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Abstract

Large pre-trained multilingual models such as001
mBERT and XLM-R enabled effective cross-002
lingual zero-shot transfer in many NLP tasks.003
A cross-lingual adjustment of these models us-004
ing a small parallel corpus can further improve005
results. This is a more data efficient method006
compared to training a machine-translation sys-007
tem or a multi-lingual model from scratch using008
only parallel data. In this study, we experiment009
with zero-shot transfer of English models to010
four typologically different languages (Span-011
ish, Russian, Vietnamese, and Hindi) and three012
NLP tasks (QA, NLI, and NER). We carry013
out a cross-lingual adjustment of an off-the-014
shelf mBERT model. We show that this ad-015
justment makes embeddings of semantically016
similar words from different languages closer017
to each other, while keeping unrelated words018
apart. In contrast, fine-tuning of mBERT on019
English data (for a specific task such as NER)020
draws embeddings of both related and unre-021
lated words closer to each other. The cross-022
lingual adjustment of mBERT improves NLI023
in four languages and NER in two languages.024
However, in the case of QA performance never025
improves and sometimes degrades. In that, the026
increase in the amount of parallel data is most027
beneficial for NLI, whereas QA performance028
peaks at roughly 5K parallel sentences and fur-029
ther decreases as the number of parallel sen-030
tences increases.031

1 Introduction032

Natural disasters, military operations, or disease033

outbreaks require a quick launch of information034

systems relying on human language technologies.035

Such systems need to provide instant situational036

awareness based on sentiment analysis, named037

entity recognition (NER), information retrieval,038

and question answering (QA) (Roussinov et al.,039

2008; Voorhees et al., 2020; Chan and Tsai, 2019;040

Strassel and Tracey, 2016). The quality of these041

techniques heavily depends on the existence of an-042

notated data, which is particularly challenging in 043

low-resource languages. Large langauge models 044

pre-trained on a large multilingual corpus such 045

as mBERT or XLM-R enable a zero-shot cross- 046

lingual transfer by learning to produce contextu- 047

alized word representations, which are (to some 048

degree) language-independent (Libovickỳ et al., 049

2019; Pires et al., 2019). These representations can 050

be further aligned using a modest amount of par- 051

allel data, which was shown to improve zero-shot 052

transfer for syntax parsing, natural language infer- 053

ence (NLI), and NER (Kulshreshtha et al., 2020; 054

Wang et al., 2019b,a). This approach requires less 055

data and is a more computationally efficient alter- 056

native to training a machine translation system or a 057

pre-training a large multilingual model on a large 058

parallel corpus. 059

The most common approach is to find a rotation 060

matrix using a bilingual dictionary or a parallel 061

corpus that brings vector representation of related 062

words in different languages closer to each other. 063

Different from post hoc rotation-based alignment, 064

Cao et al. (2020) employed parallel data for di- 065

rect cross-lingual adjustment of the mBERT model. 066

They showed it to be more effective than rotation 067

in cross-lingual NLI and parallel sentence retrieval 068

tasks in five European languages. 069

However, we are not aware of any systematic 070

study of the effectiveness of this procedure across 071

typologically diverse languages and different NLP 072

tasks. To fill this gap, following (Cao et al., 2020) 073

we first adjust mBERT using parallel data (English 074

vs. Spanish, Russian, Vietnamese, and Hindi) with 075

an objective to make embeddings of semantically 076

similar words (in different languages) to be closer 077

to each other. Then, we fine-tune cross-lingually 078

adjusted mBERT models for three NLP tasks (NLI, 079

NER, and QA) using English data. Finally, we ap- 080

ply the trained models to the test data in four target 081

languages in a zero-shot fashion (i.e., without fine- 082

tuning in the target language). We perform each 083

1



Figure 1: Histograms of cosine similarities between contextualized word representations produced by mBERT for
20,000 randomly sampled (unrelated) vs. aligned (related) word pairs from WikiMatrix (Hi-En): (a) original, (b)
after cross-lingual adjustment, (c) after fine-tuning on English NLI data, (d) after cross-lingual adjustment and
subsequent fine-tuning on English NLI data.

