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ABSTRACT

Self-supervised monocular depth estimation (SSMDE) aims to predict the dense
depth map of a monocular image, by learning depth from RGB image sequences,
eliminating the need for ground-truth depth labels. Although this approach simpli-
fies data acquisition compared to supervised methods, it struggles with reflective
surfaces, as they violate the assumptions of Lambertian reflectance, leading to in-
accurate training on such surfaces. To tackle this problem, we propose a novel
training strategy for an SSMDE by leveraging triplet mining to pinpoint reflec-
tive regions at the pixel level, guided by the camera geometry between different
viewpoints. The proposed reflection-aware triplet mining loss specifically penal-
izes the inappropriate photometric error minimization on the localized reflective
regions while preserving depth accuracy on non-reflective areas. We also incorpo-
rate a reflection-aware knowledge distillation method that enables a student model
to selectively learn the pixel-level knowledge from reflective and non-reflective re-
gions. This results in robust depth estimation across areas. Evaluation results on
multiple datasets demonstrate that our method effectively enhances depth quality
on reflective surfaces and outperforms state-of-the-art SSMDE baselines.

1 INTRODUCTION

Self-supervised monocular depth estimation (SSMDE) (Godard et al., 2019) is a task that learns
depth solely from a continuous RGB image sequence without needing corresponding ground-truth
depth maps for each frame in a video. This approach significantly simplifies data acquisition com-
pared to traditional supervised methods (Fu et al., 2018; Lee et al., 2019; Bhat et al., 2021), which
often involve high costs for annotation. As such, many SSMDE studies (Godard et al., 2019; Zhou
et al., 2017; Garg et al., 2016; Guizilini et al., 2020) have explored its viability as a mainstay for
applications such as autonomous driving, highlighting its potential in outdoor environments.

Despite its advantages, SSMDE typically challenges in accurate depth estimation on non-
Lambertian surfaces such as mirrors, transparent objects, and specular surfaces. This difficulty pri-
marily arises from the assumption of Lambertian reflectance (Basri & Jacobs, 2003) embedded in
most SSMDE methods. As illustrated in Figure 1, these non-Lambertian surfaces violate the pho-
tometric constancy principle, which posits that the color and brightness of a point should appear
constant across different images (Godard et al., 2017). This violation leads to incorrect depth train-
ing, particularly on non-Lambertian surfaces. Consequently, this issue manifests in a phenomenon
known as the “black-hole effect” (Shi et al., 2023), where the model erroneously predicts depths that
are greater than the actual surface depth in areas with specular reflections. This effect is a prevalent
challenge across various reflective surfaces, significantly impacting the performance and reliability
of SSMDE systems.

Recent advancements (Costanzino et al., 2023; Shi et al., 2023) attempt to tackle these challenges
by utilizing training strategies that involve generating pseudo-labels through inpainting (Costanzino
et al., 2023) or reconstructing 3D meshes (Shi et al., 2023). However, these methods still rely on extra
labels such as segmentation mask annotations (Costanzino et al., 2023) or use auxiliary methods that
have excessive computational costs such as ensemble-based uncertainty algorithms (Shi et al., 2023),
TSDF-fusion (Newcombe et al., 2011) and mesh rendering (Matl, 2019).
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Figure 1: Photometric constancy violation on reflective surfaces. The projected non-reflective sur-
face point (denoted as ) satisfies the photometric constancy so the model can obtain the accurate
depth by photometric error minimization. On the other hand, projected reflective surface point (de-
noted as , ) violates the photometric constancy, resulting in wrong disparity by photometric error
minimization. This figure depicts a scenario where the relative positions of the cameras shift hori-
zontally, akin to rectified stereo, to simplify the illustration.

To address these issues, we propose a novel training strategy called “reflection-aware triplet min-
ing” that enhances the performance of SSMDEs by leveraging the triplet mining (Schroff et al.,
2015). The underlying principle of our approach is that reflective areas, such as mirror light sources
or objects, exhibit disparities corresponding to the reflected object rather than the actual surface as
illustrated in Figure 1. While non-reflective areas exhibit photometric error due to the difference
in camera views from two different perspectives (e.g., source and reference views), reflective areas
have abnormally low photometric error between the two views due to the low disparity of reflected
objects. Accordingly, our approach treats views from the same camera coordinates as positive pairs
and those from different coordinates as negative pairs, as illustrated in Figure 2. Our method aims
to minimize the conventional photometric error between positive pairs while maximizing it between
negative pairs. This approach effectively neutralizes the impact of contaminated gradients in reflec-
tive regions, thereby significantly improving accuracy on these regions.

Moreover, we introduce a “reflection-aware knowledge distillation” approach to keep the high-
frequency details in the predicted depth for non-reflective regions inspired by previous works (Shi
et al., 2023). In this method, the student network is trained by distilling knowledge from two distinct
SSMDE networks. The first utilizes the proposed triplet loss, providing robustness against reflective
areas, while the second employs solely photometric minimization loss, adept at preserving high-
frequency details that contribute to the perceptual quality and visual fidelity of the depth map. This
hybrid training strategy effectively combines the strengths of both training methods, creating a more
versatile and effective depth estimation framework. By leveraging the unique capabilities of each
model, the student network can achieve a more comprehensive understanding of depth across vari-
ous surface conditions.

Our method is broadly applicable to general SSMDE frameworks that rely on photometric error
minimization. We validate our method on three well-known SSMDE networks (Godard et al., 2019;
Lyu et al., 2021; Zhao et al., 2022) across three public datasets (Dai et al., 2017; Shotton et al.,
2013; Ramirez et al., 2023) featuring reflective objects and surfaces. The results demonstrate that
our method significantly improves depth prediction accuracy on reflective surfaces while preserving
performance on non-reflective surfaces. Our main contributions are fourfold as follows:

1. We propose a new reflection-aware triplet mining loss that significantly enhances the accuracy
on reflective surfaces and can be easily integrated into general SSMDE frameworks.
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2. We introduce reflection-aware knowledge distillation to improve the overall accuracy on reflec-
tive surfaces while preserving high-frequency details on non-reflective surfaces.

