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ABSTRACT

Zero-shot segmentation has achieved great success by generating features from
semantic embeddings to adapt the model to unseen classes. These semantic-
generated features are typically aligned with the visual distribution of seen classes
to improve generalization on extracted image features. However, this vision-
centric alignment may easily overfit seen classes due to the lack of visual data
for unseen classes. To address this issue, we propose a semantic-centric align-
ment method that aligns the generated features with the well-structured semantic
distribution across all classes. First, we align the vision backbone features with
CLIP tokens through Vision-to-CLIP alignment. This approach leverages CLIP’s
visual-language matching capabilities to produce semantic-aligned backbone fea-
tures. Then, we generate synthetic features from semantic embeddings for unseen
classes, supervised by semantic-aligned visual features and CLIP semantic tokens
for improving visual diversity while maintaining semantic consistency. Finally,
we finetune the class projector through the semantic-aligned joint features to fur-
ther adapt the model for unseen classes. Our semantic-centric alignment effec-
tively enhances the model’s zero-shot generalization by constructing a unified and
well-structured semantic-aligned feature space. Our method achieves SOTA per-
formance in both zero-shot panoptic and semantic segmentation, and can directly
segment unseen classes without fine-tuning.

1 INTRODUCTION

Semantic segmentation, a critical task in computer vision, has seen remarkable success driven by
advances in deep learning (He et al., 2016; Vaswani et al., 2017). However, obtaining high perfor-
mance demands massive data with detailed pixel-level annotations, which are labor-intensive and
expensive to generate. This challenge has driven segmentation research into zero-shot segmentation
(Chen et al., 2023; Gu et al., 2020; Bucher et al., 2019).

Zero-shot segmentation aims to generalize the model trained on seen data to segment unseen (novel)
classes during inference, relying solely on textual descriptions. The primary challenge is the lack of
visual data for unseen classes, which leads to overfitting to the visual distribution of seen classes.
To alleviate this problem, existing methods typically adopt a vision-centric approach, training a
generator to produce synthetic visual features for adapting the mododel to unseen classes (Bucher
et al., 2019; Cheng et al., 2021b; Gu et al., 2020), as shown in Fig. 1. Formally, the generator maps
semantic embeddings to the visual space and aligns the generated visual features with real visual
features extracted from the visual backbone.

However, due to the absence of visual data for unseen classes, even though the visual backbone cap-
tures sufficient visual attributes (Ding et al., 2022a; Han et al., 2023a), it still struggles to establish
a well-structured visual feature space for properly positioning unseen classes. Consequently, the
vision-aligned feature generator tends to bias toward seen classes when generating synthetic fea-
tures, hindering generalization to unseen classes. Although some methods attempt to guide visual
feature generation through semantic relationships (He et al., 2023b; Han et al., 2023b), the estab-
lished visual feature space still remains imperfect due to the modality gap. Thus, it is often subopti-
mal to generalize new classes in the under-constructed visual space of vision-centric approaches.

In this paper, we propose a novel semantic-centric method to align the backbone and generator fea-
tures with the well-structured semantic distribution, ensuring all classes are properly positioned due
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Figure 1: Comparisons between conventional vision-centric alignment and our semantic-centric
alignment. Left: Vision-centric alignment, which aligns the generator with vision models trained
solely on seen visual data. Right: Our semantic-centric alignment, which aligns the backbone and
generator features with well-structured semantic distribution learned from CLIP.

to the highly optimized CLIP semantic embeddings. We begin with improving the visual back-
bone’s semantic alignment by aligning its features with CLIP-extracted tokens through Vision-to-
CLIP (V2C) alignment. Next, we generate synthetic features for unseen classes, supervised by
semantic-aligned visual backbone features and CLIP semantic tokens, to improve visual diversity
while maintaining semantic consistency. This Generation-to-Semantic (G2S) alignment ensures that
the generated synthetic features are appropriately positioned in the well-optimized semantic feature
space for improved generalization to unseen classes. Finally, we adapt the feature projector to col-
laborate the real and synthetic features for recognizing both seen and unseen classes.

Our approach fundamentally differs from conventional vision-centric zero-shot segmentation meth-
ods. For example, ZS3 (Bucher et al., 2019) and CaGNet (Gu et al., 2020) focus primarily on
learning visual distributions through the visual feature generator, while Joint (Baek et al., 2021)
projects visual and semantic features into a joint space to enhance visual feature optimization, and
PADing (He et al., 2023b) uses semantic relationships to guide visual feature generation. In contrast,
our approach transfers knowledge from the visual to the semantic feature space through semantic-
centric alignment, leveraging the highly optimized semantic distribution to facilitate high-quality
feature generation and zero-shot generalization for unseen classes.