experiment with five seeds and assess statistical084

significance of the difference from a baseline. In085

our study we ask the following research questions:086

R1 How does cross-lingually adjusted mBERT087

subsequently fine-tuned on English data and088

zero-shot transferred to a target language per-089

form on various NLP tasks and target lan-090

guages?091

R2 How do the size of the parallel corpus used for092

adjustment and different approaches to word093

alignment affect outcomes?094

R3 How do adjustment of mBERT on parallel095

data and fine-tuning for a specific task affect096

similarity of contextualized embeddings of se-097

mantically related and unrelated words across098

languages?099

Our experiments demonstrate the following:100

• The cross-lingual adjustment of mBERT im-101

proves NLI in four languages (by one point)102

and NER in two languages (by 1.5-2.5 points).103

Yet, there is no statistically significant im-104

provement for QA and a statistically signif-105

icant deterioration on three out of eight QA106

datasets.107

• Although a choice of a word-alignment ap-108

proach (e.g., averaging over word sub-tokens)109

slightly affects outcomes, there are no ap-110

parent patterns. However, as the amount of111

parallel data increases, this clearly benefits112

both NLI and NER, whereas QA performance113

peaks at roughly 5K parallel sentences and114

further decreases as the number of parallel115

sentences increases.116

• When comparing similarity of contextualized- 117

embeddings of words across languages 118

(Fig. 1), we can see that the cross-lingual ad- 119

justment of mBERT increases the cosine simi- 120

larity between related words while keeping un- 121

related words apart. In contrast, fine-tuning of 122

mBERT for a specific task draws embeddings 123

of both related and unrelated words much 124

closer to each other (Fig. 1c). However, when 125

we fine-tune a cross-lingual adjusted mBERT 126

for a specific task (e.g., NLI), cosines similar- 127

ities between related and unrelated words are 128

better separated (Fig. 1d), which may permit 129

the adjusted mBERT to have better zero-shot 130

transfer performance. 131

In summary, our study contributes to a better 132

understanding of large multilingual language mod- 133

els and their cross-lingual transfer capabilities by 134

identifying limitations of this approach in various 135

NLP tasks. To enable reproducibility, we make 136

our software available (currently attached to the 137

submission). 138

2 Related Work 139

2.1 Cross-Lingual Zero-Shot Transfer with 140

Multilingual Models 141

The success of mBERT in cross-language zero- 142

shot regime on many tasks inspired many papers 143

that attempted to explain its cross-lingual abilities 144

and limitations (Wu and Dredze, 2019; Conneau 145

et al., 2020; K et al., 2020; Libovickỳ et al., 2019; 146

Dufter and Schütze, 2020; Chi et al., 2020; Pires 147

et al., 2019; Artetxe et al., 2020; Chi et al., 2020). 148

These studies showed that the multilingual mod- 149

els learn high-level abstractions common to all 150

languages. As a result, transfer is possible even 151

when languages share no vocabulary. However, the 152
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gap between performance on English and a target153