3. To the best of our knowledge, our strategy represents the first end-to-end method specifically
designed to enhance the performances of SSMDE on reflective surfaces.

4. The proposed method outperforms the existing self-supervised training method and shows com-
parable results against 3D information distillation methods on various indoor depth benchmarks.

2 RELATED WORK

2.1 SELF-SUPERVISED MONOCULAR DEPTH ESTIMATION

Self-supervised Monocular Depth Estimation (SSMDE) is a task that estimates a depth map from
a single image without a ground truth depth map. This approach significantly simplifies the pro-
cess of data acquisition, making it scalable for a wide variety of datasets. SfMLearner (Zhou et al.,
2017) introduces a pioneering framework for self-supervised depth map estimation, which simul-
taneously learns depth maps for the input image and pose parameters from sequential views. Mon-
odepth2 (Godard et al., 2019) proposes a masking scheme and minimum reprojection loss to filter
out the regions that violate photometric inconstancy, such as moving objects and occluded regions.
Subsequent methods (Zhou et al., 2021; Guizilini et al., 2020; Lyu et al., 2021) have been refined,
effectively integrating features of different resolutions based on established constraints. With the
introduction of ViT (Dosovitskiy et al., 2020), the field of SSMDE has begun to incorporate trans-
former backbones. Monoformer (Bae et al., 2023b) and MonoViT (Zhao et al., 2022) have emerged,
utilizing hybrid networks of CNN and transformers to adeptly merge local and global features.

2.2 GENERALIZATION OF MONOCULAR DEPTH ESTIMATION

Recent research has expanded to consider factors such as the impact of weather variations (Saun-
ders et al., 2023; Gasperini et al., 2023), the differences in inference capabilities between CNNs and
Transformers (Bae et al., 2023a), the robustness of SSMDEs against various types of data corrup-
tion (Kong et al., 2024), and methods for accurately modeling transparent and mirrored surfaces,
which are typically non-Lambertian (Costanzino et al., 2023). In addition, the 3D Distillation (Shi
et al., 2023) addresses a critical flaw in traditional SSMDEs: the photometric constancy principle
used in applying photometric consistency loss may not hold for non-Lambertian surfaces encoun-
tered in real-world scenarios, resulting in SSMDE models producing unreliable and low-quality
depth estimates for reflective surfaces. To counter this problem, 3D Distillation leverages the 3D
mesh rendering function along with ensemble uncertainty to localize the reflective surfaces and re-
fine the inaccurate depth on these regions.

2.3 DEEP METRIC LEARNING

Deep metric learning (Chen et al., 2020; Chen & He, 2021; Khosla et al., 2020) seeks to develop an
effective distance measure between data points. These methods strive to minimize the distance be-
tween samples of the same class while maximizing it between samples from different classes. While
traditionally focused on classification tasks, where positive and negative pairs are defined based on
class similarity, recent studies (Spurr et al., 2021; Wang et al., 2022; Zha et al., 2024) have expanded
the application of deep metric learning to regression contexts. Particularly in the context of depth
estimation, deep metric learning has demonstrated versatility beyond simple augmentation-based
consistency. It has been applied to enhance accuracy through contrasting depth distributions (Fan
et al., 2023; Choi et al., 2024) and addressing issues such as edge fattening (Chen et al., 2023). In
this paper, we utilize the triplet mining scheme, initially popularized by Schroff et al. (2015), to en-
hance recognition accuracy, specifically focusing on improving performance on reflective surfaces.

3 METHOD

Our method aims to enhance depth prediction accuracy on reflective surfaces by strategically penal-
izing the inappropriate photometric error minimization between the view-synthesized image and the
reference image. In Section 3.1, we discuss the photometric constancy principle, which posits that
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correctly minimizing photometric error is crucial for accurately determining depth (Section 3.1.1).
We also provide an overview of the standard training strategies employed in SSMDE frameworks
(Section 3.1.2). In Section 3.2, we detail the three components of our training strategy: reflective re-
gion localization (Section 3.2.1), reflection-aware triplet mining loss (Section 3.2.2), and reflection-
aware knowledge distillation (Section 3.2.3).

3.1 PRELIMINARY

3.1.1 PHOTOMETRIC CONSTANCY PRINCIPLE

The photometric constancy principle is foundational in SSMDE frameworks, positing that surfaces
exhibit uniform reflectance (i.e., Lambertian reflectance) from all viewing angles. A surface adheres
to this principle if its color and luminance observed through a camera remain constant, regardless
of the camera’s viewing angle. By leveraging this property, depth and pose can be accurately esti-
mated by minimizing the photometric error between the view-synthesized image and the reference
image, as described in Equation 3. However, real-world scenes rarely adhere strictly to this princi-
ple. Non-Lambertian surfaces, such as specular reflections from light sources or mirrored objects,
are prevalent, leading to violations of photometric constancy. These deviations result in significant
errors when attempting to minimize photometric error, thus compromising the effectiveness of depth
estimation methods based on these assumptions.

