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Abstract

Discovering cause and effect variables from observational data is an important but
challenging problem in science and engineering. In this work, a recently proposed
brain inspired learning algorithm namely-Neurochaos Learning (NL) is used for the
classification of cause and effect time series generated using coupled autoregressive
processes, coupled 1D chaotic skew tent maps, coupled 1D chaotic logistic maps
and a real-world prey-predator system. In the case of coupled skew tent maps,
the proposed method consistently outperforms a five layer Deep Neural Network
(DNN) and Long Short Term Memory (LSTM) architecture for unidirectional
coupling coefficient values ranging from 0.1 to 0.7. Further, we investigate the
preservation of causality in the feature extracted space of NL using Granger Causal-
ity for coupled autoregressive processes and Compression-Complexity Causality
for coupled chaotic systems and real-world prey-predator dataset. Unlike DNN,
LSTM and 1D Convolutional Neural Network, it is found that NL preserves the
inherent causal structures present in the input timeseries data. These findings are
promising for the theory and applications of causal machine learning and open up
the possibility to explore the potential of NL for more sophisticated causal learning
tasks.

1 Introduction

Despite the success of Machine Learning (ML) and Deep Learning (DL) algorithms in the field of
natural language processing [[1]], computer vision [2], speech recognition [3], these algorithms face
difficulty in interpretability and trustworthiness. One of the main reasons for this is the fact that they
are merely discovering associations between ‘input’ and ‘output’ in the name of ‘learning’. However,
discovering associations alone is insufficient as an explanation to aid in the decision making process.
Decision-making in everyday human existence relies heavily on reasoning and causal inference.
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Hence, incorporation of causal ability, which goes over and beyond associations (or correlations),
has become an important objective in current machine learning research [4].

For time-series data, causality has been mathematically defined by Wiener [S]. According to Wiener,
“a time series X causes a time series Y, if the past values of X contain information that help predict Y’
above and beyond the information contained in the past values of Y alone". This definition was later
realized through a number of mathematical/algorithmic formulations. Granger Causality (GC) [6]
was the pioneering causality estimation technique developed for time-series data. GC has been
followed up with a number of extensions and inspirations, some of which are, information-theoretic
causality as defined by Transfer Entropy [[7]] and data-compression based causality, as defined by
Compression-Complexity Causality (CCC) [8]. While GC has primarily been formulated for linear
(autoregressive) time-series, the latter are valid for non linear applications. These methods have been
successfully employed in econometrics [9} [10], climatology [[11} [12]], neuroscience [13}[14]] etc.

Conventional ML algorithms have not had much success in causal learning or causality based
classification from time-series data [15]]. They are either employed in combination with an existing
time-series based causality detection technique [[16}[17] or specialized methods assuming underlying
causal models have been developed [[18}[19} 20} [21], in order to incorporate causality learning abilities
in ML.

In this work, we focus on causality detection from time-series data (without assumption of any
causal model) and use a recently proposed brain inspired learning algorithm namely Neurochaos
Learning [22]] (NL) to learn generalized causal patterns from time series data. NL draws its inspiration
from the chaotic firing of neurons in the brain [23]. NL is a rival architecture to ANNs and has
shown promise in classification tasks (especially in the low training sample regime), many-a-times
outperforming state-of-the-art methods. NL maps the input data into a high dimensional space which
enables efficient classification. In this sense, NL shows similarity to Reservoir Computing [24]
which also employs nonlinear mappings of input data. However, NL is fundamentally different
from Reservoir Computing in terms of motivation, methodology, and working. NL fundamentally
uses the Topological Transitivity property of chaos [25] and Stochastic Resonance [22] for learning
classification tasks. Given that NL is still at a nascent stage of development, it is not well known in
the Al community and most of its properties are largely unexplored. Hence, the objectives of the
present study are to investigate the following:

O1: The efficacy of NL in cause-effect classification and compare the same with Deep Neural
Network (DNN), 1D Convolutional Neural Network (1D CNN), and Long Short Term
Memory (LSTM).