language is smaller if the languages are cognate,154

i.e. share a substantial portion of model’s vocab-155

ulary, have similar syntactic structures, and are156

from the same language family (Wu and Dredze,157

2019; Lauscher et al., 2020). Moreover, the size of158

target language data used for pre-training and the159

size of the model vocabulary allocated to the lan-160

guage also positively impacts cross-lingual learn-161

ing performance (Lauscher et al., 2020; Artetxe162

et al., 2020).163

Zero-shot transfer of mBERT or other multilin-164

gual transformer-based models from English to a165

different language was applied inter alia to POS166

tagging, cross-lingual information retrieval, depen-167

dency parsing, NER, NLI, and QA (Wu and Dredze,168

2019; Wang et al., 2019b; Pires et al., 2019; Hsu169

et al., 2019; Litschko et al., 2021). XTREME in-170

cludes NLI, NER, and QA datsets used in the cur-171

rent study. Authors state that performance on ques-172

tion answering on XTREME has improved only173

slightly since its inception in contrast to a more174

impressive progress in e.g. classification and re-175

trieval tasks. Although transfer from English is not176

always an optimal choice (Lin et al., 2019; Turc177

et al., 2021), English still remains the most popular178

source language. Furthermore, despite there have179

been developed quite a few new models that differ180

in architectures, supported languages, and training181

data (Doddapaneni et al., 2021), mBERT remains182

the most popular cross-lingual model.183

2.2 Cross-lingual Alignment of Embeddings184

Mikolov et al. demonstrated that vector spaces can185

encode semantic relationships between words and186

that there are similarities in the geometry of these187

vectors spaces across languages (Mikolov et al.,188

2013). A variety of approaches have been proposed189

for aligning monolingual representations based on190

bilingual dictionaries and parallel sentences. The191

most widely used approach—which requires only192

a bilingual dictionary—consists in is finding a rota-193

tion matrix that aligns vectors of two monolingual194

models (Mikolov et al., 2013). Lample et al. (2018)195

proposed an alignment method based on adversar-196

ial training, which does not require parallel data.197

A comprehensive overview of alignment methods198

for pre-Transformer models can be found in (Ruder199

et al., 2019).200

Schuster et al. (2019) applied rotation method201

to align contextualized ELMo embeddings (Pe-202

ters et al., 2018) using anchors (averaged vec- 203

tors of tokens in different contexts) and bilingual 204

dictionaries. They showed improved results of 205

cross-lingual dependency parsing using English 206

as source and several European languages as tar- 207

get languages. Wang et al. (2019a) aligned En- 208

glish BERT and mBERT representations using ro- 209

tation method and Europarl parallel data (Koehn, 210

2005). They employed the resulting embeddings 211

in a cross-lingual dependency parsing model. The 212

parser with aligned embeddings consistently out- 213

performed zero-shot mBERT on 15 out of 17 target 214

languages. 215

Instead of aligning on a word level, Aldarmaki 216

and Diab (2019) performed a sentence-level align- 217

ment of ELMo embeddings and evaluated this ap- 218

proach on the parallel sentence retrieval task. 219

Cao et al. (2020) proposed to directly modify the 220

mBERT model by making the representations of 221

semantically related words in different languages 222

to be closer to each other. This work was motivated 223

by the observation that embedding spaces of differ- 224

ent languages are not always isometric (Søgaard 225

et al., 2018) and, hence, are not always amenable 226

to alignment via rotation. The mBERT simultane- 227

ously adjusted on five European languages consis- 228

tently outperformed other alignment approaches 229

on XNLI data (Conneau et al., 2018). In the cur- 230

rent study, we implement the approach of Cao et al. 231

(2020) with some modifications. 232

Kulshreshtha et al. (2020) compared differ- 233

ent alignment methods (rotation vs. adjustment). 234

They evaluated the modified embeddings on NER 235

and slot filling tasks. According to their results, 236

rotation-based alignment performs better on NER 237

task, while model adjustment performs better on 238

slot filling. Zhao et al. (2021) continued this line 239

of research and proposed several improvements of 240

the model alignment method: 1) z-normalization 241

of vectors and 2) text normalization to make the 242

input more structurally ‘similar’ to English training 243

data. Experiments on XNLI dataset and translated 244

sentence retrieval showed that vector normaliza- 245

tion leads to more consistent improvements over 246

zero-shot baseline compared to text normalization. 247

3 Methods 248

In this study, we use a multilingual BERT (mBERT) 249

as the main model (Devlin et al., 2019). mBERT 250

is a case-sensitive “base” 12-layer Transformer 251

model (Vaswani et al., 2017) with 178M param- 252
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eters.1 It was trained with masked language253

