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ABSTRACT

Representation similarity measures have emerged as a popular tool for examining
learned representations. Many existing studies have focused on analyzing aggregate
estimates of similarity at a global level, i.e. over a set of representations for N
input examples. In this work, we shed light on the importance of investigating
similarity of representations at a local level, i.e. representations of a single input
example. We show that peering through the lens of similarity of individual data
points can reveal previously overlooked phenomena in deep learning. Specifically,
we investigate the similarity in learned representation of inputs by architecturally
identical models that only differ in random initialization. We find that while
standard models represent (most) inputs similarly only when they are drawn from
training data distribution, adversarially trained models represent a wide variety of
out-of-distribution inputs similarly, thus indicating that these models learn more
“stable” representations. We design an instantiation of such a pointwise measure,
named Pointwise Normalized Kernel Alignment (PNKA), that provides a way to
quantify the similarity of an individual point across distinct representation spaces.
Using PNKA, we additionally show how we can further understand the effects of
data (e.g. corruptions) and model (e.g. fairness constraints) interventions on the
model’s representations.

1 INTRODUCTION

The success of deep neural network (DNN) models can be attributed to their ability to learn powerful
representations of data that enable them to be effective across a diverse set of applications. However,
the impressive performance of these models is often overshadowed by a variety of reliability con-
cerns that arise when they are deployed in real-world scenarios (Geirhos et al., 2018; Hendrycks &
Dietterich, 2019; Taori et al., 2020; Szegedy et al., 2013; Papernot et al., 2016; Athalye et al., 2018;
Moosavi-Dezfooli et al., 2017; Angwin et al., 2016; O’neil, 2017). These concerns have led to a
surge in interest in better understanding the internal representations of these models before deploying
them (Alain & Bengio, 2016; Davari et al., 2022; Kriegeskorte et al., 2008). One promising line of
research that offers a deeper understanding of model representations is representation similarity (Ko-
rnblith et al., 2019; Laakso & Cottrell, 2000; Raghu et al., 2017; Morcos et al., 2018). At their core,
representation similarity measures provide an overall score that quantifies how a set of points are
positioned relative to each other within the representation spaces of two models.

While aggregate measures have proved to be a useful tool to better understand many properties of
deep learning (Nguyen et al., 2021a;b; Nanda et al., 2022; Raghu et al., 2021; Moschella et al., 2022),
in this work we show that many other intriguing phenomena in deep learning can be understood
by measuring the similarity of representations at the level of individual data points. Consider the
well-studied case of two architecturally identical DNNs that only differ in random initialization. Prior
works have independently concluded that two such models learn “similar” representations (indicated
by a high aggregate representation similarity score on the test set) (Kornblith et al., 2019; Raghu
et al., 2017). However, when analyzing similarity at the level of individual points, we find that not all
points are represented similarly across these two models. Instead, we observe a few points whose
representations obtain lower similarity scores. We refer to these as unstable points. We find that such
unstable points hold some properties that can have implications for the models’ performances on
these points, i.e. models are more likely to disagree on the predictions for unstable points.
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We further show how the use of a pointwise representation measure enables a deeper and better
understanding of the connections between a model’s representations and several other aspects,
including its behavior and the impact of interventions on the acquired representations, both on the
data employed (e.g. how changing the data distribution affects the representations of individual
points) as well on the model itself (e.g. how training with fairness constraints changes representations
of individual points).

To this end, we design an instantiation of such a pointwise representation similarity measure, which
we call Pointwise Normalized Kernel Alignment (PNKA), that builds on the well-studied and broadly
used Centered Kernel Alignment (CKA) (Kornblith et al., 2019) and assigns similarity scores to
each point being evaluated across two distinct representations. Intuitively, for PNKA to assign a
high similarity score to a point across two representation spaces, that point should be positioned
similarly relative to the other points in both representations. Analogous to CKA, how to define
the relative position of a point for PNKA can be changed flexibly by using the appropriate kernel
function 1. PNKA can be seen as a local decomposition of global representation similarity measures,
by providing a distribution of similarity scores that when aggregated, provides an overall similarity
estimation that is related to the aggregate measures broadly used today.

