,
choosing to omit the semantically different ”monkey” class.

ImageNet-1k OOD Generalization Benchmarks::
• ImageNetV2 [35] is a collection of 10,000 test images with approximately 10 samples per class. The dataset was sampled

utilizing the same semantic labels as defined in ImageNet-1k and obtained independently from any previous ImageNet
models.

• ImageNet-A [34] is a collection of 7,500 naturally adversarial and challenging images that are sampled based on 200
semantically overlapping ImageNet-1k classes.

• ImageNet-R [33] is a collection of over 30,000 test images, based on 200 semantically overlapping ImageNet-1k
classes, that contain images of art, cartoon, graffiti, embroidery, origami, toy, sculpture, sketch, tattoo, and other rendition
of the ImageNet-1k classes.

• ImageNet-Sketch [36] is a collection of over 50,000 test images based on all 1000 of the ImageNet-1k classes
with approximately 50 images per class. Each image is a black-and-white sketch variant of the ImageNet-1k class.

CIFAR-10 OOD Detection Benchmarks::
• iSUN [50] is a collection of over 8,925 natural scene images sampled from the SUN dataset. We include the full set of

iSUN images when conducting OOD detection evaluations.
• LSUN Resized [51] is a collection of 10,000 testing images, sampled from the LSUN dataset, spanning across 10

different scenes with images down-sampled to the size of (32⇥32). We include the full set of LSUN Resized images
when conducting OOD detection evaluations.

• Places365 [52] contains large-scale photographs of scenes with 365 scene categories. There are 900 images per category
in the test set and we again include the full test set for OOD detection evaluations.

• Textures [53], or Describable Textures Dataset, is a collection of 5,640 real-world texture images under 47 categories.
We include the entire set of 5640 images for OOD detection evaluations.

ImageNet-1k OOD Detection Benchmarks::
• iNaturalist [54] is a collection of 859,000 plant and animal images spanning over 5,000 different species. Each

image is resized to have a max dimension of 800 pixels and we evaluate 10,000 images randomly sampled from 110
classes that are carefully chosen to be semantically disjoint from the ImageNet-1k dataset.

• SUN [55] is a collection of over 130,000 images of scenes spanning 397 categories. We evaluate 10,000 randomly sampled
images from 50 classes that are semantically disjoint from ImageNet-1k classes, as SUN and ImageNet-1k have
overlapping semantic concepts.

• Places [52] is a collection of scene images with similar semantic coverage as SUN. We use a subset of 10,000 images
across 50 classes that are semantically disjoint from the ImageNet-1k dataset.

• Textures [53], or Describable Textures Dataset, is a collection of 5,640 real-world texture images under 47 categories.
We again include the entire set of 5640 images for OOD detection evaluations.

B. Software and Hardware

Software: We conducted all experiments with Python 3.8.12 and PyTorch 1.11.0.

Hardware: All experiments were conducted on NVIDIA GeForce RTX 2080Ti.
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APPENDIX B
DETAILS OF METHODOLOGY

In this appendix, we present additional visualizations to help explain the individual components of REPROGRAMMER in
detail. We first present additional image reprogramming details and visualizations, before moving on to detailing the text
reprogramming component.

A. Image Reprogramming
We present a visual diagram of our image reprogramming in the top half of Figure 2. Additionally, we note that the image

reprogramming can up-sample images to the input size of the pre-trained model. However, due to restrictions in the current
open-sourced pre-trained CLIP models, our image reprogramming up-sampling is limited to being 3⇥ 224⇥ 224 dimensions
or less. Additionally, as part of the reprogramming function  , the size of the up-sampling/padding function U and binary
masking matrix M are tunable hyperparameters.

B. Text Reprogramming
Similarly, we present a visual diagram of our text reprogramming function in the bottom half of Figure 2. We

generate class-wise captions following closely with the experiments presented by Radford et al [13]. Specifically, we set
si = “a photo of a {ci}” where ci is the given sample class label. As an example, our text reprogramming follows
the procedures where, given a text Labrador Retriever label, our text reprogramming first tokenizes the string s =
“a photo of a Labrador Retriever” into tokens ts. Subsequently, the tokens ts are passed into the �✓ function to embed the
tokens into a vector v0s. Then we apply a bias parameter b to the given vector v0s in the form of vs = v0s + b, before finally
passing the vector vs through the CLIP text encoder g to get the reprogrammed text features.