model objective on a mixture of Wikipedias of254

104 languages with a shared WordPiece vocab-255

ulary: To balance the distribution of languages,256

high-resource languages were under-sampled and257

low-resource languages were over-sampled.2 For258

a number of NLP tasks, cross-lingual transfer of259

mBERT can be competitive with training a mono-260

lingual model using the training data in the target261

language (see Section 2).262

We align cross-lingual embeddings by directly263

modifying/adjusting the language model itself, fol-264

lowing the approach proposed recently by Cao et al.265

(2020). The approach—which differs from finding266

a rotation matrix—proved to be effective in the267

XNLI task. However, there are some differences268

in our implementation. In all cases, we work with269

one pair of languages at a time while Cao et al.270

(2020) adjusted mBERT for five languages at once.271

Our approach allows us to carry out a parameter-272

sensitivity analysis individually for each of the tar-273

get languages.274

BERT uses WordPiece tokenization, which splits275

sufficiently long words into subtokens. We first276

word-align parallel data with fast_align (Dyer et al.,277

2013) and then employ three common approaches278

to combine subtoken vectors into a single vector279

representing a word: 1) using the vector of the first280

sub-token3; 2) using the vector of the last subto-281

ken (Cao et al., 2020); 3) averaging of all word282

subtokens. We also explored another variant: ap-283

plying fast_align directly to BERT tokenization284

(i.e., subtokens). We use the averaging approach285

for our main experiments. Additionally, we assess286

how the choice of the alignment approach affects287

performance on Hindi data.288

Based on alignments in parallel data, we obtain289

a collection of word or subtoken (depending on290

the processing variant, see above) pairs (si, ti): si291

from the source language, ti from the target one.292

From these alignments we can obtain their mBERT293

vector representations f(si) and f(ti). Then, we294

fine-tune the mBERT model on aligned pairs’ vec-295

1https://huggingface.co/
bert-base-multilingual-cased

2https://github.com/google-research/
bert/blob/master/multilingual.md

3Wang et al. (2019b) used this variant in their experiments
and report that other options don’t induce much difference.

Lang Family Script Word Dist. from Number of
order English Wiki pages

en IE/Germanic Latin SVO 0.00 6.3M
es IE/Romance Latin SVO 0.12 1.7M
ru IE/Slavic Cyrillic SVO 0.14 1.7M
vi Austroasiatic Latin SVO – 1.3M
hi IE/Indo-Aryan Devanagari SOV 0.40 150K

IE : Indo-European; Prevalent word order: SVO – subject-verb-object, SOV –
subject-object-verb; distance from English in terms of word order is measured
according to Ahmad et al. (2019): Data for Vietnamese is missing.

Table 1: Language information.

tors using the following loss function: 296

L =
∑
(si,ti)

∥f(si)−f(ti)∥2+
∑
sj

∥f(sj)−f0(sj)∥2,

(1) 297

where the first term “pulls” the embeddings in the 298

source and target language together, while the sec- 299

ond (regularization) term prevents source (English) 300

representations from deviating far from their initial 301

values in the ‘original’ mBERT f0. 302

After have cross-lingually adjusted the mBERT 303

model, we fine-tune it for a specific task. 304

4 Tasks and Data 305

4.1 Languages and Parallel Data 306

In our experiments we transfer models trained on 307

English to four languages: Spanish, Russian, Viet- 308

namese, and Hindi. This set represents four dif- 309

ferent families (including one non-Indo-European 310

language), three scripts, and two different prevalent 311

word orders (see Table 1). All the languages are 312

among languages that were used to train mBERT 313

(although Hindi Wikipedia is an order of magni- 314

tude smaller compared to other Wikipedias, which 315

may have led to somewhat inferior contextualized 316

embeddings). 317

We use a parallel corpus (i.e., a bitext) WikiMa- 318

trix (Schwenk et al., 2021) to align embeddings. 319

WikiMatrix is a large collection of aligned sen- 320

tences in 1,620 different language pairs mined from 321

Wikipedia. The dataset is distributed under CC- 322

BY-SA license. Following (Wang et al., 2019b; 323

Kulshreshtha et al., 2020), we take 30K sentence 324

pairs for each language pair as a ‘basic’ size.4 325

4.2 Natural Language Inference 326

Natural language inference (NLI) is task of de- 327

termining the relation between two ordered sen- 328

tences and classifying it into: entailment, contra- 329

diction, or “no relation”. English MultiNLI collec- 330

4Cao et al. (2020) use the same magnitude of data – 50K
sentence pairs for each out of five languages.

4

https://huggingface.co/bert-base-multilingual-cased
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tion (Williams et al., 2018) consists of 433K sen-331