Our key contributions are summarized as follows:

• We highlight the importance of analyzing representation similarity at the granularity of
individual data points. To this end, we design an instantiation of a measure, PNKA, that can
provide similarities at a pointwise granularity.

• While the widely used aggregate representation similarity measures assign a high overall
similarity score to the penultimate layer representations of two models that differ solely due
to stochastic factors, e.g. in their random initialization, we show that not all individual inputs
score equally highly. We call the points with lower representation similarity as unstable.

• Through a pointwise representation similarity measure (PNKA) we are able to investigate the
properties that these points hold under different scenarios of data distribution shifts. We find
that models are more likely to disagree on the predictions of unstable points. We also show
that while non-robust models represent (most) points similarly only under an in-distribution
context, adversarially trained models represent a wide variety of out-of-distribution samples
similarly, thus indicating that these models learn more “stable” representations.

• Finally, using PNKA, we analyze how interventions to a model modify the representations
of individual points. Applying this approach to the context of learning fair representations,
we show that debiasing approaches for word embeddings do not modify the targeted group
of words as expected, an insight overlooked by current evaluation metrics.

1.1 RELATED WORK

Representation Similarity Measures. Recently, approaches that compare the representational spaces
of two models by measuring representation similarity have gained popularity (Laakso & Cottrell,
2000; Li et al., 2015; Wang et al., 2018; Raghu et al., 2017; Morcos et al., 2018; Kornblith et al.,
2019). Raghu et al. (2017) introduced SVCCA, a metric based on canonical correlation analysis
(CCA) (Hotelling, 1992), which measures similarity as the correlation of representations mapped
into an aligned space. Morcos et al. (2018) build on this work by introducing PWCCA, another
CCA-based measure that is less sensitive to noise. More recently, CKA (Kornblith et al., 2019) has
gained popularity and has now been extensively used to study DNN representations (Nguyen et al.,
2021a; Ramasesh et al., 2020; Raghu et al., 2019; 2021). CKA is based on the idea of first choosing a
kernel and then measuring similarity as the alignment between these two kernel matrices. We take
inspiration from this insight to propose PNKA. We refer readers to (Klabunde et al., 2023) for a
comprehensive overview of similarity measures.

Understanding Representations of Individual Data Points using Neighbourhoods The broad idea
of comparing nearest neighbors of instances in the representation space has been introduced in prior
works, albeit for different motives, e.g. changes in linguistic styles (Hamilton et al., 2016), analyzing
node embeddings (Wang et al., 2020), and for robust prediction (Papernot & McDaniel, 2018). While

1Similar to the CKA paper we use a linear kernel for all our experiments.
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Figure 1: Left: An illustrative example showing that aggregate similarity measures over representa-
tions Y and Z are not able to provide insights into the distribution of similarity scores at the level of
individual points. In this example, a pointwise measure shows that while the majority of points (in
black) are positioned highly similarly relative to the other points, a minority of points (in red) are
scattered highly dissimilarly. Right: Distribution of similarity scores for CIFAR-10 test set. Results
are an average over 3 runs, each one containing two models trained on CIFAR-10 with the same
architecture (ResNet-18) but different random initialization. While most of the points are similarly
represented (which agrees with CKA score), some are less similarly represented.

our method is inspired by the higher-level idea of comparing neighborhoods across representations,
we differ significantly from these works since we offer a concrete measure of pointwise similarity
that is general-purpose and can be broadly applied to understand many phenomena in deep learning,
across different data modalities. Recent work by Shah et al. (2023) proposes a method to estimate the
contribution of individual points to learning algorithms. However, their work is mainly focused on
understanding what features of inputs are encoded in the representations and does not evaluate the
similarity of representations. Instead, in our work, we focus on showing the importance of analyzing
whether two models represent individual inputs similarly. Work by Moschella et al. (2022) also relates
to ours as their proposed model stitching method resembles our proposed measure (PNKA). However,
we note here that the goal, contributions, and assumptions made in their paper differ drastically from
ours. More importantly, their method assumes that the angles between elements of the latent space
are kept the same for all elements, which we show in Section 4 as not being the case.

