
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A LARGE-SCALE ANALYSIS ON METHODOLOGICAL
CHOICES IN DEEP REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep reinforcement learning research has been the center of remarkable scientific
progress for the past decade. From winning one of the most challenging games to
algorithmic advancements that allowed solving problems without even explicitly
knowing the rules of the task at hand reinforcement learning research progress
has been the epicenter of many breakthrough ideas. In this paper, we analyze the
methodological issues in deep reinforcement learning. We introduce the theoretical
foundations of the underlying causes outlining that the asymptotic performance
of deep reinforcement learning algorithms does not have a monotone relationship
to the performance in the regimes where data becomes scarce. The extensive
large-scale empirical analysis provided in our paper discovers that a major line of
deep reinforcement learning research under the canonical methodological choices
resulted in suboptimal conclusions.

1 INTRODUCTION

Founded on rigorous theoretical guarantees (Sutton, 1984; Watkins, 1989; Barto & Singh, 1990;
Barto et al., 1995), reinforcement learning research achieved high acceleration upon the proposal of
the initial study on approximating the state-action value function via deep neural networks (Mnih
et al., 2015). Following this initial study a line of highly successful deep reinforcement learning
algorithms have been proposed (Hasselt et al., 2016; Wang et al., 2016; Hessel et al., 2018; 2021;
Kapturowski et al.; Zhu et al., 2024) from focusing on different architectural ideas to employing
estimators targeting overestimation, all of which were designed and tested in the high-data regime
(i.e. two hundred million frame training). An alternative recent line of research with an extensive
amount of publications focused on pushing the performance bounds of deep reinforcement learning
policies in the low-data regime, i.e. with one hundred thousand environment interaction training.
Many different ideas in current reinforcement learning research, from model-based reinforcement
learning to increasing sample efficiency with observation regularization, gained acceleration in several
research directions based on policy performance comparisons demonstrated in the Arcade Learning
Environment 100K benchmark.

In this paper, we focus on the canonical methodological choices made in deep reinforcement learning
research and demonstrate that there is a significant overlooked underlying premise driving this line
of research without being explicitly discussed: that the performance profiles of deep reinforcement
learning algorithms have a monotonic relationship with different sample-complexity regimes. This
implicit assumption, that is commonly shared amongst a large collection of low-data regime studies,
shapes how the canonical methodological choices are made in deep reinforcement learning research
and represents a prominent misdirection in scientific progress. The suboptimal conclusions obtained
from these canonical choices shape future research directions with incorrect reasoning. These
methodological decisions fueled by the incorrect conclusions, further influence the overall research
efforts directed towards certain ideas for several years following. Thus, in our paper we target these
underlying premises and aim to answer the following questions:

• What are the canonical methodological choices made in deep reinforcement learning that
fundamentally affects the conclusions made?

• What is the foundational relationship between sample complexity and the algorithmic
performance from the data-scarce regime to the asymptotic regime?
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Instances of methodological choices Baseline Q-learning Algorithms

Figure 1: Left: Baseline comparisons visualization on the Arcade Learning Environment 100K
benchmark. A directed arrow from Algorithm A to Algorithm B means that the algorithm B provides
comparison against the algorithm A as a baseline. Right: Distributional vs baseline Q comparison
of algorithms that were proposed and developed in the high-data regime in the Arcade Learning
Environment in both high-data regime and low-data regime.

Hence, to be able to answer the questions raised above in our paper we focus on sample complexity
in deep reinforcement learning and make the following contributions:

• We analyze the canonical methodological choices in deep reinforcement learning research,
and introduce the theoretical foundations on how these methodological choices affect
algorithm design, performance comparisons and algorithmic conclusions. Our analysis lays
the foundations on the tight relationship between algorithmic performance and the sample
complexity regimes.

• Our theoretical analysis proves that the performance profile has a non-monotonic relation-
ship with the asymptotic sample complexity and the low-data sample complexity regime.
Regarding the central focus of the large scale implicit assumption instances, our results
reveal that the canonical methodological choices made in deep reinforcement learning
research have led to incorrect conclusions.

• We conduct large scale extensive experiments for a comprehensive diverse portfolio of deep
reinforcement learning baseline algorithms in both the low-data regime and the high-data
regime Arcade Learning Environment benchmark. Our results demonstrate that recent
algorithms proposed and evaluated in the Arcade Learning Environment 100K benchmark
are significantly affected by the implicit assumption on the relationship between performance
profiles and sample complexity.

