
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Koopman Autoencoders Learn Neural Representation Dynamics

Anonymous Authors1

Abstract
This paper explores a simple question: can we
model the internal transformations of a neural net-
work using dynamical systems theory? We intro-
duce Koopman autoencoders to capture how neu-
ral representations evolve through network layers,
treating these representations as states in a dy-
namical system. Our approach learns a surrogate
model that predicts how neural representations
transform from input to output, with two key ad-
vantages. First, by way of lifting the original
states via an autoencoder, it operates in a linear
space, making editing the dynamics straightfor-
ward. Second, it preserves the topologies of the
original representations by regularizing the au-
toencoding objective. We demonstrate that these
surrogate models naturally replicate the progres-
sive topological simplification observed in neural
networks. As a practical application, we show
how our approach enables targeted class unlearn-
ing in the Yin-Yang and MNIST classification
tasks.

1 Introduction
Neural networks are defined by compositions. At each step,
they transform their inputs, increasing the complexity of
the overall transformation applied to data. Remarkably,
these transformations have the effect of producing simple
shapes at the output (Papyan et al., 2020), when quantified
by topology (Naitzat et al., 2020). In fact, the neural repre-
sentations (i.e., outputs of intermediate layers) of a network
progressively simplify until a network arrives at the final out-
put. This progression, along with the compositional nature
of these networks, inspires an intuitive ‘path’ perspective
(Lange et al., 2023). In other words, there is a notion of
‘traveling’ some distance from the input to the output, along
the path defined by these neural representations. Our work
further explores this path analogy by asking:

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Can we discover a dynamics that generates this path?

And, when equipped with the dynamics, we press on, ex-
ploring:

Can we edit these dynamics to produce a different output
than what was originally intended?

To elaborate on the significance of our second question: edit-
ing, updating, or unlearning specific knowledge contained
within neural networks prevents expensive retraining or re-
moves harmful undesired outputs for model alignment (Yao
et al., 2023; Gupta et al., 2024).

Contributions. Our main contributions are as follows:

• We introduce Koopman autoencoder surrogates as a
framework for interpolating and editing the neural rep-
resentations of a trained neural network. Our Koopman
autoencoders generate realistic dynamics, producing
intermediate outputs which follow our established un-
derstanding of how neural representations topologi-
cally simplify as they progress through the layers of a
neural network.

• We develop an encoder isometry objective to supple-
ment the optimization process of Koopman autoen-
coders, preserving the original topology of neural rep-
resentations in observable space.

• We demonstrate how our Koopman autoencoders can
be used to edit neural representations in observable
space, leading to fast, targeted class unlearning.

2 Related Work
Topology and dynamics. Our work is most closely aligned
with literature that highlights topological and geometric per-
spectives in deep learning. Primarily inspired by Naitzat
et al. (2020), we demonstrate how the shape of a data man-
ifold can transform as it is processed by the layers of a
neural network (NN). As advanced by Lange et al. (2023),
we envision the outputs of each NN layer as forming a
‘path’, arising naturally from the compositional structure of
NNs. Additionally, we put to work an established dynam-
ics perspective in deep learning. With a spotlight on deep
residual networks (ResNets) (He et al., 2016), there is grow-
ing evidence (Gai & Zhang, 2021; Li & Papyan, 2023) that
treats ResNet activations as traveling on a ‘conveyor belt’
to their final output. This dynamics view plays nicely with

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Original ResNet

Res

Preprocessing Koopman Autoencoder

ResRes

Observables

...

Reduction Scaling Alignment

C
la
ss

ifi
er

C
la
ss

ifi
er

Figure 1. A summary of our framework presented in Section 3. We gather neural representations from a trained, residual network and
preprocess them to bring them into the same space. Afterwards, we train a Koopman autoencoder on a pair of the representations, resulting
in predictive autoencoder with manipulable and visualizable observabe space.

the topological vantage, with Naitzat et al. (2020) positing
that “[network] depth plays the role of time,” in the sense
that additional layers “afford additional time to transform
the data.”