Thus, our method is unique in its idea and design on exploring the well-structured semantic distribu-
tion for feature alignment, thereby addressing the overfitting problem caused by limited visual data.
Furthermore, our method is simple and can be flexibly integrated into existing powerful segmenta-
tion models, such as Maskformer (Cheng et al., 2021a) and Mask2former (Cheng et al., 2022), and
achieves state-of-the-art performance on multiple zero-shot panoptic and semantic segmentation
benchmarks. Extensive experiments and analyses demonstrate the effectiveness of our semantic-
centric method, proving the substantial generalization capability of the well-structured semantic-
aligned feature space. The semantic-centric property enables the model to directly segment unseen
classes in the inductive setting without fine-tuning, as the semantic-aligned backbone features effec-
tively match the semantic embeddings for new concepts. In summary, our key contributions are:

– We propose a novel semantic-centric alignment method to align features with the well-structured
semantic distribution for zero-shot segmentation.

– We successfully achieve the semantic-centric alignment by collaboratively aligning the backbone
features and generated features, and adapting feature projector for zero-shot generalization.

– Our method achieves state-of-the-art performance on multiple zero-shot panoptic and semantic
segmentation benchmarks, and can be flexibly integrated into powerful segmentation models.

2 RELATED WORKS

Close-set Image Segmentation. Image segmentation, a fundamental task in computer vision, in-
volves categorizing each component of an image. It can be categorized into three types: semantic

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

segmentation (Long et al., 2015; Chen et al., 2018), where pixels are classified into categories; in-
stance segmentation (He et al., 2017; Tian et al., 2020), which distinguishes individual objects or
instances; and panoptic segmentation (Li et al., 2021; Kirillov et al., 2019), a hybrid approach that
classifies both background pixels and foreground instances. Panoptic segmentation has garnered
significant interest from the research community due to its comprehensive approach that addresses
the challenges of both semantic and instance segmentation simultaneously.

Before the wide application of transformer (Vaswani et al., 2017; Dosovitskiy et al., 2020) in com-
puter vision, many works (Li et al., 2021; Xiong et al., 2019) treat panoptic segmentation as the
combination of instance segmentation and semantic segmentation. Since the proposal of DETR
(Carion et al., 2020), panoptic segmentation entered a new era. In a specific, first, the model is
replaced by self-attention (Vaswani et al., 2017; Dosovitskiy et al., 2020) rather than CNN-based.
Moreover, the things and stuff are modeled together based on the Hungarian algorithm (Zhang et al.,
2021; Li et al., 2022b; Cheng et al., 2021a; 2022; Carion et al., 2020; Li et al., 2023a) rather than
separately processed. In this paper, the proposed method can handle both semantic and panoptic
segmentation in a more challenging zero-shot scenario.

Zero-shot classification. Zero-shot classification aims to recognize classes that are not present in the
training dataset. This task, characterized by its challenging nature and significant potential for real-
world applications, has attracted increasing attention from researchers. Common approaches utilize
attribute-based datasets, such as AWA (Lampert et al., 2009) and CUB (Wah et al., 2011), where
each category is defined by distinct attributes, e.g., seals are described as furry, big, and capable of
swimming (Han et al., 2020; Su et al., 2022; Wu et al., 2020; Han et al., 2021; Chen et al., 2021;
2020; Zhu et al., 2019). Typically, these methods begin by training a generator to synthesize visual
features for unseen categories. Subsequently, they generate several pseudo-unseen visual features
based on attributes of unseen classes. Finally, a trainable classifier (Han et al., 2020; Su et al., 2022;
Wu et al., 2020; Han et al., 2021; Chen et al., 2021) or a k-NN classifier (Han et al., 2020; Chen et al.,
2020; Zhu et al., 2019) is employed on the test dataset. Although effective, zero-shot classification
neglects valuable visual cues critical for segmentation tasks. Besides, the zero-shot segmentation
only contains the name of a category without any attribute description. While not directly applicable
to segmentation, the insights gained from zero-shot classification methods are inspiring.