2 BACKGROUND AND PRELIMINARIES

The reinforcement learning problem is formalized as a Markov Decision Process (MDP) represented
as a tuple ⟨S,A,P,R, γ, ρ0⟩ where S represents the state space, A represents the set of actions,
P : S × A → ∆(S) represents the transition probability kernel that maps a state and an action
pair to a distribution on states, R : S × A → R represents the reward function, and γ ∈ (0, 1]
represents the discount factor. The aim in reinforcement learning is to learn an optimal policy
π(s, a) that outputs the probability of taking action a in state s, π : S ×A → R that will maximize
expected cumulative discounted rewards R = Eat∼π(st,·),st+1∼P(·|st,at)

∑
t γ

tR(st, at, st+1). This
objective is achieved by constructing a state-action value function that learns for each state-action
pair the expected cumulative discounted rewards that will be obtained if action a ∈ A is executed
in state s ∈ S Q(st, at) = R(st, at, st+1) + γ

∑
st
P(st+1|st, at)V(st+1). In settings where

the state space and/or action space is large enough that the state-action value function Q(s, a)
cannot be held in a tabular form, a function approximator is used. Thus, for deep reinforcement
learning the Q-function is approximated via deep neural networks θt+1 = θt + α(R(st, at, st+1) +
γQ(st+1, argmaxa Q(st+1, a; θt); θt)−Q(st, at; θt))∇θtQ(st, at; θt).

Dueling Architecture: At the end of convolutional layers for a given deep Q-Network, the dueling
architecture outputs two streams of fully connected layers for both estimating the state values V(s)
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and the advantage A(s, a) for each action in a given state s, A(s, a) = Q(s, a)−maxa Q(s, a). In
particular, the last layer of the dueling architecture contains the forward mapping (Wang et al., 2016)

Q(s, a; θ, α, β) = V(s; θ, β) +
(
A(s, a; θ, α)−max

a′∈A
A(s, a′; θ, α)

)
where θ represents the parameters of the convolutional layers and α and β represent the parameters
of the fully connected layers outputting the advantage and state value estimates respectively.

Learning the State-Action Value Distribution: The initial algorithm proposed to learn the state-
action value distribution (Agarwal et al., 2022) is C51. The projected Bellman update for the ith atom
is computed as

(ΦT Zθ(st, at))i =

N−1∑
j

[
1−

|[T zj ]
vmax
vmin

− zi|
∆z

]1
0
τj(st+1,max

a∈A
EZθ(st+1, a))

where Zθ(st, at) is the value distribution, zi = vmin + i∆z : 0 ≤ i < N represents the set of atoms
in categorical learning, and the atom probabilities are learnt as a parametric model

τi(st,max
a∈A

EZθ(st, a)) =
eθi(st,at)∑
j e

θj(st,at)
, ∆z :=

vmax − vmin

N − 1

Following this baseline algorithm the QRDQN algorithm is proposed to learn the quantile projection
of the state-action value distribution

T Z(st, at) = R(st, at, st+1) + γZ(st+1, argmax
a∈A

Ez∼Z(st+1,at+1)[z])

with st+1 ∼ P(·|st, at) where Z ∈ Z represents the quantile distribution of an arbitrary value
function. Following this study the IQN algorithm is proposed (i.e. implicit quantile networks) to learn
the full quantile function instead of learning a discrete set of quantiles as in the QRDQN algorithm.
The IQN algorithm objective is to minimize the loss function

L =
1

K

K∑
i=1

K′∑
j=1

ρδi(R(st, at, st+1) + γZδj ′(st+1, argmax
a∈A

Qβ(st+1, at+1))−Zδi(st, at))

where ρδ represents the Huber quantile regression loss, and Qβ =
∫ 1

0
F−1

Z (δ)dβ(δ). Note that
Zδ = F−1

Z (δ) is the quantile function of the random variable Z at δ ∈ [0, 1].