3.1.2 TRAINING STRATEGY OF GENERAL SSMDE FRAMEWORK

The objective of SSMDE is to predict a per-pixel basis depth map Dref of a reference image Iref
given the reference image itself, a source image Isrc (or source images) and their camera intrinsics
K. The framework consists of a depth network Fθ(·), and a pose network Gϕ(·, ·) to respectively
estimate the depth of the reference image Dref , and the relative pose [R|t]r2s as follows:

Dref = Fθ(Iref ), Fθ : R3×h×w → R1×h×w, (1)

[R|t]r2s = Gϕ(Isrc, Iref ), Gϕ : R2×3×h×w → R3×4, (2)

where (h,w) represent the spatial resolution of Iref . Using the obtained relative pose [R|t]r2s, and
depth map Dref , the source image Isrc is warped into the reference coordinates, generating the
view-synthesized image Is2r as follows:

(Is2r):,u,v = Isrc(⟨K[R|t]r2s(Dref ):,u,vK
−1[u, v, 1]T ⟩), (3)

where (u, v) represent the image coordinates and ⟨·⟩ is the projection function that maps homo-
geneous coordinates to cartesian coordinates. By the photometric constancy principle detailed in
Section 3.1.1, the synthesized image Is2r should exhibit the same colors and luminances as the ref-
erence image on a pixel-by-pixel basis. Consequently, the model can determine the accurate depth
and pose by minimizing the photometric errors, P(·, ·), between Is2r and Iref as follows:

P(Is2r, Iref ) = M⊙
(
α1

1− S(Iref , Is2r)
2

+ α2||Iref − Is2r||1
)
,

P : R2×3×h×w → R1×h×w, S : R2×3×h×w → R1×h×w,

(4)

where S(·, ·) is the mixture of structural similarity index (Wang et al., 2004), and M is the principled
mask (Godard et al., 2019) to prevent the backpropagation of corrupted gradients, caused by anoma-
lies like moving objects in the scene. The weights α1 and α2 serve as balance terms between two
losses, and ⊙ represents the element-wise multiplication operator. However, if the surface does not
conform to the principle of photometric constancy, minimizing photometric errors on such reflective
surfaces can lead to significant inaccuracies in the estimated depth.

3.2 METHODOLOGY

3.2.1 REFLECTIVE REGION LOCALIZATION

The photometric error, as calculated through Equation 4 between Is2r and Iref tends to be smaller
in non-reflective regions. This is because these areas reflect consistent colors and luminances ir-
respective of the viewing direction, adhering to the photometric constancy principle. On the other
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Figure 2: The effect of the proposed method on reflective/non-reflective surfaces. ( / , ) imply
the projected non-reflective/reflective surface points, respectively, and ( , ) denotes the location of
reflection lobe in view-synthesized image coordinate. Our proposed method cancels out the wrong
photometric error minimization in reflection areas by contrasting the negative pair samples.

hand, reflective regions, which violate the photometric constancy principle, exhibit abnormally low
disparities due to the additional distance from the reflected light source. Consequently, as illustrated
in Figure 2, reflection lobes from different images appear relatively closer in image coordinates,
resulting in reduced photometric errors in the RGB images of two different viewpoints.

This characteristic is crucial for isolating reflective regions within the spatial dimension of the image.
To capitalize on this, we first generate cross-view synthesized images Is2r, Ir2s in a manner similar
to the process outlined in Equation 3:

(Is2r):,u,v = Isrc(⟨K[R|t]r2s(Dref ):,u,vK
−1[u, v, 1]T ⟩), (5)

(Ir2s):,u,v = Iref (⟨K[R|t]s2r(Dsrc):,u,vK
−1[u, v, 1]T ⟩), (6)

where the relative pose [R|t]s2r can be obtained by computing the inverse of the predicted pose
[R|t]s2r, and Dsrc is predicted depth from Isrc, following a procedure similar to Equation 1. Uti-
lizing these synthesized cross-view images, we compute two photometric errors to measure discrep-
ancies between image pairs as follows:

E+ = P(Is2r, Iref ), E− = P(Is2r, Ir2s). (7)

The first error, E+, quantifies discrepancies between images taken from the same viewpoint
(Is2r, Iref ). This error is minimized when depth and pose are accurately estimated on non-reflective
surfaces. Conversely, the second error, E−, measures discrepancies between images from differ-
ent viewpoints (Is2r, Ir2s). In general, the expected photometric error for E− should be substantial
due to the different camera coordinate systems. However, on reflective surfaces, the variations in
light reflection may result in a reduced photometric error. Based on these observations, we identify
pixel-level reflective regions Mr ∈ R1×h×w as follows:

(Mr):,u,v =

{
1, if (E−):,u,v − (E+):,u,v ≤ δ,

0, else,
(8)

where δ is a certain margin that represents the minimum significant photometric difference required
to distinguish between the two surface types, where a value of 1 corresponds to a reflective pixel and
0 to a non-reflective pixel, respectively. This method effectively utilizes discrepancies in photometric
errors to distinguish between reflective and non-reflective surfaces, providing a precise mapping of
surface properties within the image. (refer to Section D in the supplementary materials.)

3.2.2 REFLECTION-AWARE TRIPLET MINING LOSS

We introduce the reflection-aware triplet mining loss, Ltri, which addresses the limitations of using
E+ alone in environments where reflections disrupt depth accuracy. In reflective regions, simply
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minimizing E+ does not effectively discern between real and reflected disparities. To counteract
this, we assert that E− should be significantly greater than E+. This approach is inspired by triplet
mining techniques that aim to minimize the distance within positive pairs and maximize it within
negative pairs, enhancing the model’s ability to distinguish between reflective and non-reflective
surfaces. To implement this, we formulate the reflection-aware triplet mining loss as follows:

Ltri(Iref , Is2r, Ir2s) = Mr ⊙ (E+ −E− + δ)hinge +
(
1−Mr

)
⊙E+, (9)

where (·)hinge is the hinge loss function described in Hearst et al. (1998). In this configuration,
the reflection-aware triplet mining loss is applied specifically to regions identified as reflective. For
non-reflective regions, where reflections do not disrupt photometric assessments, we apply the pho-
tometric loss E+ as it reliably reflects photometric consistency. This differentiation allows the model
to address the unique challenges presented by each type of region effectively.

