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Abstract
While Large Language Models (LLMs) have be-
come widely used in natural language processing,
their deployment remains challenging in resource-
constrained environments due to substantial com-
putational requirements. Model compression tech-
niques such as pruning, quantization, and knowl-
edge distillation are commonly employed to reduce
resource burden. However, these methods often
compromise model robustness and multi-step rea-
soning ability. In this paper, we propose Dialecti-
cal Chain Distillation (DCD), a novel knowledge
distillation framework that enhances the reason-
ing capability of LLMs through structured teacher-
student interactions. DCD constructs dialectical
reasoning chains involving drafting, deep reason-
ing, verification, and finalization, which provide
informative and interpretable supervision for train-
ing student models. Experimental results on AIME
24, GSM8K and GPQA Diamond demonstrate that
DCD improves both reasoning accuracy and ro-
bustness compared to standard Chain-of-Thought
distillation methods, highlighting its effectiveness
in producing more reliable compressed LLMs.

1 Introduction
Large Language Models (LLMs) have exhibited remarkable
performance in various natural language processing tasks, in-
cluding reasoning, question answering, and code generation.
Despite their impressive capabilities, these models encounter
significant deployment challenges due to high computational
and memory demands, limiting their usability on edge de-
vices, mobile platforms, and other low-latency, resource-
constrained environments. To overcome these barriers, model
compression techniques, such as pruning, quantization, low-
rank adaptation, and knowledge distillation have become cru-
cial in enabling practical applications of LLMs.

However, compression techniques often inadvertently re-
duce model robustness, making them more susceptible to
issues such as adversarial attacks, hallucinations, and fac-
tual inaccuracies. For instance, aggressive pruning, de-
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Figure 1: Overview of the proposed Dialectical Chain Distillation
(DCD) framework. A teacher model engages in structured interac-
tions with the student to generate dialectical reasoning chains com-
prising drafting, deep reasoning, verification, and finalization steps.
These are distilled to enhance the student’s internal reasoning pat-
terns, leading to both accurate predictions and more interpretable,
robust behavior.

spite recent advances like the adaptive block-wise method
Thanos [Ilin and Richtarik, 2025], can still disproportionately
degrade reasoning quality and increase the likelihood of erro-
neous outputs. Similarly, while quantization methods such as
GPTQ [Frantar et al., 2022] and BiLLM [Huang et al., 2024]
substantially improve inference efficiency, they can distort in-
ternal representations, leading to brittle responses under ad-
versarial or out-of-distribution conditions. Low-rank adapta-
tion techniques, although effectively reducing model dimen-
sionality, also risk undermining representational fidelity and
generalization, further exacerbating robustness challenges.

Among these compression strategies, knowledge distilla-
tion (KD), particularly Chain-of-Thought (CoT) distillation,
has emerged as a promising solution for even enhancing the
reasoning capabilities and robustness of compressed mod-
els. Recent CoT distillation approaches, such as Symbolic
Chain-of-Thought Distillation (SCoTD) [Li et al., 2023] and



DeepSeek distillation [Guo et al., 2025], explicitly trans-
fer structured reasoning processes from teacher models to
smaller student models, resulting in significant improvements
in both interpretability and performance across complex rea-
soning tasks. Our work aligns with this promising direction
by exploring an alternative yet complementary approach to
CoT distillation.

In this paper, we propose Dialectical Chain Distillation
(DCD), a novel knowledge distillation framework designed to
further enrich the reasoning capabilities of compressed LLMs
through structured dialectical thinking, as shown in Figure 1.
Rather than seeking to replace or surpass current CoT distil-
lation methods, our goal is to explore a novel variant of rea-
soning representation inspired by teacher-student interactions
and dialectical reasoning. Specifically, DCD leverages struc-
tured interactions between teacher model and student model
to generate reasoning chains that capture diverse viewpoints,
logical conflicts, and reflective argumentation. Consequently,
the student model trained via DCD learns not only to provide
correct predictions but also to internalize dialectical reason-
ing strategies, enhancing its robustness and interpretability in
handling nuanced, adversarial, or ambiguous inputs.

We empirically evaluate DCD across multiple benchmarks,
including AIME 24, GSM8K, and GPQA Diamond. The re-
sults show that student models trained with DCD exhibit im-
proved robustness and reasoning accuracy compared to orig-
inal Instruct model.

Our work makes the following key contributions:

• We propose Dialectical Chain Distillation (DCD), a
new variant of CoT distillation that emphasizes dialec-
tical reasoning and structured argumentation.

