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Abstract

Discovering cause and effect variables from observational data is an important but
challenging problem in science and engineering. In this work, a recently proposed
brain inspired learning algorithm namely-Neurochaos Learning (NL) is used for the
classification of cause and effect time series generated using coupled autoregressive
processes, coupled 1D chaotic skew tent maps, coupled 1D chaotic logistic maps
and a real-world prey-predator system. In the case of coupled skew tent maps,
the proposed method consistently outperforms a five layer Deep Neural Network
(DNN) and Long Short Term Memory (LSTM) architecture for unidirectional
coupling coefficient values ranging from 0.1 to 0.7. Further, we investigate the
preservation of causality in the feature extracted space of NL using Granger Causal-
ity for coupled autoregressive processes and Compression-Complexity Causality
for coupled chaotic systems and real-world prey-predator dataset. Unlike DNN,
LSTM and 1D Convolutional Neural Network, it is found that NL preserves the
inherent causal structures present in the input timeseries data. These findings are
promising for the theory and applications of causal machine learning and open up
the possibility to explore the potential of NL for more sophisticated causal learning
tasks.

1 Introduction

Despite the success of Machine Learning (ML) and Deep Learning (DL) algorithms in the field of
natural language processing [[1]], computer vision [2], speech recognition [3], these algorithms face
difficulty in interpretability and trustworthiness. One of the main reasons for this is the fact that they
are merely discovering associations between ‘input’ and ‘output’ in the name of ‘learning’. However,
discovering associations alone is insufficient as an explanation to aid in the decision making process.
Decision-making in everyday human existence relies heavily on reasoning and causal inference.
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Hence, incorporation of causal ability, which goes over and beyond associations (or correlations),
has become an important objective in current machine learning research [4].

For time-series data, causality has been mathematically defined by Wiener [S]. According to Wiener,
“a time series X causes a time series Y, if the past values of X contain information that help predict Y’
above and beyond the information contained in the past values of Y alone". This definition was later
realized through a number of mathematical/algorithmic formulations. Granger Causality (GC) [6]
was the pioneering causality estimation technique developed for time-series data. GC has been
followed up with a number of extensions and inspirations, some of which are, information-theoretic
causality as defined by Transfer Entropy [[7]] and data-compression based causality, as defined by
Compression-Complexity Causality (CCC) [8]. While GC has primarily been formulated for linear
(autoregressive) time-series, the latter are valid for non linear applications. These methods have been
successfully employed in econometrics [9} [10], climatology [[11} [12]], neuroscience [13}[14]] etc.

Conventional ML algorithms have not had much success in causal learning or causality based
classification from time-series data [15]]. They are either employed in combination with an existing
time-series based causality detection technique [[16}[17] or specialized methods assuming underlying
causal models have been developed [[18}[19} 20} [21], in order to incorporate causality learning abilities
in ML.

In this work, we focus on causality detection from time-series data (without assumption of any
causal model) and use a recently proposed brain inspired learning algorithm namely Neurochaos
Learning [22]] (NL) to learn generalized causal patterns from time series data. NL draws its inspiration
from the chaotic firing of neurons in the brain [23]. NL is a rival architecture to ANNs and has
shown promise in classification tasks (especially in the low training sample regime), many-a-times
outperforming state-of-the-art methods. NL maps the input data into a high dimensional space which
enables efficient classification. In this sense, NL shows similarity to Reservoir Computing [24]
which also employs nonlinear mappings of input data. However, NL is fundamentally different
from Reservoir Computing in terms of motivation, methodology, and working. NL fundamentally
uses the Topological Transitivity property of chaos [25] and Stochastic Resonance [22] for learning
classification tasks. Given that NL is still at a nascent stage of development, it is not well known in
the Al community and most of its properties are largely unexplored. Hence, the objectives of the
present study are to investigate the following:

O1: The efficacy of NL in cause-effect classification and compare the same with Deep Neural
Network (DNN), 1D Convolutional Neural Network (1D CNN), and Long Short Term
Memory (LSTM).

02: Does success in cause-effect classification imply preservation of causality?
03: Can NL use a transfer learning framework for cause-effect classification?