2 WHY STUDY REPRESENTATION SIMILARITY AT FINER GRANULARITY

Previous studies have primarily focused on inspecting the aggregate-level representation similarity
of DNNs. As a consequence, these studies do not provide insights into the distribution of similarity
scores at the granularity of individual data points. We illustrate this in Figure 1a, where we compare
representation spaces of two models, namely Y and Z. The majority of points (in black) are positioned
highly similarly relative to the other points, in both representations, while a minority of points (in
red) are positioned highly dissimilarly. We need fine-grained pointwise similarity scores to enable us
to distinguish between these stably represented (black) and unstably represented (red) points.

In Figure 1b, we demonstrate the need for such a fine-grained measure with a concrete example.
Figure 1b shows the distribution of pointwise similarity scores, on the CIFAR-10 test set, for two
ResNet-18 models that only differ on their random initialization, but are otherwise trained using the
same procedure on CIFAR-10 2. We also illustrate some data points sampled at different points in the
distribution. We see that most of the points exhibit high similarity scores, which also aligns with the
high CKA score obtained 3. However, there exist some (unstable) points in the tail of the distribution
with lower representation similarity scores. Identifying unstable points whose representational
stability is impacted solely by stochastic factors (i.e. randomness) within the training process is not

2More information on training details as well as test set accuracies can be found in Appendix A.
3We expand this analysis to other architectures and datasets in Appendix B.
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only valuable but also crucial. As we show later in Section 4, these points are not only more likely to
originate from out-of-distribution sources but are also prone to higher misclassification rates.

Finally, we note that some prior studies using aggregate similarity measures implicitly assume that
representational instability arising from randomness in the training procedure would be limited to
very few points. The original CKA paper (Kornblith et al., 2019) claimed that two models that
differ only in their random initialization would learn highly similar representations at the penultimate
layer, without qualifying that the observation holds true only for inputs drawn from the training
data distribution. This observation has since been even proposed as a sanity check to audit different
representation measures, e.g. for Ding et al. (2021) a reliable similarity measure must assign high
similarity to representations from models that only differ in random initialization. As we show in
Section 4, the stability of learned representations for models with different random initializations
is strongly influenced by other factors such as whether models use robust or standard learning
procedures. Thus, the validity of conducting such a sanity check becomes questionable.

3 MEASURING POINTWISE REPRESENTATION SIMILARITY

In order to analyze representation similarity at a local level, we design an instantiation of a pointwise
representation similarity measure, named Pointwise Normalized Kernel Alignment (PNKA), which
builds on the well-studied and broadly used Centered Kernel Alignment (CKA).

Notation. We denote by Y 2 RN⇥d1 , Z 2 RN⇥d2 two sets of d1 and d2 dimensional representations
for a set of N inputs, respectively. We assume that Y and Z are centered column-wise, i.e. along each
dimension. We aim to measure how similarly the i-th point is represented in Y and Z. We denote a
pointwise similarity measure between representations Y and Z for point i by s(Y, Z, i).

Formally defining PNKA. To design PNKA, we leverage the simple, but powerful insight from prior
works, which states that while we cannot directly compare similarity across representations, we can
do so within the same representation (Kornblith et al., 2019; Kriegeskorte et al., 2008). Therefore,
to determine whether the representations Yi and Zi of point i are similar, we can first compare how
similarly i is positioned relative to all the other points within each representation. We then compare
the relative position of i across both representations.