tence pairs originating from multiple genres. The332

XNLI dataset (Conneau et al., 2018) complements333

the MultiNLI training set with 2,500 development334

and 5,000 test examples in each of 15 languages335

(including all four target languages of the current336

study). Performance on XNLI is evaluated using337

classification accuracy. XNLI is distributed under338

the CC BY-NC license.339

4.3 Named Entity Recognition340

Named entity recognition (NER) is a task of locat-341

ing named entities in unstructured text and clas-342

sifying them into predefined categories such as343

persons, organizations, locations, etc. In our ex-344

periments, we employ the Wikiann NER corpus345

(Rahimi et al., 2019) that is derived from a larger346

“silver-standard” collection that was created fully347

automatically (Pan et al., 2017). Wikiann NER has348

data for 41 language, including all languages in349

the current study. The dataset is distributed under350

the Apache-2.0 license. The named entity types351

include location (LOC), person (PER), and orga-352

nization (ORG). The English training set contains353

20K sentences. Test sets for Spanish, Vietnamese,354

and Russian have 10K sentences each; for Hindi –355

1K sentences. Performance is evaluated using the356

token-level micro-averaged F1.357

4.4 Question Answering358

Machine reading comprehension (MRC) is a vari-359

ant of QA task. Given a question and a text para-360

graph, the system needs to return a continuous span361

of paragraph tokens as an answer. The first large-362

scale MRC dataset is the English Wikipedia-based363

dataset SQuAD (Rajpurkar et al., 2016), which364

contains about 100K paragraph-question-answer365

triples. To create SQuAD, crowd workers were366

shown a Wikipedia paragraph; the task was to for-367

mulate several questions to the paragraph content368

and select a text span as an answer. SQuAD is369

available under the CC BY-SA license. SQuAD370

has become a de facto standard and inspired cre-371

ation of analogous resources in other languages372

(Rogers et al., 2021).373

We use SQuAD as the source dataset to train374

MRC models. To test the models, we use XQuAD,375

MLQA, and TyDi QA datasets. XQuAD (Artetxe376

et al., 2020) is a professional translation of 240377

SQuAD paragraphs and 1,190 questions-answer378

pairs into 10 languages (including four languages379

of our study). MLQA (Lewis et al., 2020) data380

is available for six languages including Spanish, 381

Vietnamese, and Hindi (but it does not have En- 382

glish). There are about 5K questions for each 383

of our languages. TyDi QA (Clark et al., 2020) 384

includes 11 typologically diverse languages of 385

which we use only Russian (812 test items). Com- 386

pared to datasets associated with SQuAD, SQuAD, 387

XQuAD, and MLQA are distributed under the CC 388

BY-SA license; TyDi QA – under the Apache-2.0 389

license. 390

Standard evaluation metrics for SQuAD-like 391

datasets are EM (exact answer-span match) and 392

token-level F1-score. We report F1-scores because 393

they are considered to be more robust. 394

5 Experimental Results and Analysis 395

5.1 Setup 396

All experiments were conducted on a single Tesla 397

V100 16GB. For cross-lingual model adjustment 398

we use the Adam optimizer and hyperparameters 399

provided by Cao et al. (2020). To obtain reliable 400

results we run five iterations (using different seeds) 401

of model adjustment (for each configuration) fol- 402

lowed by fine-tuning on down-stream tasks. For 403

each run we sample a required number of sentences 404

from a set of 250K parallel (WikiMatrix) sentences 405

word-aligned with fast_align. One run of model 406

adjustment on 30K parallel sentences takes about 407

15 minutes. 408

For fine-tuning on XNLI, SQuAD, and Wikiann 409

we use parameters and scripts provided by 410

HuggingFace.5 These scripts use a basic archi- 411

tecture consisting of a BERT model and a task- 412

specific linear layer. We freeze the embedding 413

vectors during fine-tuning on down-stream tasks be- 414

cause during the training on English data the model 415

ignores vectors in other languages. It can also pre- 416

vent forgetting of embedding adjustment. Fine- 417

tuning on XNLI, SQuAD and Wikiann takes about 418

100 minutes, 60 minutes, and 3 minutes respec- 419

tively. Including all preliminary and exploratory 420

experiments the total computational budget was 421

approximately 450 hours. 422

All reported results are averages over five runs 423

with different seeds. We further assess significance 424

of differences between results for the original and 425

adjusted mBERT using paired statistical tests. For 426

QA and XNLI we first average metric values for 427

5https://github.com/huggingface/
transformers/tree/master/examples/
pytorch
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each example over different runs and then carry428