02: Does success in cause-effect classification imply preservation of causality?
03: Can NL use a transfer learning framework for cause-effect classification?

We do not build a novel causal ML algorithm, but rather explore if the existing NL architecture which
does classification, has the capability to classify based on ‘causal’ information in the data. As a first
step, we check its ability to distinguish between cause and effect time-series data. To elaborate, the
problem of bivariate causality detection is considered, where the algorithm is trained to classify the
‘causal’ or ‘driver’ time-series variable as the cause and the time-series variable that is ‘affected’ or
‘driven’ by the former as the effect. We do not use any existing causality estimation method as an aid
to the NL algorithm for this purpose. Further, for O2, we check whether features extracted from the
learning architecture (in the above cause-effect classification task), preserve causality as measured by
an existing time-series causality estimation method. This is important because it determines whether
NL is doing a causality informed classification or not. The motivation behind many specialized
causal learning algorithms that have been recently proposed is generalized learning, as failure in the
case of distribution shifts continues to be one of the most important limitations of traditional ML
algorithms [26} 27]. Hence, O3 becomes an important objective to be looked at for an algorithm
attempting to learn causal representations.

We find that a general NL architecture outperforms a five layer DNN, and LSTM architecture in
cause-effect classification. Further, the features extracted using NL are found to preserve the cause-
effect relationship present in input data. This, however, was not the case for DNN, 1D CNN and
LSTM, probably because the classification results were not causally informed. The performance
comparison of NL with 1D CNN and LSTM is extensively studied in the supplementary material.
The findings demonstrate that even a general NL architecture is capable of some basic causal learning



and hence promising for developing more sophisticated causal ML algorithms required for different
tasks.

The sections in the paper are arranged as follows: Section 2 describes the method used to do the
cause-effect classification. Section 3 provides details of the simulated data used to carry out the
experiments. Section 4 deals with experiments, results and discussions on simulated and real world
prey-predator dataset. Section 5 addresses the limitations and scope for future work. The concluding
remarks are provided in Section 6.

2 Neurochaos Learning

Neurochaos Learning (NL) is a novel brain inspired neuronal learning algorithm that has been recently
proposed. The authors in [25} 28] state that NL is inspired from the chaotic firings of neurons in the
brain and has mainly two architectures: (a) ChaosNet [28], (b) ChaosFEX+ML. In [29], the authors
employ ChaosNet for continual learning. In another work [30], the authors propose deep ChaosNet
for action recognition in videos.

Inspired by these recent developments, in this work, we employ ChaosNet architecture for the
classification of cause-effect from observational data. The architecture consists of an input layer of
Generalized Liiroth Series (GLS) neurons which are one-dimensional (1D) chaotic skew tent maps
described as follows:

% 0<xz<b,

T(z) =4 -=) (H

where the skewness of the map is controlled by the parameter b (0 < b < 1). Upon arrival of the
input data/ stimulus (xy, k-th data point in a time series), the k-th chaotic GLS neuron in the input
layer starts firing (from the initial value ¢) until the chaotic neural trace of the neuron reaches the e
neighbourhood of the corresponding stimulus (zj). The number of chaotic GLS neurons in the input
layer is equal to the number of input stimuli (number of data points in a time series). From the neural
trace thus generated from each chaotic GLS neuron, the following features are extracted:

1. Firing time (N ): The amount of time the chaotic neural trace takes to recognise the input
stimulus.

2. Firing rate (R): Fraction of time the chaotic neural trace is above the discrimination
threshold b so as to recognize the stimulus.

3. Energy (E): For the chaotic neural trace y(t) with firing time N, energy is defined as:

E=> |yt ©)

t=1

4. Entropy (H): For the chaotic neural trace y(t), we first compute the binary symbolic
sequence Sym(t) as follows:

0, yti)<b
Sym(ti)={1 b<y(t;) <1, ©

)

where ¢ = 1 to N (firing time). We then compute Shannon Entropy of Sym(t) as follows:

2
H(Sym) == p;log,(p:) bits, €

i=1

where p; and po refers to the probabilities of the symbols 0 and 1 occurring in Sym(t)
respectively.

