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Abstract

Metaphor detection is an important and chal-
lenging task in natural language processing,
which aims to distinguish between metaphori-
cal and literal expressions in text. Previous stud-
ies mainly leverage the incongruity of source
and target domains and contextual clues for de-
tection, neglecting similar attributes shared be-
tween source and target concepts in metaphori-
cal expressions. Based on conceptual metaphor
theory, these similar attributes are essential
to infer implicit meanings conveyed by the
metaphor. Under the guidance of conceptual
metaphor theory, in this paper, we model the
likeness of attribute for the first time and pro-
pose a novel Attribute lIkeness and Domain
Inconsistency Learning framework (AIDIL) for
word-pair metaphor detection. Specifically, we
propose an attribute siamese network to mine
similar attributes between source and target
concepts. We then devise a domain contrastive
learning strategy to learn the semantic inconsis-
tency of concepts in source and target domains.
Extensive experiments on four datasets verify
that our method significantly outperforms the
previous state-of-the-art methods, and demon-
strate the generalization ability of our method.

1 Introduction

Metaphor is pervasive in various forms of language
expressions, such as political speech, advertising
text, and literary work. Merriam-Webster Dic-
tionary defines metaphor as “a figure of speech
in which a word or phrase literally denoting one
kind of object or idea is used in place of another
to suggest a likeness or analogy between them”1.
Metaphor detection aims to distinguish between
metaphorical and literal expressions in text. It has
gained increasing research interest in recent years
and plays a vital role in various NLP applications
that need to understand implicit semantics, such as

*Corresponding author
1https://www.merriam-webster.com/dictionary/metaphor

1. My car drinks gasoline. (Metaphorical)

2. Children like to drink soda. (Literal)

3. Drinking water is good to your health. (Literal)

Example sentences

Source concept

soda
water

Target concept Similar attributes

liquid,
consuming constantly gasoline

Figure 1: Illustration of metaphor understanding with
similar attributes. The target concept gasoline and
the source concept (e.g., soda and water) are domain-
inconsistent with their intermediate similar attributes
(e.g., liquid and consuming constantly). These simi-
lar attributes help understand the implicit meaning con-
veyed by the metaphor, that is, drinking gasoline implies
consuming gasoline a lot like consuming liquid.

machine translation (Mao et al., 2018), sentiment
analysis (Mao and Li, 2021), and dialogue system
(Sun et al., 2023).

Existing research on metaphor detection mainly
focuses on detecting metaphors at word-pair level
(Rei et al., 2017; Su et al., 2020; Ge et al., 2022)
and token-level (Su et al., 2021; Choi et al., 2021;
Zhang and Liu, 2022). Early studies construct lin-
guistic features using manually-created resources
for metaphor detection, such as abstractness (Tur-
ney et al., 2011), imageability (Tsvetkov et al.,
2014) and visibility (Shutova et al., 2016). Re-
cent studies utilize metaphor identification theo-
ries (Su et al., 2021; Choi et al., 2021; Zhang and
Liu, 2022), including selection preference violation
(SPV) (Wilks, 1975, 1978) and metaphor identifi-
cation procedure (MIP) (Group, 2007), to help de-
sign deep learning methods for metaphor detection.
Although these methods have achieved promising
performances, their underlying theories only uti-
lize contextual clues relevant to the basic meaning
of words and their contexts for metaphor identifi-
cation, lacking the deeper level understanding of



conceptual meanings and semantic characteristics
associated with metaphor.

In contrast to the above metaphor identifica-
tion theories, a more explainable theory, concep-
tual metaphor theory (CMT) (Lakoff and John-
son, 2008), argues that metaphor facilitates a map-
ping of a set of similar attributes between the
concepts in two different domains (i.e. source
and target domains). Inspired by CMT, Ge et al.
(2022) generate the source and target concepts
from different domains to benefit metaphor detec-
tion. However, their work only considers domain-
inconsistent information, ignoring the mapping of
similar attributes shared by source and target con-
cepts, which provides essential clues to infer the
implicit meanings that metaphors tend to convey.

According to CMT, metaphor understanding im-
plies a plausible mapping of a set of similar at-
tributes between the concepts in source and target
domains. Hence, attribute in CMT is a broad char-
acteristic obtained by activating human imagina-
tion and association based on commonsense knowl-
edge as well as perceptual experience. Fig. 1 gives
an example to illustrate metaphor understanding
with similar attributes. In this example, attribute
likeness (liquid and consuming constantly) is the in-
termediate association to the implicit meaning (con-
suming a lot) conveyed by this metaphor. There-
fore, attribute likeness functions as important asso-
ciated information for metaphor detection, and the
mining of this attribute similarity strongly depends
on an appropriate refinement process from plentiful
candidate attributes.

Based on the above considerations, in this pa-
per, we propose an Attribute lIkeness and Domain
Inconsistency Learning framework, namely AIDIL,
for word-pair metaphor detection. We devise an
attribute siamese network with layer-wise attribute
refinement graphs to model attribute likeness infor-
mation and incrementally filter irrelevant informa-
tion from plentiful candidate attributes. Meanwhile,
to exploit information of inconsistent domains, we
design a domain contrastive learning strategy on the
hidden representations of concepts from source and
target domains so as to learn an embedding space
with information of domain inconsistency. The two
components jointly learn the association and dispar-
ity between source and target concepts for effective
metaphor detection. Additionally, our method is
also capable of providing explainable clues like
source concepts or learned attribute information in

metaphor prediction. The main contributions of
our work are as follows:

• Inspired by CMT, we identify that metaphor
implies not only inconsistent domains but also
similar attributes between source and target
concepts, and make the first attempt to model
attribute likeness for metaphor detection.

• We propose a novel attribute siamese network
to incrementally mine similar attributes be-
tween source and target concepts via layer-
wise attribute refinement graphs on plentiful
candidate attributes.

• Extensive experiments verify that our method
achieves significant improvements over previ-
ous SOTA methods and also demonstrates its
generalization ability on unseen data.

2 Related Work

Metaphor detection can be roughly divided into two
categories: word-pair level and token level. The
former determines whether a word pair is metaphor-
ical or literal, and the latter aims to find metaphor-
ical words in sentences. As word pair is a basic
type and the most commonly used linguistic form
to express metaphor (Tsvetkov et al., 2014), its
metaphor detection is the focus of our work.

Word-Pair Metaphor Detection Early studies
exploit supervised machine learning methods by
constructing word embeddings from linguistic fea-
tures or external knowledge which are relevant to
metaphor, such as embeddings of abstractness (Tur-
ney et al., 2011), imageability (Tsvetkov et al.,
2014), visibility (Shutova et al., 2016) or prop-
erty norm (Bulat et al., 2017). After that, some
researchers explore indicative clues of metaphor
for this task. Based on the observation of cosine
similarity between words in a word pair indicating
its metaphoricity, Rei et al. (2017) design a neural
network with a gating function to model this char-
acteristic. Considering the relation between con-
creteness and metaphor, Su et al. (2020) construct
image representations for concrete word pairs and
devise a multimodal model to detect metaphor.

Different from above approaches using intuitive
clues for metaphor detection, Ge et al. (2022) adopt
a widely accepted metaphor theory—conceptual
metaphor theory (CMT)—in their method via gen-
erating plausible concepts in source and target do-
mains to help metaphor prediction, which is the



previous state-of-the-art method. However, ac-
cording to CMT, a metaphor not only indicates
domain-inconsistent information but also implies
a mapping process of similar attributes shared be-
tween source and target concepts, which is nec-
essary for explaining the implicit meanings con-
veyed by the metaphor. All the aforementioned
approaches neglect this important information of
similar attributes for metaphor detection. Thus
based on CMT, we focus on mining the attribute
likeness between source and target concepts with
the disparity of domains for metaphor detection.