Zero-shot Segmentation. Most current zero-shot segmentation approaches can be classified into
two categories: projection-based (Xian et al., 2019; Ding et al., 2022a; Zhou et al., 2023; Xu et al.,
2022; Chen et al., 2023; Baek et al., 2021; Zhang & Ding, 2021) and generation-based methods (He
et al., 2023b; Cheng et al., 2021b; Baek et al., 2021; Pastore et al., 2021; Gu et al., 2020; He et al.,
2023a). Projection-based methods align visual and semantic features within the same space and
calculate the similarity between them, assigning the category with the highest similarity score. Con-
versely, generation methods first train a generator to synthesize unseen visual features. A trainable
classifier is then developed to work with both real-seen and generated unseen visual features, ef-
fectively transforming zero-shot segmentation into traditional segmentation methods. Additionally,
recent efforts have explored open-vocabulary segmentation (Xu et al., 2023b; Ding et al., 2022b; Xu
et al., 2023a; Qin et al., 2023; Han et al., 2023a; Xu et al., 2022; Gu et al., 2022; Li et al., 2023b;
Ma et al., 2022; Han et al., 2023b; Zhang et al., 2024), which, like zero-shot segmentation, aims
to recognize unseen categories but involves training on a complete dataset, unlike the more limited
data used in zero-shot approaches.

In this paper, we introduce a novel cyclic alignment method for zero-shot segmentation, adhering to
the generation approach. Unlike traditional generation methods, our strategy, i.e., S2V alignment,
enhances the visual diversity of the generated unseen visual features, thereby capturing a more accu-
rate visual distribution. Furthermore, while most methods do not reproject generated features back
to the semantic space, potentially compromising semantic generalization and restricting category
flexibility, our V2S alignment maps the generated visual features back to the semantic space and
aligns with the semantic features, preserving generalization capabilities.

3 METHOD

Method Overview Our model illustrated in Fig. 2, consists of a backbone based on transformer
decoder models, such as Mask2Former (Cheng et al., 2022), whose outputs are a group of vectors
without spatial dimensions. It also includes a class projector, composed of MLPs, which replaces
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Figure 2: The overall training procedure of our method. First, train the visual backbone and the
projector by the proposed Vision-to-Token (V2T) and Vision-to-Semantic (V2S) alignment to align
with both CLIP visual and textual encoder, obtaining a semantic-aligned visual backbone. Next,
we freeze the backbone and the projector, and train a generator to synthesize backbone features and
visual features and align with their real counterparts, resulting in a visually diverse and semantically
consistent feature generator. Finally, we freeze the backbone and the generator, and sample real seen
and synthetic unseen, respectively, which are used to adapt the class projector for unseen classes.
During inference, due to the great generalization, our method can directly segment new classes by
adding new semantic embeddings rather than retraining the classifier like conventional methods.

the learnable classifier to align the dimensions between the visual embeddings and the semantic
embeddings A (including seen categories As and unseen categories Au). Additionally, a feature
generator is used to produce synthetic visual features for unseen classes from the corresponding
semantic embeddings. The training of our method involves three stages. First, we apply vision-to-
CLIP alignment to train the visual backbone and class projector by aligning the visual features with
both CLIP semantic embeddings and visual CLS tokens. This alignment transfers vision-language
matching capabilities from CLIP to the backbone, leading to a semantic-aligned visual backbone.
Second, we freeze the backbone and class projector and introduce Generation-to-Semantic alignment
to train the generator. In addition to aligning the generated visual features with the frozen semantic-
aligned backbone, we encourage the generator to produce more diverse synthetic visual features
while maintaining semantic consistency with the input embeddings. Finally, we freeze both the
backbone and generator to produce real seen and pseudo unseen features, adapting the class projector
for unseen classes.

3.1 VISION-TO-CLIP ALIGNMENT FOR BACKBONE ADAPATION

The core idea is to align the visual features with both the CLS tokens, which are well-aligned
with generalizable semantics from CLIP’s visual encoder, and the semantic embeddings, which
are aligned with real visual distributions from CLIP’s textual encoder, as shown in the top left of
Fig. 2. Vision-to-CLIP (V2C) alignment consists of two components: Vision-to-Semantic (V2S)
alignment and Vision-to-Token (V2T) alignment. The goal of V2S alignment is to match visual
features with their corresponding semantic embeddings to ensure that the backbone’s visual features
are aligned with accurate semantics. Given an input X and its label set Y = {yi}

O
i , where each yi

represents non-overlapping segments and O is the number of unique objects, we first pass X through
the backbone and class projector to obtain the output Z = {zi}. Each zi = {vi,mi} consists of
visual features vi ∈ VQ×C and mask predictions mi ∈ MQ×H×W . Here, V and M represent the
visual features and mask predictions, respectively, while Q is the total number of queries. We then
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Figure 3: The procedures of (a) synthetic visual feature generation and (b) CLS token generation.