For each input value zj (stimulus) of a data instance of class c¢ is mapped to a 4D vector
[Ny, Rs,, Bz, , Hz, ). The collection of these 4D vectors forms the ChaosFEX feature space.
If the input data consists of only one stimulus (one time point from a given time series) with
Z classes, the mean representation vector of the c-th class (with m data instances) is given by



D0 Ny, T Ry, YT By, YCU ) H. Since there is generally more than one stimulus or
time point in a time series, this procedure is repeated for each time point.

In the case of ChaosNet, the classifier computes the cosine similarity of the ChaosFEX features
extracted from the test sample with the pre-computed mean representation vectors (consisting of
mean values of ChaosFEX features for each stimuli) from the training set of each class. The predicted
class is assigned the label corresponding to the maximum cosine similarity. A detailed explanation of
the ChaosNet and its working is provided in [25]]. In this work, we use the ChaosNet architecture of
NL.

3 Datasets

To evaluate the efficacy of ChaosNet and deep learning for the classification of cause-effect, we used
simulated datasets from (a) Coupled autoregressive (AR) processes, (b) Coupled 1D chaotic maps in
master-slave configuration (1D skew tent maps and 1D logistic maps) and real-world dataset from a
(c) prey-predator system.

3.1 Coupled AR processes

The governing equations for the coupled AR processes are the following:
M(t) = axM(t — 1) +yr(t), ©)
St) =aS(t—1)+nM(t—1)+r(t), (6)
where M (t) and S(t) are the independent and the dependent (or the cause and effect) time series
respectively at time ¢; a; = 0.8, ag = 0.9, the noise intensity v = 0.03 and () is the i.i.d additive
gaussian noise drawn from a standard normal distribution. The coupling coefficient 7 is varied from 0

to 1 in steps of 0.1. We generate 1000 independent random trials for each value of 7. Each of the data
instances are of length 2000, after removing the initial 500 samples (transients) from the time series.

3.2 Coupled 1D Chaotic maps in Master-Slave configuration
3.2.1 Coupled Skew-tent maps

The governing equations used to generate the master and slave time series for the coupled 1D
skew-tent maps are the following:

M(t) = Ty (M(t - 1)), ©)

S(t) = (1 =n)T2(S(t = 1)) +nM(t - 1), ®

where M (t) is the master (cause) and S(¢) is the slave (effect) system. M (¢) influences the dynamics
of the slave system (equation [§)). The coupling coefficient given by 7 is varied from 0 to 0.9 with
a step size of 0.1. T3 (t), and T5(t) are skew tent maps with skewness b; = 0.65, and by = 0.47
respectively. The initial values are chosen randomly for the master-slave system in the interval (0, 1).
We generate 1000 independent random trials for each value of 7. Each of the data instances are of
length 2000, after removing the initial 500 samples (transients) from the time series.

3.2.2 Coupled Logistic maps

The 1D Logistic map is a widely used model to study population dynamics [31]. The governing
dynamics for coupled logistic maps in master-slave configuration is given by:

M(t) = Ly (M(t — 1)), ©)

S(t) = (1 =n)La(S(t = 1)) +nM(t — 1), (10)

The coupling coefficient 7 is varied from 0 to 0.9. Ly(¢t) = Ay - L1(t — 1)(1 — Ly(t — 1)), and

Lo(t) = Ay Lo(t —1)(1 — La(t — 1)), where A; = 4 and A3 = 3.82. The attractor for this coupled
dynamical system is provided in Figure [5b|

For both systems, 1000 data instances (M (t), S(t)) are generated and grouped as class-0 (M (t):
Cause) and class-1 (S(¢): Effect) respectively. Each of the data instances are of length 2000, after
removing the initial 500 samples (transients) from the time series.