APPENDIX C
ANALYZING REPRESENTATION RESIDUAL CONNECTION

For ease of notation, let us consider

f(x) = f(x) / norm(f(x))

g(si) = g(si) / norm(g(si))

f̂(x) = f( W⇤(x)) / norm(f( W⇤(x)))

ĝ(si) = g(�✓⇤,b⇤(si)) / norm(g(�✓⇤,b⇤(si)))

where norm(·) represents the vector l2 norm.
Therefore, we can reduce our RESIDUAL REPROGRAMMER classification to:

y = argmax
i

h
sim

⇣
(1� ↵)f̂(x) + ↵f(x), ((1� ↵)ĝ(si) + ↵g(si)

⌘i
(7)

= argmax
i

[((1� ↵)f̂(x) + ↵f(x))>((1� ↵)ĝ(si) + ↵g(si))] (8)

= argmax
i

[(1� ↵)2f̂(x)ĝ(si) + ↵(1� ↵)f̂(x)g(si) + ↵(1� ↵)f(x)ĝ(si) + ↵2f(x)g(si)] (9)

= argmax
i

[(1� ↵)2f̂(x)ĝ(si) + ↵(1� ↵)(ĝ(si) + ✏)g(si) + ↵(1� ↵)f(x)(f̂(x)� ✏) + ↵2f(x)g(si)] (10)

= argmax
i

[(1� ↵)2f̂(x)ĝ(si) + ↵2f(x)g(si) + ↵(1� ↵)ĝ(si)g(si)

+ ↵(1� ↵)f(x)f̂(x) + ↵(1� ↵)(✏g(si)� ✏f(x))] (11)

= argmax
i

[(1� ↵)2f̂(x)ĝ(si) + ↵2f(x)g(si) + ↵(1� ↵)ĝ(si)g(si)

+ ↵(1� ↵)f(x)f̂(x) + ↵(1� ↵)(f̂(x)� ĝ(si))(g(si)� f(x))] (12)

where (10) holds given ✏ = f̂(x)� ĝ(si).

Subsequently, we can now see that our RESIDUAL REPROGRAMMER is simply a complex combination of the REPROGRAM-
MER classification (1�↵)2f̂(x)ĝ(si), zero-shot classification ↵2f(x)g(si), some regularization by the zero-shot representation
↵(1� ↵)ĝ(si)g(si), and some additional closeness regularization ↵(1� ↵)(f̂(x)� ĝ(si))(g(si)� f(x)).
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Din Method
ImageNet-1k ImageNetV2 ImageNet-A ImageNet-R ImageNet-S

Accuracy Accuracy Accuracy Accuracy Accuracy
" " " " "

No Tuning Zero-shot (ZS) 75.26 64.13 27.98 52.42 39.80

ImageNet

Linear-probing (LP) 83.90 69.72 46.13 68.71 41.58

Reprogrammer (RP) 83.42 70.36 51.62 70.20 43.80
Residual Reprogrammer (RRP) 83.61 70.92 52.45 72.97 44.28

TABLE V: CLIP L/14 ImageNet Generalization Results OOD generalization performance comparison between zero-shot,
linear-probing, REPROGRAMMER, and RESIDUAL REPROGRAMMER methods. All methods utilize the CLIP L/14 architecture
fine-tuned on ImageNet-1k as the in-distribution dataset. The description of the four covariate shifted OOD datasets is
provided in the Appendix. " indicates larger values are better, while # indicates smaller values are better. All values are
percentages and bold values are the superior results.

APPENDIX D
ADDITIONAL DISCUSSION

In this appendix, we present some additional discussion regarding the use of differing architectures in Appendix D-A.

A. Differing Architectures

Within our evaluations, we leverage CLIP as the pre-trained model to which we apply our REPROGRAMMER and RESIDUAL
REPROGRAMMER methods. Subsequently, a natural question arises asking how effective would our methods be when applied
to other similar CLIP-like models with differing encoder architectures and training datasets such as ALIGN [17] and BASIC
[18]. But, due in large part to a lack of available open-source pre-trained model parameters, we are unable to train or test with
these comparable models. However, critically it is important to note that our REPROGRAMMER methodology is not inherently
limited in any way to just the open-source CLIP models. Specifically, ALIGN and BASIC primarily differ from CLIP only
in their scale, as both ALIGN and BASIC can be interpreted as CLIP but with larger capacity transformer architectures
alongside a larger training dataset. Therefore, as both ALIGN and BASIC are fundamentally similar to CLIP, we hypothesize
that REPROGRAMMER and RESIDUAL REPROGRAMMER should show similar effectiveness when applied to either ALIGN or
BASIC. Subsequently, we leave this question open for future exploration and encourage researchers, with more readily available
resources, to experiment with our proposed methodologies.