compute the similarity scores between V and the seen semantic embeddings As: P = S⊤As. Since
there are no spatial dimensions, we use Hungarian matching (Carion et al., 2020; He et al., 2023b)
to find the target assignment σ̂ that minimizes the matching loss Lmatch between Z and Y,

Lmatch(yσ(z), z) = Lfocal(pσ(z), p) + Lmask(mσ(z),m), (1)

where Lfocal represents the focal loss (Lin et al., 2017), and Lmask is the same as (Cheng et al.,
2022). Finally, using the target assignment σ̂, we apply Lmatch to align the visual features with the
semantic embeddings and capture visual attributes for generating class-agnostic masks.

While V2S ensures that visual features are aligned with semantic embeddings, this process alone
may not fully exploit CLIP’s generalization capabilities. Therefore, we introduce Vision-to-Token
(V2T) alignment, which consists of target attention to better align with the global CLS tokens and
instance alignment to capture semantics that may be overlooked by the global CLS tokens. For V2T
alignment, we first generate global and instance-level CLS tokens, as shown in Fig. 3a. Ground
truth masks are used to exclude regions unrelated to the target objects. Both the masked and orig-
inal images are passed through the frozen CLIP visual encoder to obtain the instance CLS tokens
Cm ∈ RO×C and the global CLS token Cg ∈ R1×C . To leverage the global tokens, we propose
target attention, which calculates the similarity W ∈ [0, 1] between Cg and the visual features V,
emphasizing the similarities corresponding to Vs, which are assigned to objects under σ̂.

W = softmax( C⊤
g · V

||V||2 · ||C||2
· (γ · 1(v ∈ Vs) + 1)), v ∈ V, (2)

where softmax is applied along the second dimension of W, and γ is a hyperparameter used to
emphasize the importance of features assigned to targets. Based on the target attention, we aggregate
V to obtain Va, where Va = W⊤ · V. Inspired by CLIP-ZSS (Chen et al., 2023), we then use CLS
token banks to store Cg from different images as negative pairs. We concatenate Cg with the tokens
in the CLS token bank to form Cb. Finally, we align the aggregated visual features Va with the
global CLS tokens Cb,

Lg(Va,Cb) =
exp(V⊤

a · ci/τ)∑T
j ̸=i exp(V

⊤
a · cj)/τ) + exp(V⊤

a · ci/τ)
, (3)

where c ∈ Cb. Relying solely on global tokens may limit the model’s ability to distinguish between
objects and could result in overlooking less prominent classes in an image. To address this issue, we
propose instance alignment to supervise Vs using Cm.

Ll(Vs,Cm) =

O∑
i

exp(v⊤i · ci/τ)∑O
j ̸=i exp(v⊤i · cj)/τ) + exp(v⊤i · ci/τ)

, (4)

where v ∈ Vs and c ∈ Cm. To recap, Vision-to-CLIP alignment consists of:

Lv2c = Lmatch(yσ̂(Z),Z) + Lg + Ll, (5)

V2C alignment transfers CLIP’s vision-semantic matching capabilities to our model, ensuring that
the visual features are aligned with the well-structured semantics of CLIP embeddings. This pro-
vides the generator with a semantically aligned visual distribution and enhances generalization to
unseen classes.
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3.2 GENERATION-TO-SEMANTIC ALIGNMENT FOR GENERATOR ADAPTATION

Another bottleneck in zero-shot segmentation is the ineffectiveness of the generator in utilizing se-
mantic information. Therefore, we propose Generation-to-Semantic alignment to encourage the gen-
erator to effectively utilize the semantic information. The core idea of the generation-to-semantic,
as shown in the top right of Fig. 2, is to map semantic features to the visual space and pass the gen-
erated visual features through the frozen class projector, which was trained during Vision-to-CLIP
alignment. In the semantic-to-vision mapping phase, we align the synthetic visual features with real
ones from the frozen, semantic-aligned backbone. In the projection phase, we directly align the
projected features with the corresponding semantic embeddings.

Generation-to-Semantic alignment consists of two key components: Generator-to-Vision (G2V)
alignment and Generated-Vision-to-Semantic (GV2S) alignment. Specifically, we first pass X
through the frozen backbone to obtain the real semantic-aligned visual features F. Then, we
apply σ̂ to split F into Fs ∈ RO×C , representing backbone features assigned to targets, and
F∅ ∈ R(Q−O)×C , representing features without assigned targets. Next, we generate the pseudo
visual features F′, as shown in Fig. 3b. Formally, Fs is fed into the VAE encoder (Kingma &
Welling, 2013) to obtain the reparameterized output. Then, the corresponding semantic features
A′

s are added to the reparameterized output as semantic conditions. The result is fed into the VAE
decoder to generate the pseudo visual features F′

s.