3 LOW-DATA REGIME VERSUS ASYMPTOTIC PERFORMANCE

Our paper discovers both with extensive and comprehensive empirical analysis and theoretical
investigation that asymptotic performance of reinforcement learning algorithms does not necessarily
provide any information nor indication on their relative performance ranking in the low-data regime.
The results provided in Section 5 extensively demonstrate that a large body of work in reinforcement
learning research carried this assumption and resulted in incorrect conclusions. In this section we
introduce the foundational basis for this discovery revealed by our empirical analysis provided in
Section 5 in optimization of non-stationary policies, i.e. rewards and transitions can vary with each
step in an episode, in undiscounted, finite-horizon MDPs with linear function approximation. In
particular, a finite horizon MDP is represented as a tuple ⟨S,A,P,R,H⟩ where S is the set of states,
and A represents the set of actions. For each timestep t ∈ [H] = {1, . . . ,H}, state s, and action a the
transition probability kernel Pt(st+1|st, at) gives the probability distribution over the next state, and
the reward Rt(st, at, st+1) gives the immediate rewards. A non-stationary policy π = (π1, . . . , πH)
induces a state-action value function given by

Qπ
t (st, at) = Rt(st, at, st+1) + Est∼Pt(st+1|st,at)

at∼π

[ H∑
h=t+1

Rt(sh, πh(sh), sh+1)

∣∣∣∣st, at
]

where we let π(s) be the action taken by the policy π in state s, and the corresponding value function
Vπ
t (st) = Qt(st, π(st)). The optimal non-stationary policy π∗ has value function V∗

t (st) = Vπ∗

t (st)

3
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satisfying V∗
t (st) = supπ Vπ

t (st). The objective is to learn a sequence of non-stationary policies πk

for k ∈ {1, . . . ,K} while interacting with an unknown MDP in order to minimize the regret, which
is measured asymptotically over K episodes of length H

REGRET(K) =

K∑
k=1

(
V∗
1 (s

k
1)− Vπk

1 (sk1)
)

(1)

where sk1 ∈ S is the starting state of the k-th episode. Regret sums up the gap between the expected
rewards obtained by the sequence of learned policies πk and those obtained by π∗ when learning for
K episodes. In the linear function approximation setting there is a feature map ϕt : S × A → Rdt

for each t ∈ [H] that sends a state-action pair (s, a) to the dt-dimensional vector ϕt(s, a). Then, the
state-action value function Qt(st, at) is parameterized by a vector θt ∈ Rdt so that Qt(θt)(st, at) =
ϕt(s, a)

⊤θt. Recent theoretical work in this setting gives an algorithm along with a lower bound that
matches the regret achieved by the algorithm up to logarithmic factors.
Theorem 3.1 (Zanette et al. (2020)). Under appropriate normalization assumptions there
is an algorithm that learns a sequence of policies πk achieving regret REGRET(K) =

Õ
(∑H

t=1 dt
√
K +

∑H
t=1

√
dtIK

)
, where I is the inherent Bellman error. Furthermore, this

regret bound is optimal for this setting up to logarithmic factors in dt,K and H whenever
K = Ω((

∑H
t=1 dt)

2), in the sense that for any level of inherent Bellman error I and sequence
of feature dimensions {dt}Ht=1, there exists a class of MDPs C(I, {dt}Ht=1) where any algorithm
achieves at least as much regret on at least one MDP in the class.

The class of MDPs C(I, {dt}Ht=1) constructed in Theorem 3.1 additionally satisfies the following
properties. First, every MDP in ∪I,{dt}H

t=1
C(I, {dt}Ht=1) has the same transitions (up to renaming of

states and actions). Second, for each fixed value of the inherent Bellman error I and the dimensions
{dt}Ht=1, every MDP in C(I, {dt}Ht=1) utilizes the same feature map ϕt(st, at). Thus one can view
the class C(I, {dt}Ht=1) as encoding one "underlying" true environment (defined by the transitions),
with varying values of I and {dt}Ht=1 corresponding to varying levels of function approximation
accuracy, and model capacity for the underlying environment. For simplicity of notation we will focus
on the setting where dt = d for all t ∈ {1, . . . H} and write C(I, d) for the class of MDPs constructed
in Theorem 3.1 for this setting. Utilizing this point of view, we can then prove the following theorem
on the relationship between the performance in the asymptotic and low-data regimes.
Theorem 3.2 (Non-monotonocity Across Regimes). For any ϵ > 0, let dα be any feature dimension,
and let dβ = d

1−ϵ/2
α . Then there exist thresholds Klow < Khigh and inherent Bellman error levels

Iβ > Iα such that

1. There is an algorithm achieving regret REGRETlow(K) when K < Klow for all MDPs in

C(Iβ , dβ). However, every algorithm has regret at least Ω̃
(
d
ϵ/2
β REGRETlow(K)

)
when

K < Klow on some MDP M ∈ C(Iα, dα).