APPENDIX E
HIGHER CAPACITY CLIP EXPERIMENTS

In this appendix, we present additional experimental results showcasing the performance of REPROGRAMMER and RESIDUAL
REPROGRAMMER when using higher capacity CLIP models. Specifically, we present OOD generalization performances and
OOD detection performances with the larger CLIP L/14 model.

A. OOD Generalization

We present the ImageNet OOD generalization results in Table V and the CIFAR OOD generalization results in Table VI using
the large pre-trained CLIP L/14 model. We choose to omit full-fine-tuning experiments due to limited limited computational
resources. We observe that similar to our experimental observations with the B/32 CLIP model, REPROGRAMMER and
RESIDUAL REPROGRAMMER consistently outperform both linear-probing and zero-shot on all of our OOD generalization
benchmarks.

Din Method CIFAR-10 CIFAR10.1 STL10
Accuracy (") Accuracy (") Accuracy (")

No Tuning ZS 96.18 82.67 99.53

CIFAR-10
LP 98.04 94.63 86.29

RP 98.32 95.72 98.79
RRP 98.64 96.16 99.86

TABLE VI: CLIP L/14 CIFAR Generalization Results OOD generalization performance comparison between zero-shot (ZS),
linear-probing (LP), and REPROGRAMMER (RP) methods utilizing CLIP ViT-L/14 tuned with CIFAR-10 as the in-distribution
dataset. " indicates larger values are better, while # indicates smaller values are better. All values are percentages and bold
values are the superior results.
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Din Method
iSUN LSUN Resize Places365 Textures Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
# " # " # " # " # "

No Tuning ZS 11.65 97.51 17.07 96.39 10.92 97.60 27.58 93.09 16.81 96.15

CIFAR-10
LP 19.58 96.47 25.96 96.08 15.94 97.43 30.13 93.12 22.90 96.04

RP 10.31 97.20 15.84 96.53 12.08 97.63 20.51 94.75 14.68 96.53
RRP 7.10 98.24 11.90 97.95 10.57 98.01 16.81 97.06 11.60 97.81

Din Method
iNaturalist SUN Places Textures Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
# " # " # " # " # "

No Tuning ZS 30.07 95.82 41.37 94.06 42.96 93.96 42.13 92.59 36.63 94.11

ImageNet
LP 42.58 93.72 51.49 88.12 56.98 88.73 58.95 87.89 52.50 89.62

RP 45.79 93.31 49.37 90.03 54.93 88.90 59.36 87.73 52.36 89.99
RRP 40.46 94.18 42.81 91.55 50.62 90.75 50.20 90.06 46.02 91.64

TABLE VII: CLIP L/14 OOD Detection Results OOD detection performance comparison between zero-shot (ZS), linear-
probing (LP), REPROGRAMMER (RP), and RESIDUAL REPROGRAMMER (RRP) methods using the msp [37] detector. All
methods utilize the CLIP L/14 architecture fine-tuned on CIFAR-10 or ImageNet-1k as the in-distribution dataset. "
indicates larger values are better, while # indicates smaller values are better. All values are percentages and bold values are
the superior results.

B. OOD Detection

We present our OOD detection in Table VII using the large pre-trained CLIP L/14 model. Specifically, in the top half of
Table VII, we report the OOD detection performance with the CIFAR benchmarks, and in the bottom half of Table VII we
report the OOD detection performance with the ImageNet benchmarks. Due to limited computational resources, we have chosen
to omit full fine-tuning results. Again, for a fair comparison, we use the same commonly used baseline msp detector across
all experiments as a way to gauge the level of overconfidence the zero-shot, linear-probed, REPROGRAMMER, and RESIDUAL
REPROGRAMMER models has on semantically shifted OOD samples.