out a paired t-test using averaged values. For NER429

we concatenate example-specific predictions for all430

seeds and run 1000 iterations of a permutation test431

for concatenated sequences (Pitman, 1937; Efron432

and Tibshirani, 1993).433

5.2 Main Results434

Results for NLI, NER, and QA tasks are summa-435

rized in Tables 2, 3, and 4, respectively.436

We can observe consistent and statistically sig-437

nificant improvements of aligned models over zero-438

shot transfer on XNLI for all languages. All gains439

are around one accuracy point, which is in accor-440

dance with results by Cao et al. (2020) even though441

we used a set of more diverse languages, presum-442

ably noisier parallel data, and slightly altered learn-443

ing scheme. Results confirm previous findings444

about cross-lingual zero-short transfer: results are445

higher for cognate target languages (cf. Spanish)446

and become worse as you move farther away from447

the source language (Hindi demonstrates worst re-448

sults, but the deficiency of Hindi data for mBERT449

learning may also come into play). We also con-450

structed bilingual variant of XNLI test data: in451

each pair, we randomly swapped one of the sen-452

tences with its English counterpart. Classification453

results for this “mixed” dataset in the bottom of454

Table 2 demonstrate a larger gain of the adjusted455

mBERT (compared to the original mBERT) for all456

four languages.457

NER results are mixed: we observe significant458

gains for Russian (+2.3 F1 points) and Hindi (+2.6459

F1 points) when using a cross-lingually adjusted460

model, while the results for Spanish and Viet-461

namese are worse compared to the original mBERT.462

At the same time, the baseline scores for Russian463

and Hindi are lower compared to English and Viet-464

namese. We hypothesize that the reason may be the465

annotation quality of the Wikiann corpus, which466

varies across languages.467

When we fine-tune a cross-lingually adjusted468

mBERT on QA tasks, we observe a statistically sig-469

nificant performance degradation for both Spanish470

datasets as well as for Vietnamese MLQA. Again,471

we observe a steady decline of zero-shot trans-472

fer outcomes on both parallel datasets (MLQA473

and XQuAD) from languages closer to English474

(Spanish) to more distant ones (Hindi). It is also475

interesting to note the gap between the MLQA476

and XQuAD scores. XQuAD is a translation of477

a SQuAD and, therefore, it “inherits” a higher lexi- 478

cal similarity of the question and answer contexts. 479

This makes it an easier task for a model fine-tuned 480

on the original SQuAD. 481

mBERT es ru vi hi
Original 74.59 68.26 70.29 59.64
Adjusted 75.52* 69.39* 71.21* 60.77*

Mixed-language NLI
Original 71.22 65.02 63.12 54.16
Adjusted 73.10* 67.47* 67.29* 57.51*

Statistically significant differences between original and adjusted
mBERT are marked with * (p-value threshold 0.05).

Table 2: NLI results (accuracy).

Model es ru vi hi
Original 73.33 64.53 71.71 65.54
Adjusted 72.02* 66.80* 71.08* 68.11*

Statistically significant differences between original and adjusted
mBERT are marked with * (p-value threshold 0.05).

Table 3: NER results (token-level F1).

We also conducted experiments on cross-lingual 482

question answering using two parallel datasets: 483

MLQA and XQuAD: Results are shown in the 484

lower part of Table 4. We explored two directions: 485

1) question is in a target language, but paragraph 486

is in English and 2) a question is in English, but a 487

paragraph is in a target language. Again, results are 488

not consistent across languages and cross-lingual 489

“directions”. In most cases the differences between 490

results obtained using the original and adjusted 491

mBERT are not statistically significant. 492

K et al. (2020) showed that the quality of cross- 493

lingual transfer was higher in the case of languages 494

with similar word order. Hsu et al. (2019) and 495

Zhao et al. (2021) experimented with word re- 496

arrangements for cross-lingual QA and NLI, re- 497

spectively, and obtained some improvements. We 498

trained a QA model using an English-Hindi ad- 499

justed mBERT on the SQuAD-SOV dataset re- 500

leased by Hsu et al. (2019), where sentences were 501

re-arranged to Subject-Object-Verb order. This 502

combination led to a degraded quality.6 503

5.3 Analysis of the Adjusted mBERT 504

Liu et al. (2021) observed that after fine-tuning on 505

a specific task (POS-tagging and NER) large mul- 506

tilingual models became worse at the tasks they 507

6Manual inspection of the data revealed that all SQuAD
data is lowercased, which may negatively impact QA train-
ing. Moreover, the quality of rearrangements is rather low,
most obvious problem is incorrect processing of passive voice
constructions.
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mBERT Spanish Russian Vietnamese Hindi
MLQA XQuAD TyDi QA XQuAD MLQA XQuAD MLQA XQuAD

Original 65.07 75.62 66.74 71.14 60.18 69.42 49.05 57.63
Adjusted 63.96* 74.59* 66.68 70.57 59.34* 69.97 48.81 57.64

Question in target language, paragraph in English
Original 68.17 76.36 – 72.10 55.79 64.56 43.28 47.74
Adjusted 67.84 76.22 – 72.17 56.72* 66.73* 44.36* 50.28*

Question in English, paragraph in target language
Original 67.38 76.52 – 67.70 64.27 68.69 55.45 58.44
Adjusted 66.99* 76.71 – 68.05 65.04* 68.86 55.41 58.10

Statistically significant differences between original and adjusted mBERT models are marked with * (p-value threshold 0.05).