• We introduce a teacher-student interaction mechanism
to generate dialectical reasoning chains, serving as rich
supervisory signals for student models.

• We empirically validate the effectiveness of DCD in en-
hancing reasoning accuracy across diverse tasks, con-
tributing valuable insights toward robust real-world
model deployment.

2 Related Work
2.1 Model Compression
The growing size of large language models (LLMs), often
containing billions of parameters, has dramatically improved
performance across natural language processing tasks. How-
ever, this rapid scaling has introduced serious limitations in
terms of computational and memory requirements, especially
when considering deployment in resource-constrained envi-
ronments such as edge computing platforms, mobile devices,
or real-time systems. To address these challenges, researchers
have developed a variety of model compression techniques,
including pruning, quantization, and knowledge distillation.

Pruning methods compress models by eliminating re-
dundant or insignificant parameters. Recent advance-
ments include structured pruning approaches such as LLM-
Pruner [Ma et al., 2023], which identifies and prunes
structurally redundant components within transformer archi-
tectures, substantially reducing computational requirements

while retaining task performance. In addition, Sun et al. [Sun
et al., 2023] propose Wanda, a one-shot pruning strategy that
ranks weights based on a combination of magnitude and input
activation norms. Without any fine-tuning, Wanda achieves
performance on par with retraining-based baselines, offering
a highly practical pruning solution.

Quantization compresses models by reducing numerical
precision of weights and activations from floating-point to
lower bit-width representations. GPTQ [Frantar et al., 2022]
introduces a highly effective post-training quantization (PTQ)
approach leveraging second-order information for improved
accuracy. More recently, AWQ [Lin et al., 2024], an
activation-aware method, achieved state-of-the-art results in
low-bit (INT4) quantization, highlighting the critical role of
activation distributions in successful quantization.

Knowledge distillation (KD) is a classical approach for
transferring semantic knowledge from a large teacher model
to a compact student model. Early work by Hinton et al.
framed KD as matching softened output logits, enabling
small networks to inherit the teacher’s generalization be-
haviour [Hinton et al., 2015]. Subsequent studies, such as
Stanford Alpaca [Taori et al., 2023] and Self-Instruct [Wang
et al., 2023b], extend this paradigm by using powerful teacher
models to generate synthetic instruction–response pairs that
serve as supervised data for student training.

2.2 Distilling Thinking Patterns
The first wave of knowledge-distillation research focused ex-
clusively on aligning a student’s output distribution with that
of a teacher, for example by matching softened logits or re-
gressing hidden states [Ding et al., 2023]. Subsequent analy-
ses crucially revealed a key weakness in this strategy: when
the supervision signal is limited to final answers, students of-
ten learn to mimic surface-level style while failing to acquire
the teacher’s deeper underlying reasoning skills [Taori et al.,
2023; Mukherjee et al., 2023]. This insight has shifted at-
tention toward distilling intermediate thinking patterns rather
than just outputs.

A landmark step in this direction is Chain-of-Thought
(CoT) prompting [Wei et al., 2023], which elicits step-by-
step explanations from large models. Li et al. discover that
transferring these explicit traces enables a model an order of
magnitude smaller to match its teacher on math and science
benchmarks [Li et al., 2022]. Building on this, Symbolic
CoT Distillation (SCoTD) converts free-form chains into exe-
cutable symbolic programs before distillation, reducing noise
and further improving transfer efficiency [Li et al., 2023].

Beyond linear CoTs, researchers have explored richer ra-
tionale supervision. Orca [Mukherjee et al., 2023] and
Orca 2 [Mitra et al., 2023] fine-tune students on a mixture
of explanations, critiques, and summaries generated by GPT-
4, exposing the model to diverse reasoning styles. Wang et
al. [Wang et al., 2023a] introduce a dedicated “reasoning
token” to unify rationale distillation across tasks, whereas
Cheng et al. use contrastive alignment to penalize shal-
low rationales and reward causally relevant ones [Cheng et
al., 2024]. Complementary work on self-improvement loops
lets the student critique and refine its own drafts [Ye et al.,



2023] or selectively re-reason only faulty segments for effi-
ciency [Madaan et al., 2023; Li et al., 2024b].