We can see that similar to the CLIP B/32 experiments, our RESIDUAL REPROGRAMMER outperforms all other fine-tuned
models. However, again following observations with the CLIP B/32 experiments, we see that none of the fine-tuned downstream
models were able to exceed the OOD detection capabilities of the zero-shot model. This again reaffirms the hypothesis that
there is a hidden cost associated with fine-tuning a pre-trained model. In particular, this hidden cost seems to be most prominent
when observing the capabilities of the downstream model on OOD detection tasks.

APPENDIX F
COMPARISON WITH OUTLIER EXPOSURE

In this section, we provide a brief comparison between REPROGRAMMER and RESIDUAL REPROGRAMMER with full fine-
tuned outlier exposure [59]. We trained OE using the same full fine-tuning training setting as specified in Section IV-A alongside
TinyImages [60] as the auxiliary OOD dataset and a � = 0.5 as specified by Hendrycks et al. [59]. Observing the aggregated
results in Table IX, we note that RRP still surpasses OE by +2.90%. However, we want to clarify that comparing OE with
RRP is not strictly fair. OOD regularization techniques like OE involve a distinct training regime, often needing an extra
auxiliary OOD dataset. This is akin to unfairly providing one method with extra novel data while withholding such data from
other methods. We present these empirical results as an additional point of reference for comparing RRP with existing OOD
regularization techniques and not as an argument for the strict superiority of RRP.

Din Method iSUN LSUN Resize Places365 Textures Average
FPR95 (#) AUROC (") FPR95 (#) AUROC (") FPR95 (#) AUROC (") FPR95 (#) AUROC (") FPR95 (#) AUROC (")

CIFAR-10
OE 2.88 99.05 1.73 99.40 12.32 97.99 19.60 95.58 9.13 98.01

RP 29.86±0.7 95.36±0.5 26.31±0.6 95.88±0.4 15.95±0.5 97.60±0.3 30.68±0.8 93.65±0.5 25.70±0.7 95.62±0.4

RRP 24.87±0.6 96.19±0.4 20.52±0.6 97.12±0.3 15.22±0.5 97.86±0.2 26.37±0.6 94.87±0.5 21.75±0.6 96.51±0.4

TABLE VIII: OOD Detection Results. OOD detection performance comparison with outlier exposure (OE) and CIFAR-10
as the in-distribution dataset. All values are percentages and bold values are the superior results.
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Din Method CIFAR-10 CIFAR10.1 STL10 Aggregate
Accuracy (") Accuracy (") Accuracy (") Aggregate (")

CIFAR-10
OE 95.62 90.12 68.49 89.79

RP 95.23±0.1 91.42±0.1 96.58±0.3 91.44
RRP 95.56±0.1 92.67±0.1 97.86±0.1 92.69

TABLE IX: Results. OOD generalization and aggregate performance comparison with outlier exposure (OE) using CIFAR-10
as the in-distribution dataset. Values are percentages and bold values are the superior results.

APPENDIX G
DOWN-SAMPLING EXPERIMENTS

In this appendix, we present our down-sampling experiments showcasing that our method isn’t limited by the down-sampling
step we implemented within our experiments. Specifically, in Table X we show the OOD generalization performance of
REPROGRAMMER and in Table XI we show the OOD detection performance of REPROGRAMMER as we apply different
degrees of down-sampling to training and testing datasets.

Down-
sampling

Size
Method

ImageNet-1k ImageNetV2 ImageNet-A ImageNet-R ImageNet-S
Accuracy Accuracy Accuracy Accuracy Accuracy

" " " " "

64 ⇥ 64

Zero-shot 50.632 44.22 6.12 34.547 28.556

Linear-probing 65.322 53.61 5.627 36.19 29.354
Full Fine-tuning 70.33 58.33 5.28 30.55 29.018

Reprogrammer 65.814 54.71 7.08 36.923 30.653

96 ⇥ 96

Zero-shot 57.284 50.59 9.813 41.043 35.587

Linear-probing 70.464 58.89 9.16 39.973 35.517
Full Fine-tuning 72.228 60.68 5.60 31.9 32.249

Reprogrammer 70.244 59.27 11.00 41.777 36.906

128 ⇥ 128

Zero-shot 59.44 52.79 11.82 43.48 38.61

Linear-probing 72.43 61.35 10.71 41.58 38.19
Full Fine-tuning 73.14 60.98 6.41 32.71 32.83

