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ABSTRACT

The remarkable success in graph neural networks (GNNs) promotes the Graph
Rationalization methods that aim to provide explanations to support the prediction
results by identifying a small subset of the original graph (i.e., rationale). Although
existing methods have achieved promising results, recent studies have proved
that these methods still suffer from exploiting shortcuts in the data to yield task
results and compose rationales. Different from previous methods plagued by
shortcuts, in this paper, we propose a Shortcut-guided Graph Rationalization (SGR)
method, which identifies rationales by learning from shortcuts. Specifically, SGR
consists of two training stages. In the first stage, we train a shortcut guider
with an early stop strategy to obtain shortcut information. During the second
stage, SGR separates the graph into the rationale and non-rationale subgraphs and
lets them learn from the shortcut information generated by the frozen shortcut
guider to identify which information belongs to shortcuts and which does not.
Finally, we employ the non-rationale subgraphs as environments and identify
the invariant rationales which filter out the shortcuts under environment shifts.
Extensive experimental results on both synthetic and real-world datasets clearly
validate the effectiveness of our proposed method. Code is released at https:
//anonymous.4open.science/r/codes-of-SGR-1340.

1 INTRODUCTION

Graph neural networks (GNNs) have become ubiquitous in various applications exhibiting high
performance (Kipf & Welling, 2017; Xu et al., 2019). One of the main application categories is the
graph classification task, such as molecular graph property prediction (Hu et al., 2020; Guo et al.,
2021; Yehudai et al., 2021). Despite their success, GNNs on graph classification tasks still suffer
from a lack of explainability and reliability in their prediction results, which has prompted many
researchers (Ying et al., 2019; Luo et al., 2020) to investigate how to provide explanations for GNNs.
Among them, graph rationalization methods (Lei et al., 2016; Wang et al., 2021) have achieved
increasing attention. These methods aim to yield the task results while identifying a small subset of
the original graph (i.e., the rationale), such as significant nodes or edges. In this way, the extracted
rationale can serve as an explanation for the prediction results.

Despite the appeal of graph rationalization methods, recent studies (Chang et al., 2020; Wu et al.,
2022) have indicated that these approaches are susceptible to exploiting shortcuts (aka, spurious
correlations) in the data to yield task results and compose rationales. Such exploitation can result in
invalid or erroneous conclusions, undermining the reliability of the model’s outputs.

Considering Figure 1, we predict the motif type based on the graph that consists of motifs and
bases subgraphs. In the training dataset, the Cycle-motifs are frequently co-occurring with the Tree
bases and House-motifs are predominantly accompanied by the Wheel bases, which may mislead
the GNNs over-reliance on these associations for achieving high accuracy, rather than discerning the
true relationships between critical subgraphs (i.e., rationales) and the predicted labels. For example,
GNNs may predict the motif type as Cycle when identifying the Tree bases or classify the motif
type as House when recognizing the Wheel bases. However, this dependency on biases can result
in inaccuracies when facing out-of-distribution (OOD) data (the test dataset in Figure 1), such as
incorrectly predicting a Cycle-motif with Wheel bases as a House or misclassifying House-motifs
with Tree bases as Cycles.
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Figure 1: An example of the motif type prediction, where the Cycle and House are motif labels, and
Tree and Wheel are bases that are irrelevant to the motif prediction. In the training dataset, the data
distribution is Cycle with Tree and House with Wheel. When the model depends too much on this
data distribution (i.e. shortcuts) for prediction, the model is likely to misclassify when facing the test
dataset with a shift in the distribution.

To solve that, various methods (Fan et al., 2022; Sui et al., 2022; Li et al., 2022b) have been proposed
recently to compose the real rationale by capturing the invariant relationship between rationales
and their labels. These methods argue that the rationale behind the labels remains stable across
different environments. Therefore, they employ environment inference methods to obtain various
latent environments, and then identify the invariant rationales under environment shifts.

The methods mentioned above are all based on the assumption that shortcuts are unknown. However,
a direct approach is to explicitly identify which nodes in the graph are shortcuts, enabling us to use
these shortcut nodes to train a de-biased model. Unfortunately, annotating nodes for shortcuts on each
graph can be a laborious task. Interestingly, although obtaining shortcut nodes is unavailable, we can
get latent shortcut representations. Research (Clark et al., 2019; Nam et al., 2020; Li et al., 2021;
Fan et al., 2022) has demonstrated that shortcut features are easier to learn than rationale features,
indicating the features learned by the model in initial training stages are more inclined to shortcuts
(Arpit et al., 2017). Therefore, we can obtain the shortcut representations with an early stop strategy.

Along this line, in this paper, we propose a Shortcut-guided Graph Rationalization (SGR) method,
which identifies significant nodes as rationales by learning from shortcuts. Specifically, our method
involves two stages. In the first stage, we train a shortcut guider which is designed to intentionally
capture the shortcut in data with the early stop strategy. In the second stage, we first freeze the
trained shortcut guider and adopt it to generate the shortcut representation. Then, we separate the
original input graph into rationale and non-rationale subgraphs, which are respectively encoded into
representations. Next, we employ the shortcut guider to eliminate the shortcut information from the
rationale subgraphs by minimizing the Mutual Information (MI) (Poole et al., 2019; Cheng et al.,
2020a; Yue et al., 2022) between the shortcut and rationale representation. Meanwhile, we also let
the shortcut guider encourage the non-rationale subgraphs and shortcut representations to encode
the same information by maximizing MI (Oord et al., 2018). Based on the MI estimation methods,
rationale and non-rationale subgraph representations can fully learn which information belongs to
shortcuts and which does not. Finally, to further identify the invariant rationales under environment
shifts, we consider non-rationale representations which sufficiently capture the shortcut information
as the environment. We then combine each rationale representation with various non-rationale
representations, and encourage these combinations to maintain a stable prediction and yield rationales.
Experiments over ten datasets, including various synthetic (Ying et al., 2019; Wu et al., 2022) and
OGBG (Hu et al., 2020) benchmark datasets, validate the effectiveness of our proposed SGR.