2. There is an algorithm achieving regret REGREThigh(K) when K > Khigh for all MDPs in
C(Iα, dα). However, every algorithm has regret at least Ω̃ (dϵαREGREThigh(K)) on some
MDP M ∈ C(Iβ , dβ) when K > Khigh.

Proof. Let ϵ > 0 and consider dβ = d
1− ϵ

2
α , Iβ = 1

dϵ
α

√
dβ

, Iα = 1

d
1
2
+2ϵ

α

,Klow = d2+ϵ
α ,Khigh = d2+4ϵ

α

We begin with the proof of part 1. Therefore, for K < Klow,
√
dβIβK = d−ϵ

α K < d
1− ϵ

2
α

√
K =

dβ
√
K. Therefore, by Theorem 3.1 there exists an algorithm achieving regret

REGRETlow(K) = Õ
(
Hdβ

√
K +H

√
dβIβK

)
= Õ

(
dβ

√
K
)

in every MDP M ∈ C(Iβ , dβ). Further, since Klow = d2+ϵ
α > Ω̃

(
d2α

)
, the lower bound from

Theorem 3.1 applies to the class of MDPs C(Iα, dα) for all K ∈
[
Ω̃
(
d2α

)
,Klow

]
. In particular, every

algorithm receives regret at least

REGRET(K) = Ω̃
(
Hdα

√
K +H

√
dαIαK

)
> Ω̃

(
Hd

1
1−ϵ/2

β

√
K
)

> Ω̃

(
Hd

ϵ/2
1−ϵ/2

β dβ
√
K
)
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Thus, REGRET(K) > Ω̃
(
d
ϵ/2
β REGRETlow(K)

)
. For part 2, note that for K > Khigh we have both

√
dαIαK = d−2ϵ

α K > d−2ϵ
α

√
K · Khigh > dα

√
K and

√
dβIβK > d−ϵ

α

√
K · Klow = d1+ϵ

α

√
K >

dβ
√
K. Therefore by Theorem 3.1 that for K > Klow there exists an algorithm achieving regret

REGREThigh(K) = Õ
(
Hdα

√
K +H

√
dαIαK

)
= Õ

(
H
√
dαIαK

)
.

for every MDP M ∈ C(Iα, dα). However, by the lower bound in Theorem 3.1, for K > Klow every
algorithm receives regret at least

REGRET(K) = Ω̃
(
Hdβ

√
K +H

√
dβIβK

)
> Ω̃

(
H
√
dβIβK

)
= Ω̃

(
Hd−ϵ

α K
)

= Ω̃
(
dϵαHd−2ϵ

α K
)
= Ω̃

(
dϵαH

√
dαIαK

)
> Ω̃ (dϵαREGREThigh(K))

Theorem 3.2 introduces the provable trade-off between performance in the low-data regime (i.e.
K < Klow) and the high-data regime (i.e. K > Khigh). In particular, in the low-data regime lower
capacity function approximation, i.e. lower feature dimension dβ , with larger approximation error,
i.e. larger inherent Bellman error Iβ , can provably outperform larger capacity models, i.e. feature
dimension dα, with smaller approximation error, i.e. inherent Bellman error Iα. Furthermore, the
relative performance is reversed in the high-data regime K > Khigh. Thus, asymptotic performance of
an algorithm is neither indicative nor carries any relevant information on the expected performance
of the algorithm when training data is scarce (i.e. limited).

