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Abstract
Learning good representations involves capturing
the diverse ways in which data samples relate.
Contrastive loss—an objective matching related
samples—underlies methods from self-supervised
to multimodal learning. Contrastive losses, how-
ever, can be viewed more broadly as modifying a
similarity graph to indicate how samples should
relate. This view reveals a shortcoming: the con-
trastive similarity graph is binary, as only one
sample is the positive sample. Crucially, similar-
ities across samples are ignored. We revise the
standard contrastive loss to explicitly encode how
a sample relates to others, and introduce a new
objective, called X-Sample Contrastive, to train
vision models based on similarities in class or text
caption descriptions. Our study spans three scales:
ImageNet-1k with 1 million, CC3M with 3 mil-
lion, and CC12M with 12 million samples. The
representations learned via our objective outper-
form both contrastive self-supervised and vision-
language models trained on the same data across
a range of tasks. When training on CC12M, we
outperform CLIP by 0.6% on both ImageNet and
ImageNet Real. Our objective appears to work
particularly well in lower-data regimes, with gains
over CLIP of 16.8% on ImageNet and 18.1% on
ImageNet Real when training with CC3M. Fi-
nally, our objective seems to encourage the model
to learn representations that separate objects from
their attributes and backgrounds, with gains of
3.3-5.6% over CLIP on ImageNet9.

1. Introduction
Contrastive loss underlies methods from self-supervised
learning (SSL) to multimodal learning (Radford et al., 2021;
Chen et al., 2020; Oord et al., 2018). In SSL, contrastive
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learning encourages the model to associate a sample with
another view of the sample created using hand-crafted data
augmentation—this related view is the positive sample.
Other samples are then pushed away as negative, unrelated
samples in the models’ representation space. Contrastive
losses also play a crucial role in multimodal models such
as CLIP (Radford et al., 2021), where the model associates
an image with its text caption in representation space. Here
contrastive learning designates the caption and image repre-
sentations as positives while all other text-image pairs are
designated as unrelated negatives.

More broadly, contrastive losses can be seen as modifying
a similarity graph to indicate how samples should relate in
the model’s representation space (Cabannes et al., 2023).
This view reveals a shortcoming in contrastive learning: the
similarity graph is binary, as only one sample is the related
positive sample. Crucially, similarities across samples, con-
taining precious signals about how aspects of one sample
may relate to another, are ignored. For example, as shown
in fig. 1, contrastive learning treats each text-image pair in-
dependently, without explicitly encoding similarities in the
images depicting dogs and the others sharing a grassy back-
ground. Standard contrastive objectives do not explicitly
account for similarities across samples, thereby limiting the
quality of the learned representations. Here, we explore here
how to capture such similarities by modifying the standard
contrastive objective.

To account for similarities across samples, we first remove
the binary negative vs. positive designations in standard
contrastive loss. We introduce instead a similarity graph
with continuous scalars capturing the extent to which two
samples are related. Consider the example in fig. 1, where
the two dog images have a high similarity while the dog and
cat images have a more moderate similarity. We experiment
with this new objective, called X-Sample Contrastive (X-
CLR), by training vision models using a graph of similarities
inferred from class or text caption descriptions found in
common datasets. Our study spans three training dataset
scales from 1 million samples with high-quality labels from
ImageNet (Deng et al., 2009) to 3 and 12 million noisy
image-text caption pairs from CC3M and CC12M (Sharma
et al., 2018).