Another strand of research moves from single-speaker
traces to multi-agent debate. Li et al. distill knowledge from
structured arguments between teacher agents with differing
viewpoints [Li et al., 2024a], while Zhang et al. show that
critique-and-revise dialogues improve factual grounding over
plain CoTs [Zhang et al., 2024]. Collectively, these stud-
ies demonstrate that exposing students to structured thinking,
whether through linear explanations, iterative reflection, or
adversarial debate, consistently enhances robustness and rea-
soning depth.

Motivated by this evidence, we introduce a dialectical dis-
tillation pipeline that packages a draft, deep reasoning, ver-
ification, and final answer into a single supervised trace.
By transferring such multi-perspective reasoning chains, our
method seeks to endow compact models with the robustness
and interpretability that conventional output-level distillation
cannot provide, while preserving the efficiency benefits of
knowledge distillation.

3 Dialectical Chain Distillation
Figure 2 gives a high-level overview of our approach. Start-
ing from a problem prompt, we first elicit a student draft, this
draft is kept in the loop whether it is correct or not, creat-
ing a natural thesis. The teacher then produces a detailed
chain of thought and, crucially, appends a noise-free verifi-
cation tag—‘‘correct’’ or ‘‘incorrect’’, obtained
by comparing the draft answer with the dataset’s gold label.
This single sentence injects the necessary antithesis: it either
confirms the draft or highlights the need for revision. The dia-
logue proceeds until a gated <|im start|>answer token
prompts the definitive solution, closing the synthesis. Be-
cause every token of this dialectical exchange is preserved,
supervised fine-tuning on the resulting corpus teaches the
compact student not only to match the teacher’s answers but
also to emulate its conflict-driven reasoning cycle, yielding
the robustness and interpretability gains.

3.1 Teacher–Student Interaction Protocol
The cornerstone of Dialectical Chain Distillation (DCD) is an
interaction protocol that constructs a multi-perspective rea-
soning dialogue between a large teacher model and a compact
student model. Each interaction unfolds in four stages:

Draft Generation. Upon receiving a problem prompt q, the
student produces a concise draft consisting of two parts: a
short, rapidly generated reasoning sketch and a tentative an-
swer:

d = (sketchs, as).

Because the student relies solely on its current parameters,
this draft may be only partially reasoned or outright incorrect,
precisely the uncertainty we wish to exploit for learning.

Teacher Deep Reasoning. Next, the teacher, a substan-
tially larger model with advanced reasoning capabilities, gen-
erates an extensive chain of thought:

r = (r1, r2, . . . , rk),

where each ri is a fine-grained reasoning step produced with-
out knowledge of the student’s answer. This chain con-
stitutes a long-form reasoning trajectory that often extends
across hundreds or thousands of tokens, and provides a high-
resolution view into expert-level problem solving.

Verification. Correctness is assessed by grounding the stu-
dent’s draft against the dataset’s gold answer agt. Specif-
ically, we invoke a lightweight verification assistant, ar-
chitecturally identical to the student, whose sole input
is the pair (as, agt). If the two values coincide, the
verifier emits the fixed tag ‘‘The draft solution
is correct.’’, otherwise it emits ‘‘The draft
solution is incorrect.’’ Because the decision is
anchored to agt, the tag provides a noise-free, binary signal
that the subsequent prompt engineering encodes as part of
the dialectical chain.

Finalisation. Finally, the dialogue terminates the dialec-
tical thinking phase and requests a deterministic answer.
Leveraging the verified reasoning, the teacher produces a
definitive solution:

a⋆ = FinalAnswer(r).

This protocol yields three complementary supervision sig-
nals:

1. Answer Alignment — the final answer a⋆, anchored to
the dataset gold label, teaches the student to converge on
ground-truth outcomes.

2. Reasoning Alignment — the teacher’s long-form chain r
exposes a token-level blueprint of expert problem solv-
ing, allowing the student to imitate fine-grained logical
moves.

3. Verification Feedback — the binary tag (correct / incor-
rect) injects an explicit conflict–resolution cue, guiding
the student to recognise when its initial intuition must be
revised.

Why dialectical? Unlike traditional linear Chain-of-Thought
prompting, our protocol explicitly incorporates stages of con-
flict and resolution. The interplay between the student’s ini-
tial draft and the teacher’s critique compels the student to ac-
tively engage with alternative viewpoints, internalizing the di-
alectical cycle of thesis, antithesis, and synthesis. This struc-
tured confrontation and reconciliation enhances the student’s
capacity for reflective thinking and robust self-correction.