More formally, given a set of representations Y and a kernel k, we can define a pairwise similarity
matrix between all N points in Y as K(Y ) with K(Y )i,j = k(Yi, Yj). In our work, we use linear
kernels, i.e. k(Yi, Yj) = Yi · Y >

j , but other kernels, e.g. RBF (Kornblith et al., 2019) could be used
as well. We leave the exploration of other types of kernels for future work. Given two similarity
matrices K(Y ) and K(Z), we measure how similarly point i is represented in Y and Z by comparing
its position relative to the other points. To this end, we define

PNKA(Y, Z, i) = cos(K(Y )i,K(Z)i) =
K(Y )>i K(Z)i

||K(Y )i|| ||K(Z)i||
, (1)

where K(Y )i and K(Z)i denote how similar point i is to all other points in Y and Z, respectively.
We use cosine similarity to compare the relative positions across representations for two reasons.
First, cosine similarity provides us with normalized similarity scores for each point. Second, by
normalizing by the length of the similarity vectors K(Y )i and K(Z)j , we compare the relative
instead of the absolute similarity of points, i.e. how similar point i is represented relative to points
j and j0. PNKA can also be extended into an aggregate version, that has empirically shown to be
correlate with CKA (Kornblith et al., 2019) (Appendix C.1), by computing

PNKA(Y, Z) =
1

N

NX

i=1

PNKA(Y, Z, i), (2)

Computing PNKA with stable reference points. As PNKA works by comparing how a point is
positioned relative to other reference points across two representation spaces, one may wonder if
the reference points themselves should be required to have stable representations. For instance, in
Figure 1a, computing PNKA scores using unstable (red) points as reference points might yield low
similarity scores for all points. To this end, one can construct a particular case of PNKA, restricting
the set of N reference points to L stable points. We establish that reference points in this context
must adhere to two essential properties: (1) stability: points should remain stably positioned relative
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to each other, i.e. have high PNKA amongst themselves, and (2) spatial diversity: points should
be well-distributed in the representation space, i.e. points should not be collapsed. We show in
Appendix C.2 that these two properties hold for our choice of reference points. The reference points
can come from the training set or as a subset of the test set distribution (L ✓ N , where L = N is the
general case previously presented). In the experiments of the following section, we draw L = 1, 000 4

reference points from the training set, i.e. we compute the relative position of the N test set points
with respect to a subset of L stable and spatially diverse points from the training set.

Formally, given the representations of points A 2 RN⇥d1 , C 2 RN⇥d2 , and respective reference
points B 2 RL⇥d1 , D 2 RL⇥d2 , from two models with dimensions d1 and d2, respectively, we
define a pairwise similarity matrix as K(A,B) with K(Ai, Bj) = k(Ai, Bj). Thus, in this specific
case PNKA is defined as

PNKA(Y, Z, i) = cos(K(A,B)i,K(C,D)i) =
K(A,B)>i K(C,D)i

||K(A,B)i|| ||K(C,D)i||
, (3)

where K(A,B)i and K(C,D)i denote how similar point i is to the L reference points in each of the
models.

Properties. We empirically show that PNKA holds important properties (Kornblith et al., 2019),
such as invariance to both orthogonal transformations and isotropic scaling (Appendix C.3). We also
empirically show that PNKA captures the overlap of neighbors across two representations and that
if the PNKA score of point i is higher than that of j, then there is a higher chance that i’s nearest
neighbors overlap more across representations Y and Z than those of j (Appendix C.4).

4 USING POINTWISE ANALYSIS TO UNDERSTAND DATA INTERVENTIONS

In this section, we use PNKA to investigate the properties of unstable points, i.e. points represented
less similarly, between models that differ solely due to their random initialization, and analyze
if these points possess some distinct properties. We deliberately chose to focus on comparing
representations of models that differ on random initialization as in this scenario, unstable points
represent inputs whose representations are heavily influenced by random chance, and using such
unstable representations for downstream tasks can be worrisome. We analyze the (in)stability of
representations under three scenarios: (1) in-distribution data points (Section 4.1), e.g. the test set,
which exemplifies a usual scenario where the model will be used for the same downstream task that it
has been previously trained for; (2) subset of data points is out-of-distribution (Section 4.2) which
might illustrate a practical scenario in which individuals seek to evaluate models on “in-the-wild”
data while already possessing a set of trusted (in-distribution) data points; (3) all data points are
OOD (Section 4.3), which portrays a scenario where the features of the models might be used for
a different task than the model was previously trained for, e.g., transfer learning. In the remainder
of this section, we report an average PNKA score over 3 runs of two models trained on CIFAR-10
(ResNet-18 (He et al., 2016)) differing only in their random weight initialization.