We find that compared to contrastive baseline methods
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Figure 1: Capturing similarities across samples in vision-language data with X-Sample Contrastive Loss. Standard
contrastive losses do not model the relationship across the samples (left), while our method X-CLR (right) takes into
account the soft inter-sample relationships. X-CLR pushes the representations of two different photos of dogs together. The
relationship between the photos of a dog and a cat on grassy backgrounds is also captured, albeit with a smaller similarity.

trained on the same data, representation trained using X-
CLR outperform contrastive training on a range of tasks
from standard classification to tasks involving the decom-
position of objects from their attributes and backgrounds.
When training on CC12M, we outperform CLIP by 0.6%
on both ImageNet and ImageNet Real (Beyer et al., 2020).
Furthermore, X-CLR seems to encourage the model to learn
representations that separate objects from their attributes
and backgrounds, with gains of 3.4-4.9% over CLIP on Im-
ageNet9 (Xiao et al., 2020). We also find for fine-grained
disambiguation of object attributes, the quality of labels used
to infer the similarity graph is much more important than
the data quantity. Compared to noisier web caption data, we
find X-CLR trained on 1 million higher quality class labels
outperforms representations learned via standard contrastive
CLIP trained 12× more data. Finally, we find X-CLR ap-
pears to work particularly well in lower-data regimes, with
gains over CLIP of 16.8% on ImageNet and 18.1% on Im-
ageNet Real when training with CC3M. In short, we find
representations learned using X-CLR generalize better, de-
compose objects from their attributes and backgrounds, and
are more data-efficient. Overall, our contributions are:

1. We present a graph similarity perspective of contrastive
losses, revealing standard losses encode a sparse simi-
larity matrix that treats other, related, samples as nega-
tives.

2. Consequently, we propose a new X-CLR loss that ex-
plicitly accounts for similarities across samples

3. We experiment with this objective across three levels
of data scale from 1-12 million samples.

4. We find representations learned via X-CLR

(a) Generalize better on standard classification tasks
with consistent gains over contrastive baselines
trained on the same data. For example, when
training on CC12M we outperform CLIP by 0.6%
on both ImageNet and ImageNet Real.

(b) Disambiguate aspects of images such as attributes
and backgrounds more reliably, with gains of 3.3-
5.6% over CLIP on background robustness bench-
marks for ImageNet.

(c) Finally, we find X-CLR learns more efficiently
when data is scarce, with gains of 16.8% on Im-
ageNet and 18.1% on ImageNet Real when pre-
training on the smaller 3 million sample CC3M
dataset.

We hope the proposed solution takes a small step towards
developing richer learning objectives for understanding sam-
ple relations in foundation models to encode richer, more
generalizable representations.

2. Understanding contrastive losses via
similarity graphs

2.1. X-Sample Graphs

Throughout this study, a similarity graph denotes a graph in
which the nodes represent data samples, and edges similarity
– relationships. A graph is expressed through its symmetric
adjacency matrix G ∈ RN×N , the semantic relation be-
tween inputs i and j being encoded in the real entry Gi,j . In
fig. 2, we show graphs of different learning paradigms. SSL
does not rely on labels, but on positive pairs/tuples/views
generated at each epoch. Let us denote by V the number
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Figure 2: Sample similarity adjacency matrices of exist-
ing methods vs. our X-Sample Contrastive similarity
loss (right). We show pairwise similarities of 20 samples
belonging to 4 classes. Similarity of 1 means the samples
are identical, 0 – they are completely unrelated. In case of
self-supervised learning, none of the inter-sample relation-
ships are modelled (left). Supervised learning relies on the
labels to group samples of the same class together (center).
X-CLR models inter-class relationships by associating cats
with dogs and pianos with guitars.

of positive views generated, commonly V = 2 for positive
pairs, and denote by E the training epochs. In that case, the
original N input samples are transformed into N × V × E
“augmented” samples

X(A) ≜ [T (x1), . . . , T (x1)︸ ︷︷ ︸
repeated V × E times

, . . . , T (xN ), . . . , T (xN )]⊤,

where each T has its own randomness. The corresponding
graph is given by:

G
(ssl)
i,j = 1{⌊i/V E⌋=⌊j/V E⌋}, (1)

where the associated similarity graph captures if two sam-
ples were generated as augmentations of the same original
input. Such graphs G, as defined by eq. (1), are the ones
used as targets in common SSL methods, as formalized
below denoting Z ≜ fθ(X) ∈ RN×K .