Table|l|gives details of the train-test split for the classification tasks for all the simulated datasets.



Table 1: Train-Test distribution for the simulated datasets.

Class Traindata | Testdata
Class-0 801 199
Class-1 799 201

Total 1600 400

4 Experiments, Results and Discussions

In this section, we begin with a description of hyperparameter tuning for NL and DL followed by a
demonstration of causality preservation by ChaosFEX for coupled AR processes, skew tent maps
and logistic maps (and the failure of DL). Also, macro Fl-scores for ChaosNet and DL for the
cause-effect classification for each 7 are plotted. For all results in this paper, software implementation
is performed using Python 3, scikit-learn [32], keras [33], ChaosFEX toolbox [22]], Multivariate
Granger Causality (MVGC) toolbox [34]], CCC toolbox [8] and MATLAB. Comparison of NL with
1D CNN and LSTM is extensively studied in the supplementary material.

4.1 Hyperparameter tuning for NL

Every ML algorithm has a set of hyperparameters that needs to be tuned for efficient performance.
In the case of ChaosNet, there are three hyperparameters - initial neural activity (g), discrimination
threshold (b), and noise intensity (¢) [22]]. The hyperparameter tuning is done only once with the
traindata corresponding to 7 = 0.4 (Table I separately for the coupled AR processes and coupled
skew tent maps.

For a fixed value of b = 0.499, and € = 0.171, ¢ was varied from 0.01 to 0.98 with a stepsize of
0.01 for both coupled AR processes and coupled chaotic skew tent maps. In the case of coupled AR
processes, a maximum average macro Fl-score = 0.605 is obtained for ¢ = 0.78. In the case of
coupled skew tent maps, a maximum average macro F1-score = 1.0 was obtained for the following
values of ¢ = [0.16, 0.26, 0.27, 0.28, 0.29, 0.30, 0.31, 0.32, 0.34, 0.36, 0.37, 0.38, 0.48, 0.51, 0.52,
0.56,0.57, 0.72,0.76, 0.77, 0.78, 0.79, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.91, 0.92, 0.93,
0.94, 0.95, 0.96, 0.98] in a five-fold cross validation using traindata. We choose ¢ = 0.56 for further
experiments.

4.2 Deep Learning Parameters

A five layer Deep Learning architecture was used to evaluate the efficacy of cause-effect classification.
The number of nodes in the input layer = 2000, followed by first hidden layer with 5000 neurons
and sigmoid activation function. The output from this layer is passed to second hidden layer with
500 neurons and ReL.U activation function. This is followed by 100 neurons with ReLU activation
function in the third hidden layer. The fourth hidden layer contains 30 neurons with ReLU activation
function. The output layer contains 2 neurons with softmax activation function. Training was done
for 30 epochs.

4.3 Preservation of Granger Causality for coupled AR processes under a chaotic
transformation

Accurate estimation of causality for coupled AR processes is ideally done by Granger Causality (GC)
since GC models time series as AR processes. This is the reason GC is very popular in causal analysis
of financial time series, climatology and neuroscience. We extract ChaosFEX features after a chaotic
transformation of the input time series as described in Section 2. It is important to verify whether GC
is preserved under such a nonlinear transformation. To test this, we perform the following experiment.
For ¢ = 0.78, b = 0.499, and € = 0.171, the firing time has been extracted from ChaosFEX for time
series from coupled AR processes. The GC vs. coupling coefficient plot for firing time depicted in
Figure[Ta]reveals that indeed GC is nicely preserved. The GC values shown here are obtained from 50
random trial This indicates the reliability of the chaotic transformation of NL in preserving granger

'The maximum model order setting in the MVGC toolbox was set to 30 for ChaosFEX features and to 20 for
DL features.



causality and hence very desirable in applications which employ GC. Note that such a property is
not available for DL (Figure making NL a very attractive candidate for causal ML applications.
The experimental results pertaining to the comparative performance evaluation of NL and DL for
cause-effect classification of coupled AR processes is provided in Section [5|under limitations.
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Figure 1: @) GC vs. coupling coefficient for the firing time feature extracted from the coupled AR

processes. The ChaosFEX settings are ¢ = 0.78, b = 0.499, and € = 0.171. The GC F-statistic is

computed from 50 trials. (b) GC vs. coupling coefficient for DL features extracted from the fourth
hidden layer of a five layer neural network. The GC F-statistic is computed from 50 trials.