Reprogrammer 72.10 61.28 12.58 44.30 39.40

160 ⇥ 160

Zero-shot 60.14 53.46 12.893 44.36 39.932

Linear-probing 73.142 61.86 11.787 42.167 39.27
Full Fine-tuning 73.39 61.59 6.227 32.877 33.331

Reprogrammer 72.934 61.91 14.07 44.43 40.41

192 ⇥ 192

Zero-shot 60.796 53.84 13.8 44.86 40.294

Linear-probing 73.486 62.03 11.907 42.093 39.425
Full Fine-tuning 73.764 61.86 6.427 32.137 32.135

Reprogrammer 73.08 62.36 14.73 44.57 40.73

224 ⇥ 224

Zero-shot 61.896 54.71 15.267 46.713 40.83

Linear-probing 74.882 62.45 12.6 42.217 39.944
Full Fine-tuning 75.071 62.03 6.387 32.48 33.469

Reprogrammer 74.118 62.65 15.32 45.09 40.86

TABLE X: Down-sampling OOD Generalization Results OOD generalization performance comparison between differing
down-sampling severity. All methods utilize the CLIP B/32 architecture and were fine-tuned on the ImageNet-1k dataset
down-sampled to the specified resolution. Similarly, the evaluation was completed using, if available, the validation dataset
down-sampled to the specified resolution. " indicates larger values are better, while # indicates smaller values are better. All
values are percentages and bold numbers are superior fine-tuning results.
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Down-
sampling

Size
Method

iNaturalist SUN Places Textures Average
FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

# " # " # " # " # "

64 ⇥ 64

ZS 63.57 81.3 75.1 77.8 74.34 76.14 73.67 75.82 71.67 77.77

LP 65.44 84.62 84.61 70.23 83.48 70.79 76.35 76.51 77.47 75.54
FFT 74.82 79.44 81.29 73 80.55 73.45 80.96 72.95 79.4 74.71

RP 65.42 83.68 79.96 72.05 80.13 71.86 77.78 74.72 75.82 75.58

96 ⇥ 96

ZS 57.5 83.7 67.13 80.53 68 78.77 71.13 76.64 65.94 79.91

LP 54.21 87.46 80.32 73.77 77.94 74.18 72.36 78.28 71.21 78.42
FFT 73.33 80.55 80.89 73.43 80.03 74 80.09 73.75 78.58 75.43

RP 56.76 85.62 77.19 73.86 76.46 73.91 73.07 76.78 70.87 77.54

128 ⇥ 128

ZS 53.96 85.15 64.89 81.26 65.76 79.30 70.05 77.03 63.67 80.69

LP 51.15 88.25 78.68 74.58 76.42 75.15 70.25 78.71 69.12 79.17
FFT 71.94 81.37 80.29 74.01 79.97 74.54 78.28 74.80 77.62 76.18

RP 56.85 85.97 75.68 74.99 74.80 74.84 70.51 77.43 69.46 78.31

160 ⇥ 160

ZS 52.98 85.38 63.57 81.5 64.36 79.63 69.34 77.23 62.56 80.93

LP 50.42 88.37 77.53 74.94 75.17 75.65 68.55 79.01 67.92 79.49
FFT 71.83 81.15 81.55 73.26 80.35 74.2 78.79 74.43 78.13 75.76

RP 56.25 85.92 74.55 75.69 72.37 76.27 67.98 77.93 67.79 78.95

192 ⇥ 192

ZS 53.57 85.22 63.75 81.37 63.04 80.16 68.99 77.44 62.34 81.05

LP 50.28 88.36 78.02 74.89 74.62 76.25 69.04 78.96 67.99 79.62
FFT 71.95 81.09 81.43 73.56 81.11 74.12 79.2 74.6 78.42 75.84

RP 55.77 85.99 74.48 75.31 71.30 76.79 69.24 77.8 67.70 78.97

224 ⇥ 224

ZS 53.75 85.58 62.89 81.65 63.82 80.13 68.19 77.67 62.16 81.26

LP 50.88 88.18 79.14 74.92 75.9 76.02 67.73 79.35 68.41 79.62
FFT 72.14 80.89 80.98 74.06 80.69 74.58 79.04 74.98 78.21 76.13