Theorem 1 ((Cabannes et al., 2023)). SimCLR (Chen et al.,
2020) loss can be expressed in terms of the graph G (1)

LSimCLR(Z;G) =−
∑

i,j∈[N ]

Gi,j log

(
exp(z̃⊤

i z̃j)∑
k∈[N ] exp(z̃

⊤
i z̃k)

)

where z̃ ≜ z/ ∥z∥ and Z̃ the column normalized Z so that
each column has unit norm.

In our study, we will focus on contrastive learning, i.e.,
SimCLR family of losses. We will demonstrate how to
move away from the ad-hoc graph G from eq. (1).

2.2. Revisiting contrastive losses with similarity graphs:
X-CLR

We introduce the soft cross-sample similarity to the widely
used InfoNCE objective (Oord et al., 2018). We note that
the proposed framework isn’t necessarily only limited to
InfoNCE-based methods and can potentially be integrated
into non-contrastive objectives. In SimCLR (Chen et al.,
2020), given a batch of N images, each image is augmented
twice, so each sample has a true positive. The 2N images
are then encoded to get representation vectors z. Then:

pi,j =
exp(sim(zi, zj)/τ)∑2N

i=1 1[k ̸=i] exp(sim(zi, zk)/τ)

LSimCLR =
1

2N

2N∑
i=1

H(1i′ , pi)

where H is the cross-entropy, and 1i′ is the one-hot dis-
tribution where all the probability mass is assigned to the
index of the positive sample corresponding to i, and sim is
the cosine similarity. Intuitively, we are training the model
to classify positive examples in a batch, so the similarity p
should be high only for the true positive. We introduce the
soft objective by replacing the hard positive distribution 1i′

with a distribution si. Or, in terms of graphs, we replace the
graph from the eq. (1) with a soft graph where connection
strengths can be any number in [0, 1], and, similarly, the
distribution si and does not have to be one-hot. Considering
the example of fig. 1, we want the a photo of a dog to have
a representation similar to that of another photo of a dog,
somewhat similar to the representation of a cat photo, and
different from the representation of a photo of a mug. Given
that distribution s, we can plug it in directly:

LX-CLR =
1

2N

2N∑
i=1

H(si, pi)

There are many possible ways to obtain this distribution s.
We could use the meta-data associated with the dataset; in
our case, we utilize a trained text encoder ftext, and encode
the text provided with each image to obtain a representation,
which is then used to calculate similarity between samples i
and j using the cosine similarity. Those pairwise similarities
describe the soft graph: G(soft)

i,j = sim(ftext(ci), ftext(cj)),
were ci is the caption associated with the i-th sample. The
last step before plugging the similarities into the loss func-
tion is converting them to a valid distribution using softmax:

si,j =
exp(G

(soft)
i,j /τs)∑2N

k=1 exp(G
(soft)
i,k /τs)

Note that τs is a separate hyperparameter from τ in the
softmax to calculate the learned similarities. Higher values
of τs put more weight on the ’soft’ positives, while lower
values in the limit recover the original SimCLR objective.
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3. Experiments
3.1. Experimental setup

We test X-CLR on three datasets of varying scale: Ima-
geNet (Deng et al., 2009) (1M), and conceptual captions
3M and 12M (Sharma et al., 2018). We compare to SimCLR
(Chen et al., 2020), to CLIP (Radford et al., 2021) when
captions are available, and to SupCon (Khosla et al., 2020)
on ImageNet. We use the Sentence Transformer (Reimers
& Gurevych, 2019) as the text encoder to construct simi-
larities. For ImageNet experiments, we generate captions
by using the template "a photo of a _" to generate captions
out of class names. In our experiments with the conceptual
captions dataset (Sharma et al., 2018), we use the captions
as is. For more details, see appendix A.8, and for more
experiments, see appendix A.3.