4.4 Classification of Cause-Effect for Coupled Skew-Tent maps in Master-Slave Configuration

In this section, we compare the efficacy of NL - ChaosNet architecture with a five layer DNN archi-
tecture in cause-effect classification (objective O1). A binary classification problem is formulated, to
classify whether a given time-series is a cause or an effect. The performance of ChaosNet and five
layer DNN (DL) for varying coupling coefficient (1) is depicted in Figure

ChaosNet and DL give identical performance (a macro Fl-score = 1.0) for n values up to 0.5.
However, for n = [0.6, 0.7], ChaosNet outperforms DL. Beyond 1 > 0.6, the synchronization error
< 0.013 indicating that the two time series are practically identical. Hence, classification fails as
there is essentially nothing to distinguish between the two time series owing to synchronization.

4.5 Preservation of causality in ChaosFEX feature space

To check if causality is preserved in the ChaosFEX feature space of unidirectionally coupled skew-
tent maps, we use the measure Compression-Complexity Causality (CCC) [8]]. CCC is ideal for
application to non linear time series, where often GC can face issues. Figure 2b]shows the CCC
estimates for original (raw) time series. The estimates plotted are averaged over 50 trials with
CCC parameters{ﬁ setto L = 100,w = 15,0 = 50, B = 4. As expected, the magnitude of CCC
values from the master to the slave increases with increasing coupling and begins to decrease as
the time-series become synchronized and effectively no transfer of information can be detected. As
discussed in [8], CCC can take negative values and its magnitude denotes the strength of causation.
CCC values in the direction of causation from slave to master are much lower in magnitude and
remain close to zero.

CCC for the corresponding firing time feature of ChaosFEX for these coupled maps is depicted in
Figure These values are also averaged over 50 trials and computed with CCC parameters set
to L = 120,w = 15,6 = 60, B = 2. Here, master to slave CCC does not perfectly preserve the
increasing trend with increasing values of coupling, however decreases just as the estimates for raw
data, when the processes proceed to synchronization. The slave to master estimates for the coupling
range 0.1 — 0.9 are quite low in magnitude and remain close to zero as expected. Even though
the estimates for zero coupling are not very close to zero or take exactly the same value and the
increasing trend for increasing coupling is not perfectly preserved, CCC estimates in the direction for
which coupling exists and its opposite are well differentiated and hence it can be said that ChaosFEX
features do a reasonably good job in preserving causality even for skew chaotic tent maps. Surrogate

2These were chosen using the selection criteria described in [8].
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Figure 2: (@) Performance comparison of ChaosNet and five layer DNN for the classification of
cause-effect for 1D coupled skew tent map in master-slave configuration. (b) CCC vs Coupling
Coefficient for the raw data corresponding to 1D chaotic skew tent map in master-slave configuration.
CCC vs Coupling Coefficient for firing time (ChaosFEX feature) corresponding to 1D chaotic
coupled skew tent maps in master-slave configuration. (d) CCC vs Coupling Coefficient for features
extracted from the second last layer of five layer deep neural network corresponding to 1D chaotic
coupled skew tent maps in master-slave configuration.

based causality analysis might help to reveal a more adequate picture of the differentiation and of the
existence of causality, but is out of the scope of this work.

