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Abstract

Pseudo-labeling is a widely used strategy in semi-
supervised learning. Existing methods typically
select predicted labels with high confidence scores
and high training stationarity, as pseudo-labels to
augment training sets. In contrast, this paper ex-
plores the pseudo-labeling potential of predicted
labels that do not exhibit these characteristics. We
discover a new type of predicted labels suitable for
pseudo-labeling, termed two-phase labels, which
exhibit a two-phase pattern during training: they
are initially predicted as one category in early
training stages and switch to another category in
subsequent epochs. Case studies show the two-
phase labels are informative for decision bound-
aries. To effectively identify the two-phase labels,
we design a 2-phasic metric that mathematically
characterizes their spatial and temporal patterns.
Furthermore, we propose a loss function tailored
for two-phase pseudo-labeling learning, allowing
models not only to learn correct correlations but
also to eliminate false ones. Extensive experi-
ments on eight datasets show that our proposed
2-phasic metric acts as a powerful booster for
existing pseudo-labeling methods by additionally
incorporating the two-phase labels, achieving an
average classification accuracy gain of 1.73% on
image datasets and 1.92% on graph datasets.

1. Introduction
Pseudo-labeling (Lee et al., 2013) is a widely employed strat-
egy in many semi-supervised learning methods, e.g., self-
training (Amini et al., 2025), co-training (Blum & Mitchell,
1998), consistency regularization (Sohn et al., 2020), and
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partial label learning (Tian et al., 2024), to address the prac-
tical challenge of labeled data scarcity. This strategy uses
predicted labels of unlabeled samples as pseudo-labels to
augment training set, facilitating model training via reduc-
ing model uncertainty (also called epistemic uncertainty)
(Hüllermeier & Waegeman, 2021) and promoting a robust
decision boundary in low-density regions (Chapelle & Zien,
2005). Pseudo-labeling has achieved success in various
tasks, e.g., computer vision (Rizve et al., 2021), text mining
(Yang et al., 2023), and graph learning (Sun et al., 2020).

High-quality pseudo-labels are essential to this strategy, yet
they are challenging to obtain. The confidence score is
the most commonly used and intuitive metric for selecting
pseudo-labels; however, it suffers from a poor calibration is-
sue, especially on out-of-distribution data (Guo et al., 2017;
Kage et al., 2024). Recently, researchers discovered training
dynamics—i.e., the trajectory of model predictions during
training—contains rich information about prediction uncer-
tainty (Swayamdipta et al., 2020; Jia et al., 2023). They
show that if a model makes consistent predictions for an
unlabeled sample throughout training, that predicted label is
highly likely to be correct. Consequently, training station-
arity metric is proposed to identify these predicted labels to
act as pseudo-labels (Song et al., 2019; Zhou et al., 2020;
Chen et al., 2021; Pleiss et al., 2020; Pei et al., 2024b).

In this paper, in contrast to existing works, we explore
pseudo-labeling potential of a new type of predicted labels
that do not exhibit high confidence score and high training
stationary, as illustrated by type II labels in Fig.1(A)1. These
predicted labels are rarely exploited for pseudo-labeling, as
they are associated with atypical patterns and tend to have a
high risk of misclassification. Incorrect pseudo-labels can
significantly degrade model performance due to introducing
noise and misleading patterns (Wang et al., 2023). How-
ever, we find that despite their low correctness, correctly
predicted labels of this type could offer greater information
gain2 for pseudo-labeling, than the commonly used type

1In Fig.1(A), we use an inverse indicator, non-stationary, which
can be easily calculated, as detailed in the Appendix A.

2We quantify the information gain by measuring the gradient
change from pseudo labels, detailed in Appendix E.
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Figure 1. (A) Distribution of predicted labels for CIFAR100 dataset, based on a pre-trained Vision Transformers (ViT) classifier. The
x-axis represents confidence score, and the y-axis denotes non-stationary during training. Colors indicate correctness of predicted labels.
Type I labels have high confidence and high training stationarity, corresponding to samples with typical patterns; these labels have
been well exploited in existing pseudo-labeling works. Type II labels exhibit relatively high confidence and low training stationarity,
corresponding to samples with complicated patterns; these labels are rarely explored for pseudo-labeling. (B) Type I labels show high
correctness, while Type II labels provide high information gain. Our proposed two-phase labels combine both high correctness and
relatively high information gain. (C) Overlap of effective pseudo-labels (75% accuracy) selected by confidence and our 2-phasic metric.
The pseudo-labels only identified by 2-phasic metric (blue) indicate that many two-phase labels do not have high confidence scores.

I labels, as shown in Fig.1(B). This finding raises a new
research problem: How can we leverage the significant
information gain from type II labels for pseudo-labeling
while minimizing the risk of misclassification?

Toward exploring this problem, this paper uncovers a subset
within type II labels, termed two-phase labels. The two-
phase labels refer to predicted labels whose training dynam-
ics exhibit a two-phase pattern: they are initially predicted
as one category in early training stage (the first phase), and
switch to another category in subsequent epochs (the second
phase), as shown in Fig.2(A). They show a strong potential
for pseudo-labeling, exhibiting high information gain and
relatively high correctness, as shown in Fig.1(B). Notably,
two-phase labels cannot be easily identified by confidence
scores, as evidenced by non-overlaps in Fig.1(C).

We propose the 2-phasic metric to effectively identify the
two-phase labels by mathematically characterizing their
spatial and temporal patterns. We further analyze the ratio-
nale behind using two-phase labels for pseudo-labeling: (1)
Two-phase labels provide valuable information about deci-
sion boundaries, as two-phase samples are positioned much
closer to the boundaries than samples with high confidence;
(2) They can enable models to not only learn correct correla-
tions, but also eliminate false correlations. To fully release
the two potentials, we design a specialized pseudo-labeling
loss function tailored for two-phase labels.

We validate the proposed 2-phasic metric-based pseudo-
labeling method on eight benchmark datasets, including
four image datasets and four graph datasets. Experimental
results show: (1) Our proposed 2-phasic metric can widely
enhance existing pseudo-labeling methods as a booster by
additionally incorporating the two-phase labels, achieving
an average classification accuracy gain of 1.73% on image
data and 1.92% on graph data. (2) Tow-phase labels are
often overlooked by commonly used confidence metrics,
and they exhibit high quality in terms of information gain
and correctness. We analyze the proposed loss function
by an ablation study and examine method limitations. The
experiment code is released in our Github repository3.

In summary, our contributions in this paper are three-fold:

• We uncover two-phase labels, which have strong po-
tential for pseudo-labeling and can be a valuable com-
plement to pseudo-labels provided by existing meth-
ods. We analyze the rationale of two-phase labels for
pseudo-labeling from different perspectives.

• We propose the 2-phasic metric to effectively and ef-
ficiently identify two-phase labels by mathematically
characterizing their spatial and temporal patterns. Fur-
thermore, we propose a loss function specifically de-
signed for two-phase pseudo-labeling learning.