As illustrated in Figure 2, this strategy involves not only penalizing the minimization of E+ but also
actively maximizing E−. This method effectively counteracts the contaminated gradients typically
found in reflective regions. By adjusting the balance between E+ and E− based on the presence of
reflective surfaces, our method not only improves depth estimation in complex scenarios but also
ensures robust performance against the challenges posed by reflective surfaces. This comprehensive
approach results in a model that accurately reflects the true topography of both reflective and non-
reflective environments.

3.2.3 REFLECTION-AWARE KNOWLEDGE DISTILLATION

The proposed end-to-end training scheme described in Section 3.2.2 effectively handles the depth
estimation on both reflective and non-reflective surfaces. To further refine depth estimation quality,
we introduce a reflection-aware knowledge distillation strategy inspired by the fusion techniques
discussed in Shi et al. (2023), aimed at retaining high-frequency details in depth prediction.

Our approach begins by training two separate SSMDE networks. The first is trained using our
reflection-aware triplet mining loss, Ltri, as defined in Equation 9, and the second employs the
conventional photometric loss, E+. From these models, we generate two types of depth maps: Dtri,
derived from the reflection-aware model, and Dori, obtained from the model trained with conven-
tional photometric loss. We then merge these depth maps into a single pseudo depth map Dpse

utilizing a reflective region mask Mr. This mask facilitates the adaptive fusing of depth information
from both teacher models based on the presence of reflective properties in the image. The pseudo
depth map generation and distillation process is detailed in the following equation:

Lrkd(D̂,Dpse) = | log D̂− logDpse|, where Dpse = Mr ⊙Dtri + (1−Mr)⊙Dori, (10)

where D̂ represents the depth predicted by the student model. It is important to note that the student
model and the two teacher models share the same network architecture as the general SSMDEs. This
structured training approach not only addresses the specific challenges posed by reflective surfaces
but also ensures that the high-frequency detail is not lost, thus achieving a balanced and accurate
depth prediction across different surface types.

4 EXPERIMENTS

Datasets. ScanNet (v2) (Dai et al., 2017) is a comprehensive indoor RGB-D video dataset com-
prising 2.7 million images across 1,216 interior scene sequences. Traditionally, this dataset has been
pivotal for evaluating multi-view stereo (Im et al., 2019; Bae et al., 2022) and scene reconstruction
applications (Murez et al., 2020; Zhou et al., 2024). 7-Scenes (Shotton et al., 2013) is a challenging
RGB-D dataset captured in indoor scenes with a similar distribution to ScanNet but dominated by
non-reflective surfaces. We follow the evaluation protocol of Long et al. (2021); Bae et al. (2022) to
demonstrate the cross-dataset generalization performances. Booster (Ramirez et al., 2023) includes
a variety of non-Lambertian objects within indoor settings, such as transparent basins, mirrors, and
specular surfaces. Following the Costanzino et al. (2023), we use the training split as our test set,
which showcases our method’s adaptability to more complex scenes.

Training scenario. In the work of 3D distillation (Shi et al., 2023), the ScanNet dataset has been
further segmented into ScanNet-Reflection and ScanNet-NoReflection subsets based on the pres-
ence of reflective objects within the scenes. This subdivision results in a ScanNet-Reflection dataset
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Table 1: Main results on the ScanNet-Reflection Test and Validation sets.

Sc
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Te

st
Backbone Training Scheme Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Monodepth2

End-to-End Self-Supervised 0.181 0.160 0.521 0.221 0.758 0.932 0.976
Ours 0.157 0.096 0.468 0.201 0.762 0.949 0.988

Multi-Stage
Self-Teaching 0.179 0.146 0.502 0.218 0.750 0.938 0.980
3D Distillation 0.156 0.096 0.459 0.195 0.766 0.945 0.988

Ours† 0.150 0.087 0.446 0.192 0.777 0.955 0.990

HRDepth

End-to-End Self-Supervised 0.182 0.168 0.530 0.225 0.749 0.937 0.979
Ours 0.157 0.098 0.470 0.201 0.763 0.952 0.989

Multi-Stage
Self-Teaching 0.175 0.145 0.492 0.215 0.757 0.936 0.982
3D Distillation 0.152 0.089 0.451 0.190 0.771 0.956 0.990

Ours† 0.150 0.092 0.434 0.192 0.780 0.950 0.988

MonoViT

End-to-End Self-Supervised 0.154 0.129 0.458 0.197 0.822 0.955 0.979
Ours 0.136 0.087 0.414 0.178 0.831 0.967 0.988

Multi-Stage
Self-Teaching 0.151 0.130 0.439 0.191 0.837 0.950 0.978
3D Distillation 0.127 0.069 0.379 0.162 0.846 0.961 0.992

Ours† 0.126 0.074 0.395 0.167 0.854 0.969 0.990

Sc
an

N
et

-R
efl

ec
tio

n
Va

lid
at

io
n Monodepth2

End-to-End Self-Supervised 0.206 0.227 0.584 0.246 0.750 0.912 0.961
Ours 0.166 0.125 0.492 0.209 0.763 0.934 0.981

Multi-Stage
Self-Teaching 0.192 0.188 0.548 0.233 0.764 0.920 0.967
3D Distillation 0.156 0.093 0.442 0.191 0.786 0.943 0.987

Ours† 0.151 0.105 0.454 0.193 0.796 0.944 0.985

HRDepth

End-to-End Self-Supervised 0.213 0.244 0.605 0.255 0.741 0.906 0.961
Ours 0.167 0.127 0.496 0.210 0.770 0.937 0.982