4.1 MODELS MORE LIKELY TO DISAGREE ON UNSTABLE POINTS

We first examine unstable points for inputs that fall within the training distribution, i.e. CIFAR-10
test set. We also expand this analysis to CIFAR-10.1 (Recht et al., 2018), which attempts to construct
another CIFAR-10 test set, closely following the methodology of the original dataset, but which has
been shown to cause a significant drop in accuracy (4 � 10%). Given that unstable points exhibit
greater dissimilarity across models trained with different initializations, a reasonable hypothesis is
that these models will be more prone to disagreeing on the predictions for these unstable points. In
Figure 2 we show the percentage of instance predictions on which the models agree, relative to their
ranked similarity score. The points were first sorted according to their similarity scores, with the
leftmost end (0) representing the group with the lowest scores and the rightmost end (9) representing
the group with the highest scores, and then grouped into deciles, with each bar representing 10% of
the total points in the test set. The vertical dotted line shows the aggregate scores (PNKA) for each
group. We can see that the fraction of points whose predictions the models disagree on are mainly at
the tail of the distribution, i.e. being less similarly represented, for both CIFAR-10 and CIFAR-10.1
test sets. In Appendix D.1 we show the same pattern for other choices of architecture and dataset. We

410% of the total amount of test set points of CIFAR-10 and CIFAR-100 datasets.
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(a) Ratio of agreement (CIFAR-10).
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(b) Ratio of agreement (CIFAR-10.1).

Figure 2: Percentage of instance predictions on which the models agree, relative to their ranked
similarity score, for both CIFAR-10 (a) and CIFAR10.1 (b) test sets. The x-axis represents groups of
points sorted based on their pointwise representation similarity according to PNKA, with each group
(bar) containing 10% of the total amount of instances. The y-axis represents the fraction of those
points on which models agree (blue) or disagree (red). The vertical dotted line shows the aggregate
scores (PNKA) for that group. Results are averaged over 3 runs, each one containing two models
trained on CIFAR-10 with different random initialization. The more unstable a point is, i.e. lower its
representation similarity, the more likely models are to disagree on its prediction.

also show in Appendix D.1.2 that these points are not only classified in different ways but that most
of them are misclassified as well. Lower accuracy is to be expected since if two models disagree
on a prediction, at most one of them can be correct. This finding also aligns with previous work on
calibration Baek et al. (2022); Jiang et al. (2021); Garg et al. (2022) which uses a model’s outputs to
detect which instances are more likely to be misclassified. Therefore, unstable points are those for
which models exhibit the greatest prediction disagreement and incorrect predictions.

4.2 OUT-OF-DISTRIBUTION POINTS MORE LIKELY TO HAVE UNSTABLE REPRESENTATIONS

Next, we examine the case where some points do not come from the training distribution. To inspect
that, we perturbed p% of the test set points with naturally occurring perturbations, e.g. blurring, color
jitter, and elastic transformation. We then compute PNKA on the test set with p% perturbed and
1� p% non-perturbed (i.e. originally from the test set) points for models that differ in their random
initialization. We hypothesize that the representations of models are similar for points that have a
high likelihood under the models’ training distributions, but that the representations of models will
be dissimilar on OOD points. In Figure 3 we show the percentage of perturbed instances, relative to
their ranked similarity scores. As previously, points were sorted according to their similarity score
and then grouped into deciles. We use p = 10% and show that, for different types of perturbations,
perturbed points are more likely to obtain lower similarity scores compared to non-perturbed (i.e. in-
distribution) points. Thus, under this scenario, unstable points are more likely to be OOD than points
with higher representation similarity. We expand this analysis for other choices of p, architectures,
and datasets in Appendix D.2.