3URL: https://github.com/XJTU-Graph-Intelligence-Lab/
two-phasic-for-pseudo-labeling
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• We conduct extensive experiments to validate the 2-
phasic metric-based pseudo-labeling method on eight
image and graph datasets. Experimental results show
that the proposed 2-phasic metric acts as a powerful
booster for existing pseudo-labeling methods.

2. Related Works
2.1. Pseudo-labeling Approach

The pseudo-labeling approach is dominant in semi-
supervised learning, and it involves a class of methods that
assign predicted labels to unlabeled samples that are then
acted as labeled samples for training (Kage et al., 2024).

In self-training, pseudo-labels are generated by a model
trained on labeled data and subsequently used to further
train the same model (Lee et al., 2013; McClosky et al.,
2006). This process can be conducted iteratively to achieve
curriculum learning (Cascante-Bonilla et al., 2021; Xie et al.,
2020). In co-training, pseudo-labels are generated by the
teacher model and then used to augment the student model’s
training set, allowing for complementary learning (Wang
& Zhou, 2013), knowledge distilling (Hinton et al., 2015),
and iteratively optimizing pseudo-label assignment policy
through the teacher model (Blum & Mitchell, 1998; Pham
et al., 2021). Pseudo-labeling is also employed in con-
sistency regularization, where the objective is to enforce
consistency among the pseudo-labels (soft or hard) of per-
turbed samples—generated by various data augmentation
methods—and the original sample (Berthelot et al., 2020;
Sohn et al., 2020; Hu et al., 2021). In partial label learn-
ing, pseudo-labels are leveraged to disambiguate among
candidate labels, thereby identifying the true label of each
sample (Jin & Ghahramani, 2002; Tian et al., 2024). This
paper uncovers a new type of pseudo-labels, the two-phase
labels, which are under-explored in existing research and
thus may broadly benefit the aforementioned methods.

2.2. Metrics for Pseudo-label Selection

Pseudo-label selection aims to identify which samples
should be assigned pseudo-labels. It is essential to pseudo-
labeling methods. In literature, the most commonly used
metric for pseudo-label selection is the confidence score de-
rived from softmax distribution (Sun et al., 2020; Cascante-
Bonilla et al., 2021; He et al., 2023). However, this metric
suffers from poor calibration, which means high confidence
scores are often assigned to incorrectly predicted labels,
leading to incorrect pseudo-labels (Guo et al., 2017). More-
over, it has been argued that confidence scores should not
be trusted for out-of-distribution data (Gal & Ghahramani,
2016). Confidence scores are also susceptible to manipula-
tion by adversarial examples (Nguyen et al., 2015).

Prediction uncertainty is also a critical metric for select-
ing pseudo-labels (Gawlikowski et al., 2023; Zhao et al.,

2020). A popular method for measuring the uncertainty
is Monte Carlo dropout (Gal & Ghahramani, 2016; Rizve
et al., 2021), which measures the variance of predicted la-
bels during multiple dropout operations in testing. Another
important uncertainty metric used for pseudo-label selec-
tion is training stationarity (also called time-consistency),
which is based on the training dynamics (Song et al., 2019;
Zhou et al., 2020; Chen et al., 2021; Pleiss et al., 2020; Pei
et al., 2024b). The metric can be viewed as a self-ensemble
method, where models at different epochs act as ensemble
members (Liu et al., 2022b). It relies on the observation
that if a model consistently predicts the same label for an
unlabeled sample throughout training, that label is likely to
be correct. Unlike existing works, this work is, to the best of
our knowledge, the first to explore predicted labels with
non-stationary training dynamics for pseudo-labeling.

2.3. Training Dynamics-based Analysis

Training dynamics has been applied in various analysis
tasks, as it contains rich information about both models and
data. In addition to pseudo-labeling, training dynamics is
used to identify samples that are frequently forgotten to
address catastrophic forgetting issues (Toneva et al., 2019;
Pan et al., 2020). It is employed in active learning to find
ambiguous samples for expert querying, helping to refine
the training set and support out-of-distribution generaliza-
tion (Kye et al., 2023; Wang et al., 2022a). It is also used
to measure learning difficulty in curriculum learning (Bal-
dock et al., 2021; Zhang et al., 2025), identify important
samples to reduce the training set (Paul et al., 2021), and
detect mislabeled samples for data cleaning (Jia et al., 2023;
Swayamdipta et al., 2020). Notably, in computer vision,
many studies utilize training dynamics to enhance the em-
bedding space; such approaches are commonly referred to
as memory bank methods (Liu et al., 2022c).

3. Problem Definition
Let DL = {(x(i),y(i))}NL

i=1 be a labeled dataset with NL

samples, where the vector x(i) represents input features
of sample i. Each sample belongs to one of C categories
and is labeled with the one-hot vector y(i) ∈ {0, 1}C . Let
DU = {(x(i))}NU

i=1 be an unlabeled dataset with NU sam-
ples, which does not include sample labels. The pseudo-
labeling approach trains a parameterized model fθ on both
the labeled samples in DL and pseudo-labeled samples
in DP = {(x(i), ỹ(i))}NP

i=1, where ỹ(i) denotes pseudo-
label. These pseudo-labels are generated from the unlabeled
dataset DU . An essential issue of this approach is the selec-
tion of pseudo-labels, which aims to identify unlabeled sam-
ples whose predicted labels can be confidently assigned as
pseudo-labels, thereby enhancing the training of the model
fθ. These predicted labels may be given by the model fθ
from a previous iteration in self-training or by a teacher
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Figure 2. (A) Training dynamics with a two-phase pattern (Node
876), stationarity (Node 121), and frequent oscillations (Nodes
1016 and 2359), generated by a Graph Convolutional Networks
(GCN) on Cora dataset. (B) and (C) summarize spatial and tempo-
ral characteristics of corresponding training dynamics, respectively

model in co-training. The pseudo-label selection problem
can be modeled as designing a metric that evaluates the
suitability of predicted labels to act as pseudo-labels.

4. Method
In this section, we first design the 2-phasic metric to effec-
tively and efficiently identify two-phase labels, then ana-
lyze the rationale behind using two-phase labels for pseudo-
labeling, and finally propose a pseudo-labeling loss that can
fully extract the information within two-phase labels.

4.1. 2-phasic Metric

The key to designing a metric to identify two-phase labels
lies in mathematically characterizing the two-phase pattern:
the label is initially predicted as one class by the model in
the first training phase and then shifts to a different class
in the second phase, as shown in Fig. 2A. Our proposed 2-
phasic metric characterizes this pattern through both spatial
and temporal measures, defined as follows:

2− phasic(i) := (µ
(i)
spatial)

η1(µ
(i)
temporal)

η2 , (1)

where µ(i)
spatial and µ

(i)
temporal represent the measures of spa-

tial and temporal pattern, respectively, of the training dynam-
ics for sample i. The parameters η1 and η2 are exponential
weights. The product operator implies that both the spatial
and temporal patterns must be satisfied simultaneously.

4.1.1. SPATIAL MEASURE

We summarize the spatial characteristics of training dynam-
ics by averaging multiple predictions made by the model
throughout model training, as follows:

P (i) = 1/|T |
∑

t∈T σ
(i)
t .