After obtaining F′
s, we apply G2V alignment to align F′

s with the real visual features Vs. We follow
conventional methods (He et al., 2023b; Bucher et al., 2019; Cheng et al., 2021b) to align F′

s with
Fs using the GMMN loss (Li et al., 2015).

Lmmd =
∑

v′s∈V′
s

k(v′s,Vs) +
∑

vs∈Vs

k(vs,V′
s)− 2

∑
v′s∈V′

s

∑
vs∈Vs

k(v′
s, vs), (6)

where k(a, b) = exp ( 1
2λ2 ||a− b||2) is a kernel function with a bandwidth λ. Due to the lack

of unseen visual data, the backbone captures only a limited portion of the real visual distribution,
resulting in less diversity compared to the complete visual distributions. To address this issue, we
apply contrastive alignment to supervise F′

s with F, encouraging the generation of more diverse
visual features.

Ldiv = ΣO
i

exp(f
′⊤
i · fi/τ)

ΣO
j exp(f

′⊤
i · f′j)/τ) + ΣQ−O

k exp(f′⊤i · f∅k /τ)
, (7)

where f ∈ F, f′ ∈ F′, f∅ ∈ F∅ and τ is the hyperparameter to control the scale of loss. By pushing
away from different Fs the generator knows the difference between objects and pushing away from
V∅ forces the generator to produce the features that are more similar to the real visual distributions.
To recap, the total loss function of G2V alignment is: Lg2v = Lmmd + Ldiv, G2V alignment
helps the generator align with the semantic-aligned backbones with more visual diversity. Although
the G2V alignment aligns pseudo-visual features with real semantic-aligned visual features, the
generated visual features may not strictly adhere to the original semantic embeddings. Therefore,
we propose the GV2S alignment. Specifically, after aligning F′ with F through G2V alignment, we
map F′ through the frozen class projector to obtain the F′

s. Then, we align F′
s with the all the seen

semantic features As through GV2S alignment, Lgv2s = Lfocal(F′
s,As), where Lfocal indicates the

same loss function in Vision-to-CLIP alignment, which ensures the semantic consistency between
the generator and the backbone while ensuring that the semantics can be integrated into the generated
visual embeddings. In summary the total loss function for G2S alignment is:

Lg2s = Lmmd + λs · Lg2v + λv · Lgv2s, (8)

where λs and λv are two hyperparameters to control the scale of cyclic alignment. In generation-
to-semantic alignment, G2V and GV2S alignments allow the generator to produce visual features
that are not only diverse but also semantically consistent, leading to more realistic generalizations
for unseen classes.

3.3 CLASS PROJECTOR ADAPTATION

Different from most of the generation methods (He et al., 2023b; Cheng et al., 2021b; Gu et al.,
2020), we finetune the class projector rather than a trainable classifier, which leads to weak gener-
alization capability. Specifically, we first fix the backbone and the generator. Then, we randomly

6
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sample U noise features U ∈ NU∗D from a standard Gaussian distribution to feed into the VAE
encoder. We also randomly sample U unseen semantic features from Au, which are used as condi-
tions for the frozen VAE decoder to generate pseudo unseen visual features. Finally, these features
are fed into the trainable class projector to obtain the pseudo unseen semantic feature F′

u. The class
projector is supervised by:

Lf = Lfocal(F,As) + Lfocal(F′
u,A). (9)

3.4 TRAINING OBJECTIVES AND INFERENCE

Our method need three steps of training. First, we train a backbone and a class projector based
on the supervision of seen classes with Vision-to-CLIP alignment (Eq. 5). Second, we freeze the
backbone and the class projector and train a generator with Generation-to-Semantic alignment (Eq.
8). Finally, we use the real-seen visual features from the backbone and the pseudo visual features
from the generator to finetune the class projector with Eq. 9.

During inference, we input the image into the backbone to extract visual features and generate
predicted masks. The visual features are then passed through the fine-tuned class projector and
the probability of each visual feature is calculated by taking the inner product between the visual
features and the semantic features. Finally, we calculate the final result by applying the inner product
between the probabilities and the predicted masks.