2 SHORTCUT-GUIDED GRAPH RATIONALIZATION

2.1 PROBLEM DEFINITION

Considering graph classification tasks, given an input graph instance g = (V, E) with N nodes and Z
edges and its graph-level ground truth y, where (g, y) ∈ DG, DG is the dataset, V is the set of nodes,
E is the set of edges and the matrix A ∈ {0, 1}|V|×|V|, our goal is first to yield a rationale mask
vector M ∈ RN that represents the probability of each node being selected as the rationale. Then, the
of rationale subgraph is calculated as hr = READOUT (M�GNNg(g)), where GNNg(·) can be
any GNN encoder (e.g., GIN (Xu et al., 2019)). Finally, the rationale representation hr is employed
to yield task results. Take the case in Figure 1 for example, our goal is to predict the motif type while
identifying the Cycle or House structure as the rationale to support the prediction results.
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2.2 ARCHITECTURE OF SGR
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Figure 2: Architecture of SGR in the second stage.

To explicitly utilize the shortcut information to
compose unbiased rationales, we propose the
SGR method consisting of two stages. In the
first stage, we employ an early stopping strategy
to obtain a shortcut guider that can fully learn
the shortcut information. In the second stage, as
shown in Figure 2, our method involves a short-
cut guider, selector, and predictor. Initially, we
freeze the shortcut guider and further obtain the
shortcut representation. We then adopt the selec-
tor to separate the original graph into rationale
and non-rationale representations. Next, we use
the MI estimation method to transfer the generated shortcut information to both the rationale and non-
rationale representation, ensuring these representations can learn from shortcuts. Finally, the predictor
yields prediction results based on the above rationale and non-rationale representation cooperatively.

2.2.1 SHORTCUT GUIDER

Although it is difficult to identify which nodes are shortcuts, we assume that shortcut representations
are available. Specifically, previous research (Li et al., 2021; Nam et al., 2020; Fan et al., 2022)
suggests that shortcut features are easier to learn than rationale features, indicating that the features
learned in the initial training stages are more inclined to shortcuts (Arpit et al., 2017). Therefore, in
the first stage, we intentionally train the shortcut guider to capture the shortcut information with an
early stop strategy. Initially, we train the shortcut guider on the dataset DG to predict the graph label:

Hs = GNNs(g), hs = READOUT (Hs) , ŷs = Φs (hs) . (1)

Among them, GNN(·) can be any GNN encoder such as GCN (Kipf & Welling, 2017). Hs ∈ RN×d

denotes the node representation, and hs ∈ Rd is the graph-level representation which is generated by
a readout operator (employing mean pooling in this paper). Φs(·) is a classifier which is applied to
project hs to the graph label. Then, the prediction loss can be formulated as:

Ls = E(g,y)∼DG
[l(ŷs, y)] , (2)

where l(·) is the cross entropy loss. We then train the shortcut guider only for a few epochs (e.g., 3
epochs) to ensure the shortcut guider capture more shortcut information rather than rationale informa-
tion. Finally, we freeze the parameters of the shortcut guider and apply this guider to the second stage.

2.2.2 SELECTOR

To separate the original input into rationale and non-rationale subgraphs, the selector first generates
M ∈ RN that represents the probability of each node being selected as the rationale (Liu et al., 2022):

M = σ(Φm (GNNm(g))), (3)

where Φm(·) encodes each node into a value of selecting the node as the rationale, and σ denotes the
sigmoid function, indicating the probability of nodes being the rationale. Then, the selector employs
another GNN encoder to obtain the node representation Hg = GNNg(g). Next, the rationale node
representation can be defined as M�Hg , while the non-rationale node representation is formulated
as (1−M)�Hg . Finally, the rationale subgraphs representation hr and the non-rationale ones he

can be obtained by a READOUT operation:

hr = READOUT (M�Hg) , he = READOUT ((1−M)�Hg) . (4)

2.2.3 LEARNING FROM SHORTCUT BY MI ESTIMATION

To eliminate the shortcut information in the rationale and alleviate the problem of employing shortcuts
in the data for prediction, we adopt the shortcut guider to reduce the mutual information between
rationale subgraphs representations and shortcut representations. To achieve this, we first input the
original graph g into the selector to obtain the subgraphs representations hr and he, respectively,
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as described in section 2.2.2. We then keep the shortcut guider frozen and employ it to generate
shortcut representations hs. Next, we employ the MI minimization method to ensure that the shortcut
information can be removed from the rationale (i.e., min I(hr;hs)), where I(; ) denotes the MI, and
MI is a measure of the mutual dependence between the two variables.

Meanwhile, we employ the MI maximization method to facilitate the matching of non-rationale
representations with shortcut representations (i.e., max I(he;hs)), with the goal of enabling the full
learning of shortcut information. Then, we consider the matched non-rationale representations as the
environment and apply them to the predictor. Finally, the objective of learning from shortcut is:

Lshortcut = I(hr;hs)− I(he;hs). (5)

In the implementation, we adopt CLUB_NCE (Yue et al., 2022) to achieve MI minimization, where
CLUB_NCE is a variant of CLUB (Cheng et al., 2020a) that is designed to estimate the upper
bound of MI. For MI maximization, we employ the InfoNCE (Oord et al., 2018) method. A detailed
description of CLUB_NCE and InfoNCE can be found in Appendix A.