Here, the set T denotes a memory bank, in which each el-
ement t ∈ T specifies a training epoch used for averaging,
and T is expected to cover the training process unbias-
edly. σ

(i)
t = softmax(z

(i)
t ) represents the softmax distri-

bution given by the model at epoch t, with z
(i)
t being the

C-dimensional logit vector of sample i.

We find that, as two-phase samples (i.e., samples with two-
phase labels) undergo a change in predicted labels during
training, their distribution P (i) exhibits a clear bimodal
pattern, with probabilities of two categories significantly
higher than those of others, as shown in Fig.2(B). This
spatial pattern effectively distinguishes two-phase samples
from many other types. For example, the distribution P (i)

of node 121 is unimodal, which is preferred by training
stationarity-based methods (Pei et al., 2024b), while the
distribution of node 1016 resembles a uniform distribution.

We specifically design a spatial measure to characterize and
quantify the bimodal pattern of P (i), as

µ
(i)
spatial := HLMO[P

(i)] = −
∑

c∈ CLMO
P

(i)
c logP

(i)
c .

Here, we propose a new entropy measure, termed Leave-
Maximum-Out entropy (LMO entropy for short), denoted
by HLMO[P

(i)] to measure bimodal distributions. Unlike
traditional entropy, the uniqueness of LMO entropy lies in
that it excludes the category with the highest probability
from the entropy calculation. Specifically, the set CLMO

includes every category c, except the one with the highest
probability in the distribution P (i). The smaller the spatial
measure µ

(i)
spatial, the clearer the bimodal pattern.

As empirically validated in Appendix B, the proposed LMO
entropy effectively captures bimodal patterns. Its rationale
is as follows: by removing the category with the highest
probability, a bimodal distribution transforms into a sharply
unimodal distribution, resulting in high entropy.

4.1.2. TEMPORAL MEASURE

We further design the temporal measure to complementally
capture the two-phase pattern. We summarize temporal char-
acteristics of training dynamics by accumulating changes of
successive predictions during training,

Q(i) =
∑

t′,t′′∈T |σ
(i)
t′ − σ

(i)
t′′ |,

where t′ and t′′ are successive epochs in set T , with t′

being the immediate predecessor of t′′. The C-dimensional
vector Q(i) captures the magnitude of prediction changes
throughout training, reflecting the evolution of predictions.

4



Non-Stationary Predictions May Be More Informative

We observe two distinguishing temporal patterns in two-
phase samples. Observation 1: The magnitude of changes
in prediction probabilities is relatively small and occurs
within the two bimodal categories of P (i) rather than other
categories. Observation 2: The changes in prediction prob-
abilities are directional, shifting from the predicted category
in the first phase to the one in the second phase.

Modelling Observation 1. We first define two deltas,

∆
(i)
bi =

1

2
(Q(i)

c1 +Q(i)
c2 ), ∆

(i)
¬bi =

1

C − 2

∑
c̸=c1,c2

Q
(i)
c ,

where ∆
(i)
bi captures the average change of the two bimodal

categories c1 and c2, which correspond to the predicted
label in the first phase and the second phase, respectively.
∆

(i)
¬bi represents the average change of other categories. We

further apply a sigmoid function to the deltas to model
tolerance to the changes in Observation 1, as follows

O
(i)
bi =

1

1 + e−(∆
(i)
bi −ϵbi)

+
1

1 + e−(∆
(i)
¬bi−ϵ¬bi)

.

Here, ϵbi and ϵ¬bi are thresholds that control the sensitivity
of the sigmoid functions. We set ϵbi > ϵ¬bi > 0 to allow
for greater tolerance to changes within the two bimodal
categories compared to the other categories. The measure
O

(i)
bi can be used to filter out samples whose predicted labels

frequently switch, such as node 2359 in Fig.2, even if they
exhibit a bimodal distribution P (i) of spatial pattern.

Modelling Observation 2. To measure the directional change
of prediction probabilities, we first calculate the difference
in probabilities from the bimodal category c2 to c1,

g
(i)
t = σ

(i)
t (c2)− σ

(i)
t (c1).

Notably, the difference g
(i)
t is signed and defined at each

epoch t. We then measure the directional change by

O
(i)
dr = g

(i)
T − g

(i)
min, and g

(i)
min = min{g(i)t | t ∈ T },

where T denotes the latest epoch in set T . A large O
(i)
dr

indicates a directional shift in prediction probabilities from
c1 to c2, which can filter out samples whose predicted labels
remain consistently ambiguous between c1 and c2 through-
out training. These samples cannot be detected by either the
measure O

(i)
bi or the spatial measure.

Finally, we design the temporal measure of the two-phase
pattern as a combination of measures O(i)

di and O
(i)
dr ,

µ
(i)
temporal := (O

(i)
bi )

φ1(1/O
(i)
dr )

φ2 ,

where parameters φ1 and φ2 are exponential weights.

4.2. Rationale Analysis to Two-phase Labels

From two distinct perspectives, we analyze why our pro-
posed two-phase labels are well-suited for pseudo-labeling.

Figure 3. Attribution maps of two-phase samples in CIFAR100.
(Left) Input images. (Middle) and (Right) are attribution maps
based on ViT model in the first and second phases, respectively.

Pattern Learning Perspective. The two-phase pattern in
training dynamics implies a significant shift in the patterns
learned by the model, transitioning from patterns associated
with category c1 (the predicted label in the first phase) to
those corresponding to category c2 (the predicted label in the
second phase). Existing studies have shown that models ini-
tially learn simple and typical patterns, gradually progress to
learning more complex patterns (Arpit et al., 2017; Siddiqui
et al., 2023). Given that patterns learned in later training
stages are more stable and reliable (Liang et al., 2020), we
conclude that two-phase samples contain two types of pat-
terns: simple and non-class-exclusive patterns associated
with category c1; complex and class-exclusive patterns as-
sociated with category c2.

To visualize these shifts of learned patterns, we present two
representative images whose training dynamics exhibit a
clear two-phase pattern, as shown in Fig.3. We use Grad-
CAM (Selvaraju et al., 2017), a widely used attribution
interpretability technique, to highlight the key regions in
two-phase samples that the model relies on for classification.
Details of the attribution technique are provided in Appendix
C. In the first phase, the model primarily focuses on simple
and non-class-exclusive patterns. For example, in the “Bed”
image, the model initially emphasizes the headboard, which
visually resembles the backrest of a chair, resulting in a
misclassification as “Chair”. In the second phase, however,
the model shifts its attention to more complex, detailed, and
class-exclusive patterns, such as the footboard in the “Bed”
image and the nose and ears in the “Dog” image. This shift
enables the model to finally make correct classifications.

This shift suggests two-phase labels are well-suited for
pseudo-labeling in the following two ways: (i) Two-phase
labels can help eliminate false correlations between labels
and simple, non-exclusive patterns, i.e., the c1 category and
the patterns learned in the first phase, thereby reducing the
risk of misclassification. (ii) Two-phase labels can provide
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Figure 4. Two-phase samples are closer to decision boundaries in
2D representation space. Blue triangles and red stars denote sam-
ples with the highest confidence and 2-phasic metric, respectively.

additional information to strengthen correct correlations
between labels and complex, class-exclusive patterns, i.e.,
the c2 category and the patterns learned in the second phase.
To fully release the two potentials of two-phase labels, we
design a specialized pseudo-labeling loss function tailored
for two-phase labels, as presented in the next subsection.

