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Abstract

Incorporating visual knowledge into text-only
dialogue systems has become a potential direc-
tion to imitate the way humans think, imagine,
and communicate. However, existing multi-
modal dialogue systems are either confined by
the scale and quality of available datasets or
the coarse concept of visual knowledge. To ad-
dress these issues, we provide a new paradigm
of constructing multimodal dialogues as well as
two datasets extended from text-only dialogues
under such paradigm (RESEE-WoW, RESEE-
DD). We propose to explicitly split the visual
knowledge into finer granularity (“turn-level”
and “entity-level”). To further boost the accu-
racy and diversity of augmented visual infor-
mation, we retrieve them from the Internet or a
large image dataset. To demonstrate the supe-
riority and universality of the provided visual
knowledge, we propose a simple but effective
framework RESEE to add visual representation
into vanilla dialogue models by modality con-
catenations. We also conduct extensive experi-
ments and ablations w.r.t. different model con-
figurations and visual knowledge settings. Em-
pirically, encouraging results not only demon-
strate the effectiveness of introducing visual
knowledge at both entity and turn level but
also verify the proposed model RESEE out-
performs several state-of-the-art methods on
automatic and human evaluations. By leverag-
ing text and vision knowledge, RESEE can pro-
duce informative responses with real-world vi-
sual concepts. Our code is available at https:
//github.com/ImKeTT/ReSee.

1 Introduction

With the availability of large-scale datasets (Li
et al., 2017; Dinan et al., 2018) and pre-trained
language models (Radford et al., 2019; Raffel
et al., 2020), dialogue generation develop rapidly
in recent years. Conducting effective linguistic
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Turn-Level Image

Entity-Level Image

Entity-Level Image

Appalachian trail is one of my favorite places to hike. 
You like hiking?

Yeah, I've really enjoyed hiking in my time. The 
Appalachian trail was one of my favorites, but it's so 
long (2,200 miles!).

Can you tell what is the 
breed of the dog?

It is Dalmatian.

Session-Level Image

Is boat in water?

Yes, it is.

Figure 1: Traditional visual dialogue (left) is grounded
on a single given picture, while the proposed multimodal
dialogue (right) provides both Turn-Level and Entity-
Level images based on text-only dialogue data.

communications often requires real-world experi-
ences shared between speakers (Bisk et al., 2020).
Text alone may fall short in accurately conveying
rich world knowledge (Harnad, 1990), where
visual signals are essential to share experiences
and conduct high-quality conversations. As
humans converse day to day, it is common and
natural for them to group information into smaller
chunks of memory through images. That explains
why incorporating visual perceptions in dialogue
systems can potentially bring the conversation
quality to a higher level.

Visual dialogue (Das et al., 2017) was proposed
to learn to communicate with users based on one
simple image, making the visual knowledge very
limited for a multi-turn dialogue session. In order
to enhance the dialogue quality by providing larger
capacity and flexibility of visual information, re-
cent works have considered employing multiple
images and image searching processes to better
align with the dialogue context. Even so, they are
confined to retrieving images on a coarse-grained
dialogue concept (e.g., session-level) or leverage
inaccurate visual knowledge searched from inad-
equate image resources (Liang et al., 2021; Shen
et al., 2021). To sum up, current works have two
main issues that may compromise the performance
of multimodal dialogue. (1) Coarse-grained visual
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Figure 2: Samples of entity images of Ikebana and
flower from searching the internet v.s. retrieving from
limited image-caption data. Images from the internet are
more accurate and diverse compared to the counterpart.

knowledge: existing multimodal dialogues mostly
follow the framework of image-grounded conversa-
tion, which inherently provides insufficient visual
knowledge (one image) and leaves lots of details
unexploited for a complete conversation. (2) Poten-
tially inaccurate visual knowledge: though recent
explorations come up with using fine-grained im-
ages, they are limited in searching from small-scale
image caption datasets (e.g., Shen et al. (2021) em-
ploys Flickr30k (Young et al., 2014) for this
process). These defects will introduce knowledge
bias into the system (e.g., entity images retrieved
from Flickr30k may be wrong or monotonous
w.r.t. given entities in Figure 2) and impair the
conversational skills of a dialogue agent.

To overcome the above two shortcomings, we
believe: (1) Compared with session-level visual
knowledge, fine-grained visual knowledge such
as entity-level image is more competent to help
models build a comprehensive understanding of on-
going conversations. We thus propose to explicitly
divide the visual standard of a dialogue session into
turn-level and entity-level. (2) Instead of matching
photos from existing image sets, we search images
on the internet for every entity to obtain accurate
and diverse visual representations accordingly. To
justify the advantage of our approach in obtaining
pictures with higher quality, we randomly sample
50 entities from existing dialogue data and either

search corresponding images from the internet or
retrieve them from a large image corpus with over
150K images.1 We further conduct a human eval-
uation to quantify entity-image relevance. Images
searched from the internet outperform and tie re-
trieved ones in 52% and 12% cases respectively.2

Based on the above-mentioned two concepts of vi-
sual knowledge, we take a step forward and come
up with a novel framework to automatically con-
struct multimodal dialogue data.

To verify the efficiency of provided visual infor-
mation, we present RESEE, a generative conver-
sational framework powered by real-world visual
experiences. Our framework follows the encoder-
decoder paradigm with either shared or separate
encoder-decoder setup. We handle multimodal dia-
logue context by concatenating these information
into the encoder, then the model generates plau-
sible responses using its decoder. Three types of
token embeddings are considered in the encoder
module to sink in the knowledge from different
modalities. To prove the effectiveness of RESEE,
we further compare our dialogue model with sev-
eral strong baselines, including four task-oriented
pre-trained models and two similar multimodal di-
alogue systems. RESEE outperforms most base-
lines on both automatic and human evaluations.
We also conduct comprehensive ablation experi-
ments to demonstrate (1) the model performance
gains brought by different visual knowledge, (2) the
model performance with increased visual knowl-
edge volumes, and (3) the relation between the
proposed visual knowledge and the conventional
document knowledge.
Contributions. (1) We provide a new paradigm
to construct multimodal dialogue data and two
datasets based on it. A comparison between ours
and other multimodal dialogue datasets is in Ta-
ble 1. (2) We propose a simple yet effective multi-
modal dialogue framework RESEE, which utilizes
visual knowledge to generate informative and plau-
sible responses. (3) Extensive experiments and
promising results on two constructed datasets jus-
tify the effectiveness of our dialogue framework.

2 Multimodal Dialogue Datasets

In this section, we introduce our framework for con-
structing multimodal dialogue datasets. The overall

1We employ COCO2017 (Lin et al., 2014) combined with
Flickr30k as an image pool in this process.

2The Cohen’s kappa score (Cohen, 1960) is 0.493, indicat-
ing two annotators reached a moderate agreement.