Token-Level Metaphor Detection Considering
special clues related to metaphor, some studies uti-
lize external knowledge resources to benefit this
task, such as definitions of words (Su et al., 2021)
or multiword expressions (Rohanian et al., 2020).
Other studies employ shared features learned from
the multi-task framework with the task of word
sense disambiguation (Le et al., 2020) or sentiment
analysis (Mao and Li, 2021) to detect metaphor.
Recent studies adopt metaphor identification theo-
ries, including selection preference violation (SPV)
(Wilks, 1975, 1978) and metaphor identification
procedure (MIP) (Group, 2007), to help design net-
works (Su et al., 2021; Choi et al., 2021; Zhang
and Liu, 2022; Wang et al., 2023; Li et al., 2023).
Although the above methods inspired by SPV and
MIP have achieved the state-of-the-art results, they
identify metaphors based on the basic meaning of
the words and their contexts, which are surface-
level clues in contrast to the conceptual meanings
of attributes and domains in CMT. Therefore, in ad-
dition to using these SOTA methods as strong base-
lines for our experiments, we utilize the conceptual
attribute and domain information, and develop the
computational method to model attribute likeness
and domain inconsistency for effective metaphor
detection.

3 Problem Definition

In a word pair, we define the verb in a verb-noun
pair or the adjective in an adjective-noun pair as the
core word. According to CMT, the other noun is
the target concept in a metaphorical word pair or
the source concept in a literal word pair. Formally,
Dtr={(pk, lk)}Ntr

k=1 is the training dataset with Ntr

instances, where pk is the k-th word pair and lk
is the label (metaphorical or literal). Every word
pair contains a core word wcor and a concept word
wcon. Dte={(pk, lk)}Nte

k=1 is the test dataset with

Training set Positive and negative samples

Classifier

ConceptNet

[CLS] drink gasoline
[CLS] drink gasoline

[CLS] drink soda
[CLS] drink water

[CLS] drink gasoline

guide

sodagasoline water

push

push

pull

… …

drink

Encoder Encoder

+ +

Attribute Siamese 
Network

Domain Contrastive 
Learning

Contextual 
representation

Contextual 
representation

gasoline water

Classification

Metaphorical/literal

shared

(core word)

Figure 2: Overall architecture of our proposed AIDIL
framework for word-pair metaphor detection.

Nte instances. The goal of word-pair metaphor
detection is to predict the label of each word pair
in Dte by training a model on Dtr.

4 Method

We propose an Attribute lIkeness and Domain
Inconsistency Learning framework, namely AIDIL,
for word-pair metaphor detection. Fig. 2 shows
its overall architecture, which contains three pri-
mary components: (1) Attribute siamese network,
which obtains the attribute vector via refining simi-
lar attributes and filtering irrelevant attributes grad-
ually based on two attribute graph sub-networks
of source concept and target concept respectively
guided by the core word; (2) Domain contrastive
learning, which performs contrastive learning on
representations of concepts from source and tar-
get domains to learn the information of domain
inconsistency for better generalization of contex-
tual representations; and (3) Classification, which
utilizes contextual representations and the attribute
vector to predict the label (metaphorical/literal).

4.1 Encoding
To train our model from a good embedding start,
we adopt the pre-trained language model BERT
(Devlin et al., 2019) as the text encoder. Given a
word pair p, following Zhong and Chen (2021), we
introduce 4 marker tokens ([cor], [/cor], [con] and
[/con]) to explicitly mark the boundaries of the core



word wcor and the concept word wcon in p. The
word pair with marker tokens is formulated as

p̂ = [cor] wcor [/cor] [con] wcon [/con]. (1)

We connect p̂, the part-of-speech label of core
word wpos (verb or adjective), the basic defini-
tion of core word dcor = {wr

1, w
r
2, · · · , wr

Nr
} with

Nr words, the basic definition of concept word
dcon = {wc

1, w
c
2, · · · , wc

Nc
} with Nc words, and

other special tokens as a sequence of input T :

T = [CLS] p̂ [SEP] wpos [SEP] dcor [SEP] dcon, (2)

where [CLS] and [SEP] are the classification token
and separation token respectively. We use the seg-
ment embedding of BERT to distinguish among
special tokens, core word and its basic definition,
concept word and its basic definition, and part-of-
speech token. We use WordPiece to split T into
tokens and feed them into BERT to obtain con-
textual representations H , as well as contextual
representations of core word hcor, concept word
hcon, and token [CLS] h[CLS]:

H = BERT(T ) = [h1, . . . ,hN ]⊤ ∈ RN×d, (3)

hcor = h[cor] + h[/cor] ∈ Rd, (4)

hcon = h[con] + h[/con] ∈ Rd, (5)

h[CLS] = h1 ∈ Rd, (6)

where hi ∈ Rd is the text embedding of the i-th
token in T , d is the dimension of embedding, N is
the number of tokens in T , and h[cor], h[/cor], h[con]
and h[/con] are contextual representations of tokens
[cor], [/cor], [con] and [/con] respectively.

4.2 Attribute Siamese Network
To model the attributes constructed by activating
imagination and association based on common-
sense knowledge, we leverage graph neural net-
works, which are representative models for captur-
ing the imaginative and associative processes in
the human brain (Bessadok et al., 2022). Given
that similar attributes are scarce, we design a layer-
wise refinement process to filter irrelevant informa-
tion gradually and learn the most suitable similar
attributes. Specifically, we propose an attribute
siamese network with two attribute graph sub-
networks to refine similar attributes layer by layer
on candidate attributes of the source concept and
target concept. In addition, the core word is the
only context of source and target concepts, which
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Figure 3: Overview architecture of our proposed at-
tribute siamese network.

can provide valuable clues for inference, thus we
use it as the guided information in the process of
refinement. Overall architecture of the attribute
siamese network is shown in Fig. 3.

4.2.1 Attribute Graph Construction

To obtain the candidate attributes of source and
target concepts, we search a freely available com-
monsense knowledge resource ConceptNet (Speer
et al., 2017) and acquire phrases in relations with
source and target concepts as candidate attribute
descriptions. For a metaphorical word pair (e.g.,
drink gasoline), which contains a core word wcor

(e.g., drink) and a target concept wtgt (e.g., gaso-
line), we can extract a set of literal word pairs
from the training set (e.g., drink water, drink milk
and drink soda), which share the same core word
(e.g., drink) with the aforementioned metaphorical
word pair. We then randomly sample one (e.g.,
drink water) from this set of literal word pairs.
The concept word (e.g., water) in this sampled
literal word pair serves as the source concept wsrc

in our method. We define the sequence of target
concept and its candidate attribute descriptions as
Mt={mt

1, . . . ,m
t
n}, where mt

1 = wtgt, mt
k+1 is

the k-th candidate attribute description extracted
from ConceptNet, and the number of candidate at-
tribute descriptions is n− 1. Similarly, we define
the sequence of the source concept and its candi-
date attribute descriptions as Ms={ms

1, . . . ,m
s
n},

where ms
1 = wsrc. We convert Mt and Ms into



hidden representations Et=[et1, . . . , e
t
n]

⊤∈Rn×d̂

and Es=[es1, . . . , e
s
n]

⊤∈ Rn×d̂ with BERT and a
liner projection:

h∗k = BERT([CLS] m∗
k)[CLS], (7)

e∗k = Wcorh
∗
k + bcor, (8)

where ∗ ∈ {t, s}, k ∈ [1, n], h∗k ∈ Rd denotes
the representation of [CLS] embedded with BERT

for m∗
k, Wcor ∈ Rd̂×d and bin ∈ Rd̂ are trainable

parameters, and d̂ is the dimension of node features
in the graph.