2.2.4 PREDICTOR

In the predictor, we first adopt the rationale representation to predict the graph label with the cross en-
tropy loss Lr = E(g,y)∼DG

[l(ŷr, y)], where ŷr = Φp(hr) and Φp(·) is a shared classifier. Afterward,
to obtain the invariant rationales under environment shifts, we consider the non-rationale represen-
tations as environments and combine each rationale representation with various environments (Liu
et al., 2022; Fan et al., 2022). Specifically, we transfer a batch of sample pairs

{(
gi, yi

)}K
i=1

to

their representations
{(

hi
r,h

i
e, y

i
)}K

i=1
. After that, since the non-rationale (i.e., environment) does

not affect the task prediction, we combine each rationale representation hi
r with all non-rationale

representation hj
e (hj

e 6= hi
e) in the same batch to achieve environment shifts:

hi,j = hi
r + hj

e. (6)

Meanwhile, the corresponding labels are unchanged since the rationale information in the synthetic
data is unchanged. Next, we feed the combined graph representations to the shared classifier Φp(·) to
yield the task results, and the loss is calculated by the cross entropy function:

ŷi,j = Φp(hi,j), Le = Ei

[
Ej

[
l(ŷi,j , y)

]]
. (7)

Finally, to make the predictions stable across different environments and mitigate the instability
of the prediction results between the augmented data and the original data due to environmental
changes, we first measure differences between ŷir and ŷi,j (i.e., Df (ŷir; ŷi,j), where Df (·) can be
any distance function, such as squared euclidean distance). Then, to align the predicted distributions
across environments with those predicted using rationale representations, we minimize the mean and
variance of the differences:

Ldiff = Ei

[
Ej

[
Df (ŷir; ŷi,j)

]
+ Varj

[
Df (ŷir; ŷi,j)

]]
. (8)

2.3 TRAINING AND INFERENCE

During training, to encourage the model to control the expected size of rationale subgraphs, following
Liu et al. (2022), we add a sparsity constraint on the probability M of being selected as rationale:

Lsp =

∣∣∣∣∣ 1

N

N∑
i=1

Mi − α

∣∣∣∣∣ , (9)

where α ∈ [0, 1] is the predefined sparsity level. Finally, the objective of SGR in the second stage is:

Lsgr = Lr + Le + λdiffLdiff + λshortcutLshortcut + λspLsp, (10)

where λdiff , λshortcut and λsp are hyperparameters. At inference time, only hr is employed to yield
the task results.
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3 EXPERIMENTS

In this section, to verify the reasonableness and effectiveness and of SGR, we first conduct experiments
to validate that shortcut information is captured during the early stage of model training. Then, we
compare SGR with several baseline methods on both synthetic and real-world datasets. Finally, we
present visualizations showing the rationale subgraphs identified by SGR, which serves to provide
further insight into the model’s decision-making process.

3.1 DATASETS

Here, we make experiments on four synthetic datasets and six real-world benchmark datasets to
evaluate the performance of our proposed approach for graph rationalization. Details of dataset
statistics are summarized in Appendix B.2.

• Spurious-Motif (Ying et al., 2019; Wu et al., 2022) is a synthetic dataset for predicting the motif
category of each graph. Each graph consists of two subgraphs, the motif subgraph (Cycle, House,
Crane denoted by R = 0, 1, 2, respectively) and the base one (Tree, Ladder, Wheel denoted
by E = 0, 1, 2 respectively). Among them, the motif subgraph is regarded as the ground-truth
explanation (i.e. rationale) for the graph label, which suggests the graph label is solely determined
by the motif subgraph. The base subgraph can be considered as the non-rationale (or environment).
To verify the effectiveness of SGR, we manually generate several datasets containing shortcuts.
Specifically, we construct the training dataset by sampling each motif uniformly, while controlling
the distribution of the base through P (E) = b×I(E = R)+ 1−b

2 ×I(E 6= R), where the degree of
spurious correlation is controlled by b. In this paper, we set b = {0.5, 0.7, 0.9}. Besides, to verify
the shortcut whether will be captured in the initial training stages, we first create a balance dataset
(i.e., b = 1

3 , where each motif contains 1,000 training instances, for a total of 3,000 instances.).
Then, based on this balance dataset, we intentionally conduct additional 1,000 instances that are all
Cycle motifs with Tree bases, achieving the spurious correlations in Cycle-Tree. In the test dataset,
we match the motif and base randomly (b = 1

3 ) to construct an unbiased test dataset.
• Graph-SST2 (Socher et al., 2013; Yuan et al., 2022) is a text sentiment analysis dataset, where

each text instance in SST2 is converted to a graph. Following (Wu et al., 2022; Fan et al., 2022), to
create distribution shifts, we divide the graphs into different sets according to their average node
degrees, where the node degrees in the training set are higher than degrees in the test set.

• Open Graph Benchmark (OGBG) (Hu et al., 2020) is a benchmark dataset for machine learning
on graphs, where we consider five OGBG-Mol datasets which are all employed for molecular
property prediction (i.e. MolHIV, MolToxCast, MolBACE, MolBBBP and MolSIDER). We split
datasets by default, where each split contains a set of scaffolds different to each other.

3.2 COMPARISON METHODS

First, we compare SGR with classical GNNs methods GCN (Kipf & Welling, 2017) and GIN (Xu et al.,
2019). We then compare several competitive baselines specifically designed for explainable GNNs:

• DIR (Wu et al., 2022) discovers invariant rationales by separating the graph as the rationale
subgraphs and the non-rationale ones. Different from SGR, DIR explicitly creates multiple
environments by employing the non-rationale subgraphs.

• DisC (Fan et al., 2022), GREA (Liu et al., 2022) and CAL (Sui et al., 2022) all compose rationales
by taking non-rationale subgraphs representations as environments. Differently, DisC selects edges
as rationales, GREA identifies nodes as rationales, and CAL considers both edges and nodes.

• GSAT (Miao et al., 2022) learns stochasticity-reduced attention to select rationales based on the
information bottleneck principle (Tishby et al., 2000; Alemi et al., 2017).

• DARE (Yue et al., 2022) proposes a disentanglement-augmented method to extract rationales.
Meanwhile, it introduces CLUB_NCE to improve MI minimization. Although DARE is designed
for explaining natural language understanding tasks. It can naturally be applied to explain GNNs.