Koopman-based approaches. At the heart of our method
is a Koopman autoencoder (KAE). KAEs have been em-
ployed in machine learning problems to forecast physical
systems (Takeishi et al., 2017; Lusch et al., 2018; Azencot
et al., 2020), disentangle latent factors in sequential datasets
(Berman et al., 2023), and generate time-series (Naiman
et al., 2024). Traditionally, Koopman approaches find appli-
cation in control tasks due to their predictive nature. Gen-
erally, practical approaches (Budišić et al., 2012; Brunton
et al., 2022), developed atop Koopman theory (Koopman,
1931), work within a latent space equipped with linear dy-
namics allowing one to study, and potentially shape, these
dynamics via linear control and spectral tools. Our work
is unique in proposing a KAE to interpolate between and
manipulate the topology of neural representations.

We provide more background on both topics in Appendix
A.

3 Koopman Autoencoders as Surrogates
Consider a trained neural networkNL composed of L ∈ Z+

layers, where each layer fi is indexed by i ∈ {1, 2, ..., L}.
The network is defined by successive compositions, giving
rise to the form

NL(x) = fL ◦ . . . f2 ◦ f1(x0), (1)

where x0 is an input. The output of fi is the i-th neural
representation xi ∈ Rdi+1 , where di+1 is the input dimen-
sion of the subsequent layer fi+1. Inspired by Li & Papyan
(2023), we work with deep multi-layer perceptrons (MLPs)
comprised of residual blocks, a form of residual networks
(ResNets). Figure 3 plots the top three principal compo-
nents of neural representations from each residual block,
visualizing how the data transform across the layers of a
residual network.

We evoke a dynamical systems perspective of these ResNets,
treating the neural representations {x1,x2, . . . ,xL} of the
trained network as the states generated by a complex, non-
linear system. Within this context, we introduce a Koopman
autoencoder, consisting of an encoder ϕ : Rdi+1 → Rp, a de-
coder ϕ−1 : Rp → Rdi+1 , and a linear operator K : p→ p.
In concert, they operate as

xj = ϕ−1 ◦ K ◦ ϕ(xi), ∀ i, j ∈ {1, 2, . . . , L} : i < j (2)

In Equation 2, ϕ embeds a neural representation into a (typ-
ically) higher-dimensional observable, after which K ‘ad-
vances’ the observable. Finally, ϕ−1 returns the observable
to the state space. We implement ϕ and ϕ−1 as symmetric,
but untied, MLPs and define K as a learnable square ma-
trix. Hence, the KAE produces a dynamic in the observable
space, governed by the linear operator. We elaborate on our
KAE formulation in Appendix C, including the preprocess-
ing steps prior to training the KAE.

4 Experiments
We work with two residual MLPs, trained on the Yin-Yang
(Kriener et al., 2022) and the MNIST classification tasks

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

0 1 2 3 4
Layer

101

102

103

104

0 
Es

tim
at

e

8594

2487

123

10 11

MLP Betti Numbers

0 1 2 3 4 5 6 7 8 9 10
Iteration

8633 7655
5153

2305

692

206

49

19
11 9 9

KAE Betti Numbers

Iter. 0 Iter. 3 Iter. 6 Iter. 10

Figure 2. (Top left) The β0 Betti numbers of the neural representations from each residual block of a residual MLP trained on MNIST.
The Betti numbers are computed using the Vietoris-Rips complex at a filtration ϵ = 0.166. (Top right) The average β0 Betti numbers of
intermediate outputs, projected into state space, for five KAEs trained on the first and penultimate layer representations of the residual
MLP. The Betti numbers are computed using the Vietoris-Rips complex at a filtration ϵ = 0.14. (Bottom) Select intermediate outputs from
an MNIST KAE, projected into the state space. At each successive iteration, the topology is simplified until it arrives at the penultimate
layer representations.

(Lecun et al., 1998). Each of the MLPs consist of residual
blocks (see Appendix B for details). In all our experiments,
we set x̂i as the first layer neural representations and x̂j as
the penultimate layer representations of the residual MLP.
Here x̂ refers to the processed neural representation x̂ pro-
duced after applying the steps in Appendix C.3. Thus, when
given x̂i as input, our KAEs are trained to predict x̂j .