We construct attribute graphs of target concept
Gt and source concept Gs with Et and Es as node
feature matrices respectively. We use an adjacency
matrix At ∈ Rn×n to represent the relations of
nodes in Gt, where n is the number of nodes.
(At)1,j+1 = 1 and (At)j+1,1 = 1 represent there
exists a relation between target concept and its j-
th candidate attribute description (j ∈ [1, n− 1]),
and (At)i,j = 1 represents the i-th and the j-th
candidate attribute descriptions have the same rela-
tion with target concept otherwise 0. We construct
As ∈ Rn×n for Gs in the same way.

4.2.2 Layer-wise Attribute Refinement
Our attribute siamese network contains two at-
tribute graph sub-networks sharing the same ar-
chitecture and parameters. Each attribute graph
sub-network consists of L attribute refinement lay-
ers which refine the similar attribute information
layer by layer using the core word as a guided clue.
To obtain a better graph representation, we em-
ploy densely connected GCN (Guo et al., 2019b,a)
as the graph encoder in our attribute refinement
layers, which has advantages of strengthening fea-
ture propagation, alleviating the vanishing-gradient
problem and encouraging feature reuse compared
to traditional GCN (Kipf and Welling, 2017). The
l-th attribute refinement layer contains a densely
connected GCN and a refinement module guided
by the embedding of core word hcor:

X(l)
g = DenseGCN(X(l−1), A), (9)

X(l), y(l) = Refine(X(l)
g , y(l−1),hcor), (10)

where l ∈ [1, L] is the index of attribute refinement
layer, A ∈ Rn×n is the adjacency matrix, X(l−1) ∈
Rn×d̂ is the output attribute vectors of the (l − 1)-
th layer and serves as input feature matrix of the
attribute graph G(l) with n nodes, DenseGCN(·)
is the densely connected GCN, X(l)

g ∈ Rn×d̂ is

the output of DenseGCN(·), and y(l) ∈ Rn is the
attention vector in the l-th layer.

Specifically, Refine(·) is formulated as:

X(l)
c = 1n(Wcorhcor + bcor)

⊤ ⊙X(l)
g , (11)

y(l)g = Cos(X(l)
g , X(l)

c ), (12)

y(l) = Softmax(Norm(y(l)g ⊙ y(l−1)))), (13)

X(l) = Norm(X(l)
g ⊙ (y(l)1⊤

d̂
)), (14)

where 1k is a vector of size k with all the compo-
nents being 1, Wcor ∈ Rd̂×d and bin ∈ Rd̂ are train-
able parameters, ⊙ represents the element-wise ma-
trix multiplication, Cos(·) calculates cosine simi-
larity between the k-th row vector in X

(l)
g and the

k-th row vector in X
(l)
c resulting the k-th value in

y
(l)
g ∈ Rn, Norm(·) is the layer normalization op-

eration, and y(l) ∈ Rn is the attention vector in the
l-th layer (y(0) is a vector of all the ones). We in-
corporate the attention vector in the (l−1)-th layer
to refine candidate similar attributes in Eq. (13) so
that the final selected similar attributes have high
attention values in all the layers. Using element-
wise matrix product of X(l)

g and y(l)1⊤
d̂

in Eq. (14),
the information of trivial nodes is controlled. We
obtain the final attribute matrix Ha ∈ Rn×d with a
linear projection on the output features of the last
layer:

(ha)i = Woutx
(L)
i + bout, (15)

where (ha)i ∈ Rd is the i-th row vector of Ha,
x
(L)
i is the i-th row vector of X(L), Wout ∈ Rd×d̂

and bout ∈ Rd are trainable parameters.

4.2.3 Attribute Mapping
We employ the above two attribute graph sub-
networks on attribute graphs of target concept
Gt and source concept Gs respectively, obtain-
ing aggregated attribute vectors ht

attr ∈ Rd and
hs
attr ∈ Rd, and design an attribute mapping loss

Lattr to learn a space where aggregated attribute
vectors of target and source concepts are close,
which are computed as

ht
attr =

∑
i
(ha)

t
i(y

(L)
i )t, (16)

hs
attr =

∑
i
(ha)

s
i (y

(L)
i )s, (17)

Lattr = ∥ht
attr − hs

attr∥2, (18)

where the superscript t denotes embeddings or val-
ues in the sub-network of target concept, the su-
perscript s denotes embeddings or values in the



sub-network of source concept, (ha)i is the i-th
row vector of attribute matrix Ha, y(L)i is the i-th
scalar value in y(L), and ∥·∥2 denotes mean squared
L2 norm.

4.3 Domain Contrastive Learning

According to CMT, for the same core word, the
concept words in metaphorical word pairs (e.g.,
gasoline in Fig. 1) can be regarded as part of target
domain and the concept words in literal word pairs
(e.g., soda and water in Fig. 1) can be regarded
as part of source domain. To learn an embedding
space with knowledge about the disparity of con-
cepts in source and target domains, we propose the
domain contrastive learning strategy, which makes
the representation of concept words similar to the
concept words in the same domain (target/source
domain) and dissimilar to the concept words in the
other domain (source/target domain) for the word
pairs with the same core word.

Given an anchor word pair p (containing a core
word wcor and a concept word wcon) and label
l, the positive word pair p+ is the same as the
anchor word pair, i.e. l+ = l,p+ = p. Follow-
ing the previous convention (Gao et al., 2021),
we pass the p (=p+) to the text encoder by ap-
plying the standard dropout twice, then we can
obtain two different embeddings of p and p+ re-
spectively. In contrast, we sample n− negative
word pairs P− = {(p−i , l

−
i )}n

−
i=1 from the train-

ing dataset, which share the same core word with
the anchor word pair but have opposite labels, i.e.
l−i ̸= l, (w−

cor)i = wcor. Using the text encoder in
Section 4.1, we can get the hidden vector hcon of
anchor concept word wcon, the hidden vector h+

con

of positive concept word w+
con in p+ and the hidden

vectors H−
con = {(h−

con)i}n
−

i=1 of negative concept
words {(w−

con)i}n
−

i=1 in P− calculated by Eqs. (3)
and (5). The domain contrastive learning loss is
computed as:

Ldcl=−(log
ef(h

+
con,hcon)

ef(h
+
con,hcon)+

∑n−

i=1 e
f((h−

con)i,hcon)

+ log
ef(hcon,h

+
con)

ef(hcon,h
+
con)+

∑n−

i=1 e
f((h−

con)i,h
+
con)

)/2,

(19)
where f(s1, s2) =

s⊤1 s2
τ∥s1∥·∥s2∥ is the cosine similar-

ity function with temperature parameter τ .

Dataset Type Train Dev Test Total %M #UC
MOH SVO - - - 647 45.40 215

TSV AN 1568 200 200 1968 50.00 687

GUT AN - - - 8592 53.60 23

VUA-WP
SVO 3418 426 426 4270 50.00 646
AN 2682 334 334 3350 50.00 604

Table 1: Statistics of datasets. %M denotes the percent-
age of metaphorical samples in the dataset and #UC
denotes the number of unique core words. SVO de-
notes subject-verb/verb-object word pair and AN de-
notes adjective-noun word pair.