RP 55.56 85.82 73.89 76.25 70.32 77.63 68.05 78.28 66.95 79.5

TABLE XI: Down-sampling OOD Detection Results OOD detection performance comparison between differing down-
sampling severity. All methods utilize the CLIP B/32 architecture fine-tuned on the Image-1k dataset down-sampled to the
specified resolution. Similarly, all semantically shifted OOD datasets were also down-sampled to the specified resolution. "
indicates larger values are better, while # indicates smaller values are better. All values are percentages and bold numbers are
the superior fine-tuning results.
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Reviews from Prior Submissions
In the following pages, we provide reviews from our prior submission with ICCV 2023. We also provide a brief description

of how those reviews were addressed at the end of these reviews.

REVIEWER #1

Summary: Describe the key ideas, experiments, and their significance (preferably in 5-7 sentences):
The paper explores the challenges in evaluating pre-trained models for downstream tasks, especially in terms of their ability

to generalize to and detect out-of-distribution (OOD) samples. The authors propose a novel ”reprogrammer” approach that is
less intrusive and helps in maintaining pre-training representations, resulting in better holistic capabilities. The method involves
optimizing the learnable parameters of image and text reprogramming functions to maximize the cosine similarity between
CLIP image and text encoders after passing through their respective reprogramming functions. The authors show that their
approach outperforms other common transfer learning techniques in terms of ID classification, OOD generalization, and OOD
detection performances.

[Strengths] Consider the aspects of key ideas, experimental or theoretical validation, writing quality, and data
contribution (if relevant). Explain clearly why these aspects of the paper are valuable. Short, unjustified review is
NOT OK.:

1) The paper proposes a novel reprogramming approach that improves performance on in-distribution and out-of-distribution
tasks.

2) The paper provides extensive evaluation and comparison of different transfer learning techniques.

[Weaknesses] Consider the aspects of key ideas, experimental or theoretical validation, writing quality, and data
contribution (if relevant). Explain clearly why these are weak aspects of the paper.:

One major weakness of the paper is that it does not discuss the necessity of using a multimodal approach to reach its goal.
Specifically, the paper proposes a novel reprogramming approach for joint text-image encoders, but it does not explore the
possibility of using separate approaches for text and image encoders. For example, the paper does not discuss the performance
of visual prompt tuning (VPT) or text prompt tuning (CoOp: Learning to Prompt for Vision-Language Models), which are
techniques that are applicable to a single modality. Moreover, the paper does not provide a comparison with other recent
approaches such as prompt tuning, which is a technique that fine-tunes pre-trained models with natural language prompts.
While the proposed method is similar to prompt tuning in some ways, the paper did not conduct any discussion on this
topic. Therefore, it would be useful to explore the benefits and limitations of a multimodal approach compared to a single-
modality approach, and to compare the proposed reprogramming method with other recent approaches in more detail. Besides,
a CVPR’23 paper of MaPLe: Multi-modal Prompt Learning has a similar achitecture, or a complexer version of the proposed
method. It could be good to also discuss the topic of prompt tuning based on the mentioned work.

[Paper rating]: (3) Borderline

[Recommendation confidence]: Somewhat confident: I do not directly work on this topic, but my expertise and experience
are sufficient to evaluate this paper.

[Justification of rating] Provide detailed justification of your rating. It should involve how you weigh the strengths and
weaknesses of the paper.: See weakness

[Additional comments] Minor suggestions, questions, corrections, etc. that can help the authors improve the paper, if
any.: NA

[Alterations in New Draft] A brief response to help clarify all the changes made to address Reviewer #1’s concerns:
To address Reviewer #1’s concerns we have updated/added the following new additions to our paper:

1) We have added a new discussion section, specifically addressing the needs and limitations of the multi-modal setting to
which we frame our paper.

2) We have also added a completely new set of CoOp evaluations to our main paper in an effort to address this reviewer’s
concerns regarding the lack of prompt tuning baselines. We would also like to draw attention to recent findings that
indicate the comparative disadvantage of single-modality prompting when compared to multi-modality based methods
[61].

3) Finally we have also added a section discussing the dissimilarities between our work and MaPLe in an effort to further
clarify any future confusion any readers may have.