In all our experiments, to isolate the effect of our learning ob-
jective, we fix the backbone architecture to be a ResNet-50
(He et al., 2015) model as this is the most widely studied and
optimized model for standard contrastive self-supervised
learning (Chen et al., 2020). We use the same architecture
for CLIP’s vision encoder and take advantage of already
optimized publicly available checkpoints provided by Open-
CLIP (Ilharco et al., 2021) for CC12M. Since no comparable
public checkpoint is available for CC3M, we train our own
model, see appendix A.7.

3.2. X-CLR with Well-Labeled Samples

We first experiment with X-Sample Contrastive using well-
labeled samples to understand the effect of incorporating
similarities across samples in the training objective. To
do so, we use class labels from ImageNet. We compare
X-Sample Contrastive (X-CLR) to SimCLR as well as Su-
pervised Contrastive (SupCon), a model whose objective is
to explicitly match samples based on their class labels. We
evaluate all models across a suite of benchmarks to gauge
how well representations generalize in terms of classifica-
tion performance.

We find in table 1 that the representations learned via X-
CLR improve on standard classification performance, with
gains of 12.4% relative to SimCLR and 1.2% relative to
Supervised Contrastive on ImageNet. We find similar gains
when evaluated on revised labels from ImageNet Real of
14.1% and 1.9%, respectively. Finally, we find by captur-
ing similarities across samples, representations learned via
X-CLR are more capable of disambiguating objects from
backgrounds and attributes with gains on ImageNet-9 (for
details see appendix A.6) (Xiao et al., 2020) and ObjectNet
(Barbu et al., 2019).

Table 1: X-CLR with ImageNet training.

Background Decomposition MIT States

Method ImageNet ImageNet Real Same Class Mixed ObjectNet Objects Attributes

SimCLR 63.2 67.5 45.5 38.3 12.5 40.7 28.9
SupCon 74.4 79.7 63.3 58.8 24.1 45.3 31.1
X-CLR 75.6 81.6 66.5 62.3 27.7 45.8 30.9

Table 2: X-CLR with CC3M training.

Background Decomposition

Method ImageNet ImageNet Real Same Class Mixed ObjectNet

SimCLR 57.0 64.0 24.4 18.9 10.8
CLIP 41.0 47.6 12.5 10.6 7.8
X-CLR 58.2 65.6 26.7 20.3 11.5

3.3. X-CLR with Noisy Multimodal Samples

Contrastive loss also plays a pivotal role in multimodal
vision-language models such as CLIP. The contrastive train-
ing objective matches noisy caption-image pairs. Here we
experiment with X-Sample Contrastive by using the noisy
captions to learn similarities across samples. We compare
both SimCLR as a standard contrastive model and CLIP
trained on the same caption-image data across two levels of
scale: 3 and 12 million samples from CC3M and CC12M.

We find incorporating X-Contrastive leads to representations
with higher classification accuracy and disambiguation of
objects from their attributes and backgrounds. With CC12M
training shown in table 3, X-Contrastive outperforms Sim-
CLR by 0.5% and CLIP by 0.6% with CC12M with similar
gains for ImageNet Real. We also find X-CLR training can
better disambiguate object foreground from backgrounds,
with gains of 0.6-1.5% over SimCLR and 3.3-5.6% over
CLIP.

We find learning similarites across samples with X-CLR
leads to more considerable gains when less data is avail-
able. X-CLR outperforms SimCLR by 1.2% and CLIP by
16.8% on ImageNet, with similar gains on ImageNet Real as
shown in table 2. We find X-CLR training can more consid-
erably disambiguate object foregrounds from backgrounds
compared to CLIP when less training data is available, with
gains of 10.3-13.3% over CLIP.

Table 3: X-CLR with CC12M training.