4.4 Classification
Finally, we feed the aggregated attribute vector
of target concept ht

attr, the representation of core
word hcor and classification embedding h[CLS]
into the classifier, and adopt a cross-entropy loss
function to compute classification loss Lclass:

l̂=softmax(MLP(ht
attr⊕hcor⊕h[CLS])), (20)

Lclass = −(l)⊤ log l̂ (21)

where ⊕ is the concatenation operation, MLP(·)
is a two-layer multilayer perceptron with hidden
dimension d̃, l̂ ∈ R2 is the predicted probability
for all the labels, and l ∈ R2 is the ground truth.

4.5 Optimization
We optimize our method with classification loss
Lclass, attribute mapping loss Lattr and domain
contrastive learning loss Ldcl:

L = Lclass + λaLattr + λcLdcl, (22)

where λa and λc are hyper-parameters.

5 Experiments

5.1 Datasets
We experiment on three publicly available word-
pair metaphor datasets, and construct a new dataset
VUA-WP based on VUA20 (Leong et al., 2020),
which is the largest benchmark dataset for token-
level metaphor detection task. The process of
constructing the dataset VUA-WP is illustrated in
Appendix A. The three benchmark datasets are
as follows: (1) MOH (Shutova et al., 2016) con-
tains verbal word pairs. We conduct 10-fold cross-
validation for evaluation following the previous
convention (Ge et al., 2022); (2) TSV (Tsvetkov
et al., 2014) is a balanced adjective-noun word pair
dataset, which contains 1768 word pairs for train-
ing and 200 word pairs for testing. We randomly



sample 200 word pairs from the original training
set as the development set following the previous
convention (Ge et al., 2022); (3) GUT (Gutiér-
rez et al., 2016) is an adjective-noun word-pair
metaphor dataset with only 23 unique adjectives.
As an adjective has more different noun associa-
tions and 98.4% word pairs in GUT never appear
in TSV, we use it for testing out-of-domain gener-
alization of models trained on TSV. Table 1 shows
the statistics of these datasets.

5.2 Baseline Methods
We compare our method with several representative
methods for word-pair metaphor detection:

• Multimodal (Shutova et al., 2016) combines
visual and linguistic features for prediction;

• SSN-SG (Rei et al., 2017) is the first deep
learning method for this task;

• Concreteness (Su et al., 2020) processes con-
crete word pairs with the multimodal model
and processes abstract word pairs with the
unimodal model;

• EMI (Ge et al., 2022) is the SOTA method,
which models source and target concepts to
benefit metaphor detection via statistic learn-
ing and a reward mechanism.

We also use two methods for text classification
as baselines:

• TextRCNN (Lai et al., 2015) is a recurrent
convolutional neural network;

• BERT (Devlin et al., 2019) is a pre-trained
language model.

We further establish three strong baselines
adapted from the representative methods in token-
level metaphor detection, by replacing the target
word and its context in token-level methods with
the core word and the concept word in our method
respectively. The details of these methods are as
follows:

• MelBERT (Choi et al., 2021) proposes a
model based on the pretrained language model
inspired by metaphor identification theories
MIP and SPV;

• MrBERT (Song et al., 2021) regards
metaphor detection as a relation classification

task, which cares about a kind of relations be-
tween a target word and its context inspired
by MIP;

• MisNet (Zhang and Liu, 2022) is the SOTA
method for token-level metaphor detection,
which incorporates MIP and SPV into their
linguistics enhanced network.1

We also use ChatGPT with advanced prompting
strategies as baselines. Details about experiments
on ChatGPT are shown in Appendix D.

5.3 Implementation Details

We use accuracy and macro-average F1 for evalua-
tion. The knowledge in ConceptNet is organized in
{s, r, o} tuple format, where s is the phrase subject
of the tuple, r is the relation of the tuple, and o is
the phrase object of the tuple. We regard the con-
cept word as the phrase subject and search phrase
objects which have relations with the phrase sub-
ject as candidate attribute descriptions to construct
attribute graphs in attribute siamese network. In the
segment embedding of the text encoder, 0, 1, 2, 3
denote the special token, the core word and its basic
definition, the concept word and its basic definition,
and the part-of-speech token respectively. We re-
port the mean and standard deviation of 5 runs with
different random seeds in our experiments. Other
details are illustrated in Appendix B.

5.4 Main Results

From the experimental results shown in Table 2,
we can see that our proposed method outperforms
all the baselines, which verifies the effectiveness
of modeling attribute likeness and domain incon-
sistency simultaneously for metaphor detection.
Generic methods for text classification (TextRCNN
and BERT) perform poorly on metaphor detection
which needs high-level semantic understanding.
MelBERT, MrBERT and MisNet use special net-
work designs on pre-trained models inspired by
linguistic theories (SPV and MIP), achieving com-
parable results with the previous state-of-the-art
method EMI. However, SPV and MIP only cap-
ture contextual clues of metaphor, neglecting the
implicit information of attributes and domains con-
veyed by metaphors. This is the reason why these
methods perform worse than EMI and our method,

1For a fair comparison, we replace marker tokens in Mr-
BERT with ours. We replace the basic usage of words and
POS tags in MisNet with our word definitions and POS tags.



Method MOH TSV VUA-WP
F1 Acc. F1 Acc. F1 Acc.

TextRCNN (Lai et al., 2015) 68.94 ± 0.82 69.20 ± 0.86 72.25 ± 1.33 73.63 ± 1.16 60.95 ± 1.45 64.08 ± 1.13

BERT† (Devlin et al., 2019) 70.57 ± 1.63 71.22 ± 1.59 81.70 ± 0.59 81.90 ± 0.58 74.29 ± 1.09 74.42 ± 0.94

MelBERT† (Choi et al., 2021) 74.63 ± 1.13 74.98 ± 1.14 86.46 ± 1.31 86.50 ± 1.30 75.63 ± 0.80 75.71 ± 0.81

MrBERT† (Song et al., 2021) 74.03 ± 0.52 74.35 ± 0.50 80.84 ± 2.02 81.00 ± 2.02 76.02 ± 1.37 76.05 ± 1.37

MisNet† (Zhang and Liu, 2022) 75.09 ± 0.56 75.61 ± 0.58 84.39 ± 2.52 84.50 ± 2.43 75.72 ± 0.97 75.79 ± 0.97

Multimodal (Shutova et al., 2016) 75.00 - 79.00 - - -
SSN-SG (Rei et al., 2017) 74.20 74.08 80.10 82.20 - -
Concreteness (Su et al., 2020) 68.00 64.00 85.00 84.00 - -
EMI⋆ (Ge et al., 2022) 75.60 75.90 86.60 87.00 - -
Ours (BERT)† 79.52 ± 0.55 79.83 ± 0.60 89.98 ± 1.53 90.00 ± 1.52 76.40 ± 0.11 76.47 ± 0.10

Ours (RoBERTa)⋆ 79.35 ± 0.45 79.74 ± 0.41 90.48 ± 0.84 90.80 ± 0.77 75.67 ± 0.41 75.74 ± 0.43

Table 2: Comparison between our method and baselines. The best results are in bold font and the best results of
baselines are underlined. † and ⋆ denote the method using BERT and RoBERTa as text encoder respectively.

Ablation MOH TSV VUA-WP
F1 Acc. F1 Acc. F1 Acc.