4.3 ROBUST MODELS ARE LESS INFLUENCED BY STOCHASTIC FACTORS

Finally, we investigate the extreme scenario of data distribution shift, where all the samples are
out-of-distribution, i.e. p = 100%. Prior work (Ding et al., 2021; Davari et al., 2023; Nguyen et al.,
2021a;b; McCoy et al., 2019) has employed global measures of representation similarity to examine
models’ representations when exposed to out-of-distribution (OOD) data. It has been observed that
these models exhibit dissimilar representations, even when the sole difference lies in their random
initialization. Under this scenario, we also study unstable points for adversarially trained (i.e. robust)
models as they are trained to be more resilient to adversarial examples, i.e. samples that are slightly
perturbed to alter the model’s behavior. For both types of models, we again compute the pointwise
representation similarity between models that differ only in random initialization. Figure 4 shows
the similarity scores distribution for both robust and non-robust models trained on CIFAR-10 and
evaluated under their original distribution, CIFAR-10 test set (Figure 4a), as well as two different
distribution shifts: CIFAR-100 (Figure 4b) and images with complete random noise (Figure 4c). We

6



Under review as a conference paper at ICLR 2024

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Unperturbed Points Perturbed Points

Ranking of PNKA score (1000 points in each bin)

Pe
rc

en
ta

ge

0.766 0.9 0.944 0.963 0.972 0.978 0.981 0.984 0.987 0.99

(a) Blurring.

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Unperturbed Points Perturbed Points

Ranking of PNKA score (1000 points in each bin)

Pe
rc

en
ta

ge

0.811 0.923 0.952 0.966 0.974 0.978 0.982 0.985 0.987 0.99

(b) Color Jitter.
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(c) Elastic Transform.

Figure 3: Percentage of perturbed instances, relative to their ranked similarity score. The x-axis
represents groups of points sorted based on their pointwise representation similarity according to
PNKA, with each group containing 10% of the total amount of instances. The y-axis represents
the fraction of the points that are perturbed (red) or not perturbed (green). The vertical dotted line
shows the aggregate scores (PNKA) for that group. We consider three possible perturbations: (a)
blurring, (b) color jitter, and (c) elastic transformation. Results are over CIFAR-10 test set instances,
averaged over 3 runs, each one containing two models trained on CIFAR-10 with different random
initializations. Note that the more unstable a point is, i.e. lower the representation similarity, the more
likely a point is to be OOD.
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(a) CIFAR-10.
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(b) CIFAR-100.
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(c) Complete Random Noise.

Figure 4: Distribution of similarity scores for standard (non-robust) models (blue) and adversarially
trained (robust) models (red). Results are averaged over 3 runs, each one containing two models
trained on CIFAR-10 with different random initialization. The pointwise similarity scores are shown
for (a) CIFAR-10 test set (in-distribution), as well as (b) CIFAR-100 and (c) complete random noise.
While standard models represent (most) inputs similarly only when they are drawn from training
data distribution (left-most figure), adversarially trained models represent a wide variety of out-of-
distribution inputs similarly, thus indicating that these models learn more “stable” representations.

can see that under a similar training distribution (Figure 4b), both robust and non-robust models have
similar PNKA distributions. However, as we use points further away from the distribution, the robust
models seem to obtain more stable representations than the non-robust model. Even for complete
random noise, the robust model represents several points similarly, i.e., PNKA score > 0.9. This
suggests that robust models learn more “stable” representations across a wide variety OOD data.
We expand this analysis to other types of OOD data, as well as models trained on other datasets in
Appendix D.3.

5 USING POINTWISE ANALYSIS TO UNDERSTAND MODEL INTERVENTIONS

Pointwise representation similarity can also be a useful tool to better understand the effects of
interventions on a model. We can use PNKA to compute pointwise similarity scores between the
representations of the original and the modified (i.e. intervened) models and analyze the inputs that
are most affected by the intervention. We showcase the use of PNKA in the context of interventions
to learn fair ML models.