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

Dataset. We use the COCO (Caesar et al., 2018) comprising 118K training and 5K validation images
for the experiments. For ZPS, we adopt the same setup as PADing (He et al., 2023b) selecting 73 of
80 things and 46 of 53 stuff as seen categories. For ZSS, we follow the setup of DeOP (Han et al.,
2023a), choosing 156 of 171 categories as seen categories.

Implementation Details. For panoptic segmentation, we leverage MMDetection (Chen et al.,
2019), and for semantic tasks, we utilize MMSegmentation (Contributors, 2020) as the code base,
and all the experiments are conducted on 8 V100 GPUs. Semantic embeddings are extracted using
the CLIP text encoder (Radford et al., 2021) with a ViT-B/16 (Dosovitskiy et al., 2020) backbone.
The text templates align with prior works (Ding et al., 2022a; Chen et al., 2023; Zhou et al., 2023; He
et al., 2023b). Our base model, Mask2Former (Cheng et al., 2022), employs a ResNet-50 (He et al.,
2016) as backbone and trains for 48 epochs with the same setting as the original Mask2Former. The
class projector is a simple MLP, and the generator is a VAE structure consisting of four layers of
MLP-Batchnorm1d-leakyReLU for the encoder and decoder. In Generation-to-Semantic alignment,
the generator trains for 12 epochs. Other hyperparameters are in the Supplementary materials.

Evaluation Metric. We follow the GZSL settings (He et al., 2023b; Ding et al., 2022a; Zhou et al.,
2023; Chen et al., 2023) where both the seen and the unseen categories need to be segmented cor-
rectly. To comprehensively consider the performance for both seen and unseen categories, we apply
the harmonic panoptic quality (hPQ) for panoptic segmentation and Intersections over Union (hIoU)
for semantic segmentation as the evaluation metric, hPQ = 2·sPQ·uPQ

sPQ+uPQ , and hIoU = 2·sIoU ·uIoU
sIoU+uIoU ,

where sPQ and uPQ denote the panoptic quality (Kirillov et al., 2019) for the seen and unseen
categories. sIoU and uIoU denote the mIoU for the seen and unseen categories. For the inference
speed, the metric is Frame Per Second (FPS) with one V100.

4.2 COMPARISON WITH OTHER METHODS

Comparison on Zero-Shot Panoptic Segmentation (ZPS). We first compare our method with the
state-of-the-art ZPS method (He et al., 2023b) in both inductive and transductive settings, presenting
the results in Table 2. In the inductive scenario, where we directly inference on the test dataset
without finetuning with the synthetic unseen visual features, we observe that PADing achieves 0
hPQ, with its sPQ surpassing ours by 2.8%, attributed to overfitting on the seen categories. However,
our approach excels, surpassing PADing by 14% in uPQ, showcasing the merits of vision-to-cLIP
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Table 1: Comparison on Zero-shot Semantic Segmentation. The best results are noted in bold and
the second best is noted as underline.

Method Backbone Embed hIoU sIoU uIoU FPS

SPNet (Xian et al., 2019)

ResNet-101 (He et al., 2016)

Word2vec 14.0 35.2 8.7 -
ZS3 (Bucher et al., 2019) Word2vec 15.0 34.7 9.5 -
CaGNet (Gu et al., 2020) Word2vec 18.2 33.5 12.2 -

SIGN (Cheng et al., 2021b) Word2vec 20.9 32.2 15.5 -
Zzseg (Xu et al., 2022) CLIP 8.7 38.7 4.9 1.11

ZegFormer (Ding et al., 2022a) CLIP 27.2 37.4 21.4 6.69
ZegCLIP (Zhou et al., 2023) ViT-B (Dosovitskiy et al., 2020) CLIP 40.8 40.2 41.1 -

PADing (He et al., 2023b) ResNet-50 (He et al., 2016) CLIP 30.7 40.4 24.8 -
Ours CLIP 36.1 40.1 32.9 24.0

DeOP (Han et al., 2023a) ResNet-101c (Chen et al., 2018) CLIP 38.2 38.0 38.4 4.37
Ours CLIP 41.4 42.4 40.5 9.24

Table 2: Comparison on Zero-Shot Panoptic Segmentation.

Model Inductive Transductive

hPQ sPQ uPQ hPQ sPQ uPQ

PADing (He et al., 2023b) 0.0 43.3 0.0 22.3 41.5 15.3
Ours 20.8 40.5 14.0 27.5 39.2 21.2

alignment. In the transductive settings, our method outperforms PADing by 5.2% hPQ and 5.9%
uPQ with slightly lower sPQ, showing the merits of generation-to-semantic alignment.