Background Decomposition

Method ImageNet ImageNet Real Same Class Mixed ObjectNet

SimCLR 58.9 66 24.6 19.8 12.7
CLIP 58.8 66.1 20.5 17.1 11.9
X-CLR 59.4 66.7 26.1 20.4 13.4
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4. Discussion
We propose a new graph perspective on the commonly used
contrastive learning methods and develop a better learning
objective, X-CLR, by using a soft similarity graph. We
experiment with different ways of constructing the graph,
and find that we can build a soft graph that improves over
the existing binary graph contrastive methods. However, we
believe that there are better ways of constructing the graph
than what we found, particularly for the conceptual captions
dataset where the captions are quite noisy. We also believe
that ideas from X-CLR can possibly be integrated into non-
contrastive objectives such as BYOL (Grill et al., 2020) or
VICReg (Bardes et al., 2021) to enrich representations with
similarities across samples.
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A. Appendix
A.1. Related Work

Contrastive learning Various contrastive objectives have been proposed over the years (Chopra et al., 2005; Schroff
et al., 2015). More recently, the InfoNCE objective (Oord et al., 2018) has been the most popular choice for self-supervised
methods, e.g. SimCLR (Chen et al., 2020) and MoCo (He et al., 2020). InfoNCE objective has also been successfully
used to learn vision-language models using CLIP (Radford et al., 2021). The basis of those objectives is to make positive
pairs have similar representations, while the negatives, which typically are just all other elements in a batch, should have a
different representation. In its original form, InfoNCE is binary, meaning it only works with positive and negative pairs, and
does not support degrees of similarity. The positive pairs are usually two augmentations of the same sample, which makes
well-tuned augmentations crucial for good performance (Ryali et al., 2021). Dwibedi et al. (2021) estimate positives using
nearest neighbors in the latent space instead and therefore can use weaker augmentations, while (Caron et al., 2020) use
cluster assignment. A few methods have proposed modifications wherein multiple positive pairs are supported, e.g., Khosla
et al. (2020) groups positive by class labels, Hoffmann et al. (2022) propose using WordNet (Fellbaum, 1998) hierarchy to
define ranked positive samples, and Tian et al. (2024) uses a generative model to obtain multiple positives for the same
concept.

Soft targets Using soft targets provides more learning signal to the model, possibly making it learn better and faster. This
has been explored with distillation by Hinton et al. (2015). Soft targets have also been used with InfoNCE in the context of
distillation by Zheng et al. (2021) and (Denize et al., 2023), where the target cross-sample similarity comes from the teacher
model. Similarly, Fini et al. (2023a) computes soft targets via latent clustering and applies it to semi-supervised learning.
Andonian et al. (2022) proposes to use soft targets for CLIP (Radford et al., 2021) training, and calculates the targets via
self-distillation. Further soft CLIP objectives are explored by Fini et al. (2023b), who apply label smoothing to obtain soft
targets, and Gao et al. (2024), who estimate soft targets by comparing fine-grained image information. Finally, Huang et al.
(2024) train CLIP with non-zero cross-sample similarities computed based on pre-trained uni-modal models for text and
vision. In this study, we build on the work of (Cabannes et al., 2023) who propose a unifying framework to view SSL and
supervised learning objectives as learning with different underlying similarity graphs. We take inspiration from the soft
targets literature and propose using a soft graph.

A.2. Limitations

The main limitation of the present work is that constructing the cross-sample similarity graph requires extra data, as well
as some extra memory to store it. When the extra data is not available, the only options remaining are to build the graph
using the augmentations, self-distillation, or other pre-trained models. The resulting method is also highly dependent on the
quality of the graph, as we have seen with conceptual captions datasets.

A.3. Additional results

A.3.1. X-SAMPLE CONTRASTIVE INTRODUCES ONLY MINIMAL COMPUTATIONAL OVERHEAD

Both for ImageNet and conceptual captions datasets, we don’t run the text encoder for each sample we see, and instead
precompute the similarity values. For more details, see appendix A.8. Avoiding running the text encoder during model
training avoids the extra overhead at the price of some pre-processing. Pre-processing takes less than 2 hours for CC12M
when using one GPU, about 30 minutes for CC3M, and less than 5 minutes for ImageNet. To further analyze how much
overhead there is, we compare the average time it takes to process one batch for SimCLR and X-CLR. The results are shown
in table 5. Overall, we didn’t notice any significant difference in the amount of time it takes to train models with the X-CLR
objective compared to the regular contrastive objective. To train on ImageNet, we used 8 Nvidia V100s, and each run took
about 30 hours. With the same setup, CC3M runs took about 50 hours, and CC12M runs took roughly 9 days.