Datasets #Dialogues #Utters Domains Auto Construct Avg. Img. Img. Level

VisDial (Das et al., 2017) 123K 2.4M Image-based QAs ✘ 1 Turn
GuessWhat (De Vries et al., 2017) 155K 1.6M Image-based QAs ✘ 1 Turn
IGC (Mostafazadeh et al., 2017) 4K 25K Image-based QAs ✘ 1 Turn
MMD (Saha et al., 2018) 150K 6M Fashion Search ✘ 28 Entity
MMConv (Liao et al., 2021) 5.1K 39.7K Conv. Search ✘ 22.32 Entity

RESEE-WoW (Ours) 22.3K 100.4K Know.-based Conv. ✔ 24.19 Turn&Entity
RESEE-DD (Ours) 13.1K 49.2K Daily Conv. ✔ 13.83 Turn&Entity

Table 1: Statistic and comparison of our ReSee datasets comparing existing multimodal dialogue datasets. “Avg.
Img.” is the averaged number of images per dialogue session and “Img. Level” is image granularity.

Apprentice: I would like to try sky diving. Have you ever done it?  

Wizard: I sure have! I’ve been skydiving my entire life, I always bring a 
strong parachute with me! Would you be interested in learning more 
about Parachuting?

Entity Extraction

sky    parachute    skydiving    parachuting

Dialogue Turns

Turn Summarization

i would like to try sky diving. i've been 
skydiving my entire life and always 
bring a strong parachute with me…

Textual Similarity Matching

Two men might be skydiving and 
smiling. Sky in the background…

Online Searching…

Figure 3: Data processing and construction of our
dataset RESEE-WoW using one example from WoW.

data flow for dataset construction is in Figure 3. A
dialogue session should consist of two aspects of vi-
sual information, namely the turn-level outline and
entity-level details. We search for both visual con-
cepts from either a very large image pool or the in-
ternet. In detail, we construct multimodal datasets
extended from Wizard of Wikipedia
(WoW) (Dinan et al., 2018), a knowledge-grounded
dialogue dataset, and the commonly used Daily
Dialogue (DD) (Li et al., 2017).

2.1 Turn-level Visual Knowledge

One dialogue turn is a single exchange of conversa-
tion between two speakers (e.g., a question and an
answer). Intuitively, turn-level visual knowledge
is helpful when there are more than one topic re-
lated to a dialogue session with multiple turns, and
the turn-level visual knowledge should be highly
relevant to the current ongoing conversation turn.

Since one complex dialogue is generally long
and diverse, instead of being restricted to one spe-
cific data domain, we gather a relatively large group
of image-caption data and propose to use sentence

similarity between captions and dialogue turns for
image retrieval. Using similarity from only the
language domain helps us mitigate biases caused
by using multimodal similarity measurement from
various image domains (Liang et al., 2021).

For the image set to be searched, we group
four image-caption datasets, i.e., COCO2017 (Lin
et al., 2014), Flickr30k (Young et al., 2014),
NoCaps (Agrawal et al., 2019) and Localized
Narratives (LN) (Pont-Tuset et al., 2020) with
826,539 image-caption pairs in total. Then we use
the following steps for turn-level image retrieval:
(1) Turn Summarization: To avoid information
discrepancy between dialog turns and image cap-
tions arising from different sentence lengths. We
first summarize the dialog turns into a shorter ver-
sion. (2) Texual Representation: To fully leverage
caption descriptions of images, we use pre-trained
sentence BERT (Reimers and Gurevych, 2019) to
get the textual representation of both summarized
dialog turns and image captions. (3) Image Re-
trieval: Finally, we employ processed textual rep-
resentations of dialogue turns as queries and repre-
sentations of captions as keys to index the most
relevant image to every dialogue turn from the
image-caption database. And we further present
the percentage of turn-level images retrieved from
each image-caption dataset in Table 2.

2.2 Entity-level Visual Knowledge

The turn-level knowledge alone is not competent
to provide full visual details for long and knowl-
edgeable conversations. We thus propose to use
entity-level images to empower the dialogue agent
with insights into details. Specifically, entity-level
visual knowledge involves images of both nouns
and named entities from every dialogue. We use the
following steps for entity extraction and their corre-
sponding images acquirement: (1) Named Entity:
We use a pre-trained RoBERTa model (Liu et al.,
2019) to extract named entities in every dialogue



Turn-level Visual 
Knowledge (T.V.)
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Figure 4: Model structure of the proposed multimodal dialogue system. We consider three types of embeddings
( Token , Position and Segment ) as the model input. Our dialogue framework is split into two paradigms, namely
model with shared encoder-decoder (RESEE (SHARE)) and model with separate encoder-decoder (RESEE (SEP.)).

Dataset Cap-Img WoW (%) DD (%)

COCO2017 (2014) 123,287 2.67 2.99
Flickr30k (2014) 31,014 2.67 2.32
NoCaps (2019) 4,500 0.05 0.02
LN2020 (2020) 671,469 94.61 94.67

Table 2: Image-caption pairs in four existing datasets
for turn-level image retrieval, and the percentage (%) of
retrieved images from two used datasets.

instance. (2) Regular Nouns: We then extract
all nouns from dialogues using the public toolkit
Stanza (Qi et al., 2020). (3) Image Searching: Fi-
nally, we use two online search engines3 to search
images for the entity-level visual knowledge. Since
we leverage two searching engines i.e., Qwant, Pix-
abay in this process, we make sure that there is at
least one valid image for every extracted entity.

2.3 Overall Dataset

The proposed datasets are advantageous in compar-
ing prior works by providing fine-grained and more
accurate images related to the dialogue context.
This is because (1) we explicitly split the visual
knowledge into turn-level and entity-level; (2) we
use a large image pool as well as online searching
engines to acquire images. We additionally present
examples and detailed statistics of RESEE-WoW and
RESEE-DD in Appendix B. Note that, since turn-
level information is conveyed through sentences,
whose semantic information may not be fully cap-
tured through conventional word matching, we did
not employ online searching for turn-level images.

3www.qwant.com and www.pixabay.com

3 RESEE Methodology

We consider a simple approach to concatenate and
to infuse multimodal information into plain dia-
logue models. As shown in Figure 4, we apply this
approach to two transformer models with shared or
separate encoder-decoder for dialogue responding.

Formally, we define our modeling task as: given
the dialogue information {C,E,VT ,VE}, where
C is the dialogue context, E is the extracted entities
from C, VT = {V 1

T , V
2
T , .., V

n
T } is a set of turn-

level images from C and VE = {V 1
E , V

2
E , .., V

m
E }

is a set of entity-level images from C. We aim to
learn an appropriate response R with given infor-
mation by modeling p(R | C,E,VT ,VE).

3.1 Model Input

We employ different encoders for different modal-
ity encoding. In concrete, we utilize transformer
blocks (Vaswani et al., 2017) for word encoding,
which projects word tokens to a continuous word
embedding space. For image encoding, we utilize
CLIP encoder (Radford et al., 2021) to capture the
global information of a picture and then use MLP
functions to transform it into the same embedding
space as the word. To distinguish different
modality information and to identify dialogue
contexts from responses, we employ three kinds
of token-wise embeddings and sum them up as the
input to our transformer-based dialogue systems,
namely token embedding, position embedding, and
segment embedding.
Token Embedding: The token embedding is the
concatenation of VTw,VEw,Ew,Cw,Rw, which
denote the word embedding of turn-level and entity-

www.qwant.com
www.pixabay.com


level visual knowledge, extracted entities, dialogue
context and response respectively. We addition-
ally add special token [SEP] between different
modalities and content from distinct speakers in
the dialogue. Note that, we separate response em-
bedding Rw from this concatenation for the model
with a separate encoder-decoder setting.
Position Embedding: Since the transformer model
itself cannot learn the token position, we employ
position embedding to encode signals of the token
order in the input sequence.
Segment Embedding: Segment embedding is em-
ployed to differentiate which segment (turn-level
or entity-level visual knowledge, textual entities,
dialogue context or response) the token is in.