4 LOWER BOUNDS FOR LEARNING THE STATE-ACTION VALUE
DISTRIBUTION

The instances of the implicit assumption that the performance profile of an algorithm in the high-data
regime will translate to the low-data regime monotonically appear in almost all of the studies con-
ducted in the low-data regime. In particular, we see that when this line of work was being conducted
the best performing algorithm in the high-data regime was based on learning the state action value
distribution. Hence, there are many cases in the literature (e.g. DRQ, OTR, DER, CURL, SimPLE,
Efficient-Zero) where all the newly proposed algorithms in the low-data regime are being compared
to an algorithm that learns the state-action value distribution, under the implicit assumption that the
algorithm that learns the state-action value distribution must achieve the current best performance in
the low-data regime. The large scale experiments provided in Section 5 demonstrate the impact of
this implicit assumption in the low-data regime deep reinforcement learning algorithm design. In
particular, the results reported in Section 5 prove that the performance profile of an algorithm in the
high-data regime does not monotonically transfer to the low-data regime. Due to this extensive focus
throughout the literature on low-data regime comparisons to algorithms that learn the state action
value distribution, we provide additional theoretical justification for the empirically observed sample
complexity results in the low to high-data regime in deep reinforcement learning.

To obtain theoretical insight into the larger sample complexity exhibited by learning the state-action
value distribution we consider the fundamental comparison between learning the distribution of
a random variable X versus only learning the mean E[X ]. In the base algorithm that learns the
state-action value distribution the goal is to learn a distribution over state-action values that has
finite support. It is well-known that learning a discrete distribution to error ϵ in total variation
distance requires more samples than estimating the mean to within error epsilon (see Proposition
B.1). Although this fact implies that learning the state-action value distribution has an intrinsically
higher sample complexity than that of standard Q-learning, it does not provide insights into the
comparison of an error of ϵ in the mean with an error of ϵ in total variation distance. Hence, the
following proposition demonstrates a precise justification of the comparison: whenever there are two
different actions where the true mean state-action values are within ϵ, an approximation error of ϵ in
total variation distance for the state-action value distribution of one of the actions can be sufficient to
reverse the order of the means.
Proposition 4.1 (Accuracy of Mean vs Distribution). Fix a state s and consider two actions a, â. Let
X (s, a) be the random variable distributed as the true state-action value distribution of (s, a), and
X (s, â) be the same for (s, â). Suppose that E[X (s, a)] = E[X (s, â)] + ϵ. Then there is a random
variable Y such that dTV (Y,X (s, a)) ≤ ϵ and E[X (s, â)] ≥ E[Y].
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Proof. Let τ∗ ∈ R be the infimum τ∗ = inf{τ ∈ R | P[X (s, a) ≥ τ ] = ϵ} i.e. τ∗ is the first point in
R such that X (s, a) takes values at least τ∗ with probability exactly ϵ. Next let the random variable
Y be defined by the following process. First, sample the random variable X (s, a). If X (s, a) ≥ τ∗,
then output τ∗ − 1. Otherwise, output the sampled value of X (s, a). Observe that the probability
distributions of Y and X (s, a) are identical except at the point τ∗ − 1 and on the interval [τ∗,∞).
Let λ be the Lebesgue measure on R. By construction of Y the total variation distance is given by

dTV (Y,X ) =
1

2

∫
R

∣∣P[X (s, a) = z]− P[Y = z]
∣∣ dλ(z) = 1

2

∣∣P[X (s, a) = τ∗ − 1]

− P[Y = τ∗ − 1]
∣∣+ 1

2

∫
[τ∗,∞)

∣∣P[X (s, a) = z]− P[Y = z]
∣∣ dλ(z) = ϵ

2
+

ϵ

2
= ϵ.

Next note that the expectation of Y is given by

E[Y] = ϵ(τ∗ − 1) +

∫
(−∞,τ∗]

zP[X (s, a) = z] dλ(z) = ϵ(τ∗ − 1) +

∫
R
zP[X (s, a) = z] dλ(z)

−
∫
(τ∗,∞]

zP[X (s, a) = z] dλ(z) ≤ ϵ(τ∗ − 1) + E[X (s, a)]− ϵτ∗ = E[X (s, a)]− ϵ

where the inequality follows from the fact that X takes values larger than τ∗ with probability ϵ.

Proposition 4.1 shows that, in the case where the mean state-action values are within ϵ, unless the
state-action value distribution is learned to within total-variation distance ϵ, the incorrect action may
be selected by the policy that learns the state-action value distribution. Therefore, it is natural to
compare the sample complexity of learning the state-action value distribution to within total-variation
distance ϵ with the sample complexity of simply learning the mean to within error ϵ, as is done in
Proposition B.1.

