
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EVALUATION OF THE ACCURACY OF PATTERN RECOG-
NITION BY A NEURAL NETWORK WITH VARIOUS FIL-
TERS IN THE RECEPTOR LAYER OF THE RETINAL SIM-
ULATION MODULE

Anonymous authors
Paper under double-blind review

ABSTRACT

The purpose of this work is to evaluate the effect of the location of receptors in
the first layer of the retinal simulation module on the ability of a neural network
to recognize images. The retinal simulation module serves as a means for prepro-
cessing images. The retinal simulation module is described and compared with
existing popular preprocessing methods. The module processes the image using
three layers. The object of this study is the first layer of the module, which simu-
lates the receptor layer of the real retina of the human eye. The experiments were
conducted on a fully connected neural network. The retinal simulation module
preprocessed a sample of fruit images photographed from different angles, which
was then fed to the input of the neural network. In the process, ninety-four experi-
ments were performed with different module settings. In each of the experiments,
the settings of the fully connected neural network remained unchanged. The re-
sults of image recognition by a neural network are presented. Recommendations
are given for configuring the receptor layer of the retinal simulation module to
improve the accuracy of pattern recognition.

1 INTRODUCTION

In many branches of human activity, such as medicine, construction, transport, etc. (Tupileikina,
2023; Sakulin and Alfimtsev, 2024; Korotysh et al., 2025; Lokteva et al., 2022), an urgent task is
to obtain information important for processes and automate activities in general (Vidmanov and Al-
fimtsev, 2024a;b; Bolshakov et al., 2024), which is possible, among other things, by introducing
visual recognition of objects into their control and monitoring systems and further displaying in-
formation using the means augmented reality, which will eventually affect the timely response of
employees and improve their work safety.

Existing image recognition methods and algorithms are often based on natural information percep-
tion mechanisms, including the human perceptual system, which includes the visual system, con-
sisting of such basic elements as the retina, optic nerve, and visual cortex. Research and analysis of
such a human system that visualizes the environment is still relevant and may lead to the emergence
of new methods and algorithms for detecting and recognizing objects (Adamova et al., 2021; Loktev
et al., 2023), determining object parameters (Loktev et al., 2022), building virtual/augmented real-
ity, etc. To do this, this paper examines the retinal simulation module and analyzes the effect of the
location of receptors in the module on the ability of a neural network to recognize images.

2 MATERIALS AND METHODS

Since this paper examines the effect of the location of receptors on the retinal layer, it is necessary
to consider the literature in which the receptor layer was modeled or images of the real retina of the
eye were used.

The article (Lebedev and Marshak, 2007) evaluated the effect of amacrine cells using a model based
on a macaque retina image. The model predicts that the enhancement of red-green antagonism is
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one of the important functions of amacrine cells in the pathway providing input to dwarf ganglion
cells in the retina of primates.

In (Utrobin, 2010a;b; 2013), the architectural aspects of the organization of the retina of the eyeball
are considered, and variants of the structural and functional organization of the retina are presented.
These articles present the possible location of two groups of retinal receptors (cones and rods). on
a rectangular plane for computer vision systems, but the cone is considered as a receptor of only
one type, that is, the relative arrangement of cone types reacting to different wavelengths is not
described.

In the article (Momiji et al., 2005), a cellular model of the primate retina was developed. In this
work, cones of only two types are considered and distributed randomly in the retina, the rods were
not modeled at all.

The photoreceptors of the real retina are densely located to each other and form a hexagonal (hexag-
onal) lattice (Chuprov et al., 2021; Ahnelt, 1998). The mosaic of cones and rods is fixed, but the
receptors are unevenly distributed across the retina (Ahnelt, 1998; Rozhkova et al., 2016; Jones and
Higgins, 1947).

The articles (Roorda and Williams, 1999; Alekseenko, 2019) revealed that the ratio of M- and L-type
cones differs significantly in different people with normal vision (for example, the values of 75.8%
of L-type with 20.0% of M-type versus 50.6% of L-type with 44.2% of M-type in two men).