3.2 Data Sourcing and Sample Construction
To instantiate the interaction protocol at scale, we construct
our supervision corpus directly from the s1k-1.1 bench-
mark [Muennighoff et al., 2025].1. Specifically, we combine
the original annotated data with a raw JSONL dump contain-
ing alternative student drafts. Below, we describe how these
two components are integrated to produce the “draft–correct”
and “draft–wrong” pairs used for distillation.

We begin by recalling that every record in s1k-1.1 already
contains four gold-quality elements:

1https://huggingface.co/datasets/simplescaling/s1K-1.1

https://huggingface.co/datasets/simplescaling/s1K-1.1


A: <|im_start|>think\nTo compute the
mean molecular speed \\(v\\)......the
mean molecular speed of hydrogen gas is
approximately 1950 m/s.

Q: Compute the mean molecular speed v
in the light gas hydrogen in m/s.

Q: How many positive integers less
than 10,000 have at most two
different digits?
A: <|im_start|>think\nLet $N$ be a
positive integer 10,000 ....... Final
Answer: The final answer is
$\\boxed{927}.

Dialectical
Thinking

Now I'll generate detailed reasoning
steps and verify whether the draft
solution is correct.\nAlright, so the
problem is asking: How many positive
integers......The total is 927.\nThe
draft solution is correct. I'll now
generate the final answer.\n

Now I'll generate detailed reasoning
steps and verify whether the draft
solution is correct.\nAlright, so I
need to calculate the mean molecular
speed......to be approximately 1694
m/s.\nThe draft solution is
incorrect. I'll revise it and provide
the correct answer.\n

Deep Reasoning Verification

Final
Answer

Draft
Generation

<|im_start|>answer\nBy assuming
standard temperature (273.15 K)
and using the formula ...

SFT

A: The mean molecular speed of
hydrogen gas is about 1649 m/s.
\n<|im_end|>

<|im_start|>answer\nThe solution
involves breaking down the numbers
by their digit lengths ...

A: The total number of positive
integers less than 10,000 with at
most two different digits is
927.\n<|im_end|>

Figure 2: End-to-end workflow of Dialectical Chain Distillation. Draft Generation (left) creates two complementary cases: a draft that is
already correct (green) and a draft that is wrong (red). Both drafts are passed to the Dialectical Thinking block where the teacher supplies
a long, explicit reasoning chain. A mandatory self-verification sentence triggers either the correct or incorrect marker, forcing the
model to confirm or revise the draft. The dialogue then transitions to the Final Answer stage, where a single <|im start|>answer tag
gates the definitive prediction. All tokens, including the binary verification cue, are retained and used to supervise a compact student model
through standard SFT (right).

(i) a problem statement q,

(ii) a Gemini chain-of-thought trajectory and its answer
aG,

(iii) a long DeepSeek-R1 chain-of-thought trajectory and its
answer aD,

(iv) the dataset ground-truth solution agt (with aG = aD =
agt by construction).

These ingredients allow us to fabricate both “draft–correct”
and “draft–wrong” scenarios with no additional human anno-
tation.

Generating student drafts. For every question q, we
prompt an un-tuned copy of our target student model to pro-
duce a first-pass reasoning sketch and provisional answer as.
Empirically, fewer than 35% of these drafts coincide with agt,
giving us a natural supply of realistic errors.

Forming draft–correct pairs. To create positive supervi-
sion, we treat the Gemini solution aG as a correct student
draft. We pair it with the expert-level DeepSeek chain r and
tag the draft as correct. These samples teach the student how
a sound “first attempt” should look.

Forming draft–wrong pairs. Whenever as ̸= agt, we re-
tain the student’s erroneous draft (sketchs, as), reuse the
same long chain r, and tag the draft as incorrect. These ex-
amples expose the student to error detection and subsequent
revision.

Balancing the corpus. To maintain a realistic supervision
signal, we aggregate all generated draft–correct and draft–
wrong pairs. The resulting set exhibits a reasonably balanced
distribution, comprising approximately 1,000 correct and 675
incorrect samples.

Resulting supervision set. Each assembled example is
written as a single JSON line containing the question, the

chosen draft (correct or wrong), the full DeepSeek reason-
ing chain, and the DeepSeek answer. The resulting file,
comprises 1,675 training prompts with an average length of
10,905 tokens, long enough to preserve the complete dialec-
tical trajectory that will be distilled in subsequent stages.