Decision Boundary Perspective. To observe how two-
phase samples are positioned in representation space, we
conduct a visualization study. We extract representations
from the last layer of a ViT model for images in CIFAR100
dataset and from the last layer of a GCN (Kipf & Welling,
2017) for nodes in the Cora dataset. These high-dimensional
representations are projected into a 2D space using t-SNE
(Van der Maaten & Hinton, 2008) for visualization.

As shown in Fig.4, samples with high confidence scores
(blue triangles) are distant from decision boundaries, es-
pecially on Cora dataset, indicating they are safe choices
as pseudo-labeling but may not contribute much additional
information to model. In contrast, two-phase samples se-
lected by 2-phasic metric (red stars) are positioned much
closer to the decision boundaries, suggesting they can offer
valuable information about boundaries. Existing studies
have shown that samples near decision boundaries generally
have a greater influence on model performance than those
positioned farther away (Cortes, 1995; Wei et al., 2021).

4.3. Two-phase Pseudo-labeling Loss

As analyzed above, two-phase labels can both enhance cor-
rect correlations and eliminate false correlations. To fully
leverage this valuable information to train model, we design
a specialized pseudo-labeling loss function. For a general
multi-label classification task, we present a modified binary

cross-entropy loss for a two-phase label:

L(ỹ(i), ŷ(i)) = −(ỹ(i)c2 log(ŷ(i)c2 )+(1− ỹ(i)c1 ) log(1− ŷ(i)c1 )),

where ỹ(i) denotes a two-phase pseudo-label, specifically
with the bimodal categories ỹ(i)c2 = 1 and ỹ

(i)
c1 = 0, and ŷ(i) =

fθ(x
(i)) represents the prediction probability given by the

model. In this loss function, the first c2 term is designed to
learn correct correlations between complex, class-exclusive
patterns and category c2, and the second c1 term enforces
the elimatation to false correlations between simple, non-
exclusive patterns and category c1. The two terms are further
analyzed in the following ablation study. A pseudo-labeling
algorithm using 2-phasic metric is given in Appendix D.

5. Experiment
We empirically validate our proposed 2-phasic metric and
pseudo-labeling algorithm on both image and graph datasets,
by answering four key questions. Q1 (Booster Test): Can
the 2-phasic metric enhance existing pseudo-labeling meth-
ods as a booster by additionally incorporating two-phase
labels? Q2 (Complementary Analysis): Are two-phase
labels high-quality pseudo-labels that are missed by existing
pseudo-labeling metrics? Q3 (Ablation Study): How do
the two terms in our specialized loss function contribute to
performance? Q4 (Parameter Sensitivity): How do the
parameters in the 2-phasic metric impact performance?

Baselines. We evaluate our proposed method based on five
state-of-the-art baselines, including both confidence-based
and uncertainty-based pseudo-labeling methods. On graph
datasets, we use four baselines: Confidence score, AUM
(Sosea & Caragea, 2022), MoDis (Pei et al., 2024b), and
DR-GST (Liu et al., 2022a); on image datasets, we use
four baselines: Confidence score, MoDis, UPS (Rizve et al.,
2021), and Softmatch (Chen et al., 2023).

Datasets. Experiments are conducted on eight bench-
mark datasets, including four image datasets, CIFAR-100
(Krizhevsky, 2012), EuroSAT (Helber et al., 2019), Semi-
Aves (Su & Maji, 2021), and STL-10 (Coates et al., 2011),
and four graph datasets, Cora (McCallum et al., 2000), Cite-
seer (Sen et al., 2008), Pubmed (Namata et al., 2012), and
AmazonComputers (McAuley et al., 2015). Details of base-
lines, datasets, and metrics are provided in Appendix E.

5.1. Experiment 1: Booster Test

Experimental protocol. To evaluate the pseudo-labeling
potential of two-phase labels, we test whether the 2-phasic
metric can enhance baselines as a booster by addi-
tioanally incorporating two-phase labels. We design a
controlled experiment with a baseline trial and a 2-phasic
trial following a three-stage protocol, as illustrated in Fig.5.
In stage 1, a base model is established by either fine-tuning
a pre-trained model or training a model on labeled data. In
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Figure 5. An illustration of the protocol of experiment 1.

stage 2, the model is trained using pseudo-labels generated
by a baseline. In stage 3, for the baseline trial, the baseline
continues to generate pseudo-labels for model training; for
the 2-phasic trial, the model is trained on two-phase labels
given by our 2-phasic metric. Finally, we compare the per-
formance of models trained in the two trials to evaluate
whether the 2-phasic metric improves the baseline.

We employ the widely used GCN as the base model for
graph datasets, which is initially trained using only 3, 5, and
10 labeled nodes per category (L/C), following the existing
setup (Liu et al., 2022a) to create challenging scenarios
with minimal label information. We employ a pre-trained
ViT model for image datasets and fine-tune it using a few
labeled images. The total number of the labeled images
(# Labels) is set according to (Li et al., 2023; Wang et al.,
2022b), as shown in Table 1. Additionally, we introduce a
more challenging scenario with only 100 labeled images on
CIFAR-100. More details can be found in Appendix E.

Table 1 summarizes the classification accuracies after stage
3 of the experimental procedure on eight image and graph
datasets. We repeat the experiments 10 times and report
average results on the graphs to minimize the impact of
randomness. We observe that incorporating two-phase la-
bels through our 2-phasic metric generally improves the
performance of these baselines. Specifically,

• The 2-phase trials consistently outperform the base-
line trials across baselines, datasets, and base models.
The average accuracy gain reaches 1.73% for image
datasets and 1.92% for graph datasets, indicating addi-
tional information is provided by the two-phase labels
in stage 3, compared to the baselines.

• The improvements from 2-phasic become more signifi-
cant when the number of labeled samples is lower. This
suggests that two-phase labels play a more important
role in scenarios with extremely limited labels.

• The SoftMatch achieves strong performance because it
well combines both a pseudo-labeling module and an
unsupervised contrastive learning module.

Table 1. Classification accuracy of pseudo-labeling learning (%).
L/C denotes the number of labeled nodes per category; # Labels
denotes the total number of labeled images used.