In the considered retinal models, the authors either modeled the receptor layer according to the
coordinates of cones and rods from real retinal images (for example, in (Lebedev and Marshak,
2007) a section of the retina of a macaque was taken), or positioned them randomly (Momiji et al.,
2005), focusing on other layers of the retina, no other approaches were found. The use of the retina
model as a means of image preprocessing to improve image recognition by neural networks has not
been described in publications at the moment.

3 DESCRIPTION OF THE RETINAL SIMULATION MODULE

The retinal simulation module consists of a layer of photoreceptors, a layer of bipolar cells, and a
layer of ganglion cells.

For the module, the pixel intensity of the input image is analogous to the streams of light beams
entering the receptors of the real eye. Therefore, each pixel must correspond to each ”cell” of the
first layer of the software retina.

The software cones of the real eye are divided into three groups according to the length of radiation
they can absorb. Since the retina simulation module reads pixels from an image that are encoded
using the RGB model, the software cones take the intensity value from a specific color channel of
the image.

The sticks are simply excited in the presence of a certain level of light, so in the module they
must convert a pixel to shades of gray and transfer the value already obtained to other layers of the
software retina.

During the development of the module, pixel distribution matrices on the camera matrix, such as the
Bayer filter, RGBW, and X-Trans, were used as a law modeling the location of receptors in the real
retina.

As a result, the filters shown in Figure 1 were prepared for the module. They have been divided into
categories based on certain distinctive features of these filters.

Each of the cells in the next layers of the module has a receptive field. In the real retina of the
eye, cells have two variants of receptive fields: on- and off-type. In the on-type, the center of the
receptive field excites the neuron, and the periphery slows it down; in the off-type, the opposite is
true: the center slows down, and the periphery excites (Izmailov et al., 1989).

In this work, we will use a variant of the receptive fields of cells that mimics the work of the fields
of real retinal cells, shown in Figure 2.

The output of a software bipolar ON-type neuron was calculated using the formula (1):
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a) b) c)

d) e) f)

Figure 1: Filters for first layer of retinal simulation module. a) like Bayer b) two colors c) lines d)
like “X” e) like XTrans f) extras.

Figure 2: Organization of receptive fields of bipolar and ganglion cells of the retina, implemented
in software form.

bipon = v(xstim, ystim) +

K∑
k=0

(−1) ∗ v(x inhibk, y inhibk) (1)

where bipon is the output of an ON-type bipolar cell;

v(xstim, ystim) is the brightness value of the image pixel located in the center of the receptive region
of the bipolar cell (the orange area of the ON-cell in Figure 2);

K is the number of image pixels located on the periphery of the receptive field of the cell;

v(x inhibk, y inhibk) is the brightness value of the kth pixel of the image located at the edge of the
area of the bipolar cell (the white area of the ON-cell in Figure 2).

bipoff = (−1) ∗ v(xinhib, yinhib) +

K∑
k=0

v(x stimk, y stimk) (2)

where bipoff is the output of an OFF-type bipolar cell;

3
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v(xinhib, yinhib) is the brightness value of the image pixel located in the center of the receptive
region of the bipolar cell (the white area of the OFF-cell in Figure 2);

K is the number of image pixels located on the periphery of the receptive field of the cell;

v(x stimk, y stimk) is the brightness value of the kth pixel of the image located at the edge of the
area of the bipolar cell (the orange area of the OFF-cell in Figure 2).

The relative arrangement of cells with different receptive fields in the layer used in this work is
shown in Figure 3.

Figure 3: Arrangement of cells with different receptive fields on the layer.

For the ganglion cell layer, the same variants of the organization of the receptive fields of ON-type
and OFF-type cells and the same variants of the arrangement of ON-type and OFF-type cells in the
layer are used.

From formulas 1 and 2, it can be seen that the algorithm that allows calculating the output values for
a layer of bipolar cells should have a time complexity of O(n4), since it is necessary to traverse the
image with a window of a certain size in 1 pixel increments, therefore, the retinal simulation module
uses the same approach to optimize calculations as in modern implementations of convolutional
neural networks using the convolution theorem. This approach has been modified for the module,
since it is necessary to get the values for ON cells using one filter, and for OFF cells using another,
and then arrange them in the desired order on the final image.