Besides, in our experiments, we implement all of these explainable baselines with GCN (Kipf &
Welling, 2017) and GIN (Xu et al., 2019) as the graph encoder, respectively.
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(b) Training losses on balance/bias examples (d) Performance of SGR with different shortcut guiders(c) Training accuracy on balance/bias examples(a) Accuracy of the unbiased/biased test set

Figure 3: (a) Accuracy of unbiased/biased test sets with different biases. (b) Curve of training losses on
balance/bias examples of Cycle-Tree. (c) Training accuracy on balance/bias examples of Cycle-Tree.
(d) Performance of SGR with different shortcut guiders that are trained with the early stop strategy.

3.3 EXPERIMENTAL SETUP

Metrics. In this paper, following the metric setting of Wu et al. (2022); Fan et al. (2022), we employ
ACC to evaluate the task prediction performance for Spurious-Motif and Graph-SST2, ROC-AUC
for OGBG. Besides, since the Spurious-Motif dataset contains ground-truth rationales, we adopt the
Precision@5 metric to evaluate the difference between predicted rationales and real rationales.
Optimization and Hyperparameters. In all the experiments, we set λdiff , λshortcut and λsp as
0.1, 0.01 and 1.0, respectively. The hidden dimensionality d is set as 32 for Spurious-Motif, 64 for
Graph-SST2, and 128 for OGBG. The learning rate of the Adam optimizer (Kingma & Ba, 2014)
is initialized as 1e-2 for both Spurious-Motif and Graph-SST2, and 1e-3 for OGBG. We set the
predefined sparsity α as 0.1 for MolHIV, 0.5 for MolSIDER, MolToxCast and MolBBBP, and 0.4 for
other datasets. The early stop epoch is 2 or 3 for Spurious-Motif and 3 or 4 for both Graph-SST2
and OGBG. We employ the squared euclidean distance as Df (·). All methods are trained with five
different random seeds on a single A100 GPU, and we report the test performance (with the mean
results and standard deviations) of the epoch that achieves the best validation prediction performance.
3.4 EXPERIMENTAL RESULTS

Do GNNs learn shortcuts during the initial training? Since we fail to obtain which nodes are
shortcuts explicitly, we assume shortcut features are easier to learn than the rationale ones, and we
employ an early stopping strategy to get the shortcut information. In this section, we conduct serval
experiments to validate our assumption. First, Arpit et al. (2017); Nam et al. (2020) have empirically
proved that “If the malignant bias is easier to learn than the real relationship between the input and
label, the neural network tends to memorize it first.”.
As a type of neural networks, we argue that GNNs also obey this conclusion. Therefore, in line
with this conclusion, we propose that by demonstrating shortcuts are malignant biases and shortcuts
is easier to learn than real relationship between the input and label, we can infer these shortcuts
are more likely to be captured during the initial training. To this end, we conduct experiments on
Spurious-Motif. In addition to the unbiased test set, we construct biased test sets with degrees of
bias b matching those of the corresponding training sets. Then, we perform GCN on these datasets.
As shown in Figure 3(a), we find GCN achieves promising results (Accuracy almost to 100%) on
biased test set. However, when evaluating on the unbiased test set, the performance of GCN exhibits
a significant degradation. These observations imply that the shortcuts in Spurious-Motif is malignant.
Besides, as the degree of bias b increases (from 0.5 to 0.9), the performance of the GNN on the biased
test set is higher, while the performance on the unbiased test set decreases. This trend illustrates
GNNs are more inclined to make predictions with shortcuts compared to the real relationship between
the input and label. Finally, based on the above conclusion, these findings further shows GNNs will
learn shortcuts during the initial training. We also perform GIN on these datasets in Appendix C.1.
Besides, we conduct additional experiments to show the shortcuts are captured at the early epoch.
Specifically, we first conduct experiments on the Spurious-Motif (Cycle-Tree). As described in
Section 3.1, the Cycle-Tree dataset consists of the balance data and the bias data, where bias data
contains Cycle motifs accompanied by Tree bases. As shown in Figure 3(b), we present the training
loss curve for the balance/bias example. From the observations, we find that after 2 epochs of training,
the training loss of the bias examples is almost zero and the loss of balance data is not converged,
indicating that the bias examples are much easier to learn than balance examples in training.

Meanwhile, we show the variation of Accuracy of balance/bias examples during the training phase.
From Figure 3(c), we find Accuracy of bias examples achieves high performance early in the training,
while the balance examples require more epochs of training to achieve it. This is similar to the obser-
vation in Figure 3(b). More experimental results on synthetic datasets are presented in Appendix C.2.
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Table 1: The graph classification ACC on testing datasets of the Spurious-Motif and Graph-SST2.

Spurious-Motif Graph-SST2b=0.5 b=0.7 b=0.9 Cycle-Tree
G

IN
is

th
e

ba
ck

bo
ne GIN 0.3950 ± 0.0471 0.3872 ± 0.0531 0.3768 ± 0.0447 0.3736 ± 0.0270 0.8269 ± 0.0259

DIR 0.4444 ± 0.0621 0.4891 ± 0.0761 0.4131 ± 0.0652 0.4039 ± 0.0425 0.8083 ± 0.0115
DisC 0.4585 ± 0.0660 0.4885 ± 0.1154 0.3859 ± 0.0400 0.4882 ± 0.1007 0.8279 ± 0.0081

GERA 0.4251 ± 0.0458 0.5331 ± 0.1509 0.4568 ± 0.0779 0.3702 ± 0.0223 0.8301 ± 0.0088
CAL 0.4734 ± 0.0681 0.5541 ± 0.0323 0.4474 ± 0.0128 0.4362 ± 0.0642 0.8181 ± 0.0094