4.1 LEARNING STATE-ACTION VALUES WITH UNKNOWN SUPPORT

The setting considered in Proposition B.1 most readily applies to the base algorithm that learns
the state-action value distribution C51, which attempts to directly learn a discrete distribution
with known support in order to approximate the state-action value distribution. However, further
advances in learning the state-action value distribution including QRDQN and IQN do away with the
assumption that the support of the distribution is known. This allows a more flexible representation
in order to more accurately represent the true distribution on state-action values, but, as we will
show, potentially leads to a further increase in the sample complexity. The QRDQN algorithm
models the distribution of state-action values as a uniform mixture of N Dirac deltas on the reals i.e.
Z(s, a) = 1

N
∑N

i=1 δθi(s,a), where θi(s, a) ∈ R is a parametric model.

Proposition 4.2 (Sample Complexty with Unknown Support). Let N > M ≥ 2, ϵ > M
4N , and θi ∈ R

for i ∈ [N ]. The number of samples required to learn a distribution of the form Z = 1
N

∑N
i=1 δθi to

within total variation distance ϵ is Ω
(M
ϵ2

)
.

The proof is provided in the appendix. Depending on the tolerance to the approximation error, the
lower bound in Proposition 4.2 can be significantly larger than that of Proposition B.1. For example
if the desired approximation error is ϵ = 1

8 one can take M = N
2 . In this case if the value of k in

Proposition B.1 satisfies k = o(N ), then the sample complexity in Proposition 4.2 is asymptotically
larger than that of Proposition B.1.

5 LARGE SCALE EMPIRICAL ANALYSIS

The empirical analysis is conducted in the Arcade Learning Environment (ALE) (Bellemare et al.,
2013). The Double Q-learning algorithm is trained via Double Deep Q-Network (Hasselt et al.,
2016) initially proposed by van Hasselt (2010). The dueling algorithm is trained via Wang et al.
(2016). The prior algorithm refers to the prioritized experience replay algorithm proposed by Schaul
et al. (2016). The policies that learn the state-action value distribution are trained via the C51
algorithm, IQN and QRDQN. To provide a complete picture of the sample complexity we conducted

6
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Alien Amidar Assault Asterix

BankHeist ChopperCommand Hero JamesBond

Kangaroo CrazyClimber MsPacman FrostBite

RoadRunner Seaquest UpNDown Qbert

Figure 2: The learning curves of Alien, Amidar, Asterix, BankHeist, ChopperCommand, Hero,
CrazyClimber, JamesBond, Kangaroo, MsPacman, FrostBite, Qbert, RoadRunner, Seaquest and
UpNDown with dueling architecture, C51, IQN and QRDQN algorithms in the Arcade Learning
Environment with 100K environment interaction training.

our experiments in both low-data, i.e. the Arcade Learning Environment 100K benchmark, and
high data regime, i.e. baseline 200 million frame training. All of the results are reported with the
standard error of the mean in all of the tables and figures in the paper. The experiments are run
with JAX (Bradbury et al., 2018), with Haiku as the neural network library, Optax (Hessel et al.,
2020) as the optimization library, and RLax for the reinforcement learning library (Babuschkin et al.,
2020). More details on the hyperparameters and direct references to the implementations can be
found in the supplementary material. Note that human normalized score is computed as follows:
ScoreHN = (Scoreagent − Scorerandom)/(Scorehuman − Scorerandom).

Our extensive large-scale empirical analysis demonstrates that a major line of research conducted in
the past five years resulted in suboptimal conclusions. In particular, Figure 5 shows that a simple
baseline dueling algorithm from 2016, by a canonical methodological choice was never included
in the comparison benchmark due to the implicit assumption that appears in all of the recent line
of research that we have discussed in detail in Section 3. Thus, we demonstrate that this baseline
algorithm in fact performs much better than any recent algorithm that claimed to be better than the
baselines, even including algorithms that are built on top of the dueling algorithm.