REVIEWER #2

Summary: Describe the key ideas, experiments, and their significance (preferably in 5-7 sentences):
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This paper studies how the robustness of pre-trained classification models changes after fine-tuning, and how to improve the
behavior. The paper considers two forms of robustness: “Out-of-distribution generalization” refers to the ability of a model
to accurately classify images that have been distorted in a way that was not seen during training, but that does not change
the semantic content of the image. “Out-of-distribution detection” refers to the ability of the model to detect images that are
semantically unrelated to the training set, e.g. an image of a car in for a model trained on animals. The paper first shows that
fine-tuning, while improving performance on in-distribution data, can reduce performance on OOD generalization and detection.
The paper then proposes to mitigate this by using a different adaptation method called “model reprogramming”. In contrast
to fine-tuning, which adjusts a model’s weights, reprogramming adds learnable parameters to the *input*, e.g. in the form of
extra pixels appended to an image. This extra input, which is fixed for all examples, is optimized to improve performance on
the target tasks. Optionally, a skip connection can be added, such that the model can interpolate between the original input
and the “reprogrammed” input. The paper evaluates the proposed “Reprogrammer” method on several OOD generalization and
detection benchmarks and compares to WiSE-finetuning, a prior method that consist of simply averaging the weights of the
pretrained and the fine-tuned model. Reprogrammer succeeds in improving OOD performance over fine-tuning, but at the cost
of slightly reduced in-distribution performance. In contrast, WiSE-finetuning tends to improve both in-distribution and OOD
performance compared to fine-tuning, although the OOD improvements are often a bit smaller than for Reprogrammer.

[Strengths] Consider the aspects of key ideas, experimental or theoretical validation, writing quality, and data
contribution (if relevant). Explain clearly why these aspects of the paper are valuable. Short, unjustified review is
NOT OK.:

1) The proposed method generally provides significant Improvements on the presented OOD benchmarks.
2) The “model reprogramming” through changing the input image is a little-used alternative to changing the model weights,

and might open new possibilities for adapting models.

[Weaknesses] Consider the aspects of key ideas, experimental or theoretical validation, writing quality, and data
contribution (if relevant). Explain clearly why these are weak aspects of the paper.:

1) Performance tradeoff. According to the presented results, the proposed method involves a tradeoff: It generally improves
OOD performance, but reduces in-distribution performance, compared to full fine-tuning. This poses a difficult decision to
the practitioner, who now has to weigh ID and OOD performance against each other. This is a significant disadvantage of
the proposed method compared to WiSE-FT, which improves *both* ID and OOD performance, and is therefore strictly
preferable to full fine-tuning. This makes WiSE-FT an easy choice, even if its OOD improvements are somewhat smaller
than those of the proposed method. The present paper should make suggestions for how practitioners can address the
tradeoff – how can you make a principled, quantitative decision about the relative benefit of improved OOD compared to
the reduction in ID performance? Alternatively, the paper should test if the proposed method can provide benefits when
applied *in addition* to WiSE-FT.

2) Weak motivation of “reprogramming”: It is not obvious that changing the model input is generally less “intrusive”, or in
other ways better, than changing model parameters; there is probably an equivalent model parameter change for any input
change. Careful tuning of the fine-tuning approach, e.g. fine-tuning only part of the model, could perhaps achieve similar
results. The paper should discuss if there are specific advantages of reprogramming that are not available when changing
model weights.

[Paper rating]: (4) Weak reject

[Recommendation confidence]: Very confident: I am an expert on this topic.

[Justification of rating] Provide detailed justification of your rating. It should involve how you weigh the strengths and
weaknesses of the paper.: The primary weakness of the proposed method is that it burdens the practitioner with a tradeoff
between ID and OOD performance that other methods, specifically WiSE-FT, do not have. This needs to be addressed before
the method is sufficiently practical for publication.

[Additional comments] Minor suggestions, questions, corrections, etc. that can help the authors improve the paper, if
any.: See ”Weaknesses”.

[Alterations in New Draft] A brief response to help clarify all the changes made to address Reviewer #2’s concerns:
To address Reviewer #2’s concerns we have updated/added the following new additions to our paper:

1) We have reformulated a large chunk of the introduction, and have added an additional discussion section, in an effort to
clarify the underlying motivation for reprogrammer. Additionally, we have also properly cited our definition of intrusive
which we based on prior works.