We do not build a novel causal ML algorithm, but rather explore if the existing NL architecture which
does classification, has the capability to classify based on ‘causal’ information in the data. As a first
step, we check its ability to distinguish between cause and effect time-series data. To elaborate, the
problem of bivariate causality detection is considered, where the algorithm is trained to classify the
‘causal’ or ‘driver’ time-series variable as the cause and the time-series variable that is ‘affected’ or
‘driven’ by the former as the effect. We do not use any existing causality estimation method as an aid
to the NL algorithm for this purpose. Further, for O2, we check whether features extracted from the
learning architecture (in the above cause-effect classification task), preserve causality as measured by
an existing time-series causality estimation method. This is important because it determines whether
NL is doing a causality informed classification or not. The motivation behind many specialized
causal learning algorithms that have been recently proposed is generalized learning, as failure in the
case of distribution shifts continues to be one of the most important limitations of traditional ML
algorithms [26} 27]. Hence, O3 becomes an important objective to be looked at for an algorithm
attempting to learn causal representations.

We find that a general NL architecture outperforms a five layer DNN, and LSTM architecture in
cause-effect classification. Further, the features extracted using NL are found to preserve the cause-
effect relationship present in input data. This, however, was not the case for DNN, 1D CNN and
LSTM, probably because the classification results were not causally informed. The performance
comparison of NL with 1D CNN and LSTM is extensively studied in the supplementary material.
The findings demonstrate that even a general NL architecture is capable of some basic causal learning



and hence promising for developing more sophisticated causal ML algorithms required for different
tasks.

The sections in the paper are arranged as follows: Section 2 describes the method used to do the
cause-effect classification. Section 3 provides details of the simulated data used to carry out the
experiments. Section 4 deals with experiments, results and discussions on simulated and real world
prey-predator dataset. Section 5 addresses the limitations and scope for future work. The concluding
remarks are provided in Section 6.

2 Neurochaos Learning

Neurochaos Learning (NL) is a novel brain inspired neuronal learning algorithm that has been recently
proposed. The authors in [25} 28] state that NL is inspired from the chaotic firings of neurons in the
brain and has mainly two architectures: (a) ChaosNet [28], (b) ChaosFEX+ML. In [29], the authors
employ ChaosNet for continual learning. In another work [30], the authors propose deep ChaosNet
for action recognition in videos.

Inspired by these recent developments, in this work, we employ ChaosNet architecture for the
classification of cause-effect from observational data. The architecture consists of an input layer of
Generalized Liiroth Series (GLS) neurons which are one-dimensional (1D) chaotic skew tent maps
described as follows:

T(x) B 0 xz<b,
r)= (1-x)
by b <1,
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where the skewness of the map is controlled by the parameter b (0 < b < 1). Upon arrival of the
input data/ stimulus (i, k-th data point in a time series), the k-th chaotic GLS neuron in the input
layer starts firing (from the initial value ¢) until the chaotic neural trace of the neuron reaches the e
neighbourhood of the corresponding stimulus (zk). The number of chaotic GLS neurons in the input
layer is equal to the number of input stimuli (number of data points in a time series). From the neural
trace thus generated from each chaotic GLS neuron, the following features are extracted:

1. Firing time (N ): The amount of time the chaotic neural trace takes to recognise the input
stimulus.

2. Firing rate (R): Fraction of time the chaotic neural trace is above the discrimination
threshold b so as to recognize the stimulus.

3. Energy (E): For the chaotic neural trace y(t) with firing time N, energy is defined as:

X - -
E= jy®)j* 2)
t=1

4. Entropy (H): For the chaotic neural trace y(t), we first compute the binary symbolic
sequence Sym(t) as follows:
<

Sym(ti) _ 0, y(ti) ) i’:[’ (3)
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where ¢ = 1 to N (firing time). We then compute Shannon Entropy of Sym(t) as follows:

X
H(Sym) = pilog,(pi) bits, “)
i=1

where p; and p, refers to the probabilities of the symbols 0 and 1 occurring in Sym(t)
respectively.