4.6 Transfer Learning for Cause-Effect Classification

We have demonstrated the possibility of cause-effect classification for coupled chaotic maps in master-
slave configuration. However, it is interesting to explore whether we can transfer this ‘learning’ to
scenarios where the master-slave systems are different from the ones for which the method was
trained. Specifically, we shall change the skewness of both the master and slave systems from the
original parameter values used in the training phase. A more drastic case of transfer learning would
be to test on an entirely different nonlinear map, for example, coupled logistic maps without training
afresh (using the same learned parameters as the coupled skew tent maps). These would help us
determine to what extent the learning is generalizable for both NL and DL.

We consider the following cases for transfer causal learning:

e Case I: Train with master-slave coupled skew tent map system (b; = 0.65 , by = 0.47)
and test with master-slave coupled skew tent map system with b; = 0.6 and bs = 0.4
(classification results are in Figure[3a). The attractor for skew tent map master slave testdata
with by = 0.6 and by = 0.4 is provided in Figure[3b]

* Case II: Train with master-slave coupled skew tent map system (b; = 0.65, by = 0.47)
and test with master-slave coupled skew tent map system with b; = 0.1 and by = 0.3
(classification results are in Figure[4a). The attractor for skew tent map master slave testdata
with by = 0.1 and b, = 0.3 is provided in Figure [4b]
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Figure 3: @) Transfer learning for case I: comparative performance of ChaosNet and five layer DNN
evaluated using macro F1-score for 7 in the range 0 to 0.9 with a stepsize of 0.1. (b) Case I: Attractor
for the coupled 1D chaotic skew tent maps in master slave configuration with b; = 0.6 and by = 0.4.
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Figure 4: @) Transfer Learning for Case II: comparative performance of ChaosNet and five layer
DNN evaluated using macro Fl-score for 7 in the range 0 to 0.9 with a stepsize of 0.1. (b) Case II:
Attractor for the coupled 1D chaotic skew tent maps in master slave configuration with b; = 0.1 and
by = 0.3.

 Case III: Train with skew tent map master-slave coupled skew tent map system (b; = 0.65,
b = 0.47) and test with logistic map master-slave system with A; = 4.0 and A, = 3.82
(Figure [5a). The attractor for logistic map master slave testdata with A; = 4.0 and
Ay = 3.82is provided in Figure [5b]
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Figure 5: @) Transfer Learning for Case III: comparative performance of ChaosNet and five layer
DNN evaluated using macro Fl-score for 7 in the range 0 to 0.9 with a stepsize of 0.1. (b) Case III:
Attractor for the coupled 1D logistic maps in master-slave configuration with A; = 4.0 and
Ay = 3.82.



In the case of testing with data generated from different models, ChaosNet completely outperforms
DL for Case I (Figure[3a) and Case II (Figure [4a)) for the entire range of 7). For Case III (Figure[Sa)),
ChaosNet and DL shows similar trends (with DL outperforming ChaosNet for some values of 7). A
high performance of ChaosNet in classification shows the separability of the mean representation
vectors of cause and effect.

4.7 Real Data

The efficacy of ChaosFEX features in cause-effect preservation was evaluated on a real world dataset
from a prey-predator system as well. The data consists of 71 data points of predator (Didinium
nasutum) and prey (Paramecium aurelia) populations [35} [36]]. This is a system of bidirectional
causation as the predator population directly influences the prey population and then itself gets
influenced by a change in the prey population. It is expected that the direct causal influence from the
predator to the prey should be higher than in the opposite direction.

For our analysis, initial 9 transients were removed. With the remaining 62 data points, CCC values
are computed for the raw data and ChaosFEX feature (firing time). The parameters of CCCﬂ used
for the raw data are L = 40, w = 15,6 = 4, B = 8. In the case of ChaosFEX, firing time feature
was extracted for the following NL hyperparameters: ¢ = 0.56, b = 0.499, and € = 0.1. The CCC
parameters chosen for ChaosFEX are L = 40, w = 15,6 = 4, B = 4. The results for the cause-effect
preservation for the raw data and ChaosFEX firing time feature is provided in Table[2] CCC rightly
captures the higher causal influence from predator to prey population and finds a lower influence in
the opposite direction, for both raw data and ChaosFEX feature - firing time. As only a single data
instance of predator-prey time-series is available, it is not possible to train a DL network and use its
features for causality estimation in this case.