GSAT 0.4517 ± 0.0422 0.5567 ± 0.0458 0.4732 ± 0.0367 0.3769 ± 0.0108 0.8272 ± 0.0064
DARE 0.4843 ± 0.1080 0.4002 ± 0.0404 0.4331 ± 0.0631 0.4527 ± 0.0562 0.8320 ± 0.0086
SGR 0.4941 ± 0.0968 0.5686 ± 0.1211 0.4658 ± 0.0672 0.5801 ± 0.1264 0.8386 ± 0.0077

G
C

N
is

th
e

ba
ck

bo
ne GCN 0.4091 ± 0.0398 0.3772 ± 0.0763 0.3566 ± 0.0323 0.3712 ± 0.0012 0.8208 ± 0.0165

DIR 0.4281 ± 0.0520 0.4471 ± 0.0312 0.4588 ± 0.0840 0.4325 ± 0.0583 0.8012 ± 0.0016
DisC 0.4698 ± 0.0408 0.4312 ± 0.0358 0.4713 ± 0.1390 0.5058 ± 0.0476 0.8318 ± 0.0105

GERA 0.4687 ± 0.0855 0.5467 ± 0.0742 0.4651 ± 0.0881 0.5173 ± 0.0972 0.8269 ± 0.0077
CAL 0.4245 ± 0.0152 0.4355 ± 0.0278 0.3654 ± 0.0064 0.4593 ± 0.0489 0.8127 ± 0.0077

GSAT 0.3630 ± 0.0444 0.3601 ± 0.0419 0.3929 ± 0.0289 0.3474 ± 0.0031 0.8342 ± 0.0017
DARE 0.4609 ± 0.0648 0.5035 ± 0.0247 0.4494 ± 0.0526 0.4576 ± 0.0737 0.8266 ± 0.0046
SGR 0.4715 ± 0.0515 0.5582 ± 0.0518 0.4762 ± 0.1135 0.5305 ± 0.1037 0.8378 ± 0.0059

Table 2: The graph classification ROC-AUC on testing datasets of OGBG.

MolHIV MolToxCast MolBACE MolBBBP MolSIDER

G
IN

is
th

e
ba

ck
bo

ne GIN 0.7447 ± 0.0293 0.6521 ± 0.0172 0.8047 ± 0.0172 0.6584 ± 0.0224 0.5977 ± 0.0176
DIR 0.6303 ± 0.0607 0.5451 ± 0.0092 0.7391 ± 0.0282 0.6460 ± 0.0139 0.4989 ± 0.0115
DisC 0.7731 ± 0.0101 0.6662 ± 0.0089 0.8293 ± 0.0171 0.6963 ± 0.0206 0.5846 ± 0.0169

GERA 0.7714 ± 0.0153 0.6694 ± 0.0043 0.8187 ± 0.0195 0.6953 ± 0.0229 0.5864 ± 0.0052
CAL 0.7339 ± 0.0077 0.6476 ± 0.0066 0.7848 ± 0.0107 0.6582 ± 0.0397 0.5965 ± 0.0116

GSAT 0.7524 ± 0.0166 0.6174 ± 0.0069 0.7021 ± 0.0354 0.6722 ± 0.0197 0.6041 ± 0.0096
DARE 0.7836 ± 0.0015 0.6677 ± 0.0058 0.8239 ± 0.0192 0.6820 ± 0.0246 0.5921 ± 0.0260
SGR 0.7945 ± 0.0071 0.6723 ± 0.0061 0.8305 ± 0.0098 0.7021 ± 0.0190 0.6092 ± 0.0288

G
C

N
is

th
e

ba
ck

bo
ne GCN 0.7128 ± 0.0188 0.6497 ± 0.0114 0.8135 ± 0.0256 0.6665 ± 0.0242 0.6108 ± 0.0075

DIR 0.4258 ± 0.1084 0.5077 ± 0.0094 0.7002 ± 0.0634 0.5069 ± 0.1099 0.5224 ± 0.0243
DisC 0.7791 ± 0.0137 0.6626 ± 0.0055 0.8104 ± 0.0202 0.7061 ± 0.0105 0.6110 ± 0.0091

GERA 0.7816 ± 0.0079 0.6622 ± 0.0045 0.8044 ± 0.0063 0.6970 ± 0.0089 0.6133 ± 0.0239
CAL 0.7501 ± 0.0094 0.6006 ± 0.0031 0.7802 ± 0.0207 0.6635 ± 0.0257 0.5559 ± 0.0151

GSAT 0.7598 ± 0.0085 0.6124 ± 0.0082 0.7141 ± 0.0233 0.6437 ± 0.0082 0.6179 ± 0.0041
DARE 0.7523 ± 0.0041 0.6618 ± 0.0065 0.8066 ± 0.0178 0.6823 ± 0.0068 0.6192 ± 0.0079
SGR 0.7822 ± 0.0079 0.6668 ± 0.0026 0.8228 ± 0.0283 0.7116 ± 0.0169 0.6217 ± 0.0291

Moreover, we also conduct experiments on the real-world dataset (MolBACE). Since we cannot
determine which data belongs to the bias data, we show the effectiveness of the shortcut guider.
Specifically, we first get the different shortcut guiders under the different training epochs from 1 to 10
in the first stage of SGR. Next, the trained shortcut guiders are incorporated into the SGR during the
second stage, and we show the results in Figure 3(d). From the figure, we can observe that the model’s
performance initially increases with the number of epochs, indicating that the shortcut guider captures
shortcut features during the early stages of training. After the epoch exceeds 3, the effectiveness of
SGR starts to decrease, which illustrates that the shortcut guider gradually changes from capturing
shortcut features to rationale features as the training continues. The above observations confirm that
shortcut information is more likely to be learned in the early stages of training.

Overall Performance. To verify the effectiveness of SGR, we first compare it with several baseline
methods on the task prediction, and the relevant results are summarized in Table 1 and Table 2. From
the observations, we first find that we have better task prediction performance and generalizability
compared to the classical GCN and GIN.