For each input value zx (stimulus) of a data instance of class c¢ is mapped to a 4D vector
[N, > By, Ex, » Hx,]. The collection of these 4D vectors forms the ChaosFEX feature space.
If the input data consists of only one stimulus (one time point from a given time series) with
Z classes, the mean representation vector of the c-th class (with m data instances) is given by
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time point in a time series, this procedure is repeated for each time point.

In the case ofChaosNet the classi er computes the cosine similarity of the ChaosFEX features
extracted from the test sample with the pre-computed mean representation vectors (consisting of
mean values of ChaosFEX features for each stimuli) from the training set of each class. The predicted
class is assigned the label corresponding to the maximum cosine similarity. A detailed explanation of
the ChaosNetand its working is provided ir25]. In this work, we use th€haosNetarchitecture of

NL.

3 Datasets

To evaluate the ef cacy o€haosNetand deep learning for the classi cation of cause-effect, we used
simulated datasets from (a) Coupled autoregressive (AR) processes, (b) Coupled 1D chaotic maps in
master-slave con guration (1D skew tent maps and 1D logistic maps) and real-world dataset from a
(c) prey-predator system.

3.1 Coupled AR processes

The governing equations for the coupled AR processes are the following:
M((t)=aM(({t 1)+ r(t); (5)

S(t)= aS(t 1)+ M (t 1)+ r (t); (6)
whereM (t) andS(t) are the independent and the dependent (or the cause and effect) time series
respectively at timé; a; = 0:8, a, = 0:9, the noise intensity = 0:03andr (t) is the i.i.d additive
gaussian noise drawn from a standard normal distribution. The coupling coef cismaried from0
to 1in steps of:1. We generat@é000independent random trials for each value oEach of the data
instances are of leng@00Q after removing the initiab00samples (transients) from the time series.

3.2 Coupled 1D Chaotic maps in Master-Slave con guration
3.2.1 Coupled Skew-tent maps

The governing equations used to generate the master and slave time series for the coupled 1D
skew-tent maps are the following:
M(t)= To(M(t  1)); (7
S(H=@1 HTAS(t 1)+ M (t 1) 8

whereM (t) is the master (cause) af{t) is the slave (effect) systerM (t) in uences the dynamics
of the slave system (equatiph 8). The coupling coef cient given lgyvaried from0 to 0:9 with

a step size 00:1. Ty(t), andT,(t) are skew tent maps with skewndss= 0:65, andb, = 0:47
respectively. The initial values are chosen randomly for the master-slave system in the {idtetyal
We generatd000independent random trials for each value oEach of the data instances are of
length200Q after removing the initiab0O0samples (transients) from the time series.

3.2.2 Coupled Logistic maps

The 1D Logistic map is a widely used model to study population dynarfit]s The governing
dynamics for coupled logistic maps in master-slave con guration is given by:

M(t)= La(M(t  1)); )
S(t)=( La(S(t 1)+ M (t 1) (10)
The coupling coef cient is varied from0to 0:9. L;(t) = A; Li(t 1)(1 Li(t 1)), and

Lo(t) = Az Lo(t 1)@ La(t 1)),whereA; =4 andA, = 3:82 The attractor for this coupled
dynamical system is provided in Figyre] 5b.

For both systems]l000data instancedM (t); S(t)) are generated and grouped as class4@t{:
Cause) and class-8(t): Effect) respectively. Each of the data instances are of 1e2Q@ after
removing the initiab00samples (transients) from the time series.

Table[1 gives details of the train-test split for the classi cation tasks for all the simulated datasets.
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Table 1: Train-Test distribution for the simulated datasets.

Class | Traindata| Testdata
Class-0 801 199
Class-1 799 201

Total 1600 400

4 Experiments, Results and Discussions

In this section, we begin with a description of hyperparameter tuning for NL and DL followed by a
demonstration of causality preservation by ChaosFEX for coupled AR processes, skew tent maps
and logistic maps (and the failure of DL). Also, macro F1-scorelmeiosNetand DL for the
cause-effect classi cation for eachare plotted. For all results in this paper, software implementation

is performed using Python 3, scikit-lear8?], keras B3], ChaosFEX toolboxZ32], Multivariate
Granger Causality (MVGC) toolbox3fl], CCC toolbox B] and MATLAB. Comparison of NL with

1D CNN and LSTM is extensively studied in the supplementary material.