3.1.1 Model Training
Separate Encoder-Decoder Model (RESEE
(SEP.)): Dialogue model with separate encoder de-
coder employs different sets of model parameters
for context understanding and response generation
respectively. We apply cross-attention (Vaswani
et al., 2017) between the encoder output and the de-
coder input to bridge the gap between multimodal
dialogue context learning and response generation.
We first initialize it with T5 (2020) parameters. For
the training objective, the model is optimized to
recover the response R with the given multimodal
knowledge X = [VT,VE,E,C]:

LSep(R,X) = −
∑
wi∈R

log pi (wi | X) .

Shared Encoder-Decoder Model (RESEE
(SHARE)): Dialogue model with shared encoder
decoder integrates the understanding and gener-
ation process with the same set of parameters.
We take masked response prediction as the
main training task to make the model aware of
appropriate responses with multimodal dialogue
context. In detail, we first initialize it with UNILM
(2019). During training, 70% of the responses are
replaced by a special token [MASK] or another
token in the vocabulary. The masked response
is denoted as R̂. In detail, we use the unmasked
dialogue information [X,R\R̂] to predict R̂:

LShare(R̂,X) = −
∑
wi∈R̂

log pi

(
wi | X,R\R̂

)
.

Besides, we also follow Liang et al. (2021) to con-
sider entity knowledge bias when decoding.

Inspired by recent progress in language genera-
tive methods (Dong et al., 2019; Wang et al., 2021),
for both types of models, we process the encoder
input with bi-directional attention, while giving
the decoder output causal attention masks. This
masking strategy makes sure our models fully un-
derstand dialogue contexts and autoregressively
generate tokens with learned knowledge.

3.1.2 Response Generation
For the separate encoder-decoder model, we feed
multimodal information X to the model encoder
and autoregressively generate responses from the
decoder. As for the shared encoder-decoder model,
we first encode X with a special token [BOS]
behind it. Then, the model starts to generate by ap-
pending a [MASK] token to the input and samples
a word from the predicted distribution over vocab-
ulary. The [MASK] token is then replaced by the
generated token and a new [MASK] is appended to
the input sequence for next word prediction. Both
generation processes terminate when the model
predicts [EOS] token or reaches the max length.

4 Experimental Setup

4.1 Evaluation Metrics

Automatic Metrics. We employ automatic met-
rics to assess the model performance:4 (1) Flu-
ency: perplexity (PPL) measures the confidence
of the generated responses; (2) Token-based Rele-
vance: BLEU (Papineni et al., 2002) and Rouge-
L (Lin, 2004); Embedding-based Relevance: (Ser-
ban et al., 2017): Embedding Average cosine sim-
ilarity (Avg.), Vector Extrema cosine similarity
(Ext.), and Embedding Greedy Matching score
(Gre.). (3) Diversity: Distinct-1 (Dist-1) and
Distinct-2 (Dist-2) (Li et al., 2016) measure the
number of distinct uni-grams and bi-grams divided
by the total grams.
Human Evaluation. We perform human evalu-
ation over the generated responses. We consider
three conventional criteria: fluency (Flue.), infor-
mativeness (Info.), and relevance (Relv.) following
Song et al. (2021). Also, we consider Sensibleness
and Specificity Average (SSA) metric (Adiwardana
et al., 2020), evaluating whether a response makes
sense and is specific. We strictly obey a double-
blind procedure, where the annotators know noth-

4All these metrics are calculated by first excluding sen-
tence punctuation and then running the public NLG evaluation
script from github.com/Maluuba/nlg-eval.

github.com/Maluuba/nlg-eval


Model PPL ↓ BLEU ↑ Rouge-L ↑ Avg. ↑ Ext. ↑ Gre. ↑ Dist-1 ↑ Dist-2 ↑

RESEE-WoW

DIALOGPT (Zhang et al., 2020) 13.38 0.0987 0.1467 0.805 0.423 0.705 0.163 0.403
GPT-2 (Radford et al., 2019) 9.64 0.1296 0.1345 0.793 0.422 0.677 0.151 0.371
UNILM (Dong et al., 2019) 18.86 0.1088 0.1215 0.770 0.373 0.582 0.125 0.335
T5 (Raffel et al., 2020) 18.35 0.1361 0.1411 0.830 0.412 0.620 0.160 0.392
MSDP (Liu et al., 2022) - 0.1154 0.1905 - - - - -

RESEE (SHARE) 17.94 0.1193 0.1255 0.790 0.369 0.595 0.124 0.354
RESEE (SHARE) - E. 18.36 0.1183 0.1192 0.783 0.370 0.585 0.119 0.332
RESEE (SHARE) - E.V. 17.39 0.1167 0.1253 0.768 0.366 0.587 0.095 0.250
RESEE (SHARE) - E. - T.V. 18.54 0.1148 0.1238 0.778 0.376 0.593 0.099 0.269
RESEE (SHARE) - E. - E.V. 18.05 0.1143 0.1230 0.793 0.377 0.590 0.144 0.393

RESEE (SEP.) 17.46 0.1508 0.1599 0.844 0.426 0.632 0.162 0.416
RESEE (SEP.) - E. 17.47 0.1426 0.1509 0.837 0.422 0.627 0.166 0.430
RESEE (SEP.) - E.V. 17.58 0.1479 0.1521 0.841 0.422 0.629 0.171 0.440
RESEE (SEP.) - E. - T.V. 17.58 0.1460 0.1480 0.839 0.421 0.628 0.168 0.429
RESEE (SEP.) - E. - E.V. 17.52 0.1370 0.1456 0.833 0.420 0.626 0.161 0.410

RESEE-DD

DIALOGPT (Zhang et al., 2020) 5.95 0.1132 0.1345 0.734 0.467 0.658 0.186 0.466
GPT-2 (Radford et al., 2019) 5.83 0.1183 0.1519 0.692 0.434 0.657 0.134 0.520
UNILM (Dong et al., 2019) 6.57 0.0871 0.1031 0.723 0.424 0.565 0.115 0.333
T5 (Raffel et al., 2020) 8.11 0.1102 0.1392 0.729 0.469 0.578 0.183 0.503
VISAD (Shen et al., 2021) 17.81 0.1247 - 0.642 0.451 0.526 0.097 0.332