Table 4: Effectiveness of QA systems (F1-score).

orig. mBERT en-es en-ru en-vi en-hi
60.72 60.03 59.45 58.72 60.22

Table 5: SCWS correlation scores of mBERT models:
original vs. cross-lingually adjusted on 4 language pairs.

were initially trained for (e.g., predicting a masked508

word). They also became worse at cross-lingual509

sentence retrieval. This result motivated us to study510

how cross-lingual adjustment of mBERT affected511

the ability of the model to capture semantic simi-512

larity in a mono-lingual and cross-lingual settings.513

For the mono-lingual, English, evaluation, we514

used the Stanford Contextual Word Similarity515

(SCWS) dataset (Huang et al., 2012). It contains516

contexts for around 2K word pairs along with517

crowdsourced (ground-truth) similarity ratings for518

each pair, which allows us to rank them. We com-519

pared these ground-truth rankings of word pairs520

with rankings produced by an original or adjusted521

mBERT. To this end, a similarity score of two522

words was computed using the cosine similarity be-523

tween words’ contextualized embeddings. Agree-524

ment with ground-truth data was computed using525

the Spearman’s rank correlation.526

According to results in Table 5, the cross-lingual527

adjustment does hurt monolingual performance of528

mBERT, which is in line with Liu et al. (2021).529

With an exception of Hindi, the degradation is530

smaller for Russian and Spanish, which are more531

closely related to English.532

In the cross-lingual evaluation we compared533

cosine similarities between contextualized em-534

beddings in English and other languages. To535

this end we sampled from WikiMatrix (Schwenk536

et al., 2021) using two scenarios: semantically re-537

lated words from parallel sentences (matched via538

fast_align) and unrelated words sampled from un-539

paired sentences (nearly always unrelated). For540

each pair of languages and each NLP task, the sam-541

pling processed is carried out for: (1) the original542

mBERT, (2) an adjusted mBERT, (3) the original 543

mBERT fine-tuned for the target NLP task, (4) the 544

adjusted mBERT fine-tuned for the target NLP task. 545

The histograms of cosine similarities for Hindi 546

and NLI task is shown is shown in Figure 1: His- 547

tograms for other languages can be found in Ap- 548

pendix A. Figure 1a shows that related words in 549

two languages are typically closer to each other 550

than to randomly selected unrelated words, but the 551

histograms overlap. The cross-lingual adjustment 552

(see Figure 1b) makes embeddings of semantically 553

similar words from different languages closer to 554

each other, while keeping unrelated words apart, 555

which is a desired behavior. In contrast, fine-tuning 556

original, i.e., unadjusted, mBERT on the English 557

NLI data (Figure 1c) makes distributions of related 558

and unrelated words almost fully overlap, i.e. all 559

embeddings become close to each other. In that, 560

if we fine-tune the adjusted mBERT (Figure 1d), 561

this also reduces the gap between related and un- 562

related words, but it remains larger compared to 563

fine-tuning of the unadjusted mBERT. Thus, unlike 564

English-only fine-tuning, the cross-lingual adjust- 565

ment does reduce the similarity gap between related 566

words (from different languages) while keeping 567

unrelated words largely apart. Quite surprisingly, 568

achieving this objective does not seem to be suffi- 569

cient for improving zero-shot transfer. For example, 570

judging from histograms for NER (see Fig. 2, Ap- 571

pendix A), one of the biggest improvements should 572

be in the case of Spanish, where the cross-lingual 573

adjustment substantially degrades the F1-score. 574

We can see that the cross-lingual adjustment 575

does not consistently improve QA and NER tasks. 576

It is quite possible that degradation in monolin- 577

gual performance (as shown using SCWS data, Ta- 578

ble 5) is partially responsible for this underwhelm- 579

ing performance, especially for QA, whose quality 580

degrades as the amount of parallel data used for 581

adjustment increases (see Table 6). Furthermore, 582
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Muttenthaler et al. (2020) and (van Aken et al.,583