3.3 Prompt Engineering for Forced Reasoning
To guarantee that the distilled student model rehearses an ex-
plicit reasoning phase before committing to a final answer, we
structure every training prompt with a sequence of sentinel
tags. These tags delineate (i) whether the model is thinking
or answering, and (ii) whether the draft has been judged cor-
rect or incorrect.
Forcing a reasoning turn. Immediately after the assistant
role tag we insert the token pair:

<|im start|>assistant\n<|im start|>think

which acts as an unambiguous cue that the model must enter
a thinking mode. Only once this phase ends may the model
emit an answer.
Guiding the depth of thought. Immediately after the
Draft delimiter we append a fixed instruction:

‘‘Now I will generate detailed
reasoning steps and verify whether
the draft solution is correct.’’

Placed right at the stage boundary, this sentence (i) forces
the model to unfold a step-by-step line of reasoning and (ii)
prepares it for the explicit verification cue that follows.
Encoding the verification outcome. When the teacher’s
reasoning chain concludes, we insert one of the following
mutually exclusive markers, thereby signaling the transition
from reasoning to synthesis:

• Draft-Correct Tag:
‘‘The draft solution is correct. I’ll
now generate the final answer.’’



• Draft-Wrong Tag:
‘‘The draft solution is **incorrect**.
I’ll revise it and provide the correct
answer.’’

Because this tag is selected only by comparing the draft an-
swer with the dataset gold solution, it provides a noise-free,
binary signal that cleanly separates confirmation from correc-
tion.
Answer emission. The model may exit the think phase
only when it encounters the stage delimiter:

<|im start|>answer

It then outputs the definitive answer and terminates the dia-
logue with a single <|im end|> token.
Overall template. For brevity, we illustrate the layout on a
draft–correct example. The only difference in a draft–wrong
instance is the verification tag.

<|im start|>system
You are Qwen, created by Alibaba Cloud.
...
<|im end|>

<|im start|>user
{question q}
<|im end|>

<|im start|>assistant
<|im start|>think
{Draft}
Now I’ll generate detailed reasoning steps
and verify whether the draft solution is
correct.
{DeepSeek long chain r1, . . . , rk}
The draft solution is correct.
I’ll now generate the final answer.
<|im start|>answer
{Final Answer}
<|im end|>

3.4 Training Objective
Supervised fine-tuning. The distilled student is obtained
by standard supervised fine-tuning (SFT). For each prompt x
we minimise the token-level cross-entropy:

LSFT = −
∑

t∈A(x)

log pθ
(
wt | w<t, x

)
,

where A(x) indexes only those tokens that lie in-
side an assistant segment (starting at the first
<|im start|>think or <|im start|>answer tag
and ending at <|im end|>). All system and user tokens
are masked out, so the model is trained exclusively to repro-
duce (i) the reasoning chain, (ii) the verification tag, and (iii)
the final answer.

4 Experiments
4.1 Datasets and Evaluation Settings
We systematically evaluate our proposed framework using
three benchmarks: AIME 24 [MAA, 2024], GSM8K [Cobbe

(a) Training loss (b) Gradient norm (c) LR schedule

Figure 3: Training dynamics for the proposed method.

et al., 2021], and GPQA Diamond [Rein et al., 2023].
These benchmarks span tasks in mathematical reasoning and
graduate-level scientific knowledge.

AIME 24 dataset comprises 30 problems selected from
the 2024 American Invitational Mathematics Examination
(AIME) I and II contests. AIME is a prestigious high school
mathematics competition recognized for its challenging prob-
lems that assess advanced mathematical reasoning. The
dataset covers a wide range of topics, including algebra, ge-
ometry, and number theory, and typically requires multi-step
reasoning to solve.

GSM8K (Grade School Math 8K) consists of 8,500 grade
school-level mathematical word problems. For evaluation
purposes, we use a 1,319-question test set with diverse, high-
quality problems. Each problem typically takes 2–8 steps to
solve and is designed to test a model’s ability in step-by-step
arithmetic reasoning. GSM8K is a standard benchmark for
math reasoning in LLMs.

GPQA Diamond is a tough subset of the GPQA (Graduate-
Level Google-Proof Q&A) benchmark, with 198 multiple-
choice questions in advanced biology, chemistry, and physics.
Created by experts, the questions resist simple search strate-
gies and pattern-matching. Each question includes one cor-
rect answer and several strong distractors, making it a rigor-
ous test of scientific reasoning.