Multi-Stage
Self-Teaching 0.202 0.208 0.565 0.243 0.756 0.914 0.964
3D Distillation 0.153 0.090 0.430 0.188 0.789 0.948 0.989

Ours† 0.151 0.104 0.450 0.192 0.800 0.949 0.987

MonoViT

End-to-End Self-Supervised 0.179 0.206 0.557 0.227 0.819 0.930 0.963
Ours 0.139 0.107 0.452 0.183 0.836 0.954 0.984

Multi-Stage
Self-Teaching 0.176 0.195 0.537 0.224 0.823 0.930 0.963
3D Distillation 0.126 0.068 0.367 0.159 0.851 0.965 0.991

Ours† 0.130 0.091 0.420 0.173 0.851 0.960 0.987

consisting of 45,539 training, 439 validation, and 121 testing samples. Additionally, a ScanNet-
NoReflection validation set comprising 1,012 samples evaluates the model’s generalization when
trained in reflective environments. Aligning with these methodologies, the training process lever-
ages the ScanNet-Reflection train set to simulate real-world scenarios involving reflective surfaces.

Evaluation. For quantitative evaluations, we employ standard metrics from the depth estimation
literature (Eigen et al., 2014; Geiger et al., 2012). We differentiate our training approaches into end-
to-end and multi-stage (distillation) strategies to effectively assess the models. The model trained
solely using reflection-aware triplet mining loss Ltri, referred to as “Ours”, and another utilizing
the proposed distillation method Lrkd, referred to as “Ours†”, are evaluated under their respective
conditions. We compare these against both end-to-end and multi-stage baselines across three sets:
ScanNet-Reflection {Test, Validation} sets, and ScanNet-NoReflection Validation set. To underline
the cross-dataset generalizability of our methods, we also perform zero-shot evaluations on the 7-
Scenes and Booster.

Implementation details. Our experiments incorporate three leading architectures in SSMDE:
Monodepth2 (Godard et al., 2019), HRDepth (Lyu et al., 2021), and MonoViT (Zhao et al., 2022),
which have demonstrated exceptional performance in previous studies. Each backbone is trained by
different training schemes, including Self-Supervised (Godard et al., 2019), Self-Teaching (Poggi
et al., 2020), and 3D Distillation (Shi et al., 2023), to compare with our method. To align closely
with 3D Distillation, all training particulars follow their documented conditions, with adaptations
only in our proposed training strategy. Specifically, the models are trained using the reflection triplet
split introduced in 3D Distillation. To finely tune the margin δ across positive and negative pairs,
it is adaptively selected based on the difference between the first quartile (Q1) of E+ and the third
quartile (Q3) of E−.

4.1 EVALUATION ON REFLECTION DATASETS

ScanNet-Reflection dataset. To demonstrate the effectiveness of the proposed method on reflec-
tive surfaces, we conduct a quantitative evaluation using the ScanNet-Reflection dataset. The eval-
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Table 2: Main results on the ScanNet-NoReflection Validation set.

Backbone Training Scheme Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Monodepth2

End-to-End Self-Supervised 0.169 0.100 0.395 0.206 0.759 0.932 0.979
Ours 0.168 0.095 0.395 0.208 0.751 0.931 0.980

Multi-Stage
Self-Teaching 0.161 0.090 0.375 0.196 0.777 0.939 0.981
3D Distillation 0.159 0.087 0.373 0.195 0.779 0.941 0.983

Ours† 0.157 0.085 0.373 0.195 0.776 0.942 0.983

HRDepth

End-to-End Self-Supervised 0.169 0.102 0.388 0.202 0.766 0.933 0.980
Ours 0.167 0.096 0.389 0.204 0.764 0.933 0.979

Multi-Stage
Self-Teaching 0.160 0.089 0.367 0.192 0.784 0.941 0.982
3D Distillation 0.158 0.086 0.365 0.190 0.786 0.942 0.983

Ours† 0.157 0.086 0.366 0.192 0.784 0.942 0.983

MonoViT

End-to-End Self-Supervised 0.140 0.074 0.333 0.171 0.829 0.952 0.984
Ours 0.141 0.072 0.338 0.174 0.823 0.952 0.987

Multi-Stage
Self-Teaching 0.134 0.068 0.317 0.164 0.840 0.956 0.987
3D Distillation 0.133 0.065 0.311 0.162 0.838 0.956 0.987

Ours† 0.133 0.066 0.320 0.166 0.837 0.957 0.987

Figure 3: Qualitative results of the proposed methods on the ScanNet. We visualize the predicted
depth of the Monodepth2 (Godard et al., 2019) trained by three different methods including the
proposed method: Self-supervised, Ours and Ours†. Note that the error map represents the absolute
difference between prediction and ground truth depth, normalized to between 0 and 255.

uations are divided into end-to-end and multi-stage methodologies. As depicted in Table 1, Ours,
categorized under end-to-end training schemes, significantly outperforms self-supervised methods
across all backbones, achieving an Abs Rel average increase of 12.90% in the test split and 21.12%
in the validation split. Moreover, it is noteworthy that Ours shows a significant performance boost,
with an average improvement of 10.75% over Self-Teaching across all metrics in both the test and
validation splits, with only two exceptions in 42 metrics (δ < 1.25 of Monodepth2 and MonoViT).
This demonstrates that our reflection-aware triplet mining loss is effective in detecting reflective
surfaces and encourages the model to obtain accurate depth on these surfaces as shown in Figure 3.
Additionally, our multi-stage approach, which employs reflection-aware knowledge distillation (de-
noted as Ours†), delivers comparable results across all backbone models of 3D Distillation. Note that
the proposed method does not require complex scene reconstruction procedures such as mesh ren-
dering (Matl, 2019; Newcombe et al., 2011) or ensembles of multiple neural network models (Lak-
shminarayanan et al., 2017).