Given the parameterization described in Appendix C.1, our
KAEs can predict k − 1 intermediate representations in
observable space, before finally predicting x̂j . Each of
these observable space predictions can be decoded into state
space via the KAE decoder for analysis. Ultimately, the
output x̂j is fed into the final MLP layer, resulting in a
class prediction. So, our KAEs can act as surrogate models,
handling the intermediate computations. The classification
accuracy provides a way to measure the surrogate quality
of our KAE. Table 1 demonstrates that our KAEs are able
to faithfully produce the penultimate layer representations
for both datasets. We provide more details of the KAE
architecture and their training in Appendix C.

4.1 Simplifying Topology

Given the parameterization described in Section C.1, our
KAEs can interpolate between xi and xj to produce inter-
mediate representations. Remarkably, we demonstrate that

the dynamics within our observable space naturally produce
intermediate representations similar to those from the origi-
nal MLP. To support this claim, we decode the observables
into state space and quantify their topology. In Figure 2A,
on the left, we present the β0 Betti numbers of the neural
representations from each block of a residual MLP trained to
classify MNIST. As established in Naitzat et al. (2020), and
evidenced by our plot, successive network layers generate
increasingly simple topologies. In comparison, we also plot
the β0 Betti numbers of the decoded, intermediate outputs
of five KAEs. Despite having no knowledge of the MLP’s
intermediate representations and their topologies, our KAEs
still naturally simplify in topology at every step. As a visual
aid, Figure 2B plots the top three principal components of
selected iterations from one of the KAEs.

The dynamics learnt by the KAEs produce a trajectory of
neural representations with sound topologies, in line with
what is found within a residual MLP. When paired with
dimensionality reduction techniques, they provide an ap-
proximate visualization of how data is being transformed
within a neural network. We hypothesize that the KAE dy-
namics can be made more faithful to the original residual
network by regularizing the KAE’s intermediate representa-
tions; for example, the KAE could be trained to predict all
the neural representations from a residual network.

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Table 1. Summary of results demonstrating KAE prediction quality. KAEs were trained with five different seeds.

DATASET MLP TOP-1 % ACC. KAE TOP-1 % ACC. (STDEV.) TARGET CLASS EDITED ACC. (STDEV.)

YIN-YANG 99.31 98.75 (0.15)
CLASS 0 (YIN) 98.78 (1.18) → 85.01 (1.90)
CLASS 1 (YANG) 98.27 (0.21) → 78.88 (8.53)
CLASS 2 (DOTS) 99.97 (0.05) → 62.52 (1.35)

MNIST 99.03 98.53 (0.04)
CLASS 1 99.23 (0.04) → 0.0 (0.0)
CLASS 4 98.29 (0.08) → 0.0 (0.0)
CLASS 7 98.01 (0.18) → 0.0 (0.0)

4.2 Application: Model Editing

The penultimate layer representations of well-trained clas-
sification models experience neural collapse (NC) (Papyan
et al., 2020), effectively ‘clustering’ outputs, as seen at the
bottom of Figure 2. In our case, the encoder isometry helps
preserve this NC topology in observable space. As a result,
identifying a class of ‘undesired’ outputs in the penultimate
layer is a straightforward task. Further, the dynamics that
generate the outputs in observable space are governed by a
linear operator. Hence, finding the undesired inputs, corre-
sponding to the unwanted outputs, is a matter of applying
the inverse operator K−1. To summarize, in observable
space, we can quickly identify the unwanted outputs in a
neural representation (due to NC) along with their corre-
sponding inputs (by applying the inverse linear operator).
Then, with the aid of a model editing algorithm, such as
EMMET (Gupta et al., 2024), we can learn an edited linear
operator which generates an updated representation—sans
the unwanted outputs. If the edited linear operator can
maintain the rest of the topology, we can unlearn a specific
class without affecting the model’s performance on the other
classes. We elaborate on our methodology in Appendix E.

Table 1 reports our model editing efforts for two datasets,
with starkly different results, highlighting the importance
of the neural collapse property. For the Yin-Yang dataset,
we use the most strongly regularized KAE (see Figure 5).
Despite performing sufficient class separation, the neural
representation of the original MLP (and the KAEs), do not
exhibit neural collapse; there is a large within-class variance
in the penultimate layer. On the other hand, the representa-
tions of the MLP (and our KAEs) trained on MNIST exhibit
strong neural collapse (see Figure 2). As a result, model
editing is successful on the MNIST dataset but performs
poorly on the Yin-Yang dataset. In Figure 6, we show the
top three principal components of the penultimate represen-
tations before and after the linear operator is edited. Here,
we edit the operator to remove class 4 (violet) by redirecting
it to the class 9 (light blue) cluster, effectively merging the
two classes. As a result, the KAE surrogate unlearns class 4.
We found that the modified representations do not affect the
performance of the KAE decoder and the subsequent MLP
classifier on the remaining classes.