Comparison on Zero-shot Semantic Segmentation (ZSS). We conduct experiments on challeng-
ing ZSS tasks. The metric we use is hIoU in DeOP (Han et al., 2023a) and the dataset is COCO
(Caesar et al., 2018) with only 156 of 171 categories during training. It’s important to note that
the reported performance does not involve self-training or model ensemble with the CLIP visual
encoder. As depicted in Table 1, in comparison to PADing, our sIoU performance is slightly lower
(40.1% vs. 40.4%). However, our uIoU significantly surpasses PADing by 8.1%. The hIoU, rep-
resenting the overall performance of both sIoU and uIoU, is 5.4% higher than PADing. It’s worth
mentioning that these results are achieved using the ResNet-50 (He et al., 2016), and our method
even outperforms some approaches, such as ZegFormer (Ding et al., 2022a) with ResNet-101. When
changing to larger backbones, compared with DeOP (Han et al., 2023a), we can achieve higher per-
formance while 2× faster, highlighting our effectiveness. When compared with some methods that
are well-designed only for zero-shot segmentation, i.e., ZegCLIP (Zhou et al., 2023), though the
mask2former may have weakness in semantic segmentation, we can still achieve higher perfor-
mance in hIoU (41.4% vs. 40.8%). At the same time, the backbone we use is ResNet101-c (Chen
et al., 2018) which is also weaker than ViT-B.

Comparison on cross-dataset. To better show the generalization ability of our method, we conduct
experiments under the same cross-dataset settings as other methods (Han et al., 2023a; Xu et al.,
2022) where only part of the categories are used in training and we directly infer on other datasets
without fine-tuning on another dataset. The metric is the mIoU of all the categories, and the results
are shown in Table 3. Compared with the SOTA methods, i.e., DeOP (Han et al., 2023a), our
method achieve higher performance in PASCAL VOC (VOC-20) (Everingham et al., 2015), and
Pascal Context (PC-59) (Mottaghi et al., 2014). Despite slightly lower performance on ADE20k
(A-150) due to CLIP integration, DeOP sacrifices speed which is only 50% of our efficiency.

4.3 ABLATION STUDY

We employ MaskFormer (Cheng et al., 2021a) as the base model trained 12 epochs in all stages and
only on panoptic segmentation due to its difficulty. Unless stated, the ablation studies on our method
are conducted under both inductive and transductive settings.

Ablations on the proposed methods. The results are shown in Table 4. We set the methods that only
use Lmatch and Lmmd as the baseline. In the inductive setting, though the baseline can generalize
to the unseen classes, its performance is too weak. When we adapt the model with synthetic unseen
visual features, both sPQ and uPQ drop, indicating that the realistic generation is significant. Then,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Comparison on cross-dataset generalization performance.

Method Backbone Training Dataset VOC-20 PC-59 A-150 FPS

ZS3 (Bucher et al., 2019)

ResNet-101 (He et al., 2016)

PASCAL VOC 38.3 19.4 - -
LSeg (Li et al., 2022a) PASCAL VOC 47.4 - - -

OpenSeg (Ghiasi et al., 2022) COCO 60.0 36.9 15.3 -
OpenSeg (Ghiasi et al., 2022) COCO + Loc. Narr. 63.8 40.1 17.5 -

Zzseg (Xu et al., 2022)
ResNet-101c (Chen et al., 2018) COCO-Stuff-156

88.4 47.7 20.5 1.11
DeOP (Han et al., 2023a) 91.7 48.8 22.9 4.37

Ours 93.7 49.7 20.9 9.24

Table 4: Ablations on our modules where “V2C” indicates the Vision-to-CLIP alignment, “G2S”
indicates the Generation-to-Semantic aligment, and “CPA” indicates the class projector adaptation.
Without CPA, the G2S module cannot contribute effectively to performance because the synthetic
features for unseen classes cannot be utilized.

method Inductive Transductive

hPQ sPQ uPQ hPQ sPQ uPQ

Baseline 10.9 31.0 6.6 9.4 26.0 5.7
Baseline + V2C 15.8 31.2 10.5 12.3 19.7 9.0

Baseline + V2C + G2S & CPA 15.8 31.2 10.5 22.6 31.0 17.7

Table 5: Ablations on target attention and instance alignment in V2C alignment.
Target