ScanNet-NoReflection dataset. Table 2 summarizes the results of a quantitative evaluation per-
formed on the ScanNet-NoReflection dataset. This evaluation aims to measure the generalization
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Table 3: Cross-dataset evaluation result on the 7-Scenes and booster datasets.

7-
Sc

en
es

Backbone Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Monodepth2
Self-Supervised 0.210 0.130 0.445 0.248 0.656 0.906 0.974

Ours 0.207 0.125 0.441 0.248 0.656 0.904 0.975
Ours† 0.198 0.110 0.415 0.238 0.667 0.911 0.980

HRDepth
Self-Supervised 0.193 0.115 0.421 0.231 0.682 0.921 0.982

Ours 0.195 0.109 0.419 0.232 0.674 0.921 0.984
Ours† 0.183 0.096 0.389 0.219 0.706 0.931 0.986

MonoViT
Self-Supervised 0.173 0.093 0.365 0.201 0.752 0.945 0.988

Ours 0.175 0.090 0.361 0.204 0.746 0.944 0.987
Ours† 0.162 0.077 0.335 0.191 0.776 0.951 0.989

B
oo

st
er

Monodepth2
Self-Supervised 0.520 0.429 0.601 0.444 0.305 0.591 0.827

Ours 0.430 0.301 0.501 0.389 0.362 0.675 0.893
Ours† 0.419 0.288 0.487 0.381 0.370 0.678 0.897

HRDepth
Self-Supervised 0.495 0.391 0.559 0.426 0.307 0.611 0.852

Ours 0.414 0.276 0.482 0.379 0.364 0.680 0.907
Ours† 0.429 0.292 0.487 0.385 0.366 0.659 0.878

MonoViT
Self-Supervised 0.418 0.327 0.504 0.374 0.425 0.679 0.888

Ours 0.408 0.302 0.482 0.362 0.414 0.677 0.916
Ours† 0.375 0.249 0.440 0.337 0.422 0.734 0.944

performance of models trained on datasets that include reflective surfaces. In an end-to-end training
scheme, Ours achieves performance comparable to or within an acceptable margin of self-supervised
methods. This confirms that our proposed reflection-aware triplet mining loss effectively prevents
the incorrect back-propagation of the photometric loss gradient on reflective surfaces, as illustrated
in Figure 2. Furthermore, the model trained by our reflection-aware knowledge distillation (i.e.,
Ours†) shows a noticeable performance improvement, which is comparable performance to the 3D
distillation method. These results suggest that extending our reflection-aware triplet mining loss to
distillation techniques offers a straightforward yet effective strategy for managing reflective surfaces.

4.2 CROSS-DATASET GENERALIZABILITY

To demonstrate the generalization ability across different datasets, we conduct a zero-shot evalu-
ation using 7-Scenes and Booster datasets. As shown in Table 3, our proposed methods (denoted
as Ours and Ours†) consistently enhances performance. Specifically, across all backbone architec-
tures and all metrics, Ours† improved by an average of 5.47% and 13.89% for the 7-Scenes and
Booster datasets, respectively. Exceptionally, there is no significant difference between Ours and
the self-supervised method on the 7-Scenes dataset. This may be attributed to the predominance of
non-reflective surfaces in the 7-Scenes dataset, where our model, trained with the reflection-aware
triplet mining loss, slightly loses high-frequency details on non-reflective surfaces. Conversely, the
consistent performance improvement of Ours† across both reflective and non-reflective surfaces
demonstrates the robust generalization capabilities of our method based on reflective region selec-
tion.

5 CONCLUSION

This paper addresses the intricate challenge of self-supervised monocular depth estimation on reflec-
tive surfaces. Our method employs a novel metric learning approach, centered around a reflection-
aware triplet mining loss. This novel loss function significantly improves depth prediction accu-
racy by accurately identifying reflective regions on a per-pixel basis and effectively adjusting the
minimization of photometric errors, which are typically problematic on reflective surfaces. It also
preserves high-frequency details on non-reflective surfaces by selectively regulating photometric er-
ror minimization based on reflection region selection. Moreover, we introduce a reflection-aware
knowledge distillation method, enabling a student model to enhance performance in both reflective
and non-reflective surfaces. This method leverages the strengths of different teaching networks to
produce a more robust and versatile student model. Experimental evaluations conducted on the in-
door scene datasets demonstrate our method consistently enhances depth performance across various
architectural frameworks. These results underscore the robustness and versatility of our approach,
marking it as a valuable contribution to the field of self-supervised monocular depth estimation.
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A MORE DETAILED EXPERIMENTAL SETUPS

As aforementioned in the main manuscripts, we follow all training details and experimental setups
mentioned in 3D Distillation (Shi et al., 2023). We train all models with the reflection triplet split
proposed by 3D Distillation for 41 epochs through the Adam optimizer (Kingma & Ba, 2014) with
an image resolution of 384×288, implemented in PyTorch. The training batch sizes of the Mon-
odepth2 (Godard et al., 2019), HRDepth (Lyu et al., 2021), and MonoViT (Zhao et al., 2022) are
{12, 12, 8}, respectively. The initial learning rate is 10−4, and we adopt the multi-step learning rate
scheduler that decays the learning rate by γ = 0.1 once the number of epochs reaches one of the
milestones [26, 36]. Moreover, with 3D Distillation, the pose between cameras is ground truth dur-
ing training, and the minimum and maximum depths used for training and evaluation are 0.1m and
10m. In our evaluation, we do not apply post-processing techniques such as averaging the estimates
of both the flipped and original images or using median scaling.