RESEE (SHARE) 8.94 0.1111 0.1497 0.773 0.446 0.607 0.164 0.446
RESEE (SHARE) - E. 9.51 0.0991 0.1444 0.756 0.451 0.600 0.168 0.459
RESEE (SHARE) - E.V. 10.10 0.0924 0.1301 0.748 0.434 0.593 0.126 0.354
RESEE (SHARE) - E. - T.V. 9.53 0.0873 0.1276 0.753 0.444 0.593 0.165 0.437
RESEE (SHARE) - E. - E.V. 10.02 0.0919 0.1332 0.749 0.443 0.594 0.165 0.447

RESEE (SEP.) 7.39 0.1215 0.1582 0.786 0.475 0.628 0.196 0.535
RESEE (SEP.) - E. 7.50 0.1204 0.1567 0.786 0.471 0.625 0.205 0.544
RESEE (SEP.) - E.V. 7.31 0.1197 0.1564 0.783 0.474 0.624 0.206 0.560
RESEE (SEP.) - E. - T.V. 7.66 0.1174 0.1523 0.767 0.469 0.618 0.193 0.528
RESEE (SEP.) - E. - E.V. 7.47 0.1159 0.1548 0.733 0.467 0.616 0.184 0.500

Table 3: Results of the proposed dialogue models on RESEE-WoW (test unseen set) and RESEE-DD (test set). Models
without textual entity, turn-level or entity-level visual knowledge as the inputs are appended with “- E.”, “- T.V.”
and “- E.V.” respectively. Our dialogue framework RESEE with shared and separate encoder-decoder are appended
with (SHARE) and (SEP.) respectively. We mark the best result with bold face and the second best with underline.

ing about the models. We sample 100 instances
across each model for human evaluation.5

4.2 Baselines

To verify the advantages of the proposed frame-
work in dataset construction and multimodal
dialogue generation, we take competitive DI-
ALOGPT (Zhang et al., 2020), GPT-2 (Radford
et al., 2019), UNILM (Dong et al., 2019) and
T5 (Raffel et al., 2020) as traditional dialogue
baselines, all of which consist of 24 transformer
layers. On WoW dataset, we additionally consider
one recent method: MSDP (Liu et al., 2022),
a dialogue model that leverages prompt tuning,
multi-stage refinement with the GPT-2. On
DD dataset, we incorporate a strong multimodal
dialogue system VISAD (Shen et al., 2021),

5Details of human annotators are listed in Appendix E.

which considers words extracted from dialogue
context and their corresponding images into gen-
eration. Note that, RESEE (SHARE) is similar to
MARIA (Liang et al., 2021), which considers simi-
lar training paradigm. However, MARIA takes only
one image per dialogue session, we thus consider
our RESEE (SHARE) as an extension of MARIA.
See Appendix A.2, C for more model details.

5 Results and Analysis

Main Results. We present evaluation results of
models with separate or shared encoder-decoder
over two datasets in Table 3. (1) Our model with
separate encoder-decoder (RESEE (SEP.)) per-
forms better than the model with shared encoder-
decoder (RESEE (SHARE)). This may be explained
as models with separate encoder-decoder explicitly
divide the understanding process of multimodal in-



Model PPL ↓ BLEU ↑ Rouge-L ↑ Avg. ↑ Ext. ↑ Gre. ↑ Dist-1 ↑ Dist-2 ↑

RESEE (SEP.) w/ 1 E.V. 7.39 0.1215 0.1582 0.786 0.475 0.628 0.196 0.535
RESEE (SEP.) w/ 2 E.V. 7.40 0.1216 0.1545 0.787 0.473 0.624 0.196 0.534
RESEE (SEP.) w/ 3 E.V. 7.62 0.1220 0.1603 0.787 0.472 0.624 0.200 0.536
RESEE (SEP.) w/ 4 E.V. 7.75 0.1246 0.1610 0.790 0.475 0.626 0.208 0.555
RESEE (SEP.) w/ 5 E.V. 7.81 0.1230 0.1502 0.785 0.469 0.622 0.211 0.565

Table 4: Model performance with varied image number per entity during training (“n E.V.”) over RESEE-DD.

Model Flue. ↑ Info. ↑ Relv. ↑ SSA ↑

RESEE-WoW

GPT-2 (2019) 3.495 3.140 2.033 47.50%
DIALOGPT (2020) 3.830 3.660 2.260 59.25%
UNILM (2019) 3.745 3.113 1.800 41.17%
T5 (2020) 3.920 3.495 2.237 57.50%

RESEE (SHARE) 3.900 3.143 1.870 46.00%
RESEE (SEP.) 3.930 3.650 2.267 64.75%

RESEE-DD

GPT-2 (2019) 3.916 3.237 2.760 50.67%
DIALOGPT (2020) 4.023 3.547 2.727 56.17%
UNILM (2019) 4.168 3.340 2.585 47.25%
T5 (2020) 4.153 3.567 2.713 52.50%

RESEE (SHARE) 4.187 3.460 2.587 48.50%
RESEE (SEP.) 4.190 3.690 2.833 58.50%

Table 5: Human evaluation results.

formation and the generation of textual responses
using different model parameters. This makes the
model devote more to each learning phase. (2)
On both constructed datasets, RESEE (SEP.) with
full visual knowledge achieves the best or com-
petitive performance in terms of relevance metrics
i.e., BLEU, Rouge-L, even comparing models with
task-oriented pre-training (DIALOGPT) or external
document knowledge (MSDP). This observation
demonstrates the effectiveness of our model lever-
aging representations from both text and vision. (3)
When considering embedding-based metrics, our
method is better than baselines in Avg. and Ext.,
but it is slightly inferior to two GPT models in
Gre.. That is to say, though RESEE may not reach
the similarity upper bound compared to pre-trained
GPTs, it is still advantageous in the averaged sen-
tence similarity comparing strong baselines.

We also observe that finetuned GPT-2 and DI-
ALOGPT perform better than our method in PPL
on both datasets. This is attributed to their pre-
training stage which dedicates in directly optimiz-
ing model generation ability. However, our model
can achieve better diversity compared with base-
lines, especially our model variants without textual
entity input and/or entity-level visual knowledge.

We also present human evaluation results in Ta-

ble 5,6 which further justify the outcomes and find-
ings from automatic metrics above.

5.1 Visual Knowledge

We conduct extensive ablation experiments
over variants of the input information to better
understand their respective roles in the dialogue
generation task. (1) The performance improvement
on our model benefits from both aspects of visual
knowledge in providing external information. (2)
Fine-grained visual information (i.e., entity-level),
plays a more important role in improving the
generation performance than turn-level visual
knowledge, which explains the necessity to find
and utilize fine-grained visual clues. (3) Turn-level
images also prompt model performance (i.e., “-
E.” v.s. “- E. - T.V.”), which is consistent with
findings from the traditional visual dialogue. (4)
However, textual entities bring more performance
gain comparing entity-level visual knowledge. We
ascribe this to the model pre-training stage that is
originally on the language domain, which makes it
harder for dialogue models to understand visual in-
formation than to acquire knowledge from texts. (5)
Introducing visual knowledge improves the quality
of generated responses, but generally degenerates
the diversity. This is attributed to the constraints
brought by fine-grained visual inputs. These inputs
enlighten the model with explicit visual clues,
making it compelling to specific knowledge but
leading to a tolerable sacrifice of text diversity.