4.1 Hyperparameter tuning for NL

Every ML algorithm has a set of hyperparameters that needs to be tuned for ef cient performance.
In the case o€haosNet there are three hyperparameters - initial neural actigydiscrimination
threshold ), and noise intensity { [22]. The hyperparameter tuning is done only once with the
traindata corresponding to= 0:4 (Table 1) separately for the coupled AR processes and coupled
skew tent maps.

For a xed value ofb = 0:499 and = 0:171, qwas varied fronD:01 to 0:98 with a stepsize of

0:01 for both coupled AR processes and coupled chaotic skew tent maps. In the case of coupled AR
processes, a maximum average macro F1-sede605is obtained forg = 0:78. In the case of
coupled skew tent maps, a maximum average macro F1-schfewas obtained for the following

values ofg = [0.16, 0.26, 0.27, 0.28, 0.29, 0.30, 0.31, 0.32, 0.34, 0.36, 0.37, 0.38, 0.48, 0.51, 0.52,
0.56, 0.57,0.72,0.76, 0.77, 0.78, 0.79, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.91, 0.92, 0.93,
0.94, 0.95, 0.96, 0.98] in a ve-fold cross validation using traindata. We chqese :56 for further
experiments.

4.2 Deep Learning Parameters

A ve layer Deep Learning architecture was used to evaluate the ef cacy of cause-effect classi cation.
The number of nodes in the input laye2000, followed by rst hidden layer witr6000neurons

and sigmoid activation function. The output from this layer is passed to second hidden layer with
500neurons and ReLU activation function. This is followed1f}0 neurons with ReLU activation
function in the third hidden layer. The fourth hidden layer cont@@seurons with ReLU activation
function. The output layer contai?sneurons with softmax activation function. Training was done
for 30 epochs.

4.3 Preservation of Granger Causality for coupled AR processes under a chaotic
transformation

Accurate estimation of causality for coupled AR processes is ideally done by Granger Causality (GC)
since GC models time series as AR processes. This is the reason GC is very popular in causal analysis
of nancial time series, climatology and neuroscience. We extract ChaosFEX features after a chaotic
transformation of the input time series as described in Section 2. It is important to verify whether GC

is preserved under such a nonlinear transformation. To test this, we perform the following experiment.
Forq=0:78 b=0:499 and =0:171 the ring time has been extracted from ChaosFEX for time
series from coupled AR processes. The GC vs. coupling coef cient plot for ring time depicted in
Figure lareveals that indeed GC is nicely preserved. The GC values shown here are obtained from 50
random trial$. This indicates the reliability of the chaotic transformation of NL in preserving granger

1The maximum model order setting in the MVGC toolbox was s@Qfor ChaosFEX features and & for
DL features.



causality and hence very desirable in applications which employ GC. Note that such a property is
not available for DL (Figure 1b) making NL a very attractive candidate for causal ML applications.
The experimental results pertaining to the comparative performance evaluation of NL and DL for
cause-effect classi cation of coupled AR processes is provided in Section 5 under limitations.

(@ (b)

Figure 1: (a) GC vs. coupling coef cient for the ring time feature extracted from the coupled AR

processes. The ChaosFEX settingscare0:78, b=0:499 and =0:171 The GC F-statistic is

computed fronb0trials. (b) GC vs. coupling coef cient for DL features extracted from the fourth
hidden layer of a ve layer neural network. The GC F-statistic is computed &0mnials.

4.4 Classi cation of Cause-Effect for Coupled Skew-Tent maps in Master-Slave Con guration

In this section, we compare the ef cacy of NLlChaosNetarchitecture with a ve layer DNN archi-
tecture in cause-effect classi cation (objecti®d). A binary classi cation problem is formulated, to
classify whether a given time-series is a cause or an effect. The performaBbaagNetand ve
layer DNN (DL) for varying coupling coef cient ) is depicted in Figure 2a.