Table 4: Main results on the ScanNet-Original Test and Validation sets.

Backbone Training Scheme Method ScanNet-Original Test Set
Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Monodepth2

End-to-End Self-Supervised 0.189 0.116 0.407 0.217 0.731 0.921 0.974
Ours 0.185 0.109 0.405 0.217 0.730 0.923 0.975

Multi-Stage
Self-Teaching 0.184 0.109 0.392 0.210 0.742 0.925 0.976
3D Distillation 0.181 0.105 0.388 0.208 0.746 0.927 0.976

Ours† 0.175 0.098 0.385 0.206 0.746 0.930 0.979

HRDepth

End-to-End Self-Supervised 0.184 0.111 0.399 0.212 0.739 0.925 0.976
Ours 0.186 0.106 0.397 0.213 0.735 0.927 0.977

Multi-Stage
Self-Teaching 0.178 0.102 0.381 0.204 0.752 0.931 0.979
3D Distillation 0.176 0.098 0.378 0.202 0.754 0.932 0.979

Ours† 0.173 0.096 0.375 0.202 0.755 0.934 0.980

MonoViT

End-to-End Self-Supervised 0.154 0.082 0.343 0.182 0.801 0.948 0.984
Ours 0.155 0.081 0.345 0.185 0.795 0.945 0.984

Multi-Stage
Self-Teaching 0.152 0.081 0.329 0.177 0.811 0.948 0.983
3D Distillation 0.149 0.075 0.324 0.174 0.812 0.949 0.985

Ours† 0.149 0.075 0.335 0.179 0.805 0.949 0.980

Backbone Training Scheme Method ScanNet-Original Val. Set
Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Monodepth2

End-to-End Self-Supervised 0.167 0.100 0.385 0.203 0.764 0.935 0.981
Ours 0.162 0.090 0.378 0.201 0.765 0.937 0.983

Multi-Stage
Self-Teaching 0.160 0.090 0.365 0.193 0.780 0.941 0.983
3D Distillation 0.157 0.083 0.357 0.190 0.782 0.943 0.985

Ours† 0.153 0.080 0.358 0.190 0.783 0.944 0.985

HRDepth

End-to-End Self-Supervised 0.166 0.100 0.381 0.200 0.771 0.937 0.982
Ours 0.160 0.089 0.373 0.197 0.772 0.941 0.984

Multi-Stage
Self-Teaching 0.159 0.090 0.360 0.190 0.785 0.943 0.984
3D Distillation 0.154 0.080 0.349 0.186 0.788 0.945 0.986

Ours† 0.151 0.078 0.350 0.186 0.790 0.948 0.987

MonoViT

End-to-End Self-Supervised 0.138 0.077 0.331 0.171 0.831 0.955 0.986
Ours 0.137 0.069 0.328 0.172 0.826 0.958 0.989

Multi-Stage
Self-Teaching 0.133 0.071 0.314 0.163 0.844 0.959 0.988
3D Distillation 0.128 0.060 0.296 0.157 0.846 0.962 0.990

Ours† 0.129 0.062 0.310 0.163 0.840 0.961 0.990

B EVALUATIONS ON SCANNET DATASET

To demonstrate the generalizability of our proposed method, we conduct the experiment on several
ScanNet (Dai et al., 2017) splits denoted as ScanNet-Original {Test, Val.} sets and ScanNet-Robust
Test set following Shi et al. (2023) and Fu et al. (2018); Bae et al. (2022), respectively. ScanNet-
Original sets include both reflective and non-reflective surfaces, it is well-suited to evaluate the
impact of reflective surfaces on training comprehensively. In addition, the ScanNet-Robust test set
was used to measure the generalization performance of Monocular Depth Estimation in the Robust
Vision Challenge 2018 (Geiger et al., 2018), as it is small-scale but suitable for evaluating general-
ization performance.
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B.1 EVALUATION ON SCANNET-ORIGINAL SETS

Table 4 summarizes the quantitative evaluation results of the ScanNet-Original sets. We achieve
steady performance improvement across most metrics for all backbone models in the end-to-end
training scheme, suggesting that the proposed method minimizes the influence of reflective surfaces,
which contributes to the general depth estimation performance improvement.

Furthermore, Our multi-stage training scheme (i.e., Ours†) dramatically elevates performance across
various depth estimation models. For Monodepth2, Ours† achieves a remarkable average increase of
5.28% on the test set and 6.52% on the validation set across all metrics. HRDepth reaps substantial
benefits, with improvements of 4.83% on the test set and 7.19% on the validation set. Likewise,
MonoViT consistently gains, with enhancements of 2.28% on the test set and 5.59% on the valida-
tion set. When benchmarked against 3D Distillation (Shi et al., 2023), Ours† provides an enhanced
performance for Monodepth2, showing an average increase of 1.76% on the test set and 0.87% on
the validation set. HRDepth also gains an average of 0.71% on the test set and 0.69% on the valida-
tion set. However, for MonoViT, Ours† shows a slight decline, with decreases of 1.09% on the test
set and 1.92% on the validation set compared to 3D Distillation.

Table 5: Main results on the ScanNet-Robust Test set.