Figure 2 reports learning curves for the IQN, QRDQN, dueling architecture and C51 for every MDP
in the Arcade Learning Environment low-data regime 100K benchmark. These results demonstrate
that the simple base algorithm dueling performs significantly better than any algorithm that focuses
on learning the distribution when the training samples are limited. For a fair, direct and transparent
comparison we kept the hyperparameters for the baseline algorithms in the low-data regime exactly
the same with the DRQICLR paper (see supplementary material for the full list and high-data regime
hyperparameter settings). Note that the DRQ algorithm uses the dueling architecture without any
distributional reinforcement learning. One intriguing takeaway from the results provided in Table
1 and the Figure 51 is the fact that the simple base algorithm dueling performs 15% better than the

1DER2021 refers to the re-implementation with random seed variations of the original paper data-efficient
Rainbow (i.e. DER2019) by van Hasselt et al. (2019). OTR refers to further implementation of the Rainbow
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Median Mean 20th Percentile

Median Mean 20th Percentile
Figure 3: Up: Human normalized median, mean and 20th percentile results for the dueling algorithm,
C51, IQN and QRDQN in the Arcade Learning Environment 100K benchmark. Down: Human
normalized median, mean, and 20th percentile results for the dueling algorithm, C51, IQN and
QRDQN in the high-data regime towards 200 million frame.
Table 1: Large scale comparison of Q-based deep reinforcement learning algorithms with human
normalized mean, median and 20th percentile results in the Arcade Learning Environment 100K
benchmark for DQN (Mnih et al., 2015), deep Double-Q learning (Hasselt et al., 2016), dueling
architecture (Wang et al., 2016), Prior (Schaul et al., 2016), C51, QRDQN and IQN.

Algorithms Human Normalized Median Human Normalized Mean 20th Percentile

DQN 0.0481±0.0036 0.1535±0.0119 0.0031±0.0032
Double-Q 0.0920±0.0181 0.3169±0.0196 0.0341±0.0042
Dueling 0.2304±0.0061 0.2923±0.0060 0.0764±0.0037
C51 0.0941±0.0081 0.3106±0.0199 0.0274±0.0024
QRDQN 0.0820±0.0037 0.2171±0.0098 0.0189±0.0031
IQN 0.0528±0.0058 0.2050±0.0123 0.0091±0.0011
Prior 0.0840±0.0018 0.2792±0.0123 0.0267±0.0042

DRQNeurIPS implementation, and 11% less than the DRQICLR implementation. Note that the original
paper of the DRQICLR algorithm provides comparison only to data-efficient Rainbow (DER) (van
Hasselt et al., 2019) which inherently learns the state-action value distribution. The fact that the
original paper that proposed data augmentation for deep reinforcement learning (i.e. DRQICLR)
on top of the dueling architecture did not provide comparisons with the pure simple base dueling
architecture (Wang et al., 2016) resulted in inflated performance profiles for the DRQICLR algorithm.

More intriguingly, the comparisons provided in the DRQICLR paper to the DER and OTR algorithms
report the performance gained by DRQICLR over DER is 82% and over OTR is 35%. However, if a
direct comparison is made to the simple dueling algorithm as Table 1 demonstrates with the exact
hyperparameters used as in the DRQICLR paper the performance gain is utterly restricted to 11%.
Moreover, when it is compared to the reproduced results of DRQNeurIPS our results reveal that in fact
there is a performance decrease due to utilizing the DRQ algorithm over dueling architecture. Thus,
while our paper introduces the foundations on the non-monotonicity of the performance profiles from
large-data regime to low-data regime, it further provides the basis on how we can compare algorithms
with scientific rigor, and can influence future research to have more concrete and accurate performance
profiles for algorithm development in both low-data and high-data regime. Table 1 reports the human
normalized median, human normalized mean, and human normalized 20th percentile results over all
of the MDPs from the 100K Arcade Learning Environment benchmark for DQN, Double-Q, dueling,
C51, QRDQN, IQN and prior. One important takeaway from the results reported in the Table 1 is the
fact that one particular algorithm performance profile in 200 million frame training will not directly

algorithm by Kielak (2019). DRQNeurIPS refers to the re-implementation of the original DRQ algorithm published
in ICLR as a spotlight presentation with the goal of achieving reproducibility with variation on the number of
random seeds (Agarwal et al., 2021).
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Regret in the Low-data Regime Regret in the High-data Regime Distributional vs Baseline Q
Figure 4: Left: Regret in the low-data regime. Center: Regret in the high-data regime. Right:
Distributional vs baseline Q comparison of algorithms that were proposed and developed in the
high-data regime in the Arcade Learning Environment in both high-data regime and low-data regime.