A.3.2. X-SAMPLE CONTRASTIVE CAN BE USED TO FINETUNE PRETRAINED BACKBONES

We validate whether X-CLR can be used as a finetuning objective for pretrained backbones, given the growing abundance of
publicly available backbones. Here, we evaluate a pretrained SimCLR model by finetuning for 10 epochs on ImageNet
with X-CLR instead of the original SimCLR contrastive objective. We see in table 4 finetuning with X-CLR improves
classification performance on ImageNet by 3.3% and on ImageNet Real by 6.9%. Furthermore, we see by relating samples
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Table 4: X-CLR can be used to finetune pretrained models.

Background Decomposition

ImageNet ImageNet Real Same Class Mixed ObjectNet

SimCLR 63.2 67.5 45.5 38.3 12.5
+ X-CLR finetuning 66.5 74.4 53.9 50 17.4

Table 5: Analyzing the computation overhead of the X-Sample Contrastive objective during training. X-CLR
introduces nearly no computational overhead compared to SimCLR.

Method Seconds per batch ImageNet Seconds per batch CC

SimCLR 0.866 ± 0.008 0.874 ± 0.034
X-CLR 0.866 ± 0.010 0.877 ± 0.032

during the finetuning stage, X-CLR can disambiguate object foregrounds from backgrounds with grains of 8.4-11.7% on
ImageNet-9 as well as improvements on natural object transformations from ObjectNet with a gain of 4.9% after finetuning.

A.3.3. THE IMPACT OF LABEL QUALITY FOR FINE-GRAINED ATTRIBUTE DISAMBIGUATION

We show in table 6 how label quality can impact downstream performance on finer-grained attribute disambiguation. We
find larger labels from noisy captions degrades performance for fine-grained object attributes in MIT States (Isola et al.,
2015) for both Contrastive and CLIP. We find X-CLR with high quality labels from ImageNet, can outperform models
trained on much larger noisier data. Compared to CLIP trained on 12× larger data, X-CLR achieves 30.9% vs. 23.3% for
CLIP on attribute classification and 45.8% vs. 36.9% for CLIP on object classification under different states. To see more
details regarding the MIT States evaluation, see appendix A.8.

A.3.4. ANALYZING REPRESENTATIONS LEARNED VIA X-SAMPLE CONTRASTIVE

Can we improve contrastive learning under data scarcity? To answer this question, we train all three models SimCLR,
SupCon, and X-CLR by varying the number of samples seen for each class in ImageNet. We find X-CLR, by incorporating
information about how classes relate, is able to learn representations that match the performance of SupCon trained with
ground truth class labels and outperform SimCLR even when few training samples are available per class as shown in fig. 4a.

KNN clustering To confirm the representations learned via X-CLR also work well for downstream tasks with non-linear
decision boundaries, we perform evaluation using the common K-nearest neighbor (KNN) protocol. The results shown in
fig. 4b demonstrate X-CLR outperforms both SimCLR and SupCon baselines across a range of choices for K. We also
show KNN results for models trained on conceptual captions in appendix A.5.

Visualizing the learned graph from X-Sample Contrastive representations Here we examine whether the learned
representations from X-Sample Contrastive capture semantically meaningful similarities. To do so, we select four groups of
three ImageNet classes: felines, dogs, types of balls, and musical instruments. For each pair of classes, we then compare

Table 6: Label quality matters for fine-grained attribute disambiguation.