Graph data Cora Citeseer
L/C 3 5 10 3 5 10
Confidence 66.21 71.38 73.73 60.91 65.23 67.16
+2-phase 70.41 74.07 77.17 64.63 68.09 69.59

AUM 63.50 69.86 75.88 61.10 68.27 67.87
+2-phase 66.95 71.84 77.71 64.99 69.72 69.64

MoDis 68.61 71.85 76.32 65.74 69.17 71.88
+2-phase 70.10 72.83 78.25 68.63 71.92 72.01

DR-GST 71.01 77.07 81.12 61.05 69.62 73.55
+2-phase 73.88 78.53 81.56 66.84 71.02 74.50

Graph data PubMed AmazonCS
L/C 3 5 10 3 5 10
Confidence 64.02 69.94 72.78 73.55 75.28 80.75
+2-phase 65.99 72.32 74.01 75.80 77.00 82.49

AUM 65.19 70.22 72.14 73.65 75.28 80.84
+2-phase 66.38 72.24 73.22 75.49 77.02 81.77

MoDis 65.11 71.56 74.14 75.31 76.14 81.34
+2-phase 65.69 72.66 74.43 76.64 78.23 82.04

DR-GST 68.88 72.82 77.20 79.76 80.00 81.21
+2-phase 73.06 74.56 77.76 80.04 81.30 82.45

Image data CIFAR100 Semi-Aves
# Labels 100 200 400 3959
Confidence 53.70 66.82 75.37 50.88
+2-phase 55.40 67.24 77.33 52.03

UPS 52.62 66.84 76.02 50.25
+2-phase 54.40 68.43 77.65 52.40

Modis 54.06 66.99 75.24 50.92
+2-phase 58.40 68.28 76.78 51.08

SoftMatch 63.54 75.68 81.24 51.88
+2-phase 65.31 77.11 82.45 54.09

Image data Euro-SAT STL-10
# Labels 20 40 40 100
Confidence 75.88 85.59 75.63 87.77
+2-phase 77.31 88.55 76.73 89.29

UPS 75.93 86.55 76.99 88.30
+2-phase 76.29 87.90 78.45 88.50

Modis 76.09 85.24 74.42 87.01
+2-phase 76.76 88.74 75.31 89.96

SoftMatch 91.30 92.48 85.26 89.06
+2-phase 95.20 95.65 87.65 90.19

5.2. Experiment 2: Complementary Analysis

We analyze the complementarity of two-phase labels with
pseudo-labels generated by existing methods, i.e., whether
two-phase labels are high-quality pseudo-labels that are cur-
rently overlooked. To this end, we compare pseudo-labels
generated by 2-phasic metric and confidence score in terms
of correctness, information gain, and their overlap. The
correctness refers to the proportion of correct pseudo-labels
among all generated pseudo-labels. We employ the infor-
mation gain measure proposed in (Pei et al., 2024b), which
quantifies the magnitude of changes in model gradients after
adding pseudo-labels to training. We adopt Intersection over
Union (IoU), also known as Jaccard similarity, to measure
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Table 2. Complementary analysis of two-phase labels. We selected
the top-k pseudo-labels with the highest confidence and 2-phasic
metrics to compare their accuracy, information gain, and overlap.

Graph data Cora Citeseer
L/C 3 5 10 3 5 10

Correctness of pseudo-labels (%)
Confidence 89.55 91.75 96.40 84.15 82.85 86.10
2-phasic 90.50 91.00 96.95 84.65 83.15 87.00

Information gain of pseudo-labels
Confidence 2.81 3.60 1.78 2.18 2.48 2.76
2-phasic 3.78 4.88 2.67 3.10 3.03 3.66

Overlap of the two pseudo-label sets
IoU 0.61 0.48 0.60 0.60 0.68 0.64

Image data CIFAR100 Euro-SAT
# Labels 100 200 400 20 40

Correctness of pseudo-labels (%)
Confidence 56.09 69.10 83.47 77.29 88.60
2-phasic 61.83 75.69 86.91 80.05 91.31

Information gain of pseudo-labels
Confidence 252 344 344 356 528
2-phasic 614 554 453 426 551

Overlap of the two pseudo-label sets
IoU 0.16 0.17 0.21 0.41 0.42

Table 3. Classification accuracy of pseudo-labeling learning (%) in
ablation study. “c1 & c2 terms” denote the complete loss function;
“c2 term” refers to the one with only c2 term.

Dataset Cora CIFAR100
L/C | # Labels 3 5 10 100 200 400
Confidence 66.21 71.38 73.73 53.70 66.82 75.37
+ c2 term 68.96 72.91 77.06 54.33 67.07 76.31
+ c1 & c2 terms 70.16 74.07 77.17 55.40 67.24 76.52

c1 improvement 1.20 1.16 0.11 1.07 0.17 0.21

the overlap of pseudo-labels generated by different methods.
We use the model at the last epoch of stage 2 to generate
pseudo-labels that were not previously used, and then we
select the top-k pseudo-labels with the highest value of the
corresponding metric for analysis. The number k is set to
200 for graph datasets and 10,000 for image datasets.

The comparison results are summarized in Table 2, which
shows that: (1) The two metrics are at the same level in terms
of pseudo-label correctness; (2) Two-phase labels generated
by the proposed 2-phasic metric are more informative for
the model at the last epoch of stage 2; (3) The overlap of the
two pseudo-label sets is not high, indicating that two-phase
labels are often overlooked by the confidence score.

5.3. Experiment 3: Ablation Study

Here, we evaluate the contribution of the two terms in the
specialized loss function introduced in Section 4.3. Follow-
ing the protocol of experiment 1, we modified the training
process in stage 3 by using the loss function with only the
c2 term and with both the c1 and c2 terms, respectively. We
adopt Cora and CIFAR100 as two representative datasets
and use the confidence score as the baseline.

Figure 6. Parameter sensitivity analysis. The y-axis shows the
classification accuracy on Cora (Left) and CIFAR100 (Right); the
x-axis denotes the values of parameters in 2-phasic metric.

Ablation study results are summarized in Table 3, which
shows that: (1) Both the c1 and c2 terms contribute to the
overall performance, with the c2 term being the dominant
factor; (2) The improvement by the c1 term is more signif-
icant when the number of labeled samples is lower. This
indicates that, as analyzed earlier, eliminating false correla-
tions between simple, non-exclusive patterns and labels is
especially important when labeled data is scarce.

5.4. Experiment 4: Parameter Sensitivity

We analyze the sensitivity of the parameters in the proposed
2-phasic metric following the protocol of experiment 1. The
analysis involves three weight parameters (η1, φ1, and φ2)
and two bias parameters (ϵb and ϵ¬b). Notably, the weight
η2 is dependent on φ1 and φ2 in practice and is therefore
excluded from our analysis. We adopt Cora ((L/C=3) and
CIFAR100 (# Labels = 400) as experimental scenarios and
use the confidence score as the baseline. This is a controlled
experiment where we adjust only the target parameter and
observe the resulting changes in model performance, while
keeping all other hyperparameters as fixed values.

As shown in Fig.6, all parameters in 2-phasic metric influ-
ence model performance, indicating that each component
of 2-phasic metric is effective and essential. In the figure,
none of the curves oscillate up and down, indicating that
the parameters can be linearly searched to quickly obtain
optimized values. The optimal value of bais ϵb precedes that
of ϵ¬b, which aligns with our modeling for Observation 1,
as discussed in subsection 4.1.2.