Specifically, on the Spurious-Motif data, all methods are trained on the biased dataset and the results
are reported based on the unbiased test set. From the experimental results, it can be found that SGR
outperforms these base models by a large margin. Meanwhile, our model consistently performs better
than GIN and GCN on both OGDB and Graph-SST2. Among them, SGR gains a 4.98% improvement
over GIN and 6.94% improvement over GCN on the MolHIV dataset. Since SGR takes GCN and
GIN as the backbone respectively, the experimental results suggest that our proposed method can
well help existing GNNs to mitigate the negative impact of bias.
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Precision@5 on Spurious-Motif 
with GIN as the graph encoder.

(a) Precision@5 on Spurious-Motif 
with GCN as the graph encoder.

(b) 

Figure 4: The results of identifying the ground-truth ratio-
nale subgraphs on Spurious-Motif.

Figure 5: Ablation studies of SGR
with GIN over the OGBG dataset.

Then, SGR is also superior to de-biased baselines and performs well on most tasks, indicating the
effectiveness of SGR. Among them, we notice that DIR performs poorly on most of the datasets, a
possible reason is that it explicitly takes non-rationale subgraphs as environments, which loses some
contextual information. In contrast, DisC, GREA and CAL all employ latent non-rationale subgraph
representations as environments, and their results are significantly improved compared to DIR. This
illustrates the effectiveness of adopting non-rationale representations. SGR still outperforms them,
indicating that introducing shortcut in the training phase and allowing the model to learn from shortcut
is effective. GSAT does not consider the non-rationale information in data and performs average,
which again illustrates the advantage of introducing non-rationale representations. DARE separates
the graph as the rationale and non-rationale subgraph by minimizing MI (CLUB_NCE), but DARE
does not consider the shortcuts problem in the data, so it is still less effective than SGR.

Finally, to further analyse whether SGR captures invariant rationales, we experiment SGR with the
baseline methods on Spurious-Motif that contains the ground-truth rationales, and employ Preci-
sion@5 to evaluate the coincidence between the identified rationales and the real ones. Experimental
results are shown in Figure 4. From observations, we can find that SGR has an advantage over other
methods in finding invariant rationales, regardless of the changing degree of shortcuts in the data.

Ablation Studies. To verify the importance of the different components of the model, we construct
ablation studies from three aspects: First, we remove the shortcut guider (i.e., we ablate Lshortcut in
Eq.(10)). We name this variant as SGR w/o shortcut; Second, we remove Ldiff (denoted by SGR
w/o diff) to verify whether Ldiff can make the predictions stable across different environments;
Third, we ablate both Le and Ldiff (SGR w/o env) to demonstrate the effectiveness of non-rationale
representations that are considered as environments.

(c) DIR

(a) SGR (b) GERA

(d) GSAT

Figure 6: Visualization of rationale
subgraphs identified by different
methods that are trained with the
Spurious-Motif dataset Cycle-Tree.

Here, we make ablation studies on the OGBG dataset where
SGR is implemented with GIN. As shown in Figure 5, the perfor-
mance of SGR w/o shortcut decreases rapidly compared to SGR.
Without incorporating shortcut information, the performance
of SGR w/o shortcut is about similar to some baselines, such
as CAL, indicating the effectiveness of learning from shortcut.
Besides, we observe that although SGR w/o env only retains
Lshortcut, it has already exceeded several baselines, again illus-
trating the significance of our proposed shortcut guider. Mean-
while, SGR w/o env is still less effective than the original SGR,
which suggests that making non-rationale representations as
environments is effective for composing rationales. Finally, we
observe that SGR w/o diff performs worse than SGR, dropping
by 0.99% on the MolHIV dataset, illustrating that employing
Ldiff is instructive for identifying invariant rationale.

Visualizations. We provide qualitative analyses on the identi-
fied rationale subgraphs. First, we present rationales selected
by different methods in Figure 6. We train baselines and SGR
on the Cycle-Tree dataset and visualize a testing example with
motif label as House. In Figure 6, the red lines are the edges of rationale subgraph, and the navy blue
nodes indicate rationale nodes. Among them, DIR and GSAT identify the edges as rationales. SGR
and GERA select the significant nodes as rationales. To make the visualization more intuitive, in SGR
and GERA, we assume that if there is an edge between the two identified nodes, we will visualize this

8
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edge as well. From this figure, we can observe that our method can identify more accurate rationales
than baselines. More cases can be found in Appendix D.

Besides, we show serval cases of identified rationales for Graph-SST2 on Figure 9 in Appendix D,
where Graph-SST2 includes both positive and negative text sentiments. In Figure 9(a)-9(b), we
visualize the positive/negative examples in the training set. Among them, we find SGR can accurately
highlight some positive tokens (“the film was better”) in Figure 9(a) and some negative tokens such as
“the opposite of ... magical movie” in Figure 9(b). Further, we show the effectiveness of our extracted
rationale on the OOD test set, where the node degrees in the test set are less than degrees in the
training set. For example, it selects “quite effective” and “astonishingly witless” in Figures 9(c)-9(d)
to support the prediction results, respectively. From the above observations, we can conclude that
SGR can extract the real rationale subgraph effectively.

4 RELATED WORK

Graph Rationalization. Graph neural networks (GNNs) on graph classification tasks have achieved
remarkable success. However, the prediction results are still unexplainable, rendering most GNNs
unreliable. To solve that, Ying et al. (2019); Luo et al. (2020); Yuan et al. (2020); Schlichtkrull et al.
(2021) proposed methods to explain the prediction results of GNNs in post-hoc ways, where they
explain the predictions of GNNs after they have been trained.