Table 2: Cause-effect preservation of the prey-predator real world data using CCC.

Class CCC (rawdata) | CCC (firing time) DL
Predator — Prey 0.1160 0.0484 Unable to compute
Prey — Predator -0.0210 0.0050 Unable to compute

5 Limitations

In the case of coupled 1D chaotic maps, NL consistently performed well up to n = 0.5 for classi-
fication. However, the same is not true for the classification of data generated from coupled AR
processes. For ¢ = 0.78, b = 0.499, and € = 0.171, the classification results are depicted in Figure[6]
In the same figure, it can be seen that DL performance is worse than NLﬂ We have used the exact
same architecture for DL as we have used for the cause-effect classification of data from coupled
chaotic skew-tent maps in master-slave configure (section 4.2).

A maximum macro F1-score = 0.656 was obtained for 7 = 1.0 implying that ChaosNet was not able
to find mean representation vectors that could separate the two classes. Choosing a more sophisticated
classifier for NL (instead of the simplistic cosine-similarity metric) could solve this problem and
improve classification results. We shall explore these possibilities in a future study.

In this research, we have shown the classification and preservation of causality for unidirectional
causation of two variables. A detailed study needs to be undertaken for the classification and causal
discovery of coupled high dimensional systems and real world datasets in the future.

3These were chosen using the selection criteria described in [8].
“We have performed some amount of hyperparmater tuning for DL architecture, however a more extensive
tuning needs to be performed.
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6 Conclusion

In this work, Neurochaos Learning architecture - ChaosNet has been used in the classification of
cause and effect variables from time series generated from coupled chaotic maps and stochastic
autoregressive processes. ChaosNet outperforms a five layer deep learning architecture and LSTM in
the case of both chaotic tent maps and AR processes (objective O1). In the case of AR processes, 1D
CNN performs better than ChaosNet for several values of coupling. Whereas, in the case of coupled
chaotic skew-tent map, ChaosNet outperforms all the other methods including 1D CNN. Causality
testing using Granger Causality (for coupled AR processes) and Compression-Complexity Causality
(for coupled chaotic systems and for a real-world prey-predator system) on the firing times extracted
from the chaotic neural traces reveals the preservation of cause-effect in the NL feature extracted
space (objective O2). Features extracted from DNN, 1D CNN and LSTM failed to preserve the
cause-effect relationship as measured by GC and CCC for coupled AR processes and skew tent map
master slave system. This implies that the classification was not causally informed despite 1D CNN
showing superior classification performance in some cases. Further, the efficacy of the proposed
method was observed in transfer learning of the classification of cause-effect from the master-slave
time series generated from different chaotic unimodal maps (skew-tent maps with different skews
and logistic map with different parameters) (objective O3). This motivates future research direction
of NL in lifelong learning framework, classification of cause-effect using ChaosNet on real world
datasets and building more sophisticated causal learning algorithms using NL for specific tasks.

The preservation of causality can be attributed to the rich properties of the nonlinear chaotic transfor-
mation of GLS neurons in NL (ChaosNet). Unlike traditional ANNs, NL is intrinsically a nonlinear
deterministic algorithm that performs a point-by-point chaotic transformation, in fact, a nonlinear
embedding of the input raw features in to a high dimensional space. Deterministic Chaos combines
the best of both the worlds - pseudo-randomness and determinism. The ergodic, ‘random-like’
structure of the chaotic neural traces enables an effective transformation of the input data (stimuli)
preserving causality that is inherent in the input space and at the same time ensuring separability in
the chaotic feature space for efficient classification. The codes used in this study are available here:
https://github.com/HarikrishnanNB/cause-effect-preservation-nl,
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