5.2 Multiple Entity-level Images per Entity

Since we provide a one-to-many mapping between
entities in the dialogue context and their corre-
sponding images, we conduct experiments with
varied numbers of entity-level images as input. In
Table 4, (1) increasing the number of entity-level
images can further boost the dialogue model per-
formance by generating more relevant responses.
We ascribe this to a larger information capacity

6The average Fleiss’s kappas (Fleiss and Cohen, 1973) of
RESEE-WoW and RESEE-DD are 0.419 and 0.492 respectively,
indicating three annotators reached a moderate agreement.



Model PPL ↓ BLEU ↑ Rouge-L ↑ Avg. ↑ Ext. ↑ Gre. ↑ Dist-1 ↑ Dist-2 ↑

T5 (Raffel et al., 2020) 18.35 0.1361 0.1411 0.830 0.412 0.620 0.160 0.392
T5 w/ Know. 17.66 0.1411 0.1488 0.839 0.423 0.631 0.157 0.403
RESEE (SEP.) 17.46 0.1508 0.1599 0.844 0.426 0.632 0.162 0.416

RESEE (SEP.) w/ Know. 17.68 0.1528 0.1561 0.847 0.429 0.631 0.174 0.464
- E. 17.53 0.1463 0.1582 0.840 0.420 0.628 0.161 0.426
- E. - T.V. 17.76 0.1443 0.1485 0.839 0.424 0.629 0.168 0.427
- E. - E.V. 17.56 0.1419 0.1445 0.836 0.419 0.627 0.157 0.399

Table 6: Model performance with external document knowledge (“ w/ Know.”) on RESEE-WoW (test unseen set).

provided by extra visual knowledge. (2) However,
giving too many entity-level images can be a show-
stopper for the model, i.e., the model with 5 images
per entity generally performs worse. This might be
attributed to the plain multimodal infusion method
considered, where the model may confuse different
images that belong to the same or another entity.
(3) More entity-level images jeopardize the model’s
output confidence with lower PPL yet make gener-
ated responses more diverse with consistently more
distinct n-grams (i.e., higher Dist-1/2).

5.3 External Document Knowledge

Is the visual knowledge a complement of existing
textual knowledge? To answer it, we conduct ex-
periments over RESEE-WoW with provided topic
passages appended to the input. In Table 6, we
observe that (1) our visual knowledge can fur-
ther boost model performance even with document
knowledge, demonstrating the evidence provided
by visual knowledge is complementary to existing
textual knowledge. But the performance gain of
adding documents to the visual models is not as sig-
nificant as models without visual knowledge (T5).
This indicates that there exist certain intersections
between information provided by two modalities.
(2) Bringing document knowledge to the model
greatly improves diversity. Because abundant tex-
tual information helps models understand dialogues
comprehensively and generate responses diversely.

5.4 Case Analysis

We exhibit an example of generated responses in
Figure 5. As this conversation is talking about
the importance of dressing code in interviews, our
dataset provides one turn-level image showing a
professional person with a suit and a tie as well as
three entities and their corresponding images. Com-
pared with models without visual enhancement, our
two models focus more on the provided visual con-
texts and generate responses that are highly relevant
to dialogues and the reference. For example, our

Contexts: 
I know what you mean. I ought to wear right clothes at the right time.  

You got it . Only in this way can you gain the respect of the interviewer 
and his confidence in your judgement. 

Turn-level 
Visual Knowledge

Entity-level 
Visual Knowledge 
(Entity)

Reference: It may not be true, but the first and lasting impression of you 
is determined by your clothes and behavior. 

Generated Responses: 

GPT-2         : I know that’s the job.  
DIALOGPT : I think so. I think I'll wear a suit and tie.  
UNILM        : I’ll try to make sure that you don't lose your interviewers. 
T5                : I agree with you.  

RESEE (SHARE) : Yes, i'll try my best to make a good impression on the  
                               interviewers 
RESEE (SEP.)     : I think so. you should be comfortable in your clothes  
                              and make good impression on the interviewer. 

(clothes) (interviewer) (judgement)

Figure 5: An example of responses generated by our
models and baselines. Highlighted words overlap enti-
ties in the dialogue context or the response reference.

models can produce words that pay more attention
to “interviewer” and “clothes”, which are missing
in the unimodal counterparts. These demonstrate
that our datasets provide useful visual information,
which the proposed multimodal dialogue system
captures and subsequently leverages to generate
better responses that are relevant to the reference.
Please refer to Appendix D for more examples.

6 Related Works

Visual Dialogue Dataset. Images can serve dif-
ferent purposes in a dialogue. Visual dialog (or vi-
sual question answering, VQA) is a task to answer
questions about the factual contents of the image in
a multi-turn manner. VisDial (Das et al., 2017)
was constructed of one image and about 10 indepen-



dent question-answer pairs grounded on the given
image. De Vries et al. (2017) introduced image
grounded QA dataset with pixel-level object loca-
tion of the image. IGC (Mostafazadeh et al., 2017)
was constructed based on Twitter conversations
with (image, description, question-answer) triplet
as samples. In visual-enhanced conversational rec-
ommendation, MMD (Saha et al., 2018) was a multi-
modal dataset under a shopping situation and aimed
at providing applicable recommendations based on
textual conversations as well as images of poten-
tial shopping items. MMConv (Liao et al., 2021)
was applied in tourism scenarios across 5 real sit-
uations, it also provided a knowledge base and a
photo gallery about recommended items. Recently,
MMDialog (Feng et al., 2022) was proposed with
massive multimodal open-domain conversations
and associated images derived from social media.
IMAD (Viktor and Denis, 2023) was constructed
using massive amount of dialogues, with the last
utterance to be replaced with collected images.

Open-domain Dialogue. Open-domain dialogue
models aim at responding to general human-like
conversations in various circumstances. While di-
alogue generation has a rich history, the area has
made significant progress with the rising of pre-
trained models in varied linguistic domains (Zhang
et al., 2020; Mi et al., 2022; Zhu et al., 2023b; Tou-
vron et al., 2023b). The introduction of external
knowledge in traditional models plays a vital role
in leading them to intellectual dialogue agents. For
example, Wu et al. (2021) leveraged three domains
of knowledge to enhance the model performance
in Chinese contexts. Wang et al. (2022) employed
an extra retrieval process to find knowledgeable
evidence as input to enlarge dialogue model capac-
ities. Recent works focus on efficient knowledge
integration like retrieval-free approaches (Wang
et al., 2023a) and few-shot prompting (Wang et al.,
2023b). Moreover, visual knowledge has also been
recently considered to boost the performance of
dialogue models. Multi-Modal BLENDER (Shuster
et al., 2021) was pre-trained on large-scale visual
question-answer datasets for image-grounded con-
versation. Liang et al. (2021) introduced a method
to allocate conversations with a picture as exter-
nal knowledge. Shen et al. (2021) extended the
visual augmentation to the token-level, providing
versatile visual information to the model. Most
recently, as the emergence and wide spread of large
language models (LLMs), such as GPT-3 (Brown

et al., 2020), LLAMA (Touvron et al., 2023a,b),
more and more works start incorporating LLMs
as their text generative framework and get excep-
tional performance in the open-domain dialogue
tasks (Zhu et al., 2023a; Liu et al., 2023; Ye et al.,
2023; Dai et al., 2023).