Ours (BERT) 79.52 ± 0.55 79.83 ± 0.60 89.98 ± 1.53 90.00 ± 1.52 76.40 ± 0.11 76.47 ± 0.10

w/o Ldcl 78.90 ± 0.80 79.19 ± 0.84 85.78 ± 1.26 85.83 ± 1.25 72.78 ± 0.92 72.95 ± 1.03

w/o Lattr 79.47 ± 0.39 79.78 ± 0.37 85.27 ± 1.03 85.33 ± 1.03 74.01 ± 1.55 74.11 ± 1.53

w/o attribute siamese network 79.30 ± 0.51 79.62 ± 0.43 84.04 ± 0.82 84.10 ± 0.86 74.23 ± 1.43 74.53 ± 1.26

w/o core-word guidance 79.07 ± 0.80 79.47 ± 0.80 86.06 ± 1.69 86.10 ± 1.71 74.31 ± 0.81 74.50 ± 0.64

w/o DenseGCN 78.90 ± 0.51 79.22 ± 0.62 87.39 ± 1.79 87.40 ± 1.80 75.00 ± 0.74 75.10 ± 0.72

w/o part-of-speech tag 79.41 ± 0.51 79.71 ± 0.46 88.64 ± 0.88 88.67 ± 0.85 75.50 ± 0.31 75.50 ± 0.32

w/o marker tokens 78.88 ± 0.66 79.19 ± 0.68 88.63 ± 0.82 88.67 ± 0.85 75.51 ± 1.30 75.58 ± 1.29

w/o segment ID 79.18 ± 0.73 79.53 ± 0.75 84.66 ± 1.18 84.70 ± 1.16 74.47 ± 0.10 74.55 ± 0.92

w/o definition 77.80 ± 0.10 78.10 ± 0.13 85.34 ± 2.64 85.40 ± 2.61 74.62 ± 2.10 74.89 ± 1.71

Table 3: Results of ablation study. The best results are in bold font.

which indicates CMT is more explainable than
both SPV and MIP. Although the previous SOTA
method EMI considers the incongruity of source
and target concepts, its performances fall far behind
ours, which shows the similar attribute information
they ignore is important for metaphor detection.

5.5 Ablation Study

We conduct the ablation study to evaluate the im-
pact of components in our method, using the fol-
lowing variants: (a) w/o Ldcl removes the domain
contrastive learning strategy in our method; (b) w/o
Lattr removes the attribute mapping loss from final
training objective; (c) w/o attribute siamese net-
work slashes the whole attribute siamese network
from our method; (d) w/o core-word guidance uses
the attribute siamese network without core word as
guidance to replace the attribute siamese network
in our method; (e) w/o DenseGCN replaces the
DenseGCN in our method with traditional GCN; (f)
w/o part-of-speech tag removes the part-of-speech
information in the input; (g) w/o marker tokens
drops the special markers ([cor], [/cor], [con] and

[/con]) and uses the embedding of first and last
tokens in core/concept word to replace the embed-
ding of [cor]/[con] and [/cor]/[/con] respectively;
(h) w/o segment ID uses 0 and 1 to represent spe-
cial token ([CLS] and [SEP]) and other tokens in
segment embeddings; (i) w/o definition ablates the
basic definitions of core and concept words in the
input.

Experimental results in Table 3 show that re-
moving the domain contrastive learning strategy
reduces the performances, which verifies the ef-
fectiveness of domain-inconsistency information
for metaphor detection. To evaluate the effective-
ness of attribute siamese network, we first directly
ablate attribute mapping loss from our method, re-
sulting in significant performance declines. Then
we directly remove the attribute siamese network,
the performances also drop consistently. Above
two variants show the effectiveness of attribute in-
formation for metaphor detection. The removal of
core-word guidance strategy in attribute siamese
network reduces the performances, which veri-
fies that the core word can guide our method to



Method F1 Acc.
MelBERT (Choi et al., 2021) 81.72 ± 0.75 81.74 ± 0.74

MrBERT (Song et al., 2021) 76.68 ± 0.88 76.71 ± 0.88

MisNet (Zhang and Liu, 2022) 81.03 ± 1.44 81.06 ± 1.43

Ours (BERT) 86.32 ± 1.29 86.35 ± 1.31

Table 4: Comparison between our method and baselines
trained on TSV training set and tested on GUT.

learn similar attributes between source and target
concepts for metaphor detection. When replacing
the DenseGCN with traditional GCN, the perfor-
mances on all three datasets decrease, thus verify-
ing the advantage of DenseGCN. In addition, when
removing the tricks in our method, including the
part-of-speech tag, marker tokens and segment ID,
models perform worse, as these tricks are important
for our method to distinguish information about the
core word and the concept word. When definitions
are aborted, our method tends to overfit on rela-
tively small word-pair datasets, leading to poorer
performances. Besides, the performance drops of
all the ablation experiments on MOH, especially
when removing the attribute mapping loss, are rela-
tively slight. This phenomenon could be attributed
to the small dataset size of MOH, which only has
647 samples. However, the ablation experiments
conducted on the other two larger datasets result in
significant performance drops, verifying the effec-
tiveness of the different components in our method.

5.6 Generalization Ability Analysis
To evaluate the generalization ability of our method,
we use models trained on TSV training set to test on
GUT. The experimental results in Table 4 show that
our method outperforms all the comparative meth-
ods, thus verifying that our method shows promis-
ing ability of out-of-domain generalization to han-
dle unseen concepts. Our method mines the im-
plicit information of attributes and domains, which
is more explainable and effective than comparative
methods using surface-level clues of metaphor.

5.7 Hyper-parameter Analysis
Hyper-parameters for Losses We tune the
hyper-parameters for attribute mapping loss λa

and domain contrastive learning loss λc using grid
search (i.e. [0.0001, 0.001, 0.01, 0.1, 1, 10, 100])
on three datasets. Experimental results in Fig. 4
show that our method achieves the best perfor-
mances on TSV and VUA-WP when λa = 0.001
and λc = 0.001, and the performances drop
sharply when λa and λc are too large. For MOH,

(a) MOH (b) TSV (c) VUA-WP

Figure 4: Results of our proposed method with different
hyper-parameters for losses.

Figure 5: Results of our method with different number
of attribute refinement layers.

our method achieves the best performance when
λa = 0.01 and λc = 0.001. MOH is relatively
small than other datasets leading to unstable perfor-
mances with different hyper-parameters.

Number of Attribute Refinement Layers To
analyze the impact of the number of attribute re-
finement layers in attribute siamese network, we
experiment on varying the number of attribute re-
finement layers from 1 to 5. The results are shown
in Fig. 5. Models on three datasets all achieve best
performances with three attribute refinement layers,
indicating that too shallow network is unable to cap-
ture attribute information while too deep network
with plentiful parameters may lead to overfit.

6 Conclusion

In this paper, we propose an attribute likeness and
domain inconsistency learning framework for word-
pair metaphor detection. Inspired by the conceptual
metaphor theory, our framework models attribute
likeness with an attribute siamese network via
layer-wise attribute refinement graphs and learns
domain inconsistency with a domain contrastive
learning strategy. Experimental results show that
our method significantly outperforms the previous
word-pair and token-level SOTA methods, verify-
ing the effectiveness of our proposed framework
for metaphor detection.