5 Limitations and Future Work
Tying together interpretability insights from the perspectives
of topology and dynamical systems, our work introduces
Koopman autoencoders as surrogate models, which learn
the dynamics underlying a deep network’s neural represen-
tations. By parameterizing the linear operator, we can inter-
polate an arbitrary number of steps between neural repre-
sentations. And, our experiments validate that the generated
interpolation follows the established principle of progres-
sively simplifying topology. Additionally, we demonstrate
how linear dynamics in observable space can enable editing
the neural representations, leading to class unlearning. For
future work, several directions emerge:

• Representation regularization: Currently, our ap-
proach is limited to interpolating between two neural
representations. How do we regularize the dynamics to
interpolate through all the intermediate representations
of a model?

• Operator interpretability: Given that a Koopman
operator governs our dynamics, does spectral analysis
of the operator offer insights into the original model’s
mechanism?

• Observable space shaping: Since we have the free-
dom to shape how neural representations look in ob-
servable space, are there other favorable topologies
that enable certain goals (e.g., disentanglement, inter-
pretability, unlearning)?

• Architecture extensions: Extending our approach to
models with different architectures (e.g., convolutional
layers, transformer blocks, etc.) could enable more
sophisticated model editing applications beyond classi-
fication tasks. Can we extend our framework to unlearn
concepts in language models?

In conclusion, our work demonstrates how Koopman theory
can provide a practical framework for working with neural
representations, opening new avenues for analyzing deep
networks through the lens of dynamical systems.

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

References
Azencot, O., Erichson, N. B., Lin, V., and Mahoney, M.

Forecasting sequential data using consistent koopman
autoencoders. In International Conference on Machine
Learning, pp. 475–485. PMLR, 2020.

Berman, N., Naiman, I., and Azencot, O. Multifactor se-
quential disentanglement via structured koopman autoen-
coders. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023, 2023.

Brunton, S. L., Budišić, M., Kaiser, E., and Kutz, J. N.
Modern koopman theory for dynamical systems. SIAM
Review, 64(2):229–340, 2022.

Budišić, M., Mohr, R., and Mezić, I. Applied koopman-
ism. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 22(4), 2012.

Gai, K. and Zhang, S. A mathematical principle of deep
learning: Learn the geodesic curve in the wasserstein
space. arXiv preprint arXiv:2102.09235, 2021.

Gupta, A., Sajnani, D., and Anumanchipalli, G. A uni-
fied framework for model editing. In Al-Onaizan, Y.,
Bansal, M., and Chen, Y.-N. (eds.), Findings of the As-
sociation for Computational Linguistics: EMNLP 2024,
pp. 15403–15418, Miami, Florida, USA, November 2024.
Association for Computational Linguistics.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016.

Koopman, B. O. Hamiltonian systems and transformation
in hilbert space. Proceedings of the National Academy of
Sciences, 17(5):315–318, 1931.

Kriener, L., Göltz, J., and Petrovici, M. A. The yin-yang
dataset. In Neuro-Inspired Computational Elements Con-
ference, NICE 2022, pp. 107–111. ACM, 2022.

Lange, R. D., Kwok, D., Matelsky, J. K., Wang, X., Rolnick,
D., and Kording, K. Deep networks as paths on the man-
ifold of neural representations. In Doster, T., Emerson,
T., Kvinge, H., Miolane, N., Papillon, M., Rieck, B., and
Sanborn, S. (eds.), Proceedings of 2nd Annual Workshop
on Topology, Algebra, and Geometry in Machine Learn-
ing (TAG-ML), volume 221 of Proceedings of Machine
Learning Research, pp. 102–133. PMLR, 28 Jul 2023.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Li, J. and Papyan, V. Residual alignment: uncovering the
mechanisms of residual networks. Advances in Neural
Information Processing Systems, 36:57660–57712, 2023.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019.