An important goal of the fair ML literature is non-discrimination, where we attempt to mitigate
biases that affect protected groups in negative ways (Angwin et al., 2016; O’neil, 2017). A popular
approach to achieve non-discrimination is through learning debiased or fair representations (Zemel
et al., 2013; Creager et al., 2019; Louizos et al., 2015). These approaches transform or train model
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(a) GloVe ⇥ GP-GloVe.
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(b) GloVe ⇥ GN-GloVe.
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(c) GloVe ⇥ GP-GN-GloVe.

Figure 5: Distribution of PNKA scores per group of words for SemBias dataset (Zhao et al., 2018).
We compare the baseline (GloVe) model and its debiased versions. Words with the lowest similarity
scores are the ones that change the most from the baseline to its debiased version. Surprisingly, across
all debiased embeddings, the words whose embeddings change the most are the gender-definition
words.

representations in a way that minimizes the information they contain about the group membership
of inputs. However, today, we often overlook how the interventions targeting (macro-)group-level
fairness affect representations at the (micro-)individual-level and whether the changes in individual
point representations are desirable or as intended. By applying PNKA to the original and the debiased
representations, we can understand the effects of the debiasing intervention at the level of individual
inputs, and analyze the inputs whose representations underwent the biggest change. We demonstrate
how this ability can be leveraged in the context of natural language word embeddings to investigate
whether the debiasing approaches indeed work as intended.

Approaches to debias word embeddings: Many word embedding approaches have been found
to produce biased representations with stereotypical associationss (Bolukbasi et al., 2016; Gonen
& Goldberg, 2019; Zhao et al., 2018), and several methods have been proposed with the goal of
reducing these stereotypical biases (Bolukbasi et al., 2016; Gonen & Goldberg, 2019; Zhao et al.,
2018; Kaneko & Bollegala, 2019). In this work, we choose two approaches with the goal of using
PNKA to analyze whether debiasing successfully decreases stereotypical associations. Both debiasing
techniques are based on the original GloVe (Kaneko & Bollegala, 2019): (1) Gender Neutral (GN-
)GloVe (Zhao et al., 2018) focuses on disentangling and isolating all the gender information into
certain specific dimension(s) of the word vectors; (2) Gender Preserving (GP-)GloVe (Kaneko &
Bollegala, 2019) targets preserving non-discriminative gender-related information while removing
stereotypical discriminative gender biases from pre-trained word embeddings. The latter method can
also be used to finetune GN-GloVe embeddings, generating another model namely, GP-GN-GloVe.

Evaluation of debiased word embeddings: In order to evaluate the impact of the debiasing methods,
both GP- and GN-GloVe use the SemBias dataset (Zhao et al., 2018). Each instance in SemBias
consists of four word pairs: a gender-definition word pair (e.g. “waiter - waitress”), a gender-
stereotype word pair (e.g. “doctor - nurse”), and two other word-pairs that have similar meanings
but no gender relation, named gender-neutral (e.g. “dog - cat”). The goal is to evaluate whether
the debiasing methods have successfully removed stereotypical gender information from the word
embeddings, while simultaneously preserving non-stereotypical gender information. To this end,
GP- and GN-GloVe evaluated how well the embeddings can be used to predict stereotypical word
pairs in each instance of the SemBias dataset. The details and results of this prediction task are in
Appendix E.1. The evaluation shows that GP-Golve embeddings offer only a marginal improvement,
while GN- and GP-GN-GloVe embeddings offer substantial improvement at the prediction task.