Limitations

Our work has some limitations. Firstly, the gen-
eralization of our method on other types of word
pairs needs to be further explored. Verb-noun and
adjective-noun word pairs are the most frequently
used and basic linguistic forms in metaphorical ex-
pressions. Current studies focus on above two types
of word pairs, and our work follows this conven-
tion. In piratical situations, metaphor also occurs in
verb-adverb word pairs, which needs further study
in the future. In addition, we use ConceptNet as the
external knowledge resource to obtain candidate
attributes, whose types of relations are limited. The
effectiveness of our method using other external
knowledge resources can be further explored.
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Type DEP gov. or dep. POS
wcor wcon wcor wcon

SVO

dobj gov. dep. v. n.
nsubjpass gov. dep. v. n.

xsubj gov. dep. v. n.
agent gov. dep. v. n.

AN
amod dep. gov. adj. n.
nsubj gov. dep. adj. n.

Table 5: The part-of-speech and dependency informa-
tion of subject-verb/verb-object (SVO) and adjective-
noun (AN) candidate word pairs. DEP is short for
stanford typed dependencies, POS is short for part-of-
speech, gov. is short for governor, dep. is short for
dependent, wcor is the core word and wcon is the con-
cept word.

Relation Description
HasProperty A has B as a property
SymbolOf A symbolically represents B
CausesDesire A makes someone want B
RelatedTo A is related to B
IsA A is a subtype or a specific instance of B
PartOf A is a part of B
HasA B belongs to A
UsedFor A is used for B
CapableOf Something that A can typically do is B
AtLocation A is a typical location for B
Causes A and B are events, and it is typical for A to cause B
HasSubevent A and B are events, and B happens as a subevent of A
HasFirstSubevent A is an event that begins with subevent B
HasLastSubevent A is an event that concludes with subevent B
HasPrerequisite In order for A to happen, B needs to happen
ReceivesAction B can be done to A
MadeOf A is made of B

Table 6: Relations in ConceptNet we used for our
method. A denotes the phrase subject and B denotes
the phrase object.

A Dataset Construction

We construct a word-pair metaphor dataset VUA-
WP from VUA20 (Leong et al., 2020), which is the
largest benchmark dataset for token-level metaphor
detection task. Each word in sentences of VUA20
is labelled as metaphorical or literal. We use Stan-
ford CoreNLP1 to extract all the dependency rela-
tions and collect all the candidate word pairs with
possible dependency relations according to Table 5.
After that, we label these word pairs with four rules:

• If all the words in a subject-verb/verb-object
word pair are metaphorical in VUA20, we
label this word pair as metaphorical in VUA-
WP;

• If all the words in a subject-verb/verb-object
word pair are literal in VUA20, we label this
word pair as literal in VUA-WP;

1https://stanfordnlp.github.io/CoreNLP/

• If the adjective in an adjective-noun word pair
is metaphorical in VUA20, we label this word
pair as metaphorical in VUA-WP;

• If all the words in an adjective-noun word pair
are literal in VUA20, we label this word pair
as literal in VUA-WP.

The number of literal word pairs is far more than
the number of metaphorical word pairs. We ran-
domly sample literal word pairs to get a balanced
dataset VUA-WP. After that, we randomly divide
all the word pairs into training, development and
test sets with a ratio of 8:1:1.

B Implementation Details

We use the Stanford CoreNLP to get part-of-speech
information of word pairs. The basic definition of
a word with its POS tag in a given word pair is
extracted from the dictionary Vocabulary2, using
the first definition of this word under the same POS
tag. To construct attribute graphs, we use Concept-
Net to extract the attribute descriptions of concept
words. If ConceptNet doesn’t contain a source or
target concept, we use COMET (Bosselut et al.,
2019), a generative language model fine-tuned on
ConceptNet (Speer et al., 2017), as a substitute to
get attribute descriptions. The relations in Concept-
Net we use are shown in Table 6. We get data from
ConceptNet using the REST API3 and we only
search English terms in ConceptNet. We use bert-
base-uncased4 or roberta-base5 as the text encoder.
We implement our method based on Pytorch6. We
use gradient clipping to avoid exploding gradients
and the max norm of the gradients is 1. We use
AdamW7 as our optimizer and the coefficient of
weight decay is 0.01. We train our models for 10
epochs with the learning rate of text encoder as
lrencoder and the learning rate of other components
as lrexc. encoder. We use Dropout (Srivastava et al.,
2014) to prevent overfitting and the dropout rate
is 0.5. We train all our methods on one NVIDIA
GeForce RTX 3090 GPU. For each dataset, the
model giving best performance of macro-average
F1-score in the development set is used for test

2https://www.vocabulary.com/
3https://github.com/commonsense/conceptnet5/wiki/API
4https://huggingface.co/bert-base-uncased
5https://huggingface.co/roberta-base
6https://pytorch.org/
7https://pytorch.org/docs/stable/generated/torch.optim.

AdamW.html



Notation
Value Description

MOH TSV VUA-WP
N 140 140 140 maximum length of text tokens
lrexc. encoder 5e−4 5e−4 5e−4 learning rate of components except the text encoder
lrencoder 5e−5 5e−5 5e−5 learning rate of the text encoder
L 3 3 3 number of layers of attribute siamese network
n− 5 5 5 number of negative samples in domain constrastive learning
d 768 768 768 dimension of text embedding
d̃ 768 768 768 hidden dimension of MLP

d̂ 300 300 300 dimension of node features in layer-wise refinement graph
n 100 100 100 number of maximum nodes in layer-wise refinement graph
nsub 2 2 2 number of sublayers in densely connected GCN layer
τ 0.05 0.05 0.05 temperature of cosine similarity function
λa 0.01 0.001 0.001 hyper-parameter for attribute mapping loss
λc 0.001 0.001 0.001 hyper-parameter for domain contrastive learning loss
T imetr about 40 minutes about 30 minutes about 45 minutes training time

Table 7: Hyper-parameter values in our proposed method.

Word pair Target concept Relation Attribute

fresh thinking
thinking Causes (causes) a new thought
thinking UsedFor (is used for) AI
thinking Causes (causes) new perspectives

bright candidate
candidate RelatedTo (is related to) hopeful
candidate IsA (is a type of) person
candidate RelatedTo (is related to) Clinton

strong effort
effort RelatedTo (is related to) force
effort RelatedTo (is related to) trying hard
effort RelatedTo (is related to) endeavour

Table 8: Cases of metaphorical word pairs and corresponding attributes with the top three attention values in the last
layer of our attribute siamese network.

set. We run experiments with extensive hyper-
parameter search and provide details of the best
model parameters in Table 7. We experiment with
L of {1, 2, 3, 4, 5}, λa of {0.0001, 0.001, 0.01, 0.1,
1, 10, 100}, and λc of {0.0001, 0.001, 0.01, 0.1, 1,
10, 100}.

C Case Study

To show how the attribute siamese network cap-
tures similar attributes of source and target con-
cepts, we provide several instances and their at-
tributes with the top three attention scores in the
final layer of our attribute siamese network in Ta-
ble 8. We can see that our attribute siamese network
can capture plausible attributes of concept words
which assist in understanding metaphors. Consid-
ering the attributes a new thought and new perspec-
tives, we can infer that fresh thinking in Table 8
implies new thoughts or perspectives. Consider-
ing the attribute hopeful, we can infer that bright
candidate in Table 8 implies a candidate who may
have a hopeful future. Considering the attributes

force, trying hard and endeavour, we can infer that
strong effort in Table 8 implies putting great effort
into something or trying hard on something.