Pretraining Data Size Quality MIT States Attributes MIT States Objects

CLIP CC3M 3M Noisy 27.0 40.1
CLIP CC12M 12M Noisy 23.3 36.9
X-CLR CC3M 3M Noisy 29.5 40.7
X-CLR CC12M 12M Noisy 30.1 42.1
X-CLR ImageNet 1M High 30.9 45.8
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Figure 3: Visualizing pairwise similarities SupCon (Khosla et al., 2020) objective does not encourage non-zero similarity
between samples of different classes (left), while X-CLR target similarities take into account semantic closeness within
categories such as dogs or types of balls (center). On the right, we see that the trained model successfully learns the soft
similarity. For more graphs, see fig. 5.
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Figure 4: (a) X-Sample Contrastive Loss is data efficient with ImageNet pretraining. We outperform SimCLR in low
data regimes and match Supervised Contrastive trained on ground truth labels at varying levels of data scarcity. (b) KNN
performance ImageNet. X-CLR outperforms other methods with KNN probing for a range of values of K. (c) Sensitivity
of X-Sample Contrastive to temperature. We test the performance of our method when trained with different values of
temperature τs on ImageNet data.
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Table 7: The effect of the similarity source on the model performance.

Similarity source ImageNet ImageNet Real Same Class Mixed ObjectNet

Augmentation graph only (SimCLR) 63.2 67.5 45.5 38.3 12.5
Sentence Transformer (X-CLR) 75.6 81.6 66.5 62.3 27.7
CLIP text encoder 74.4 80.6 67.5 64.2 24.5
LLama2 text encoder 40.9 45.8 38.3 36.0 4.3
Random per class pair, 1 for same class 74.5 80.8 71.0 68.0 26.6
Random per sample pair 0.1 0.1 0.0 0.0 0.0
True class graph (SupCon) 74.4 79.7 63.3 58.8 24.1
Distance in WordNet hierarchy 68.3 74.9 55.7 52.1 21.2

the representation similarities using cosine similarity. A higher average pairwise similarity indicates the model’s latent
representations encode the classes similarly. In fig. 3 we show the graph of similarities learned after training with X-CLR on
ImageNet. We find that the image encoder successfully captures the similarity within the class groups.

The effect of softmax temperature, and inferred similarity graph We also examine the effect of hyperparameter
choices. We show the sensitivity of X-CLR to temperature τs in fig. 4c on ImageNet. In the limit, when temperature
goes to 0, we recover Supervised Contrastive method for ImageNet, or SimCLR in case of conceptual captions. With low
temperature, the similarity is 1 only if the captions are exactly the same. As the temperature increases, more weight is put
on the soft positives compared to the true positives (i.e. augmentations of the same sample). With high temperature, our
method is unstable as too much emphasis is put on the soft positive examples compared to the true positives. We find that
the value of 0.1 strikes the optimal balance and provides an improvement over pure Supervised Contrastive objective, while
still emphasizing true positives enough. For more details regarding how τs changes the objective, see fig. 7b.

We also experiment with different ways of inferring the graph, including using different text encoders, using WordNet
(Fellbaum, 1998) hierarchy distance, and the purely random graph. We find that overall, calculating the similarities using
the sentence transformer worked the best (Reimers & Gurevych, 2019). A more detailed comparison of different graph
sources can be found in appendix A.4.

A.4. More learned similarities comparisons

We compare inferring the similarity graph using different text encoders:

• Graph with connections only between samples of the same class (SupCon);

• Graph with connections only between augmentations of the same image (SimCLR);

• Graph where soft similarity is inferred by comparing representations of the sample captions. The representations are
computed using the sentence transformer (Reimers & Gurevych, 2019), CLIP text encoder (Radford et al., 2021),
LLama2 encoder (Touvron et al., 2023);

• Graph where the connection strength is defined by the distance in WordNet (Fellbaum, 1998) hierarchy;

• Random graph where the cross-sample connections’ strengths are fully random;

The results are shown in table 7. We find that overall, the Sentence Transformer graph performs the best, although the CLIP
text encoder achieves good performance as well. Interestingly, we find that using WordNet hierarchy distance did not work
well. We visualize learned and target similarities for SupCon graph and for the graph built using CLIP text encoder in fig. 5.