Sample Complexity of C51 Sample Complexity of IQN Overall Comparison
Figure 5: Left: Number of samples, i.e. environment interactions, required by the base algorithm that
learns the state-action value distribution to achieve the performance level achieved by the dueling
algorithm. Center: Number of samples required by IQN to achieve the performance level achieved
by dueling. Right: Overall comparison of algorithms recently developed in the low-data regime ALE
100K benchmark to the dueling algorithm that was designed in the high-data region.

transfer to the low-data region. Figure 3 reports the learning curves of human normalized median,
human normalized mean and human normalized 20th percentile for the dueling algorithm, C51,
QRDQN, and IQN in the low-data region. These results once more demonstrate that the performance
profile of the simple base algorithm dueling is significantly better than any other algorithm that learns
the state-action value distribution when the number of environment interactions are limited. The left
and center plots of Figure 4 report regret curves corresponding to the theoretical analysis in Theorem
3.2 for various choices of the feature dimensionality d and the inherent Bellman error I . In particular,
the left plot shows the low-data regime where the number of episodes K < 1000, while the right
plot shows the high-data regime where K is as large as 500000. Notably, the relative ordering of the
regret across the different choices of d and I is completely reversed in the high-data regime when
compared to the low-data regime. Recall from Theorem 3.1 that the inherent Bellman error is a
measure of the accuracy of function approximation under the Bellman operator corresponding to an
MDP. Thus, the varying values of I and d in Figure 4 correspond to a natural setting where increasing
the number of model parameters (i.e. increasing d) corresponds to an increase in the accuracy of
function approximation (i.e. a decrease in I). Thus the results reported in Figure 4 demonstrate that,
even in the natural setting where increased model capacity leads to increased accuracy, there can be a
complete reversal in the ordering of algorithm performance between the low and high-data regimes.

Figure 5 reports results on the number of samples required for training with the baseline algorithm
that learns the state-action value distribution to reach the same performance levels achieved by the
dueling algorithm for each individual MDP from ALE low-data regime benchmark. These results
once more demonstrate that to reach the same performance levels with the dueling algorithm, the
baseline algorithm that learns the state-action value distribution requires orders of magnitude more
samples to train on. As discussed in Section 4.1, more complex representations for broader classes of
distributions come at the cost of a higher sample complexity required for learning. One intriguing
fact is that the original SimPLE paper provides a comparison in the low-data regime of their proposed
algorithm with the Rainbow algorithm which is essentially an algorithm that is designed in the
high-data regime by having the implicit assumption that the state-of-the art performance profile must
transfer monotonically to the low-data regime. These instances of implicit assumptions also occur
in DRQICLR, CURL, SPR and Efficient-Zero even when comparisons are made for more advanced
algorithms such as MuZero.
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Our paper discovers that the canonical methodological choices made in a major line of deep rein-
forcement learning research that is based on these implicit assumptions, give incorrect signals on
why and what makes these algorithms work when designed for the low-data regime, and hence affect
future research directions while misdirecting research efforts from ideas that could have worked in
the algorithm design process.

6 CONCLUSION

In this paper we aimed to answer the following questions: (i) What are the canonical methodological
choices that fundamentally effects the progress in deep reinforcement learning research, (ii) What
is the underlying theoretical relationship between the performance profiles and sample complexity
regimes?, and (iii) Do the performance profiles of deep reinforcement learning algorithms designed
for certain data regimes translate monotonically to a different sample complexity region? To be able
to answer these questions we provide theoretical analysis on the sample complexity of the baseline
deep reinforcement learning algorithms. We conduct extensive experiments both in the low-data
regime 100K Arcade Learning Environment and high-data regime baseline 200 million frame training.
Our analysis reveals that under the canonical methodological choices a major line of research resulted
in suboptimal conclusions. In particular, both theoretical and empirical analysis provided in our
paper demonstrate that the performance profiles of deep reinforcement learning algorithms do not
have a monotonic relationship across sample complexity regimes. The underlying assumption of
the monotonic relationship of the performance characteristics and the sample complexity regimes
that is currently present in many recent state-of-the-art works led these studies to result in incorrect
conclusions. Our paper demonstrates that several baseline Q algorithms perform better than a line of
recent algorithms claimed to be the state-of-the-art.
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