Lusch, B., Kutz, J. N., and Brunton, S. L. Deep learning
for universal linear embeddings of nonlinear dynamics.
Nature communications, 9(1):4950, 2018.

Naiman, I., Erichson, N. B., Ren, P., Mahoney, M. W., and
Azencot, O. Generative modeling of regular and irregular
time series data via koopman vaes. In The Twelfth Inter-
national Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024. OpenReview.net,
2024.

Naitzat, G., Zhitnikov, A., and Lim, L.-H. Topology of deep
neural networks. Journal of Machine Learning Research,
21(184):1–40, 2020.

Papyan, V., Han, X. Y., and Donoho, D. L. Prevalence of
neural collapse during the terminal phase of deep learn-
ing training. Proceedings of the National Academy of
Sciences, 117(40):24652–24663, 2020.

Takeishi, N., Kawahara, Y., and Yairi, T. Learning koopman
invariant subspaces for dynamic mode decomposition.
In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H.,
Fergus, R., Vishwanathan, S., and Garnett, R. (eds.), Ad-
vances in Neural Information Processing Systems, vol-
ume 30. Curran Associates, Inc., 2017.

Yao, Y., Wang, P., Tian, B., Cheng, S., Li, Z., Deng, S.,
Chen, H., and Zhang, N. Editing large language models:
Problems, methods, and opportunities. In Bouamor, H.,
Pino, J., and Bali, K. (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language
Processing, Singapore, 2023. Association for Computa-
tional Linguistics.

5



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

A Preliminaries
A.1 Topology

Our concrete measure of an object’s topology refers to its Betti numbers. For a k-dimensional manifold, one can compute
k Betti numbers, defining its topological signature. The zero-th Betti number, β0, of a manifold refers to the number of
unconnected components. The k-th Betti number, for k ≥ 1, quantifies the number of k-dimensional holes in the manifold.
This manifests in the popular, though counterintuitive, quip that ‘a donut is topologically equivalent to a coffee mug.’ Both
objects have one connected component, a single 1-D hole, and zero 2-D holes, giving them the Betti number sequence
β = {1, 1, 0}.

When working with discrete manifolds, such as neural representations from a network, quantifying topology relies on
persistence homology. Very simply, the approach computes k-dimensional simplices (e.g., points, lines, triangles, tetrahedra,
etc.) of an object at varying scales, which determine an object’s homologies. These homologies are closely related to the
Betti numbers; by tracking these homology groups across scales, one can make claims about an object’s topology. We rely
on the Vietoris-Rips (VR) complex, a particular method of computing the simplices, which in turn informs the Betti numbers.
The VR complex requires a distance metric (in our case Euclidean) and a scale parameter ϵ. For a more detailed background
on algebraic topology we refer to Naitzat et al. (2020).

A.2 Koopman theory

In a typical discrete dynamical system, we observe measurements of a state xt ∈M ⊆ RN at time t ∈ Z+, which evolve
under a mapping T :M→M, such that

xk+1 = T (xk). (3)

When T is nonlinear, these systems are often analyzed using linear approximations near fixed points, often to control the
underlying nonlinear system.

Koopman operator theory suggests an alternative global linearization of the dynamics by finding a map in the observable
space, ϕ(xk) :M→ F ⊆ C. In this space, the linear map K : F → F , which evolves the observables, is defined as the
Koopman operator. If we assume our observables as vectors, we obtain the form

ϕ(xk+1) = K ◦ ϕ(xk), (4)

where ϕ “lifts” our original system states into the observable space resulting in a system that evolves under a linear operator.
The forecast can be obtained in the state space by applying an inverse operation ϕ−1 : F →M to the result of the forward
dynamic. Brunton et al. (2022) provide a fuller view of modern applications of Koopman theory, along with its rich history
in machine learning.