Using PNKA to understand debiased word embeddings: We applied PNKA to the original and the
debiased GloVe embeddings to examine whether the methods are indeed reducing bias as claimed.
Figure 5 shows the distribution of PNKA scores for words in SemBias dataset grouped by their
category (i.e., gender defining, gender neutral, and gender stereotype). We highlight two observations.
First, GP-Glove representations are very similar to GloVe (Figure5a) for almost all of the words,
whereas GN-Glove (Figure5b) and GP-GN-GloVe (Figure5c) considerably change the representations
for a subset set of the words. This observation aligns well with results of prior evaluation which
found that GP-GloVe achieves similar results to GloVe, while GN-Glove and GP-GN-Glove achieve
better debiasing results. Second, Figure 5 also shows that across all three debiasing methods, the
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(a) GloVe ⇥ GP-GloVe.
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(b) GloVe ⇥ GN-GloVe.
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(c) GloVe ⇥ GP-GN-GloVe.

Figure 6: Relationship between PNKA scores and percentage change in magnitude of the projection
onto the gender vector from the baseline GloVe. A positive change indicates an increase in magnitude
along the canonical gender direction. Word embeddings that change their gender information are the
ones that obtain low PNKA scores.

words whose embeddings change the most are the gender-definition words. Note that this observation
is in complete contradiction to the expectation that with debiasing, the embeddings that would change
the most are the gender-stereotypical ones, while the embeddings that would be preserved and not
change are the gender-definitional ones. Put differently, the pointwise similarity scores suggest a
very different explanation for why GN-GloVe and GP-GN-GloVe achieve better debiasing evaluation
results over SemBias dataset: rather than remove gender information from gender-stereotypical word
pairs, they are amplifying the gender information in gender-definition word pairs, resulting in better
performance in distinguishing gender-stereotypical and gender-definition word pairs.

We confirm our alternate explanation by measuring for each word how much its embedding changed
in terms of gender information, when compared to the original GloVe embedding, by projecting it onto
the canonical gender vector

�!
he -

�!
she (more in Appendix E.2), generating the percentage difference

in magnitude. Figure 6 shows that the GN-GloVe and GP-GN-GloVe debiasing methods primarily
amplify the gender information in gender-definition words, rather than reduce it for gender-stereotype
words. In fact, the words that change their gender information the most are the low-similarity
ones. This analysis illustrates how pointwise similarity scores can offer new insights, trigger new
investigations, and lead to a better understanding of the effects of model training interventions.

6 DISCUSSION

In this work, we demonstrate the power of investigating representations at the level of individual
data points. First, we show that not all data points obtain a high similarity score, even for models
that differ solely due to differences in random weight initialization. Under this context, we define the
lower similarity points as unstable. We then investigate some of the characteristics of unstable points,
including a higher likelihood of model prediction disagreements and the possibility that these points
might be out-of-distribution. We then show that while standard (i.e. non-robust) models represent
(most) inputs similarly only when they are drawn from the training data distribution, adversarially
trained (i.e. robust) models exhibit higher representation similarity for a broader range of out-of-
distribution points. This finding suggests that robust models learn more “stable” representations.
Finally, we use the context of fairness to show that pointwise similarity measures can be a useful tool
for understanding which individuals are most affected by model interventions, thus shedding light
on the internal characteristics of such modifications. A limitation of our work lies in the restricted
consideration of only a few model variations.

Other applications of pointwise representation similarity analysis. Employing pointwise repre-
sentation similarity measures unveils several intriguing directions for exploration. For instance, one
could examine differences in different architectures through the lens of similarity of individual points.
An initial exploration in this direction is presented in Appendix F. Another promising line of work
could potentially analyze how points are represented (dis)similarly across different layers of a neural
network. We offer an initial analysis in this direction in Appendix G. Finally, one can use PNKA to
delve deeper into the understanding of individual neurons within a neural network layer. We provide
an initial analysis of the influence of single neuron units on pointwise representation similarity in
Appendix H.
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Reproducibility. We run all our experiments using publicly available, open-source frameworks,
architectures and datasets. Thus, all our results can be seamlessly reproduced. We also attach our
code to aid reproducibility. To ensure correctness, we also report all our results over 3 random
seeds. All other details about pre-processing, learning rate, epochs, model architectures, and more
information can be found in Appendix A and are also included in our attached code.
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