Evaluation Protocol. All experiments are carried out using
the LM-EVALUATION-HARNESS toolkit with inference facil-
itated by vLLM. For AIME 24, we report pass@1 accuracy,
defined as the proportion of problems correctly solved on
the first attempt. GSM8K is evaluated under a 5-shot set-
ting, utilizing the original few-shot exemplars provided by
the evaluation harness. GPQA Diamond is assessed using a
strictly zero-shot, multiple-choice configuration, with results
reported as top-1 accuracy.

4.2 Training Details
Figure 3 visualizes the optimization trace of QWEN2.5-
1.5B-INSTRUCT [Qwen et al., 2025] student during super-
vised fine-tuning.

Training Configuration We fine-tune our model for 5
epochs with a batch size of 1, accumulating gradients over
16 steps for a total of 520 gradient updates. Training is con-
ducted in bfloat16 precision with an initial learning rate of
1 × 10−5. This rate is linearly warmed up over the first
5% of steps (26 steps) and then decays to zero following a
cosine schedule over the remaining 494 steps. We employ
the AdamW optimizer [Loshchilov and Hutter, 2017] with
β1 = 0.9, β2 = 0.95 and a weight decay of 1 × 10−4.



Model AIME 24 GSM8K GPQA-Diamond

Qwen2.5-1.5B-Instruct 0/30 54.66% 23.73%
+ Chain-of-Thought prompting† 0/30 63.46% –

Qwen2.5-1.5B-Instruct + SFT on s1K-1.1 0/30 65.95% 24.24%
Qwen2.5-1.5B-Instruct + DCD (ours) 2/30 67.02% 25.25%

Table 1: Accuracy on three reasoning benchmarks (pass@1 for AIME 24, top-1 accuracy for GSM8K and GPQA-Diamond). †Chain-of-
Thought prompting is applied only at inference time without additional training.

FlashAttention 2 is enabled for efficient attention computa-
tion, and we use liger kernel to activate mixed-precision ker-
nels. On a single NVIDIA RTX 4090, training completes in
approximately 46 minutes.

4.3 Experimental Analysis
We assess the efficacy of our Dialectical Chain Distillation
(DCD) framework through comparative evaluations of the
student model before and after applying DCD fine-tuning. To
contextualize our findings, we also include two baseline con-
figurations: standard Chain-of-Thought (CoT) prompting ap-
plied at inference time (without additional training) and con-
ventional supervised fine-tuning using the ‘s1K-1.1’ dataset,
which consists of high-quality reasoning chains but lacks ex-
plicit dialectical structures. The comprehensive evaluation re-
sults across three benchmarks are presented in Table 1.

The baseline model, QWEN2.5-1.5B-INSTRUCT, strug-
gles particularly on the challenging AIME 24 bench-
mark, yielding minimal performance even when leveraging
inference-time CoT prompting. Although CoT prompting no-
tably improves the baseline performance on GSM8K, it re-
mains insufficient for the more demanding reasoning tasks
represented by AIME 24.

Applying standard supervised fine-tuning with the ‘s1K-
1.1’ dataset provides further incremental performance gains
on GSM8K and GPQA-Diamond benchmarks. However, this
method does not enhance the model’s capability to solve the
significantly more difficult AIME 24 problems.

In contrast, our proposed DCD approach consistently el-
evates the reasoning performance across all benchmarks.
Crucially, it demonstrates unique effectiveness by enabling
progress on the AIME 24 benchmark, underscoring the bene-
fit of explicitly incorporating dialectical reasoning structures
into training. The integration of drafting, deep reasoning, ver-
ification, and finalization stages within the DCD framework
significantly improves the robustness and complexity of rea-
soning that smaller-scale models can handle.

5 Conclusion
In this paper, we present a novel knowledge distillation
framework designed to improve the reasoning capability and
robustness of compressed LLMs. By introducing structured
teacher–student interactions and generating dialectical rea-
soning chains, DCD provides interpretable and informative
supervision signals that extend the capabilities of conven-
tional Chain-of-Thought distillation by incorporating dialec-
tical structure. Experimental results across diverse reason-
ing benchmarks including AIME 24, GSM8K, and GPQA

Diamond demonstrate that DCD substantially improves both
accuracy and robustness over standard model compression
methods. These results demonstrate the effectiveness of DCD
in producing compact and robust LLMs suitable for deploy-
ment in resource-constrained environments. In the future, we
plan to scaling up training on more diverse and larger-scale
reasoning datasets, and extending its application to broader
classes of reasoning and decision-making tasks.
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