4 COMPARISON OF THE RETINAL SIMULATION MODULE WITH OTHER IMAGE
PREPROCESSING METHODS

To compare the retinal simulation module with other preprocessing methods, a sample was used,
consisting of photographs of fruits photographed from different angles, measuring 100 by 100 pixels.
It contains 39 classes of fruits. The training sample contains 18505 images, and the test sample
contains 6215.

During the comparison, a modified X-Trans filter was installed in the receptor layer in the module,
shown in Figure 4.

Figure 4: Modified X-Trans filter.

A new sample was made from the original sample, obtained by passing images from the original
sample through the retina simulation module with the previously specified layer settings. The origi-
nal sample and the one obtained using the retinal simulation module are shown in Figure 5.
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a) b)

Figure 5: Samples: a) the original sample, b) an example of a sample obtained after conversion by
the module of the original sample.

For pattern recognition, a fully connected neural network was created in Python (Popov, 2023)
using the keras library. The resulting neural network consists of an input layer that accepts images
measuring 100 by 100 pixels, and four fully connected layers. The last layer has 39 neurons, which
corresponds to the number of object classes in the sample. The complete network architecture is
shown in Figure 6.

Figure 6: Architecture of the fully connected neural network used.

Stochastic gradient descent with Nesterov moments with a learning rate of 0.01 was chosen as the
optimization method for training. The categorical cross-entropy is established as a loss function.
The package size was 32 images, the number of epochs was 10.

From the training sample, 20% was allocated to the validation sample, so the neural network was
eventually trained on 14,804 images. The size of the validation sample was 3,701 images.

Since the neural network starts training with random weights, 10 neural network trainings were
done from scratch for each of the preprocessing methods. The results of comparing the effect of the
retinal simulation module on the accuracy of neural network image recognition with other image
preprocessing methods are shown in Table 1.

5 CONDUCTING AN EXPERIMENT

For each filter option shown in Figure 1, a sample was made from the original fruit sample used in
the previous section. The architecture of the neural network and its settings did not change during
the experiment. The neural network image recognition results for each of the filters are shown in
Table 2.
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Table 1: Comparison of the accuracy of image recognition by a fully connected neural network with
different methods of preprocessing on a sample with fruits

Image preprocessing method

Grayscale

Retinal
Simula-

tion
Module

LoG filter DoG
filter

Roberts
filter

MSRCR
filter

Average
recognition

accuracy at 10
launches

78% 87% 80% 80% 71% 76%

6 DISCUSSION OF THE RESULTS OBTAINED

Table 2 shows that the same filters mirrored on the x-axis can lead to different results.

Several patterns have been observed:

1. Alternate colors on the main diagonal of the filter and the diagonals parallel to it.;

2. If there is no color alternation on the main diagonal of the filter and the diagonals parallel
to it, the pattern recognition accuracy decreases.;

3. Alternating red and blue colors increases recognition accuracy more than alternating blue
and green, red and green.

Using these patterns, it was possible, for example, to increase the accuracy for the filter shown in
Figure 7.

Figure 7: Fixed spider-like filter.

This filter had red and blue lines consisting of three pixels. After adding alternating red and blue
colors in the center of the filter, the recognition accuracy increased from 79% to 85%.

Another example is the filters shown in Figure 8. Due to the repetition of colors on the diagonal, the
filters showed the same pattern recognition accuracy of 77%.

Figure 8: Filters similar to ”X”, showing the same accuracy.
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Table 2: The results of the experiment

Filters

Recognition
accuracy

at 10
launches

73-80%

81-83%

84-86%

87-89%

90-92%

This behavior of the module when pixels of different colors are located on the main diagonal and
diagonals parallel to it is due to the fact that ON-cells are located at these positions. This hypothesis
needs to be tested by a large number of experiments.
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7 CONCLUSION

The work evaluated the effect of the location of receptors in the retinal simulation module on the
ability of a neural network to recognize images. Filter options have been created based on exist-
ing camera filters and macaque retina images. Using the retinal simulation module, samples were
prepared on which the experiment of this study was conducted.

Based on the results obtained, three patterns were observed. A hypothesis has been proposed that
may explain these patterns. The hypothesis needs to be tested by a large number of experiments.
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