Visualising similarities In fig. 3, to visualize learned similarities, for each class we pick 100 examples from the dataset,
encode them. Then, to calculate the average learned similarity between two classes, we take the 100 examples for each
of the two classes, and calculate the Cartesian product, yielding 10,000 similarities. We take the mean over those 10,000
similarities to represent the average learn similarity for a class pair.
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(b) CLIP target and learned similarities

Figure 5: Target and learned similarities for different graphs.
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Figure 6: Results of models trained on ImageNet, CC3M, CC12M on ImageNet validation when using KNN classifier.

Table 8: CLIP on CC3M We train our own models on CC3M and find that training longer improves the performance.
Nevertheless, CLIP struggles with small datasets.

Background Decomposition

Method ImageNet ImageNet Real Same Class Mixed ObjectNet

CLIP 100 epochs 41.0 47.6 12.5 10.6 7.8
CLIP 32 epochs 36.8 42.0 11.5 9.8 6.0

A.5. KNN evaluation

Apart from testing the models trained on ImageNet using KNN, we also evaluate the models trained on CC3M and CC12M.
The results are shown in fig. 6. We see that X-CLR performs better on CC3M, and comparatively with SimCLR when
trained on CC12M.

A.6. ImageNet-9 details

ImageNet-9 (Xiao et al., 2020) proposes multiple benchmarks to test model robustness to the background perturbation. In
our work, we use "Mixed-Same" and "Mixed-Rand" tasks from ImageNet-9, and refer to them together as "Background
Decomposition".

A.7. CLIP details

In CC3M experiments, we train the model from scratch, as OpenCLIP didn’t have a checkpoint trained on that dataset. We
trained both for 32 and 100 epochs, and found that the model trained for 100 epochs performs better. Since 32 epochs is the
default CLIP number of epochs, we also report results for 32 epochs. The results are shown in table 8.

A.8. More training details

For experiments on ImageNet, we follow SupCon and use AutoAugment (Cubuk et al., 2018). All experiments on the
ImageNet dataset were run for 100 epochs with 1024 batch size. The learning rate was set to 0.075 for ImageNet models.
For experiments on CC3M and CC12M, we used the standard SimCLR augmentations, and a learning rate of 0.1. The rest
of the settings were kept the same. We train SimCLR, SupCon and X-CLR using the LARS optimizer (You et al., 2017). In
all cases, we use the same ResNet-50, with a two layer projector on top. The output dimension of the projector is 128.

Fetching similarities For ImageNet, since the number of classes is known, we pre-compute the similarity matrix of
dimension 1000× 1000, and retrieve elements from it depending on the associated class labels for a given sample pair to
obtain the similarity value. For conceptual captions, we run the text encoder on the full dataset and save the encodings to
disk. Then, when loading an image from disk, we also load the associated encoding of the corresponding caption. The
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Figure 7: (a) Histograms of the similarities calculated using Sentence Transformer on ImageNet and CC3M. While for
ImageNet the average similarity is around 0.35, it is much lower on CC3M, signifying that the graph contains less information
for CC3M. (b) Effect of the temperature and batch size on the weight assigned to the true positvie.

similarity matrix for a given batch is then obtained by calculating the Cartesian product of those encodings.

MIT States In order to evaluate on this dataset using linear probing, we split the dataset randomly into two even parts, one
used for training the linear layer, the other for evaluation. We train separately to classify objects and attributes.

A.9. Understanding similarities

To understand the graphs we built using for different datasets, we investigate the average cross-sample similarity in the
dataset. The result is shown in fig. 7a. We find that CC3M similarities are in general lower, possibly because of lower quality
annotations. We also investigate how much weight is assigned to the true positive examples. For SimCLR, it’s always 1. For
our method, the amount of similarity assigned to other samples in the batch depends on the temperature τs, and the batch
size. The exact relationship is shown in fig. 7b.
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