7 Conclusion

In this paper, we present a paradigm for multimodal
dialogue construction with two novel datasets and
a multimodal dialogue responding framework RE-
SEE. We explicitly separate the visual knowledge
into two aspects, using online searching or retriev-
ing from large image corpora to construct accurate
and diverse visual knowledge. Transformer-based
dialogue models with shared and separate encoder-
decoder verify that provided visual knowledge pro-
motes model capacity. Further, we explore feeding
multiple entity-level images and external document
knowledge into models. By providing fine-grained
visual knowledge on dialogues, we demonstrate
dialogue models can substantially achieve better
performance across different setups and domains.
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8 Limitations

(1) The provided datasets are auto-constructed,
meaning visual biases brought by online search-
ing are inevitable. We plan to take our next step to
make the dataset more accurate and to include more
visual knowledge (e.g., visual knowledge from ex-
ternal document knowledge in WoW) in our mul-
timodal dialogues. (2) For now, we did not con-
sider a one-to-one mapping between the textual
entity and entity images in the model input, more
sophisticated relations can also be introduced for
better modal interaction and modeling. (3) Our
framework offers a novel way to enhance text-only
dialogue system performance by adding extra infor-
mation from a multimodal perspective. However,
this comes at the cost of extra computational over-
head brought by learning visual knowledge.



9 Ethics Statement

We are aware that automatic dialogue generation
may create deceptive, harmful, or objectionable
content due to their internal biases (Curry and
Rieser, 2018; Gehman et al., 2020). These biases
are usually inherited from the training data itself.
We observe that since our dataset construction is
totally based on existing text-only dialogues, our
RESEE framework can be used to mitigate those bi-
ases easily. For instance, one of our future work di-
rections is to employ the proposed multimodal data
collection method on detoxification dialogues (e.g.,
The Moral Integrity Corpus (Ziems et al., 2022))
for building safer and better dialogue agents.

We are well aware that the online searching pro-
cess of entity-level images may cause biases (e.g.,
gender, race) in our constructed dataset. To mit-
igate the bias, we collect multiple images on the
internet for one entity in dialogues (see Appendix B
for statistical details of our datasets), so that the
model can choose more than one specific image
during model training. For licenses of images,
other employed dialogue data, and the constructed
datasets that are about to be released, please refer
to Appendix A.1 for more details.

References
Daniel Adiwardana, Minh-Thang Luong, David R So,

Jamie Hall, Noah Fiedel, Romal Thoppilan, Zi Yang,
Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu,
et al. 2020. Towards a human-like open-domain chat-
bot. arXiv preprint arXiv:2001.09977.

Harsh Agrawal, Karan Desai, Yufei Wang, Xinlei Chen,
Rishabh Jain, Mark Johnson, Dhruv Batra, Devi
Parikh, Stefan Lee, and Peter Anderson. 2019. No-
caps: Novel object captioning at scale. In Proceed-
ings of the IEEE/CVF International Conference on
Computer Vision, pages 8948–8957.

Yonatan Bisk, Ari Holtzman, Jesse Thomason, Jacob
Andreas, Yoshua Bengio, Joyce Chai, Mirella Lap-
ata, Angeliki Lazaridou, Jonathan May, Aleksandr
Nisnevich, et al. 2020. Experience grounds language.
arXiv preprint arXiv:2004.10151.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and psychological mea-
surement, 20(1):37–46.

Amanda Cercas Curry and Verena Rieser. 2018. #
metoo alexa: How conversational systems respond to
sexual harassment. In Proceedings of the second acl
workshop on ethics in natural language processing,
pages 7–14.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony
Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Albert Li, Pascale Fung, and Steven C. H.
Hoi. 2023. Instructblip: Towards general-purpose
vision-language models with instruction tuning.
arXiv preprint arXiv:2305.06500.

Abhishek Das, Satwik Kottur, Khushi Gupta, Avi Singh,
Deshraj Yadav, José MF Moura, Devi Parikh, and
Dhruv Batra. 2017. Visual dialog. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 326–335.

Harm De Vries, Florian Strub, Sarath Chandar, Olivier
Pietquin, Hugo Larochelle, and Aaron Courville.
2017. Guesswhat?! visual object discovery through
multi-modal dialogue. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition, pages 5503–5512.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela
Fan, Michael Auli, and Jason Weston. 2018. Wizard
of wikipedia: Knowledge-powered conversational
agents. arXiv preprint arXiv:1811.01241.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language model
pre-training for natural language understanding and
generation. Advances in Neural Information Process-
ing Systems, 32.

Jiazhan Feng, Qingfeng Sun, Can Xu, Pu Zhao, Yaming
Yang, Chongyang Tao, Dongyan Zhao, and Qing-
wei Lin. 2022. Mmdialog: A large-scale multi-turn
dialogue dataset towards multi-modal open-domain
conversation. arXiv preprint arXiv:2211.05719.

Joseph L Fleiss and Jacob Cohen. 1973. The equiva-
lence of weighted kappa and the intraclass correlation
coefficient as measures of reliability. Educational
and psychological measurement, 33(3):613–619.

Samuel Gehman, Suchin Gururangan, Maarten Sap,
Yejin Choi, and Noah A Smith. 2020. Realtoxici-
typrompts: Evaluating neural toxic degeneration in
language models. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
3356–3369.

Stevan Harnad. 1990. The symbol grounding problem.
Physica D: Nonlinear Phenomena, 42(1-3):335–346.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:



Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and William B Dolan. 2016. A diversity-promoting
objective function for neural conversation models.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 110–119.

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang
Cao, and Shuzi Niu. 2017. Dailydialog: A manually
labelled multi-turn dialogue dataset. In Proceedings
of the Eighth International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 986–995.

Zujie Liang, Huang Hu, Can Xu, Chongyang Tao, Xi-
ubo Geng, Yining Chen, Fan Liang, and Daxin Jiang.
2021. Maria: A visual experience powered conver-
sational agent. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 5596–5611.

Lizi Liao, Le Hong Long, Zheng Zhang, Minlie Huang,
and Tat-Seng Chua. 2021. Mmconv: an environment
for multimodal conversational search across multiple
domains. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 675–684.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In European confer-
ence on computer vision, pages 740–755. Springer.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023. Visual instruction tuning.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Zihan Liu, Mostofa Patwary, Ryan Prenger, Shrimai
Prabhumoye, Wei Ping, Mohammad Shoeybi, and
Bryan Catanzaro. 2022. Multi-stage prompting for
knowledgeable dialogue generation. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 1317–1337.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Fei Mi, Yitong Li, Yulong Zeng, Jingyan Zhou, Yasheng
Wang, Chuanfei Xu, Lifeng Shang, Xin Jiang, Shiqi
Zhao, and Qun Liu. 2022. Pangubot: Efficient gener-
ative dialogue pre-training from pre-trained language
model. arXiv preprint arXiv:2203.17090.