2019) showed that QA models essentially clustered584

answer token vectors and separated them from the585

rest of the paragraph token vectors using a vector586

representation of the question. Thus, to solve the587

QA task, the model needs to operate largely at a lex-588

ical level and can rely on mutual similarity among589

question and paragraph words. It learns how to use590

these similarities by training on the English QA591

data and does not benefit much from cross-lingual592

adjustment.593

5.4 Impact of the Amount of Parallel594

Data/Approach to Subtoken Aggregation595

An objective of this section analysis is to assess596

the impact of the number of parallel sentences and597

the approach to subtoken aggregation. Because598

zero-shot transfer is typically more challenging599

for languages with non-Latin script (see Tables 2600

and 3), we initially considered experimenting with601

either Russian or Hindi. Ultimately we chose Rus-602

sian, because the Russian Wikipedia is much larger603

compared to Hindi, which entails a higher qual-604

ity of sentence alignment in WikiMatrix (see Sec-605

tion 4.1).606

We adjusted mBERT on 5K/10K/30k/100K sen-607

tence pairs and subsequently fine-tuned the model608

on respective tasks. As in all other experiments,609

we train the models with five seeds and report av-610

eraged results. Table 6 shows that XNLI accuracy611

improves monotonically as the size of the parallel612

corpus increases. NER scores reach a plateau af-613

ter 10K sentence pairs. QA models benefit from614

adjustment using only a small amount of paral-615

lel data (and even slightly outperform the original616

mBERT baseline when adjusted using 5K sentence617

pairs). QA performance peaks at roughly 5K paral-618

lel sentences and further decreases as the number619

of parallel sentences increases.620

Size XNLI NER TyDi QA XQuAD
None 68.26 64.53 66.74 71.14

5K 68.73 66.02 67.32 71.29
10K 69.38 66.52 67.55 70.66
30K 69.39 66.80 66.68 70.57

100K 70.34 66.80 66.58 69.96

Table 6: Performance of models aligned on En-Ru data
depending on the number of sentence pairs.

In our main experiments, we carry out alignment621

using averaged subtoken embeddings, which was622

decided based on preliminary experimental results.623

However, as Table 7 shows, this is not an optimal624

approach across all tasks and languages. For exam- 625

ple, in the case of Hindi, we get better results using 626

start subtokens on NLI and NER tasks (though dif- 627

ferences are small for NER). 628

Interestingly, when we apply fast_align to origi- 629

nal BERT subtokens (orig), we obtain much worse 630

results on all tasks except NLI. A lower quality of 631

the orig approach is likely due to a small mBERT 632

vocabulary allocated for Hindi, which results in 633

excessive word splitting and, consequently, leads 634

to a worse alignment. We conjecture that in the 635

NLI task the model relies more on the sentence- 636

level representation through a [CLS] token, which 637

are also being aligned as part of the cross-lingual 638

adjustment of mBERT. Good cross-lingual NLI 639

performance with the orig approach supports this 640

hypothesis. 641

Mode XNLI NER MLQA XQuAD
start 61.59 68.41 48.48 57.16
end 61.24 68.10 47.50 56.46
avg 60.77 68.11 48.81 57.64
orig 61.53 64.54 44.34 53.44

Table 7: Impact of subtokens processing (Hindi).

6 Conclusion 642

In this study, we experiment with zero-shot transfer 643

of English models to four typologically different 644

languages and three NLP tasks. The cross-lingual 645

adjustment of mBERT improves NLI in four lan- 646

guages and NER in two languages. However, in 647

the case of QA performance never improves and 648

sometimes degrades. Our study contributes to a 649

better understanding of large multilingual language 650

models and their cross-lingual transfer capabilities 651

by identifying limitations of this approach. 652
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A Appendix910

Figure 2: Histograms of cosine similarities between contextualized word representations produced by mBERT for
20,000 randomly sampled (unrelated) vs. aligned (related) word pairs from WikiMatrix. Columns correspond to
language pairs. Rows depict histograms of the original mBERT model, its cross-lingual adjustments, as well as their
variants fine-tuned on QA, NER, and NLI tasks.
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