ChaosNetand DL give identical performance (a macro F1-scer#:0) for values up td0:5.
However, for =[0:6; 0:7], ChaosNetoutperforms DL. Beyond> 0:6, the synchronization error

< 0:013indicating that the two time series are practically identical. Hence, classi cation fails as
there is essentially nothing to distinguish between the two time series owing to synchronization.

4.5 Preservation of causality in ChaosFEX feature space

To check if causality is preserved in the ChaosFEX feature space of unidirectionally coupled skew-
tent maps, we use the measure Compression-Complexity Causality (8CQQC is ideal for
application to non linear time series, where often GC can face issues. Figure 2b shows the CCC
estimates for original (raw) time series. The estimates plotted are average80avials with

CCC parametefsset toL = 100;w = 15; =50;B = 4. As expected, the magnitude of CCC
values from the master to the slave increases with increasing coupling and begins to decrease as
the time-series become synchronized and effectively no transfer of information can be detected. As
discussed ing], CCC can take negative values and its magnitude denotes the strength of causation.
CCC values in the direction of causation from slave to master are much lower in magnitude and
remain close to zero.

CCC for the corresponding ring time feature of ChaosFEX for these coupled maps is depicted in
Figure 2c. These values are also averaged B9¢rials and computed with CCC parameters set

toL =120;w =15; =60;B = 2. Here, master to slave CCC does not perfectly preserve the
increasing trend with increasing values of coupling, however decreases just as the estimates for raw
data, when the processes proceed to synchronization. The slave to master estimates for the coupling
range0:1 0:9 are quite low in magnitude and remain close to zero as expected. Even though
the estimates for zero coupling are not very close to zero or take exactly the same value and the
increasing trend for increasing coupling is not perfectly preserved, CCC estimates in the direction for
which coupling exists and its opposite are well differentiated and hence it can be said that ChaosFEX
features do a reasonably good job in preserving causality even for skew chaotic tent maps. Surrogate

2These were chosen using the selection criteria described in [8].
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Figure 2: (a) Performance comparison of ChaosNet and ve layer DNN for the classi cation of
cause-effect for 1D coupled skew tent map in master-slave con guration. (b) CCC vs Coupling
Coef cient for the raw data corresponding to 1D chaotic skew tent map in master-slave con guration.

(c) CCC vs Coupling Coef cient for ring time (ChaosFEX feature) corresponding to 1D chaotic
coupled skew tent maps in master-slave con guration. (d) CCC vs Coupling Coef cient for features
extracted from the second last layer of ve layer deep neural network corresponding to 1D chaotic

coupled skew tent maps in master-slave con guration.

based causality analysis might help to reveal a more adequate picture of the differentiation and of the
existence of causality, but is out of the scope of this work.

4.6 Transfer Learning for Cause-Effect Classi cation

We have demonstrated the possibility of cause-effect classi cation for coupled chaotic maps in master-
slave con guration. However, it is interesting to explore whether we can transfer this “learning' to
scenarios where the master-slave systems are different from the ones for which the method was
trained. Speci cally, we shall change the skewness of both the master and slave systems from the
original parameter values used in the training phase. A more drastic case of transfer learning would
be to test on an entirely different nonlinear map, for example, coupled logistic maps without training
afresh (using the same learned parameters as the coupled skew tent maps). These would help us
determine to what extent the learning is generalizable for both NL and DL.

We consider the following cases for transfer causal learning:

» Case I: Train with master-slave coupled skew tent map systen+(0:65, b, = 0:47)
and test with master-slave coupled skew tent map systembhyith 0:6 andb, = 0:4
(classi cation results are in Figure 3a). The attractor for skew tent map master slave testdata
with by = 0:6 andb, = 0:4is provided in Figure 3b.

 Case II: Train with master-slave coupled skew tent map systen¥(0:65, b, = 0:47)
and test with master-slave coupled skew tent map systemhyith 0:1 andb, = 0:3
(classi cation results are in Figure 4a). The attractor for skew tent map master slave testdata
with by = 0:1andb, = 0:3is provided in Figure 4b.
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