Nasrin Mostafazadeh, Chris Brockett, William B Dolan,
Michel Galley, Jianfeng Gao, Georgios Spithourakis,
and Lucy Vanderwende. 2017. Image-grounded con-
versations: Multimodal context for natural ques-
tion and response generation. In Proceedings of
the Eighth International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 462–472.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Jordi Pont-Tuset, Jasper Uijlings, Soravit Changpinyo,
Radu Soricut, and Vittorio Ferrari. 2020. Connecting
vision and language with localized narratives. In
European conference on computer vision, pages 647–
664. Springer.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A Python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models
from natural language supervision. In International
Conference on Machine Learning, pages 8748–8763.
PMLR.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Amrita Saha, Mitesh Khapra, and Karthik Sankara-
narayanan. 2018. Towards building large scale multi-
modal domain-aware conversation systems. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 32.

https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084


Iulian Serban, Alessandro Sordoni, Ryan Lowe, Lau-
rent Charlin, Joelle Pineau, Aaron Courville, and
Yoshua Bengio. 2017. A hierarchical latent variable
encoder-decoder model for generating dialogues. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 31.

Lei Shen, Haolan Zhan, Xin Shen, Yonghao Song, and
Xiaofang Zhao. 2021. Text is not enough: Integrating
visual impressions into open-domain dialogue gener-
ation. In Proceedings of the 29th ACM International
Conference on Multimedia, pages 4287–4296.

Kurt Shuster, Eric Michael Smith, Da Ju, and Jason
Weston. 2021. Multi-modal open-domain dialogue.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4863–4883.

Haoyu Song, Yan Wang, Kaiyan Zhang, Wei-Nan
Zhang, and Ting Liu. 2021. Bob: Bert over bert for
training persona-based dialogue models from limited
personalized data. arXiv preprint arXiv:2106.06169.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Moskvoretskii Viktor and Kuznetsov Denis. 2023.
Imad: Image-augmented multi-modal dialogue.
arXiv preprint arXiv:2305.10512.

Rui Wang, Jianzhu Bao, Fei Mi, Yi Chen, Hongru Wang,
Yasheng Wang, Yitong Li, Lifeng Shang, Kam-Fai
Wong, and Ruifeng Xu. 2023a. Retrieval-free knowl-
edge injection through multi-document traversal for
dialogue models. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 6608–6619.

Yihe Wang, Yitong Li, Yasheng Wang, Fei Mi, Pingyi
Zhou, Jin Liu, Xin Jiang, and Qun Liu. 2023b. His-
tory, present and future: Enhancing dialogue genera-
tion with few-shot history-future prompt. In ICASSP
2023-2023 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
1–5. IEEE.

Yihe Wang, Yitong Li, Yasheng Wang, Fei Mi, Pingyi
Zhou, Xin Wang, Jin Liu, Qun Liu, and Xin Jiang.
2022. Pan more gold from the sand: Refining open-
domain dialogue training with noisy self-retrieval
generation. arXiv preprint arXiv:2201.11367.

Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yu-
lia Tsvetkov, and Yuan Cao. 2021. Simvlm: Simple
visual language model pretraining with weak super-
vision. In International Conference on Learning
Representations.

Sixing Wu, Ying Li, Minghui Wang, Dawei Zhang,
Yang Zhou, and Zhonghai Wu. 2021. More is bet-
ter: Enhancing open-domain dialogue generation via
multi-source heterogeneous knowledge. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 2286–2300.

Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye,
Ming Yan, Yiyang Zhou, Junyang Wang, An-
wen Hu, Pengcheng Shi, Yaya Shi, et al. 2023.
mplug-owl: Modularization empowers large lan-
guage models with multimodality. arXiv preprint
arXiv:2304.14178.

Peter Young, Alice Lai, Micah Hodosh, and Julia Hock-
enmaier. 2014. From image descriptions to visual
denotations: New similarity metrics for semantic in-
ference over event descriptions. Transactions of the
Association for Computational Linguistics, 2:67–78.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen,
Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing
Liu, and William B Dolan. 2020. Dialogpt: Large-
scale generative pre-training for conversational re-
sponse generation. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 270–278.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and
Mohamed Elhoseiny. 2023a. Minigpt-4: Enhancing
vision-language understanding with advanced large
language models. arXiv preprint arXiv:2304.10592.

Qi Zhu, Fei Mi, Zheng Zhang, Yasheng Wang, Yitong
Li, Xin Jiang, Qun Liu, Xiaoyan Zhu, and Minlie
Huang. 2023b. Kpt: keyword-guided pre-training
for grounded dialog generation. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 37, pages 14065–14073.

Caleb Ziems, Jane Yu, Yi-Chia Wang, Alon Halevy,
and Diyi Yang. 2022. The moral integrity corpus: A
benchmark for ethical dialogue systems. In Proceed-
ings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 3755–3773.



A Implementation Details

A.1 Dataset Construction
For turn-level image retrieval, we employ pre-
trained BART (Lewis et al., 2020) model to sum-
marize the dialogue turns. After we have access
to representations of both dialogues and captions
encoded by sentence BERT, we employ FAISS7

for indexing speedup. As for entity-level image
online searching, we use Qwant8 and Pixabay9 to
search at least one valid image for every extracted
entity. As for licences of images we employed in
our datasets, Pixabay images are all royalty-free.
Images from Qwant follow one of five protocols for
reproduction, sharing and modification: Public do-
main; Non-commercial reproduction and sharing;
Reproduction and sharing; Non-commercial repro-
duction, sharing and modification; Reproduction,
sharing and modification. And our datasets will be
released under Non-commercial reproduction and
sharing license to ensure proper usage.

A.2 Dialogue Models
We initialize parameters of RESEE (SEP.) and RE-
SEE (SHARE) using T5 (Raffel et al., 2020) and
UNILM (Dong et al., 2019) respectively. Note that,
we only add the segment embedding to the shared
encoder-decoder model to separate their respect in-
puts. On the RESEE-WoW dataset, we truncate the
context input (i.e., dialogue context, entities and
visual knowledge) to a fixed length of 190, and the
response to 35. We exclude the most frequent and
uncommon nouns (words that appears less than 3
times and more than 100 times) to accelerate model
training. The cleaned nouns in RESEE-WoW takes
around 68% of the original extracted words. We
make sure that for every training data, the entity-
level visual knowledge as well as the entity input
is no more than 8 and the turn-level image is no
more than 5. To make the model fully understand
knowledgeable conversations in RESEE-WoW, we
split every dialogue session into smaller conversa-
tional chunks with maximum of 2 turns for training.
For RESEE-DD dataset, the encoder input was set
to 185 with 35 to be the response. Every training
data has no more than 6 entity-level images and
5 turn-level images. Also, we reduce the entity-
level to around 80% of the original entity-level
image to accelerate training. We use AdamW opti-

7github.com/facebookresearch/faiss
8www.qwant.com
9pixabay.com

mizer (Loshchilov and Hutter, 2017) with the learn-
ing rate linearly increasing from 0 to 0.005 for the
first 20% training steps, then linearly decreasing to
0. We train the model until it has no progress on
validation set (valid unseen set for RESEE-WoW).
All experiments are conducted on two NVIDIA
TITAN GPUs with 24G memory in total, it takes
around 12 hours for RESEE-WoW training and 7
hours on RESEE-DD.