B Dataset and model details
B.1 Yin-Yang task

The Yin-Yang dataset (Kriener et al., 2022) is a task with two-dimensional inputs consisting of three classes, allowing for
easy visualization of the model’s decision boundary and topology. For our experiments, we use a residual MLP architecture

Residual MLP : R2 → Linear(2→ 10,ReLU)→ 4× [ResBlock(10,ReLU)]→ Linear(10→ 2)

We generate a training dataset of 5 × 103 samples, with roughly equal distribution among the three classes. For the test
dataset, we generate another set of 5 × 103 samples with a different seed. The network is trained to a test accuracy of
99.31% using SGD with momentum (set to 0.9) for 500 epochs. We use a batch size of 512 samples, a weight decay set to
5× 10−4, and a cyclic learning rate peaking at 10−1. Figure 3 shows the neural activation

B.2 MNIST task

For the MNIST task (Lecun et al., 1998), we train a residual MLP with four blocks

Residual MLP : R2 → Linear(2→ 784,ReLU)→ 4× [ResBlock(784,ReLU)]→ Linear(784→ 2)

The model is trained to a test accuracy of 99.03% using SGD with momentum (set to 0.9) for 30 epochs on a batch size of
128 samples, a weight decay set to 5× 10−4, and a cyclic learning rate peaking at 10−1.

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

L0 L1 L2

L3 L4 L5

Figure 3. The top three principal components of the neural representations from the first layer (L0) and all residual blocks (L1-5) of a
multi-layer perceptron (MLP) with a ResNet-style architecture. Each plot contains 2 × 103 points and undergoes the preprocessing
steps outlined in Section C.3 before PCA for plotting. The model is trained on the Yin-Yang dataset (Kriener et al., 2022), a three-way
classification task. See Appendix B for details on architecture and dataset.

Similar to Figure 3, we show the neural activations from each output layer of the MNIST model in Figure 4.

L0 L1 L2 L3 L4

Figure 4. The top three principal components of the neural representations from the first layer (L0) and all residual blocks (L1-4) of a
residual multi-layer perceptron (MLP). Each plot consists of 2× 103 points and undergoes the preprocessing steps outlined in Section C.3
before PCA. The model is trained on the MNIST digits task.

7



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

C Koopman autoencoder details
C.1 Architecture

Table 2 outlines the architecture of the Koopman autoencoders used in both tasks.

Table 2. KAE architecture
Component Yin-Yang MNIST

Encoder
batch ×R10 batch ×R784

Linear(10 → 30) → LeakyReLU Linear(784 → 1000) → LeakyReLU
Linear(30 → 20) Linear(1000 → 800)

Koopman Matrix batch ×R20 batch ×R800

Linear(20 → 20) Linear(800 → 800)

Decoder
batch ×R20 batch ×R800

Linear(20 → 30) → LeakyReLU Linear(800 → 1000) → LeakyReLU
Linear(30 → 10) Linear(1000 → 784)

We parameterize the Koopman operator as

K = exp (G/k)k, (5)

where G is another linear operator of the same shape and k determines the number of steps that x̂i is advanced in observable
space. When coupled with dimensionality reduction, this parameterization allows for a smooth k-step transformation of the
neural activations, enabling an explicit visualization of topological changes. The parameterization is not restrictive: we can
obtain the final prediction by directly applying the k-powered matrix.

C.2 Objectives

The KAE is optimized with the objective functions

Lrecon =
∥∥x{i,j} − ϕ−1 ◦ ϕ(x{i,j})

∥∥2 , (6)

Llinear = ∥ϕ(xj)−K ◦ ϕ(xi)∥2 , (7)

Lstate =
∥∥xj − ϕ−1 ◦ K ◦ ϕ(xi)

∥∥2 , (8)

Ldist =
∥∥∥∥∥x{i,j}

∥∥2 − ∥∥ϕ(x{i,j})
∥∥2∥∥∥2 , (9)

resulting in a combined loss

Ltotal = λ1Lrecon + λ2Llinear + λ3Lstate + λ4Ldist. (10)

The {λi}4i=1 act as weighting hyperparameters. We use the AdamW optimizer (Loshchilov & Hutter, 2019) to train our
KAEs. Table 3 presents the hyperparameter choices.

Equation 6 encourages the KAE to reconstruct states in the absence of any dynamics, promoting autoencoding. The linear
prediction loss (Eq. 7) ensures that the observables evolve linearly in the latent space, while the state prediction loss (Eq. 8)
aids end-to-end prediction accuracy when mapping back to the state space. Finally, the encoder isometry (Eq. 9) encourages
preservation of inter-point distances even in the observable space. We discuss the significance of encoder isometry in Section
D.