6. Discussion
Calculating the proposed 2-phasic metric introduces addi-
tional space complexity due to the use of a memory bank to
store training dynamics. The additional space complexity is
O(N |T |), where N denotes the number of unlabeled sam-
ples and |T | is the number of epochs sampled to capture
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training dynamics. Our experiments show that a small |T |
is sufficient to effectively identify two-phase samples. For
instance, in the experiment of booster test, |T | is set to 50,
meaning the additional space complexity is O(N)

As shown in Fig.6, the optimal values of the parameters vary
between the two datasets. Manually tuning these parameters
can be time-consuming in practice. In future work, we
plan to automatically learn the parameters by adopting the
strategy proposed in (Kendall et al., 2018). Future work
also includes applying the proposed method to cutting-edge
models such as MTGCN (Pei et al., 2024a) on graph data,
and extending it to broader learning scenarios, such as active
learning and contrastive learning.

7. Conclusion
This work uncovers two-phase labels, a new type of pseudo-
labels, which are highly complementary to existing pseudo-
labeling methods. These labels are high-quality pseudo-
labels that are often overlooked by current methods. Be-
hind this discovery lies an important novel problem —
How can significant information from predicted labels with
non-stationary training dynamics be leveraged for pseudo-
labeling? The problem may inspire further research in this
underexplored area. We designed the 2-phasic metric to
identify two-phase labels and proposed a specialized loss
function in which the two-phase labels help models both
learn correct correlations and eliminate false correlations.
Extensive experiments demonstrated that incorporating two-
phase labels significantly enhances existing pseudo-labeling
methods due to their high information gain and correctness.
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Appendix
This appendix is organized into following six sections, pre-
sented in the order as they are referenced in the main paper.
Notably, the Code to replicate the experimental results is
available in our GitHub repository.

• In Appendix A, we present details for plotting the
Fig.1(A) in the main paper.

• In Appendix B, we validate the effectiveness of our
proposed LMO-entropy to detect bimodal distribution.

• In Appendix C, we provide details of the attribution
method used in Section 4.2 in the main paper.

• In Appendix D, we propose a pseudo-labeling algo-
rithm based on the proposed 2-phasic metric.

• In Appendix E, we provide details of the experiments
in the main paper, including experimental protocols,
baselines, datasets, and evaluation metrics.

• In Appendix F, we present supplementary experiments
to further analyze the proposed 2-phasic metric.

A. Details for Plotting the Figure 1(A)
We provide details on visualizing the distribution of pre-
dicted labels, as shown in Fig.1(A) in the main paper.
Specifically, we first fine-tune a pre-trained Visual Trans-
former (ViT) model (Wang et al., 2022b) on the CIFAR100
dataset using 400 labeled samples, achieving an accuracy of
71.30%, while recording the training dynamics of the ViT.

In the figure, red points represent labels that are incorrectly
predicted in the final model output, while blue points indi-
cate correctly predicted labels. Using the recorded training
dynamics, we calculate two properties of the predicted la-
bels for each unlabeled sample: the confidence score and
non-stationarity, which corresponds to the x-axis and y-axis
in the figure, respectively. Here, the confidence score is
defined as the average predicted probability of the predicted
label’s category across epochs by

µ(i) =
1

T

∑T
t=1 Pθt

(
y
(i)
F | x(i)

)
,

where t specifies a epoch, θt denotes the model parameters
at epoch t, and y

(i)
F denotes the predicted label for the model

after training. The non-stationary is defined as the standard
deviation of the prediction probability of the predicted la-
bels’s category throughout training,

σ(i) =

√
1

T

∑T
t=1

(
Pθt

(
y
(i)
F | x(i)

)
− µ(i)

)2

.

We use the non-stationary as an inverse indicator of the
training stationary, which is easy to calculate.

B. Validation of LMO Entropy
We design this experiment to validate the effectiveness of the
proposed Leave-Maximum-Out entropy (LMO entropy for

Figure 7. A histogram of LMO entropy values of the generated dis-
tribution samples, with distribution types distinguished by colors.
The horizontal axis represents the LMO-entropy values, and the
vertical axis indicates the number of distribution samples.

short), a key component for calculating the spatial measure
in 2-phasic metric. Specifically, we test the ability of LMO
entropy to distinguish bimodal distributions (corresponding
to two-phase labels) from other types of distribution, such
as unimodal and random distribution.

To this end, we synthesize three types of distributions: ran-
dom, unimodal, and bimodal distributions. Each of the
distribution is discrete and with ten categories. We gener-
ate unimodal distributions using a normal distribution with
a random mean and a random variance between 1 and 2.
We generate bimodal distributions by applying the softmax
function to the combination of two normal distributions,
each with random means and random variances between 3
and 5. We generate random distributions by randomly per-
turbing uniform distributions. For each distribution type, we
generate 1,000 distribution samples, and then calculate and
analyze the LMO entropy of the the distribution samples.

Fig.7 presents the histogram of LMO entropy values for the
generated distribution samples. The results clearly show
the LMO entropy values of bimodal distributions are sig-
nificantly lower than those of other types of distributions.
This indicates that a simple threshold of LMO entropy can
effectively distinguish bimodal distributions (corresponding
to two-phase labels) from other types of distribution.

C. Details of Attribution Method
In Section 4.2 in the main paper, we employed Grad-CAM
(Selvaraju et al., 2017) to plot the attribution map Fig.3, i.e.,
to highlight the key regions in two-phase samples that the
first-phase and second-phase models rely on for classifica-
tion. Grad-CAM is a widely used attribution technique for
explaining the attention mechanisms of DNNs.

Grad-CAM begins by computing the gradients of the clas-
sification confidence score for a specific category w.r.t. all
feature activations of each channel in the final convolutional
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layer. By applying a global average pooling operation on
these gradients, it derives the importance weights of each
channel (each feature map) for the given category. These
weights for different channels are then used to perform a
weighted combination of feature map activations, followed
by applying a ReLU activation function, to generate the
Grad-CAM attribution map. The resulting attribution map
highlights the regions of the image that contribute most
significantly to the prediction of the target category.

In experiments, we adopt a ViT model as the base model,
which is trained on the CIFAR100 dataset with 400 labeled
samples provided. We record the models trained after 250
steps (achieving an accuracy of 66.02%) as the first-phase
model, and models trained after 6250 steps (achieving an
accuracy of 74.55%) as the second-phase model. We extract
two-phase image samples along with their corresponding
predicted categories. Then, the Grad-CAM method is em-
ployed to visualize the critical image regions for classifica-
tion of the first-phase and second-phase, respectively.

D. 2-phasic based Pseudo-labeling Algorithm
The procedure of the entire pseudo-labeling algorithm is
as follows: (1) Base model training: train a base model fθ
on the labeled dataset DL, and record the training dynam-
ics of the model. (2) Two-phase label generation: Select
two-phase samples using the recorded training dynamics
and the proposed 2-phasic metric. Predict the two-phase
labels based on the trained base model. (3) Pseudo-labeling
learning: The two-phase labels are used to augment the
labeled dataset for further training of the model, utilizing
the proposed two-phase pseudo-labeling loss (described in
Section 4.3 of the main paper). In the following, we first
present the 2-phasic based pseudo-label selection algorithm,
detailed in Algorithm 1. We then incorporate this selection
algorithm into a pseudo-labeling learning framework, as
described in Algorithm 2.