Backbone Method ScanNet-Robust Test Set
Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Monodepth2
Self-Supervised 0.193 0.118 0.395 0.219 0.729 0.921 0.973

Ours 0.186 0.107 0.388 0.216 0.729 0.926 0.976
Ours† 0.179 0.099 0.371 0.207 0.744 0.930 0.978

HRDepth
Self-Supervised 0.190 0.112 0.387 0.216 0.729 0.924 0.976

Ours 0.188 0.107 0.384 0.215 0.731 0.926 0.976
Ours† 0.177 0.095 0.362 0.203 0.750 0.935 0.979

MonoViT
Self-Supervised 0.158 0.082 0.328 0.181 0.799 0.948 0.984

Ours 0.155 0.078 0.327 0.183 0.798 0.949 0.985
Ours† 0.150 0.073 0.319 0.178 0.806 0.952 0.986

B.2 EVALUATION ON SCANNET-ROBUST TEST SET

Table 5 summarizes the quantitative evaluation results of the ScanNet-Robust test set. Due to the 3D-
distillation baselines (Shi et al., 2023) did not release the source code, and the reported performance
on this split not existing, we compare the models trained by our methods to the self-supervised
methods across three backbones, similar to previous experiments. As depicted in Table 5, our pro-
posed methods (i.e., Ours, Ours†) achieve significant performance gains for all evaluation metrics
and all backbones, consistently. Specifically, for Monodepth2, Ours and Ours† demonstrate an av-
erage performance improvement of 2.42% and 5.49%, respectively, across all metrics. Similarly, for
HRDepth, Ours showed an average improvement of 1.03%, and Ours† achieved a 5.55% increase
in performance across all metrics. In the case of MonoViT, Ours resulted in an average performance
improvement of 0.87%, and Ours† achieved a 3.13% improvement across all metrics. The consis-
tent improvements across all metrics for Monodepth2, HRDepth, and MonoViT indicate that our
methods effectively mitigate the risk of erroneous learning induced by reflective surfaces.

C QUALITATIVE RESULTS ON 7-SCENES AND BOOSTER DATASETS

We provide additional qualitative results of the proposed methods denoted as Ours and Ours† as
discussed in Table 3 of the main manuscript, utilizing the 7-Scenes (Shotton et al., 2013) and
Booster (Ramirez et al., 2023) datasets. In Figure 4, we showcase the predicted depth and error map
of the Monodepth2 trained by self-supervised, Ltri, and Lrkd. Our methods alleviate the black-hole
effect on specular highlight regions while preserving high-frequency details on non-reflective areas.
As demonstrated by the qualitative evaluation of the 7-Scenes dataset, our proposed methods exhibit
robustness to reflective surfaces and impressive performance in preserving details on non-reflective
surfaces in other indoor scenes that are similar to the training environment.
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(a) Qualitative results of the proposed methods on the 7-Scenes dataset.

(b) Qualitative results of the proposed methods on the Booster dataset.

Figure 4: Qualitative results of the proposed methods on the 7-scenes and Booster datasets. Note
that the error map represents the absolute difference between prediction and ground truth depth,
normalized to between 0 and 255.
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Table 6: Evaluation results on the ScanNet-Reflection Validation and ScanNet-NoReflection Valida-
tion sets. w.r.t. reflective region mask Mr.

Backbone Method ScanNet-Reflection Validation Set ScanNet-NoReflection Validation Set
Abs Rel ↓ Sq Rel ↓ RMSE ↓ δ < 1.253 ↑ Abs Rel ↓ Sq Rel ↓ RMSE ↓ δ < 1.253 ↑

Monodepth2
Mr = 0 0.206 0.227 0.584 0.961 0.169 0.100 0.395 0.979
Mr = 1 0.170 0.132 0.505 0.979 0.171 0.099 0.402 0.978

Ours 0.166 0.125 0.492 0.981 0.168 0.095 0.395 0.980

HRDepth
Mr = 0 0.213 0.244 0.605 0.961 0.169 0.102 0.388 0.980
Mr = 1 0.184 0.167 0.564 0.965 0.179 0.113 0.433 0.968

Ours 0.167 0.127 0.496 0.982 0.167 0.096 0.389 0.979

MonoViT
Mr = 0 0.179 0.206 0.557 0.963 0.140 0.074 0.333 0.984
Mr = 1 0.155 0.151 0.527 0.971 0.168 0.112 0.420 0.954

Ours 0.139 0.107 0.452 0.984 0.141 0.072 0.338 0.987

Figure 5: Qualitative results of the proposed methods w.r.t. reflective region mask Mr.

D IMPACT OF THE REFLECTION-AWARE TRIPLET MINING LOSS W.R.T.
REFLECTIVE REGION LOCALIZATION

As aforementioned in the main manuscript, the proposed reflection-aware triplet mining loss is ap-
plied to reflective regions, thus preserving performance in non-reflective regions. To validate this
claim, we conduct an experiment to evaluate the impact of varying the reflection mask Mr with
three configurations as follows:

1. Mr = 0: This configuration exactly corresponds to the traditional self-supervised method
without the triplet mining loss.

2. Mr = 1: In this configuration, the triplet loss is applied to both reflective and non-reflective
regions of the image.

3. Ours: This configuration leverages Mr, which is calculated through Equation 8 in the main
manuscript, to selectively regulates the reflective regions.

As shown in Table 6, the results demonstrate that Ours significantly improves performance on reflec-
tive datasets while maintaining comparable performance on non-reflective regions when compared
to the first configuration (denoted as Mr = 0). On the other hand, applying the triplet mining loss
across all regions (Mr = 1) led to some performance improvement in reflective regions but resulted
in a notable drop in performance in non-reflective regions compared to other configurations. These
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findings verify that the proposed reflection-aware triplet mining loss effectively identifies reflective
regions and applies the triplet loss selectively, thereby preserving the performance in non-reflective
regions.

E LIMITATIONS

Despite the promising results, our study has several limitations. One major limitation is that the
proposed method cannot handle transparent or mirror (ToM) objects. Secondly, a few cases do not
satisfy the assumption of Equation 8 of the manuscript (e.g., surfaces including multiple reflection
lobes). Lastly, similar to 3D distillation (Shi et al., 2023), the conducted experiments assume that
the ground truth camera pose is known during training.
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