2) The trade-off serves as a key motivation for our paper, as we aimed to demonstrate that these aspects are not necessarily
aligned with each other. Specifically, we showcased how certain methods such as WiSE-FT, may excel in ID classification
while underperforming in terms of OOD Generalization and OOD Detection when compared to other fine-tuning
techniques. However, determining the relative importance of each aspect is a challenging problem that depends in part
on the model’s specific application. To help clarify this to future readers we’ve added a new holistic evaluation section
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which means to answer the reviewer’s concerns regarding how to view these ID and OOD tradeoffs and how to better
compare methods like WiSE-FT and RP. We also want to note that prioritizing ID classification is not always the optimal
choice. In real-world applications, involving highly sensitive tasks, the model’s safety and robustness to OOD samples
are sometimes more important. For example, in a self-driving context, accurate OOD Detection becomes crucial as it can
prevent catastrophic mistakes caused by failure to detect distributional shifts.

REVIEWER #3

Summary: Describe the key ideas, experiments, and their significance (preferably in 5-7 sentences):
This paper addresses the issue of lost generalizability of CLIP-like models after fine-tuning on a target dataset. They

introduce a re-programming technique to remap the inputs and learn the re-programming technique using vision-language
pairs. Additionally, a residual version is introduced that softly combines the original representation and the re-programmed
version. Then they conduct evaluation on OOD generalization and detection on datasets like CIFAR and ImageNet.

[Strengths] Consider the aspects of key ideas, experimental or theoretical validation, writing quality, and data
contribution (if relevant). Explain clearly why these aspects of the paper are valuable. Short, unjustified review is
NOT OK.:

1) The paper deals with an important problem of OOD generalization and detection of foundation VLM models.
2) The method is simple and easy to implement, and as advertised, computationally efficient.
3) The experimental results cover good number of datasets.

[Weaknesses] Consider the aspects of key ideas, experimental or theoretical validation, writing quality, and data
contribution (if relevant). Explain clearly why these are weak aspects of the paper.:

1) My biggest concern from the paper is that there is no insight provided as to why the method works, or why it should
work. For example, what specific properties in linear-probing/fine-tuning are responsible for the drop in OOD performance
- and which of these limitations does re-programing successfully address which improves performance? Without knowing
exactly why re-programming works, it is difficult to assess its impact for OOD performance.

2) It would be helpful to provide some more information into what exactly is learnt after re-programming. How are the
parameters helping in improving OOD performance.

3) Is the network fine-tuned or linear-probed after training with re-programming? Does this choice impact the performance?
4) Does the re-programming trick also work for vision-only models and language-only models? For example, it is well-

known that self-supervised vision-only models fail to generalize after fine-tuning, does this method also work well in
those settings?

5) Can the re-programming be also applied to the feature space rather than the input space?
6) More information is needed on the effect of alpha in addition to noting that a value of 0.4 works best.

[Paper rating]: (4) Weak reject

[Recommendation confidence]: Somewhat confident: I do not directly work on this topic, but my expertise and experience
are sufficient to evaluate this paper.

[Justification of rating] Provide detailed justification of your rating. It should involve how you weigh the strengths and
weaknesses of the paper.: While the problem considered and the approach seem reasonable, I think there is not adequate
insights and explanation provided in the paper that illustrates the benefits of the proposed approach. Please answer my questions
above and I am ready to update my score.

[Additional comments] Minor suggestions, questions, corrections, etc. that can help the authors improve the paper, if
any.: There are some minor spelling/grammar mistakes in the introduction section.

[Alterations in New Draft] A brief response to help clarify all the changes made to address Reviewer #3’s concerns:
To address Reviewer #3’s concerns we have updated/added the following new additions to our paper:

1) We have updated the introduction and background to help provide literature support for how reprogramming is used as
a transfer learning technique and why it functions. Additionally, we’ve also updated the ablation section in an effort to
show a UMAP visualization to clarify how reprogramming functions with respect to learned representations.

2) The reviewer raises a concern regarding the combination of reprogrammer with other techniques, or trying to apply
reprogramming to just the text or image encoder. We’ve added a new discussion section that specifically seeks to address
this concern for future readers. We also want to note here that reprogrammer is designed to intrinsically pair the image
and text encoders and leveraging just reprogramming for image or text models is non-trivial and deviates outside the
scope of our current paper.