Attention
Instance

Alignment
Inductive Transductive

hPQ sPQ uPQ hPQ sPQ uPQ

- - 15.4 31.2 10.2 20.3 30.1 15.3
- ✓ 14.0 31.0 9.0 20.9 30.5 15.8
✓ - 14.5 31.0 9.4 22.0 31.0 17.0
✓ ✓ 15.8 31.2 10.5 22.6 31.0 17.7

we add the V2C alignment to the baseline and find that though the sPQ does not change too much, the
uPQ increases from 6.6% to 10.5%, nearly 4%, indicating the effectiveness of the V2C alignment. If
we continue to use this backbone with the baseline generator, we can find that the same performance
drop happens. Note that without the class projector adaptation, simply training a generator can not
affect the transductive performance as the synthetic unseen features can not be used. Therefore,
finally, we add all the rest proposed methods, i.e., G2S and CPA, we find that uPQ achieves a huge
improvement from 10.5% to 17.7%.

Ablations on the components in V2C alignment. We set the model without target attention and
instance alignment as the baseline. Table 5 shows the performance ablation. First, we only add
instance alignment to the baseline and find a performance drop in inductive settings due to the
drop of unseen classes. However, this loss outperforms the baseline in transductive settings with
an improvement in hPQ and uPQ. Next, we replace the instance alignment with the target attention
which aggregates all the visual features, and find that though the performance is still lower than
the baseline in inductive settings, it is higher than that with only instance alignment. When coming
to transductive settings, highlighted feature aggregation receives a large improvement in hPQ and
uPQ which are 1.7% higher than the baseline. When combining them, we can find the inductive
performance is higher than the baseline and further increases the transductive performance to 2.3%.

Table 6: Ablations on G2V and GV2S in
G2S alignment.

Lg2v Lgv2s
Transductive

hPQ sPQ uPQ

- - 10.6 12.6 9.1
- ✓ 21.9 31.1 16.9
✓ - 20.8 30.6 15.8
✓ ✓ 22.6 31.0 17.7

Ablations on the components in G2S alignment.
We also conduct experiments to validate the effec-
tiveness of each component in G2S alignment as
shown in Table 6. We set the methods without G2S
alignment as the baseline. First, we add Lgv2s to the
baseline and find huge performance improvements
for all hPq, sPQ, and uPQ which increase 11.3%,
18.5%, and 7.8% respectively. Then we only add
the Lg2v , though the performance also increases, it
is still lower than the Lg2v .

Visualization of the generated class features. To
show the quality of the generated visual features, we use t-SNE (Van der Maaten & Hinton, 2008)
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(a) PADing generation. (b) Baseline generation. (c) Our method.

Figure 4: T-SNE visualization of the generated visual features for unseen classes: (a) PADing gen-
erations, (b) baseline generation, (c) our method’s generation. The number in the title represents
the overall average distance between all class centers, while the numbers in the legend indicate the
distances between individual class centers.

Images

GTs

PADing

Ours

Seen Person Sand Tennis-racket Boat  Sea Mountain Wall  Couch Floor Unseen Grass Tree Playground River Cow Sky Suitcase

Figure 5: Visualization of our proposed methods. The row column shows the input images and the
following rows are the labels, PADing visualizations, and our visualizations.

to visualize their distribution as shown in Fig. 4. Randomly selecting 10 out of 14 unseen categories
from ZPS, we first visualize PADing generation, and find that some categories with similar semantics
are mixed, e.g., tree and grass. For our baseline method, we can find that the generated visual
features are nearly inseparable. Our method achieves the best discriminative abilities and high visual
diversity. Due to the space limits, the visualization of the methods without Ldiv is shown in the
Supplimentary Materials.

Prediction visualization. To qualitatively express the merits of the proposed methods, we visualize
the predictions of our proposed methods as shown in Fig. 5. As can be seen in this figure, our method
can correctly segment the seen categories, e.g., boat, and the unseen categories which may be missed,
e.g., cow, in the third image. More visualization results are in the Supplimentary Materials.

5 CONCLUSION

In this work, we presented a novel semantic-centric alignment approach for zero-shot segmenta-
tion that addresses the limitations of vision-centric methods in handling unseen classes. By aligning
generated features with a structured semantic distribution across all classes, we ensured better gener-
alization and reduced overfitting to seen classes. Our two-stage alignment process and the projector
adaptation, integrating Vision-to-CLIP alignment and generator training alignment, enriched the se-
mantic features with diverse visual attributes while preserving semantic consistency. This strategy
significantly improved the model’s capacity to handle unseen classes, achieving state-of-the-art re-
sults in both zero-shot panoptic and semantic segmentation tasks. Our approach demonstrates that
maintaining a unified semantic-aligned feature space can effectively support zero-shot segmentation
without the need for fine-tuning.
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