In Algorithm 1, the base model fθ is trained on the labeled
data DL. Throughout the training, we record the softmax
distributions σ(i)

t of predictions at specific epochs (or batch
ID in batch training) in the memory bank, t ∈ T (Line
4-8). Subsequently, the recorded training dynamics are used
to calculate 2-phasic metric for every unlabeled sample
using Eq. (1) from the main paper (Line 10-11). Finally,
unlabeled samples with a 2-phasic value below the threshold
τ are selected as pseudo-labeles (Line 13-15). The output
pseudo-labels and the corresponding bimodal categories DP

are then used to augment the limited labeled data.

In Algorithm 2, we present 2-phasic based pseudo-labeling
learning method by incorporating Algorithm 1 into a multi-
stage pseudo-labeling learning framework. This algorithm
comprises K stages, with K = 1 for experiments on graph

Algorithm 1 2-phasic based Pseudo-label Selection
Input: Labeled samples DL, unlabeled samples DU ,
and initial model fθ
Output: Pseudo-label samples DP

Parameter: Threshold τ , epoch indexes T
1: Initialize model parameters θ, and DP ← ∅
2: for training epoch t = 1 to max epoch do
3: Update θ using the gradient calculated on DL

4: if epoch t ∈ T then
5: for each sample x(i) in DU do
6: Compute σ

(i)
t via fθ and record

7: end for
8: end if
9: end for

10: for each sample x(i) in DU do
11: Calculate its 2-phasic metric by using Eq. (1) in the

main paper
12: Record its bimodal categories bc(i) = [c1, c2]
13: if 2-phasic(i) < τ then
14: ỹ(i) = fθ(x

(i)); DP ← DP ∪{x(i), ỹ(i), bc(i)}
15: end if
16: end for
17: Return DP

Algorithm 2 2-phasic based Pseudo-labeling Learning
Input: Labeled samples DL, unlabeled samples DU ,
and initial model fθ
Output: Predicted labels D∗ = {(x(i), ŷ(i))|x(i) ∈ DU}

1: D∗ ← ∅
2: for each stage k = 1 to K do
3: DP = Algorithm 1(DL,DU ,fθ)
4: DL ← DL ∪DP ; D∗ ← D∗ ∪DP

5: Update DU according to DL

6: end for
7: Train model fθ on augmented DL

8: for each sample x(i) ∈ DU do
9: ỹ(i) = fθ(x

(i)); D∗ ← D∗ ∪ ỹ(i)

10: end for
11: Return D∗

datasets and K > 1 for experiments on image datasets. In
each stage, pseudo-labels are generated by Algorithm 1 by
leveraging currently available labels in DL (Line 2-3). Then,
the labeled data DL is augmented by these pseudo-labels,
and the augmented labeled data serves as the foundation for
the next stage of pseudo-labels generation (Line 4-5). After
iterating through the K stages, the final model is trained
using the ultimately augmented label set DL (Line 7). The
final model is then used to predict labels for all unlabeled
samples (Line 8-10). Notably, we add an equal number of
pseudo-labels for each category in every stage so as to avoid
the issue of label imbalance.
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E. Details of Experiments
E.1. Details of Baselines

We choose the confidence score and MoDis as baselines in
experiments on both graph and image datasets.

• Confidence score(Lee et al., 2013): The likelihood or
probability assigned to the predicted category, which
is a widely used metric for selecting pseudo-labels.

• Memory Disagreement (MoDis) (Pei et al., 2024b): By
leveraging training dynamics to quantify the predic-
tion uncertainty, which favors unlabeled samples with
higher prediction consistency during training.

In experiments on image datasets, we additionally choose
the following two baselines:

• Uncertainty-aware Pseudo-label Selection (UPS)
(Wang et al., 2021): UPS utilizes prediction uncer-
tainty to reduce noise from poorly calibrated models,
there mitigating overconfidence in pseudo-labeling.

• SoftMatch (Chen et al., 2023): SoftMatch proposes
a uniform alignment approach that weights samples
based on their confidence levels, thereby enhancing the
utilization of weak learners.

In experiments on graph datasets, we additionally choose
the two following two baselines:

• Area Under the Margin (AUM) (Sosea & Caragea,
2022): AUM captures the divergence between the logit
of annotated labels and predicted labels in training.

• Distribution Recovered Graph Self-Training (DR-GST)
(Liu et al., 2022a): DR-GST introduces a distribu-
tional correction mechanism into confidence based
self-training on graphs.

E.2. Details of Datasets

Our experiments are conducted on eight benchmark datasets,
including four graph datasets, specifically Cora (McCal-
lum et al., 2000), Citeseer (Sen et al., 2008), PubMed (Na-
mata et al., 2012), and AmazonComputer (McAuley et al.,
2015), and four image datasets, specifically CIFAR100
(Krizhevsky, 2012), EuroSAT (Helber et al., 2019), STL-
10 (Coates et al., 2011), and Semi-Aves(Su & Maji, 2021).
Statistics of image and graph datasets are summarized in
Table 4 and Tables 5, respectively.

In experiments on graph datasets, we follow the setup in
(Liu et al., 2022a; Pei et al., 2024b), use only 3, 5, and 10
labeled nodes per class (L/C), which presents challenging
scenarios with minimal label information. In experiments
on image datasets, we use different configurations, as shown
in Table 5, according to existing works (Wang et al., 2022b).

In experiments, we employ Optuna (Akiba et al., 2019) to
searche parameters in 2-phasic metric, with the parameter
search ranges detailed in the Table 6.

E.3. The Calculation of Information Gain

In Table 2 of the main paper, we employ information gain
to evaluate the quality of pseudo-labels. Specifically, we
measure the information gain from pseudo-labels by sum-
marizing the positive contribution of correct pseudo-labels
and the adversarial impact of incorrect pseudo-labels,

ρ = ρ(+) − ρ(−),

where ρ(+) and ρ(−) denote the positive contribution and
the adversarial impact, respectively. Taking positive contri-
bution ρ(+) as an example, the information gain from the
inclusion of correct pseudo-labels is calculated based on
model perturbations. Specifically, we quantify the gradient
changes induced by the inclusion of correct pseudo-labels:

ρ(+) =
∥∥∥∇ℓ(DL ∪D

(+)
P ; fθ

)∥∥∥
F
− ∥∇ℓ (DL; fθ)∥F ,

where ∇ℓ(·) denotes the model’s gradient, DL represents
the labeled samples, and D

(+)
P is the set of correct pseudo-

labels. Here ∥·∥F signifies the Frobenius norm. To calculate
adversarial impact ρ(−), we replace the set D(+)

P with D
(−)
P ,

which denotes the set of incorrect pseudo-labels.

In Fig.1(B), we compare the information gain of Type 1 and
Type 2. The information gain is caculated based on sam-
ples within each type and divided by the mean information
gain of all samples. In the complementary analysis in 5.2,
we compute the average information gain per sample by
dividing the information gain of the pseudo-label set by the
number of samples in the set.