Table 3. KAE hyperparameter details
Dataset batch observable dim. #epochs λrecon λlinear λstate λdist learning rate weight decay

Yin-Yang 1024 20 1000 1 1 1 1 1× 10−1 5× 10−4

MNIST 512 800 100 1 1 1 10−3 5× 10−3 5× 10−4

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

C.3 Preprocessing Representations
Given we are working with neural representations, we draw from tools in RSA metrics literature. Permitting intra-layer
comparison, these metrics first require embedding neural representations in a common space Rq. Only then is a distance
metric defined. Lange et al. (2023) detail the intricacies and variations in this class of approaches.

Our work is concerned solely with the initial embedding step. To avoid confusion with ‘embedding’ in the context of
Koopman approaches, we refer to this as preprocessing. To elaborate, we apply the following preprocessing to xi,xj, before
they are fed into a KAE:

1. Mean-centering: x̂ = x− E[x] (11)

2. Projection: x̂ = x̂U:q, given UΣV ⊤ = svd(x̂) (12)
3. Normalizing: x̂ = x̂/∥x̂∥ (13)

4. Procrustes alignment: x̂ = x̂R,

where R ∈ O(q) solves min
R
∥x̂− ŷR∥F

(14)

Overall, we shift, project, and scale the representations before finding the best (rotational) alignment, making the rep-
resentations more suited for comparison. In addition to affording us invariance properties, the preprocessing allows for
learning a KAE on neural representations with originally non-uniform dimensions; i.e., outputs of differently-sized NN
layers. However, we do not include models with non-uniform dimensions in our experiments.

D Encoder Isometry
Typical implementations of KAEs (Takeishi et al., 2017; Lusch et al., 2018; Azencot et al., 2020; Berman et al., 2023) do not
consider encoder isometry. However, neural representations are topological objects; our isometry objective (Eq. 9) promotes
the observables to carry over the original shape of the representation.

Original = 1 = 10 3 = 0

Filtration

0

Original
= 1
= 10 3

= 0

Filtration

1

A

B

Figure 5. (A) Each scatter plot displays 2×103 points projected onto the top three principal components (PCs) derived from representations
in the penultimate layer. The leftmost plot shows PCs from the original MLP representations, while the remaining show PCs computed
after embedding the representations into observable space via different KAEs. All PCs are aligned via the orthogonal Procrustes problem.
(B) Betti curves, for β0 and β1, across a filtration threshold of ϵ = 4 for the penultimate layer representations of the original model
(black) and the observable space representations via different KAEs.

To demonstrate, we train 3 KAE variants with different penalization strengths (λ4 = {0, 10−3, 1}) on the encoder isometry
objective. The KAEs are trained to predict (and reconstruct) the penultimate layer representations of a residual MLP. Figure
5A displays the top three principal components of the penultimate layer representations in observable space. Figure 5B
presents the Betti curves of these same models, demonstrating that the most strongly penalized encoder (red) exhibits
the closest topological similarity to the original model (black). These results indicate that increasing λ4 leads to more
topologically faithful representations in observable space. As a result, we expect that topological edits in the observable
space will also be reflected in the state space.

9



495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

E Model Editing
We outline the steps of our model editing approach in Algorithm 1.

Algorithm 1 Model Editing with KAEs
Input: trained KAE {ϕ,K, ϕ−1}, reprs. {xi,xj}, target class c
Output: Updated output reprs. x̂j

// Identify unwanted outputs
Zdel ← {ϕ(xj) | xj belongs to class c}
Zkeep ← {ϕ(xj) | xj not in class c}

// Compute corresponding inputs
Xmem ← K−1 ◦ Zdel

Xkeep ← {xi | xi not in Xmem}

// Select alternative outputs
Znew ← alt output(Xc)

// Edit operator
L ← EMMET(K, {Xmem, Znew}, {Xkeep, Zkeep})

// Update reprs.
x̂j ← L ◦ xi

Before Edit After Edit

Figure 6. 104 points projected on the top three principal components of the neural representations produced by the Koopman operator in
observable space before editing (left) and after editing (right). The KAE is trained on the first and penultimate-layer representations of a
MNIST classifier. The operator is edited to forget class 4 (violet) by merging the outputs of that class with those of class 9 (light blue).
The result of the merge is visible on the top right corner.

10