In contrast to these post-hoc methods, recent inherently explainable methods (Veličković et al., 2017;
Chen et al., 2022; Li et al., 2022a; Yang et al., 2022) have been investigated for GNNs on graph
classification tasks. Among them, graph rationalization methods have been extensively studied.
However, recent studies (Chang et al., 2020) have shown that rationalization methods tend to exploit
shortcuts in the data to make predictions and compose rationales. To this end, Wu et al. (2022) first
proposed to discover invariant rationales by creating multiple environments. They first separated the
graph into rationale and non-rationale subgraphs, and explicitly employed the non-rationale subgraphs
as environments to identify invariant rationale under environment shifts. Various recent works (Fan
et al., 2022; Liu et al., 2022; Sui et al., 2022; Li et al., 2022b) have followed this framework. The
difference is that they consider non-rationale subgraph representations as potential environments not
the explicit non-rationale subgraph structures. Along another line of research, information bottleneck
theory (Tishby et al., 2000; Alemi et al., 2017; Paranjape et al., 2020; Wu et al., 2020; Yu et al., 2021)
was introduced into the rationalization. Among them, GSAT (Miao et al., 2022) constrained the
information flow from the input graph to the prediction and learned stochasticity-reduced attention
to yield rationales. Although most methods are effective in removing shortcuts and discovering
rationales, few consider incorporating shortcuts information into the model, enabling the model to
learn which information belongs to shortcuts and which is not during the training.

Shortcut Learning. Shortcut learning (Geirhos et al., 2020; Du et al., 2022) refers to the phenomenon
that deep neural networks (DNNs) highly focus on the spurious correlations in data as shortcuts
to predict the results. Although methods with shortcut learning can achieve high performance in
identically distributed datasets, it fails to reveal true correlations between the input and the label.
When facing the out-of-distribution (OOD) data, the performance will degrade. To solve that, Stacey
et al. (2020); Rashid et al. (2021) learned de-biased representations by adversarial training. Arjovsky
et al. (2019); Teney et al. (2021); Liu et al. (2022) partition data into different environments and
made the prediction under environment shifts. He et al. (2019); Sanh et al. (2021) proposed the
product-of-expert method to obtain a de-biased model by a bias-only model.

5 CONCLUSION

In this paper, we proposed a shortcut-guided graph rationalization method (SGR) which identified
rationale subgraphs by learning from shortcuts. To be specific, SGR involved two stages. In the
first stage, a shortcut-only model (shortcut guider) was explicitly trained to capture the shortcut
information in data with an early stop strategy. During the second stage, SGR separated the input
graph into the rationale subgraph representations and the non-rationale ones. Then, the frozen shortcut
guider was employed to transfer the shortcut information to the above subgraph representations,
ensuring the rationale representations could be kept away from the shortcut and the non-rationale ones
could encode the same information with shortcuts. Finally, we adopted the non-rationale subgraphs
as the environment and then obtained the invariant rationales under environment shifts. Experimental
results on both synthetic and real-world datasets demonstrated the effectiveness of SGR.
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A MUTUAL INFORMATION ESTIMATION

In this section, we present the details of InfoNCE and CLUB_NCE used in our SGR.

In probability theory and information theory, the mutual information (MI) of two random variables
(e.g., X and Y ) is a measure of the mutual dependence:

I(X;Y ) = Ep(x,y)

[
log

p(x, y)

p(x)p(y)

]
. (11)

However, it is hard to calculate the MI values when X and Y are high-dimensional. To solve that,
research proposes to estimate the lower and upper bound of MI to achieve MI maximization and
minimization. Specifically, for MI maximization tasks, Oord et al. (2018) derive a lower-bound MI
estimation (InfoNCE):

Ince =
1

N

N∑
i=1

log
ef(xi,yi)

1
N

∑N
j=1 e

f(xi,yj)
=

1

N

N∑
i=1

f (xi, yi)−
1

N

N∑
i=1

log
1

N

N∑
j=1

ef(xi,yj)

 , (12)

where {(xi, yi)}Ni=1 represents a batch of sample pairs of (X,Y ).

For MI minimization tasks, Cheng et al. (2020a;b) propose a Contrastive Log-ratio Upper Bound
(CLUB) method:

Iclub =
1

N

N∑
i=1

log p(yi|xi)−
1

N2

N∑
i=1

N∑
j=1

log p(yj |xi), (13)

where p(y|x) is a conditional distribution. Further, Yue et al. (2022) develop a new MI minimization
method CLUB_NCE which combines InfoNCE and CLUB. CLUB_NCE first adopts the trained
f(x, y) by InfoNCE to replace log(p(y | x)) in CLUB. Then, it calculates the value of Iclub based
on the trained f(x, y) and minimizes Iclub to achieve MI minimization. Detailed description of
CLUB_NCE can be found in Yue et al. (2022).

B EXPERIMENTAL SETUP

B.1 HOW TO DECIDE THE EPOCH OF THE EARLY STOP STRATEGY?

When selecting the epoch of the early stop strategy, we first define the epoch in the range of [1,5].
Then, for the Spurious-Motif dataset, we choose the epoch as 2 or 3 according to the results in
Figure 3(b)-3(c). After that, we perform a grid search to choose the best epoch of the early stop
strategy. Based on the experiments, the best epoch for Spurious-Motif is chosen as 2.

Similarly, for Graph-SST2 and OGBG, we choose epochs 3, 4, and 5 based on the results in
Figure 3(d). After the grid search, the epoch 3 or 4 is chosen for both Graph-SST2 and OGBG.

B.2 DATASET STATISTIC

We evaluate our SGR approach on four synthetic datasets from Spurious-Motif 1 (Ying et al., 2019;
Wu et al., 2022), and six real-world datasets from Graph-SST2 2 (Socher et al., 2013; Yuan et al.,
2022) and Open Graph Benchmark (OGBG) 3 (Hu et al., 2020). Details of dataset statistics are
summarized in Table 3 and Table 4.