E.4. Details of Booster Test

The booster experiment (Section 5.1 in the main paper) is
structured into three stages, as illustrated in Fig.5 in the
main paper. We conducted the experiment on both graph
and image datasets. For image classification, we selected CI-
FAR100, EuroSAT, STL-10, and Semi-Aves datasets, with
detailed descriptions in Appendix E.1. We utilized the pre-
trained ViT model provided in the (Wang et al., 2022b) as
the backbone. In the first phase, we directly loaded the
pre-trained checkpoint of the ViT model. During the second
phase, in accordance with the settings from the USB, we
set the batch size to 8 and employed a baseline algorithm to
select pseudo-labels for training while recording the train-
ing dynamics within batches. A total of 4 epochs were
conducted in the stage 2. In stage 3, the experiment was
divided into two trials. We use pseudo-labels selected by the
2-phasic metric and the baseline to train the model, respec-
tively, and report the final experimental results of both trials.
In the baseline trial, the model continued to use the baseline
algorithm to select pseudo-labels for model training. In
the two-phase trial, we leveraged the training dynamics ob-
tained from stage 2 to select two-phase pseudo-labels using
2-phasic according to Algorithm 1.
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Table 4. Statistics of graph datasets.
Graph dataset # Nodes # Edges # Categories # Features # Labels used for training pre category

Cora 2,708 5,429 7 1,433 3 / 5 / 10
Citeseer 3,327 4,732 6 3,703 3 / 5 / 10
PubMed 19,717 44,338 3 500 3 / 5 / 10

AmazonComputer 13,752 245,778 10 767 3 / 5 / 10

Table 5. Statistics of image datasets.
Image dataset # Images in training set # Images in test set # Categories # Labels used for training pre category
CIFAR-100 50,000 10,000 100 1 / 2 / 4

STL-10 5,000 8,000 10 4 / 10
EuroSat 16,200 5,400 10 2 / 4

Semi-Aves 3,959 4,000 200 15

Table 6. Parameter search setup. We use Optuna (Akiba et al.,
2019) to search for parameters within the following ranges.

Parameters Range for graphs Range for images
ϵb (0, 0.1) (0, 0.1)
ϵ¬b (0.1, 2) (0.1, 2)
η1 (0, 1) (0, 1)
η2 depends on φ1 and φ2

φ1 (0, 1) (0, 1)
φ2 (0, 1) (0, 1)

lr 5e-3 for Amazon
(1e-5, 1e-3) for others (1e-4, 1e-3)

τ (0.8, 1.8) Mean of 2-phasic of
all the unlabeled

Table 7. Classification accuracy of pseudo-labeling learning (%).

Image Data CIFAR100
# Labels 200 400
Confidence 66.84 75.38
+2-phase 68.24 77.98

According to the experimental results in (Wang et al.,
2022b), the baseline models are convergent around the tenth
epoch. To speed up our comparison experiments, we did not
train for 200 epochs as the seeting in (Wang et al., 2022b);
Instead, we run 6 epochs in stage 3, during which models
in both trials successfully converged. To prove the conver-
gence, we train model for 200 epochs using one baseline.
The results are reported in Table 7, where the perfoermance
is very closed to the results in Table 1 in the main paper.

E.5. Details of Ablation Study

We conduct an ablation study to evaluate the contribution of
each component in the loss functions in Section 4.3 of the
main paper, i.e., c1 and c2 terms. The c2 loss is defined as:

L
(
ỹ(i), ŷ(i)

)
= −ỹ(i)c2 log

(
ŷ(i)c2

)
,

where ỹ(i) denotes the two-phase pseudo-Label, ŷ(i) =
fθ(x

(i)) is the model’s prediction probability. The loss with
both c1 and c2 terms are the same as the loss functions in
the main paper. For graph data, we select the GCN model
trained on the Cora dataset, as the base model. Our experi-
ments are performed on three partitions of Cora, specifically,
L/C = 3, 5, and 10. For image data, the base model is a

Table 8. The node classification accuracy of pseudo-labeling algo-
rithms on graphs (%) with the backbone GAT. L/C represents the
number of labeled nodes per category.

Graph Data Cora Citeseer
L/C 3 5 10 3 5 10
Confidence 67.04 75.12 75.37 61.16 65.33 67.86
+2-phase 70.72 77.00 78.53 62.56 67.48 68.63

AUM 68.99 73.14 76.00 59.38 63.45 66.83
+2-phase 69.70 77.21 79.44 59.70 66.60 68.65

MoDis 72.67 74.21 75.13 63.09 66.98 67.27
+2-phase 74.42 76.06 77.22 64.10 68.37 68.66

DR-GST 73.58 79.42 82.35 52.47 68.13 72.91
+2-phase 74.28 80.13 83.01 56.86 70.84 73.39

Graph Data Pubmed AmazonCS
L/C 3 5 10 3 5 10
Confidence 63.06 64.46 68.60 75.66 77.09 80.81
+2-phase 63.43 70.08 72.16 75.75 78.63 81.56

AUM 60.48 65.27 68.01 74.52 77.34 80.29
+2-phase 63.92 69.55 72.16 75.20 78.19 80.73

MoDis 65.37 69.22 71.80 74.70 77.18 81.43
+2-phase 66.00 69.67 73.03 77.06 78.20 82.38

DR-GST 66.51 73.93 76.48 78.96 80.56 82.66
+2-phase 67.89 74.26 76.84 81.54 81.78 83.02

ViT trained on the CIFAR100 dataset. Experiments are
conducted with 100, 200, and 400 pseudo-labels.

F. Supplementary Experiments
F.1. Additional Booster Test

We also use the widely used graph learning model, Graph
Attention Networks (GAT) (Veličković et al., 2018) as an
additional base model for booster test. All experimental
configurations are the same as the experiment of booster
test, described in the main paper and Appendix E.4.

As shown in Table 8, the two-phase labels generated by
the 2-phasic metric consistently improve classification ac-
curacy across four graph datasets and four baselines, with
an average enhancement of 1.76%. These results further
demonstrate that adding two-phase labels boosts the perfor-
mance of existing pseudo-labeling methods, regardless of
the base model used, highlighting the broad applicability of
our proposed 2-phasic metric.
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Table 9. Classification accuracy of pseudo-labeling learning (%)
in component ablation study. “Temporal only” denotes that only
µtemporal is used in the metric and “Spatial only” denotes that
only µspatial is used. “2-phasic” represents the complete metric.

Dataset Cora
L/C 3 5 10
Temporal only 69.76 73.40 75.99
Spatial only 68.24 72.70 73.87
2-phasic 70.16 74.07 77.17

F.2. Ablation Study on 2-phasic Metric

To further analyze the contributions of the spatial measure
and the temporal measure in the 2-phasic metric, we con-
ducted an ablation study. Specifically, we use GCN as
the base model on Cora dataset with L/C=3, 5, and 10.
In the booster test experiments, we employ confidence as
pseudo-labeling metric in stage 2, and use either µtemporal

or µspatial alone as pseudo-labeling metric in stage 3. The
experimental results are summarized in Table 9.

The results demonstrate that both temporal and spatial com-
ponents contribute positively to the overall performance,
with the temporal features having a more significant impact.
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