D Experiments on ChatGPT

Implementation Details We used OpenAI API
(gpt-3.5-turbo)1 for testing. A good prompt is es-
sential for generative large language models. We
explore different prompts with some advanced
prompting strategies, including the standard zero-
shot prompting, the zero-shot chain-of-thought
(CoT) prompting (Kojima et al., 2022) and the stan-
dard few-shot prompting (Brown et al., 2020). For
answer cleansing, we pick up the first "yes" or "no"
encountered in the answer given by ChatGPT af-
ter converting all the uppercase characters in the
answer string into lowercase characters.

Prompt Design Table 10 summarizes a list of
template prompts used for the experiments with
different prompting strategies on ChatGPT.

1https://platform.openai.com/docs/models/gpt-3-5



Scientific artifact License
roberta-base MIT license
bert-base-uncased Apache-2.0
COMET Apache-2.0
gpt-3.5-turbo API license
MOH Unspecified
TSV ODbL-1.0 license
GUT Unspecified
VUA20 CC BY-SA 3.0
ConceptNet CC BY-SA 4.0
VUA-WP MIT license
Stanford CoreNLP GNU General Public Li-

cense (v2 or later)

Table 9: Licenses of the scientific artifacts in this paper.

Experimental Results Table 11 shows the com-
parison between our method and ChatGPT using
different prompt strategies on our datasets. Al-
though GhatGPT baselines use multiple advanced
prompting strategies, they struggle on this task and
their performances are far behind ours. In addi-
tion, the performances of ChatGPT on word-pair
metaphor detection are sensitive to the design of
prompts.

Failure Analysis To further explore why Chat-
GPT performs poorly on word-pair metaphor de-
tection, we observed the failure cases in our exper-
iments with ChatGPT using zero-shot prompting
on TSV dataset. Our observation shows that these
cases can be roughly classified into four groups:
wrong conjecture, uncertain judgment, contextual
ambiguity, and common collocation. Table 12
gives some failure cases in each group. In the first
group, ChatGPT makes wrong conjectures about
the answers to the questions with unreasonable ex-
planations. In the second group, ChatGPT makes
uncertain judgments by stating metaphorical and
literal word pairs. In the third group, ChatGPT as
a general language model is also liable to make
mistakes when the contextual information of word
pairs is unavailable. Besides, in the fourth group, as
some metaphorical word pairs such as “dirty word”
and “heavy tax” are commonly used in everyday
language, ChatGPT often misinterprets them as lit-
eral expressions. Wrong conjecture is the major
reason for the failure in predicting the metaphori-
cal tendencies with ChatGPT, which accounts for
55.55% of all the failure cases. Common colloca-
tion, uncertain judgment and contextual ambiguity
comprise 17.46%, 14.29% and 12.70% respectively.
In general, ChatGPT is often good at generating

fluent answers but sometimes may make incorrect
or vague judgments on word-pair metaphor identi-
fication.

E Licenses of Scientific Artifacts

The licenses of the scientific artifacts we used are
shown in Table 9.



Prompting strategy No. Template prompt

Zero-shot

1 Does the word pair "[word pair]" express metaphorical meaning?
2 Does the word pair "[word pair]" express metaphorical meaning? Answer me with "yes" or "no".
3 Does the word pair "[word pair]" express metaphorical meaning? Give me an answer selected from "yes" or "no".
4 Is the word pair "[word pair]" a metaphorical expression?
5 Is the word pair "[word pair]" a metaphorical expression? Answer me with "yes" or "no".
6 Is the word pair "[word pair]" a metaphorical expression? Give me an answer selected from "yes" or "no".
7 Does the word pair "[word pair]" use metaphor?
8 Does the word pair "[word pair]" use metaphor? Answer me with "yes" or "no".
9 Does the word pair "[word pair]" use metaphor? Give me an answer selected from "yes" or "no".

10 Given the word pair "[word pair]", determine if this word pair is a metaphorical expression.

11
Given the word pair "[word pair]", determine if this word pair is a metaphorical expression. Answer me with "yes"
or "no".

12
Given the word pair "[word pair]", determine if this word pair is a metaphorical expression. Give me an answer
selected from "yes" or "no".

Zero-shot CoT

1 Does the word pair "[word pair]" express metaphorical meaning? Answer me with "yes" or "no" step by step.
2 Is the word pair "[word pair]" a metaphorical expression? Answer me with "yes" or "no" step by step.
3 Does the word pair "[word pair]" use metaphor? Answer me with "yes" or "no" step by step.

4
Given the word pair "[word pair]", determine if this word pair is a metaphorical expression. Answer me with "yes"
or "no" step by step.

1-shot

1
Question: Does the word pair "[metaphorical word pair]" express metaphorical meaning? Answer: yes.
Question: Does the word pair "[literal word pair]" express metaphorical meaning? Answer: no.
Question: Does the word pair "[word pair]" express metaphorical meaning? Answer:

2

Question: Does the word pair "[metaphorical word pair]" express metaphorical meaning? Answer me with "yes" or
"no". Answer: yes.
Question: Does the word pair "[literal word pair]" express metaphorical meaning? Answer me with "yes" or "no".
Answer: no.
Question: Does the word pair "[word pair]" express metaphorical meaning? Answer me with "yes" or "no". Answer:

3

Question: Does the word pair "[metaphorical word pair]" express metaphorical meaning? Give me an answer
selected from "yes" or "no". Answer: yes.
Question: Does the word pair "[literal word pair]" express metaphorical meaning? Give me an answer selected from
"yes" or "no". Answer: no.
Question: Does the word pair "[word pair]" express metaphorical meaning? Give me an answer selected from "yes"
or "no". Answer:

4
Question: Is the word pair "[metaphorical word pair]" a metaphorical expression? Answer: yes.
Question: Is the word pair "[literal word pair]" a metaphorical expression? Answer: no.
Question: Is the word pair "[word pair]" a metaphorical expression? Answer:

5

Question: Is the word pair "[metaphorical word pair]" a metaphorical expression? Answer me with "yes" or "no".
Answer: yes.
Question: Is the word pair "[literal word pair]" a metaphorical expression? Answer me with "yes" or "no". Answer:
no.
Question: Is the word pair "[word pair]" a metaphorical expression? Answer me with "yes" or "no". Answer:

6

Question: Is the word pair "[metaphorical word pair]" a metaphorical expression? Give me an answer selected from
"yes" or "no". Answer: yes.
Question: Is the word pair "[literal word pair]" a metaphorical expression? Give me an answer selected from "yes"
or "no". Answer: no.
Question: Is the word pair "[word pair]" a metaphorical expression? Give me an answer selected from "yes" or "no".
Answer:

7
Question: Does the word pair "[metaphorical word pair]" use metaphor? Answer: yes.
Question: Does the word pair "[literal word pair]" use metaphor? Answer: no.
Question: Does the word pair "[word pair]" use metaphor? Answer:

8

Question: Does the word pair "[metaphorical word pair]" use metaphor? Answer me with "yes" or "no". Answer:
yes.
Question: Does the word pair "[literal word pair]" use metaphor? Answer me with "yes" or "no". Answer: no.
Question: Does the word pair "[word pair]" use metaphor? Answer me with "yes" or "no". Answer:

9

Question: Does the word pair "[metaphorical word pair]" use metaphor? Give me an answer selected from "yes" or
"no". Answer: yes.
Question: Does the word pair "[literal word pair]" use metaphor? Give me an answer selected from "yes" or "no".
Answer: no.
Question: Does the word pair "[word pair]" use metaphor? Give me an answer selected from "yes" or "no". Answer:

10

Question: Given the word pair "[metaphorical word pair]", determine if this word pair is a metaphorical expression.
Answer: yes.
Question: Given the word pair "[literal word pair]", determine if this word pair is a metaphorical expression. Answer:
no.
Question: Given the word pair "[word pair]", determine if this word pair is a metaphorical expression. Answer:

11

Question: Given the word pair "[metaphorical word pair]", determine if this word pair is a metaphorical expression.
Answer me with "yes" or "no". Answer: yes.
Question: Given the word pair "[literal word pair]", determine if this word pair is a metaphorical expression. Answer
me with "yes" or "no". Answer: no.
Question: Given the word pair "[word pair]", determine if this word pair is a metaphorical expression. Answer me
with "yes" or "no". Answer:

12

Question: Given the word pair "[metaphorical word pair]", determine if this word pair is a metaphorical expression.
Give me an answer selected from "yes" or "no". Answer: yes.
Question: Given the word pair "[literal word pair]", determine if this word pair is a metaphorical expression. Give
me an answer selected from "yes" or "no". Answer: no.
Question: Given the word pair "[word pair]", determine if this word pair is a metaphorical expression. Give me an
answer selected from "yes" or "no". Answer:

Table 10: Prompt design based on different prompting strategies in ChatGPT experimentation. [word pair] denotes
the input slot of the word pair that needs to be tested. [metaphorical word pair] denotes the input slot of the
metaphorical word pair which is randomly sampled from the training dataset. [literal word pair] denotes the input
slot of the literal word pair which is randomly sampled from the training dataset.



Method No. of template prompt MOH TSV VUA-WP
F1 Acc. F1 Acc. F1 Acc.

ChatGPT Zero-shot

1 51.89 59.66 65.72 68.50 38.55 51.58
2 62.02 65.22 73.38 74.50 44.72 53.68
3 59.45 63.52 70.44 72.00 44.43 54.34
4 48.91 57.81 72.22 73.50 42.76 53.95
5 52.35 59.35 73.79 74.50 42.68 53.29
6 50.67 58.58 71.17 72.50 41.53 53.03
7 55.72 60.43 60.94 64.00 40.43 52.63
8 52.28 57.65 61.39 64.00 43.00 53.55
9 54.05 59.66 60.17 64.00 40.60 52.63

10 43.33 54.71 63.76 66.50 41.50 53.55
11 51.60 58.89 66.66 68.50 44.11 54.08
12 56.54 61.21 74.90 75.50 46.46 54.47

ChatGPT Zero-shot CoT

1 63.55 63.83 68.16 69.50 55.53 55.53
2 56.39 56.41 72.38 73.00 53.76 54.34
3 55.12 56.88 61.54 65.00 56.18 56.18
4 52.79 53.94 75.49 75.50 55.49 57.37

ChatGPT 1-shot

1 60.23 64.91 69.33 70.50 42.34 52.50
2 57.26 62.75 73.49 74.50 41.71 52.50
3 54.90 61.05 71.03 72.50 42.44 53.42
4 51.27 59.20 71.20 73.00 38.92 51.58
5 53.39 60.74 68.78 70.50 40.83 53.03
6 50.14 58.89 62.81 66.50 39.21 52.11
7 49.76 58.58 67.38 69.50 42.11 53.42
8 51.97 59.97 63.54 66.50 42.60 53.68
9 45.45 56.26 61.43 65.50 37.63 51.32

10 52.63 60.28 75.84 76.50 42.43 53.68
11 52.86 60.59 70.13 72.00 40.58 52.89
12 48.74 58.27 64.84 68.00 40.91 53.16

ChatGPT 5-shot

1 65.00 66.31 63.49 67.00 48.29 54.87
2 59.80 62.13 68.62 70.50 48.82 55.00
3 62.27 64.30 72.20 73.00 48.26 53.68
4 63.51 66.00 57.09 62.50 46.62 54.34
5 60.06 62.60 68.45 70.50 46.53 54.21
6 57.31 60.43 65.87 68.00 48.10 54.61
7 59.44 62.44 63.06 66.50 48.07 54.87
8 60.31 64.14 67.72 69.50 49.13 55.13
9 55.55 59.97 63.10 65.50 49.53 55.39

10 63.54 65.69 71.03 72.50 49.05 54.74
11 54.91 59.66 68.45 70.50 47.21 55.00
12 55.58 61.05 65.28 68.00 43.98 52.76

Ours (BERT) - 79.52 79.83 89.98 90.00 76.40 76.47
Ours (RoBERTa) - 79.35 79.74 90.48 90.80 75.67 75.74

Table 11: Comparison between our method and GhatGPT. The best results are in bold font and the best result of
different template prompts for every prompting strategy is underlined.



Category Word pair Prompt question Answer of ChatGPT Result of AIDIL

Wrong conjecture

mad man Does the word pair
"mad man" express
metaphorical mean-
ing?

Yes, the word pair "mad man" can have metaphorical mean-
ing. It could be used to describe someone who behaves
irrationally or impulsively, like a "mad scientist" who takes
risks in their experiments, or a "mad genius" who has uncon-
ventional ideas. (✗)

literal (✓)

blunt honesty Does the word pair
"blunt honesty" ex-
press metaphorical
meaning?

No, the word pair "blunt honesty" is not a metaphor. It is
a description of honesty that is direct and straightforward,
without any attempt to soften or sugarcoat the truth. (✗)

metaphorical (✓)

Uncertain judgment

young moon Does the word pair
"young moon" ex-
press metaphorical
meaning?

It is possible for "young moon" to express metaphorical
meaning, depending on the context in which it is used. For
example, the phrase could be used to represent new begin-
nings, growth, or innocence. However, it could also simply
refer to the phase of the moon when it is visible as a thin
crescent in the sky. (✗)

metaphorical (✓)

red alert Does the word pair
"red alert" express
metaphorical mean-
ing?

As an AI language model, I do not have personal opinions
or feelings, but I can tell you that the word pair "red alert"
has a literal meaning related to emergency situations, such
as the highest level of warning or readiness. However, it can
also be used metaphorically to refer to situations of intense
urgency, danger, or crisis outside the context of emergencies.
(✗)

metaphorical (✓)

Contextual ambiguity

white anger Does the word pair
"white anger" ex-
press metaphorical
meaning?

As an AI language model, I do not fully understand the
context or the intention behind the phrase "white anger".
Without further context, the phrase does not seem to express
a metaphorical meaning. However, it is important to note
that the phrase could have a different connotation or meaning,
depending on the context or cultural references associated
with it. (✗)

metaphorical (✓)

breezy disregard Does the word pair
"breezy disregard"
express metaphori-
cal meaning?

As an AI language model, I cannot definitively determine
if a given phrase expresses metaphorical meaning without
the context in which it is being used. However, the combina-
tion of "breezy" and "disregard" may suggest a metaphorical
meaning that suggests an easy or casual dismissal of some-
thing important or serious. (✗)

metaphorical (✓)

Common collocation

dirty word Does the word pair
"dirty word" ex-
press metaphorical
meaning?

No, the word pair "dirty word" is a literal expression. It is
used to describe a word that is considered vulgar or indecent
in society. (✗)

metaphorical (✓)

heavy tax Does the word pair
"heavy tax" express
metaphorical mean-
ing?

No, the word pair "heavy tax" expresses a literal meaning,
referring to a high amount of tax that needs to be paid. (✗)

metaphorical (✓)

Table 12: Failure cases in our experiments with ChatGPT using zero-shot prompting on TSV dataset.