B Dataset Details

B.1 Dataset Statistics

First of all, for two text-only datasets we em-
ployed, WoW dataset is under an MIT License, and
it is publicly available at https://parl.ai/
projects/wizard_of_wikipedia/. DD
dataset is licensed under CC BY-NC-SA 4.0,
and the dataset can be obtained from http:
//yanran.li/dailydialog. We present
detailed dialogue dataset information, including
unique turn-level image number, unique entity-
level image amount, turn and entity level images
averaged on a dialogue session and average number
of images that belong to one entity in Table 7. We
also show the relationship between entity number
per dialogue session and dialogue session number
in Figure 6, the data distribution of how many ex-
amples are there for each (n entity-level image, m
turn-level image) setting in Figure 7. From these
four distribution figures, we can tell that the RE-
SEE-WoW dataset has more concentrated turn-level
image number and entity-level image number pairs,
while the range of entity-level image number of
RESEE-DD is wider.

B.2 Multimodal Examples

We present sampled examples from our constructed
datasets RESEE-WoW and RESEE-DD in Figure 8.
From these examples, we can clearly tell the visual
enhancement for dialogue understanding from both
knowing named entities and enlarging impressions
of regular nouns. For instance, the noun Ikebana
is a proper noun in the dialogue, the model would
never know what it looks like from just reading the
dialogue contexts. However, the entity-level image
provides the model with a straightforward approach
to access related visual knowledge. Another exam-
ple shows that images corresponding to abstract
nouns such as love can provide an ambiance of ro-
mance for models, which may strengthen model’s

github.com/facebookresearch/faiss
www.qwant.com
pixabay.com
https://parl.ai/projects/wizard_of_wikipedia/
https://parl.ai/projects/wizard_of_wikipedia/
http://yanran.li/dailydialog
http://yanran.li/dailydialog


Dataset RESEE-WoW RESEE-DD
train valid (seen/unseen) test (seen/unseen) train valid test

Dialog Session 18,430 981/967 965/968 11,118 1,000 1,000
Turn-level Image 46,319 8,896/7,294 8,851/6,705 32,399 7,966 7,626
Entity (Image) 14,618 3,699/2,862 3,748/2,762 6,204 2,298 2,411
Avg. Turn Image 4.50 4.52/4.53 4.49/4.51 3.75 3.85 3.70
Avg. Ent. Image 19.87 18.97/18.53 19.00/18.66 9.96 10.16 10.14
Max. Ent. Image 60 44/47 50/48 67 76 46
Min. Ent. Image 3 5/4 5/5 0 0 0

Table 7: Statistics of two constructed multi-modal dialogue datasets. We present unique entity-level image count as
well as unique image count of the 5 most similar image on turn-level visual data retrieval. The average, maximum
and minimum number of images are based on one dialogue session. We also present the average number of searched
valid pictures for every entity at the last row.
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Figure 6: Data distribution of entities of one dialogue session on two datasets. The X axis represents entity number,
while the Y axis represents dialogue session number.
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Figure 7: Distribution of turn-level image and entity-level image numbers of two datasets. We use logarithm
function to normalize the number of samples with varied turn-level and entity-level images and indicate their values
using color bar.

understanding of dialogue histories and further as-
sist it to produce high-quality responses.

C Baseline Details

We present the implementation details of sev-
eral baselines. We took the pre-trained weights

from Huggingface for GPT-210 and DIALOGPT11

model. For two models, we used their 24-layer ver-
sion to make fair comparisons with rest methods.

10https://huggingface.co/gpt2-medium
11https://huggingface.co/microsoft/

DialoGPT-medium

https://huggingface.co/gpt2-medium
https://huggingface.co/microsoft/DialoGPT-medium
https://huggingface.co/microsoft/DialoGPT-medium


(a) Multimodal DD (RESEE-DD)

(b) Multimodal WoW (RESEE-WoW)

Figure 8: Dataset sample for one dialogue turn on our
multimodal datasets. Pictures pointed by dashed lines
are entity-level images, while the one pointed by solid
line is turn-level image for one instance.

We used Adam (Kingma and Ba, 2014) optimizer
with learning rate increases from 0 to 0.001 for
the first 20% iterations for both GPT-2 and DI-
ALOGPT. We truncate input data to a fixed length
of 250 and make sure that the length of every gen-
erated response is no more than 30. We train two
models on two datasets until they have no progress
on validate sets, which takes around 3 epochs. All
baselines are trained on the same machine as RE-
SEE with two NVIDIA TITAN GPUs.

D Additional Qualitative Results

We also present more generated examples of our
RESEE models as well as several baseline dialogue

Figure 9: Additional example for RESEE and baselines.

Figure 10: Additional example for RESEE and base-
lines.

models in Figure 9, 10, and 11. From these quali-
tative results, we can draw the conclusion that our
RESEE method can better understand given dia-
logue contexts with enhanced visual knowledge,
hence, generating responses with higher quality.



Figure 11: Additional example for RESEE and
baselines.

E Human Evaluation

For annotators, we hire three undergraduate stu-
dents from America or China with fluent English
reading skills. Each annotator is assigned 100
(instances)×6 (models)×4 (aspects) = 2, 400 rat-
ing tasks, resulting in 2, 400 (tasks)×3 (annotators)
= 7, 200 human ratings in total. The annotators
have acknowledged the use of annotated data sets
and are paid an average annotation salary. All an-
notators were aware of the potential risks or ethical
concerns of machine-generated texts.

Annotation Instruction Here we present the hu-
man evaluation standard:
Fluency:

1. The system’s result does not make sense and
it is unreadable.

2. Choose this score when you are hesitant be-
tween score 1 and score 3.

3. The system’s result contains minor errors but
they do not affect your understanding.

4. Choose this score when you are hesitant be-
tween score 3 and score 5.

5. The system’s result is human-like, grammati-
cally correct, and very easy to understand.

Informativeness:

1. The system’s result is dull, repetitive, and does
not have new information.

2. Choose this score when you are hesitant be-
tween score 1 and score 3.

3. The system’s result contains some new infor-
mation and it displays a certain level of diver-
sity.

4. Choose this score when you are hesitant be-
tween score 3 and score 5.

5. The system’s result is very informative and
contains novel content. In addition, it displays
a high level of diversity and it is enjoyable to
read.

Relevance:

1. The system’s result is completely irrelevant to
the given reference.

2. Choose this score when you are hesitant be-
tween score 1 and score 3.

3. The system’s result is partially related to the
reference and some of its content can be found
in the reference.

4. Choose this score when you are hesitant be-
tween score 3 and score 5.

5. The system’s result is very related to the given
reference and contains a diverse set of con-
cepts in the reference.

Make Sense:

• YES: the response is completely reasonable
in context.

• NO: the response is confusing, illogical, out
of context, or factually wrong.

Being Specific

• YES: the response is specific to the given con-
text.

• NO: the response could be used in dozens of
different contexts.