1https://github.com/Wuyxin/DIR-GNN/blob/main/spmotif_gen/spmotif.ipynb
2https://github.com/divelab/DIG/tree/main/dig/xgraph/
3https://ogb.stanford.edu/docs/graphprop/
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Table 3: Statistics of Spurious-Motif and Graph-SST2 Datasets.

Spurious-Motif Graph-SST2b=0.5 b=0.7 b=0.9 Cycle-Tree

Train/Val/Test 3,000/3,000/6,000 3,000/3,000/6,000 3,000/3,000/6,000 4,000/4,000/6,000 28,327/3,147/12,305
Classes 3 3 3 3 2

Avg. Nodes 29.6 30.8 29.4 28.9 13.7
Avg. Edges 42.0 45.9 42.5 45.1 25.3

Table 4: Statistics of OGBG Datasets.

MolHIV MolToxCast MolBACE MolBBBP MolSIDER

Train/Val/Test 32,901/4,113/4,113 6,860/858/858 1,210/151/152 1,631/204/204 1,141/143/143
Classes 2 617 2 2 27

Avg. Nodes 25.5 18.8 34.1 24.1 33.6
Avg. Edges 27.5 19.3 36.9 26.0 35.4

B.3 BASELINES

In our experiments, we implement all of explainable baselines (DIR 4 (Wu et al., 2022), DisC 5 (Fan
et al., 2022), GREA 6 (Liu et al., 2022), CAL 7 (Sui et al., 2022), GSAT 8 (Miao et al., 2022), and
DARE 9 (Yue et al., 2022) ) based on their released codes by employing both GCN (Kipf & Welling,
2017) and GIN (Xu et al., 2019) as the graph encoder, respectively.

C DO GNNS LEARN SHORTCUTS DURING THE INITIAL TRAINING?

C.1 ACCURACY OF GIN AND GCN ON THE UNBIASED/BIASED TEST SET

In this section, we show the accuracy of GIN and GCN on the unbiased/biased test set in Figure 7.
We observe both GIN and GCN achieve promising results where the accuracy values are almost to
100% on biased test set. However, when testing on the unbiased test set, the performance of GIN
and GCN degrades significantly. The above observations suggest that the introduction of shortcuts
in the training set may be detrimental and is easier to learn. Then, based on the conclusion “If the
malignant bias is easier to learn than the real relationship between the input and label, the neural
network tends to memorize it first.”, the observations further indicates that the model learns shortcuts
during initial training.

Figure 7: Accuracy of GIN and GCN on the unbiased/biased test set.

4https://github.com/Wuyxin/DIR-GNN
5https://github.com/googlebaba/DisC
6https://github.com/liugangcode/GREA
7https://github.com/yongduosui/CAL
8https://github.com/Graph-COM/GSAT
9https://github.com/yuelinan/DARE
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(a) Cycle-Tree (b) Cycle-Ladder (c) Cycle-Wheel

The curve of training losses on balance/bias examples

The training accuracy on balance/bias examples

Figure 8: Training losses and accuracy on balance/bias examples with different datasets.

C.2 CURVE OF TRAINING LOSSES AND TRAINING ACCURACY ON Cycle-Tree

In this paper, we assume that shortcut features are easier to learn than the rationale ones. To validate
that, we conduct experiments on the synthetic dataset Spurious-Motif (Cycle-Tree) which contains
both the balance data and the bias data. Among them, the bias data contains Cycle motifs accompanied
by Tree bases. As shown in Figure 8(a), we show the loss curve and accuracy values during training
for the balance/bias example. From this figure, we observe the training loss of the bias examples
is almost zero when the epoch is 2, while the loss of balance data is not converged. Meanwhile,
accuracy of the bias examples achieve high performance early in the training, while the balance
examples require more epochs of training to achieve it. The above observations demonstrate that the
bias examples are much easier to learn than balance examples in training.

Furthermore, we also conduct experiments on two additional synthetic datasets, where the bias data
contains Cycle motifs accompanied by Ladder bases (denoted by Cycle-Ladder), and the bias data
contains Cycle motifs accompanied by Wheel bases (refer to Cycle-Wheel). We can observe similar
results to Figure 8(a) from Figure 8(b) and 8(c), indicating the bias features are easier to learn.

D VISUALIZATIONS

We provide some examples of visualizations on the identified rationale subgraphs, including Graph-
SST2 (Figure 9) and Spurious-Motif (Figure 10-12):

(a) Training rationale: Positive sentiment.

(b) Training rationale: Negative sentiment.

(c) Testing rationale: Positive sentiment.

(d) Testing rationale: Negative sentiment.
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Figure 9: Visualization of SGR rationale subgraphs, where the rationale tokens are highlighted by
navy blue colors and the red lines indicate the edges between two identified rationale tokens. Among
them, each graph represents a sentiment comment with positive/negative label (e.g., the positive
comment “said the film was better than saving private ryan” in (a)).
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(a) Cycle-Tree (b) Cycle-Wheel (c) Cycle-Ladder

Figure 10: Visualization of SGR rationale subgraphs, where the selected rationale nodes are high-
lighted by navy blue colors and the red lines indicate the edges between two identified rationale nodes.
Among them, each graph consists of the motif type (Cycle) and bases (Tree, Wheel and Ladder).

(a) House-Tree (b) House-Wheel (c) House-Ladder

Figure 11: Visualization of SGR rationale subgraphs, where the selected rationale nodes are high-
lighted by navy blue colors and the red lines indicate the edges between two identified rationale nodes.
Among them, each graph consists of the motif type (House) and bases (Tree, Wheel and Ladder).

(a) Crane-Tree (b) Crane-Wheel (c) Crane-Ladder

Figure 12: Visualization of SGR rationale subgraphs, where the selected rationale nodes are high-
lighted by navy blue colors and the red lines indicate the edges between two identified rationale nodes.
Among them, each graph consists of the motif type (Crane) and bases (Tree, Wheel and Ladder).
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