
Under review as a conference paper at ICLR 2024

FEDERATED ENSEMBLE-DIRECTED
OFFLINE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We consider the problem of federated offline reinforcement learning (RL), a sce-
nario under which distributed learning agents must collaboratively learn a high-
quality control policy only using small pre-collected datasets generated according
to different unknown behavior policies. Naïvely combining a standard offline
RL approach with a standard federated learning approach to solve this problem
can lead to poorly performing policies. In response, we develop the Federated
Ensemble-Directed Offline Reinforcement Learning Algorithm (FEDORA), which
distills the collective wisdom of the clients using an ensemble learning approach.
We develop the FEDORA codebase to utilize distributed compute resources on
a federated learning platform. We show that FEDORA significantly outperforms
other approaches, including offline RL over the combined data pool, in various
complex continuous control environments and real-world datasets. Finally, we
demonstrate the performance of FEDORA in the real-world on a mobile robot.

1 INTRODUCTION

Federated learning is an approach wherein clients learn collaboratively by sharing their locally trained
models (not their data) with a federating agent, which periodically combines their models and returns
the federated model to the clients for further refinement (Kairouz et al., 2021; Wang et al., 2021).
Federated learning has seen recent success in supervised learning applications due to its ability to
generate well-trained models using small amounts of data at each client, while preserving privacy and
reducing the usage of communication resources. There has also been interest in federated learning
for online reinforcement learning (RL), wherein clients learn via sequential interactions with their
environments and federating learned policies across clients (Khodadadian et al., 2022; Nadiger
et al., 2019; Qi et al., 2021). However, such online interactions with real-world systems are often
infeasible, and each client might only posses pre-collected operational data generated according to a
client-specific behavior policy. The fundamental problem of federated offline RL is on how to learn
the optimal policy only using such offline data collected by heterogeneous policies at clients, without
actually sharing any of the data.

Offline RL algorithms (Levine et al., 2020), such as CQL Kumar et al. (2020b) and TD3-BC (Fujimoto
& Gu, 2021) offer an actor-critic learning approach that only utilizes existing datasets at each client.
However, in our case, this approach taken across many small datasets at clients will produce an
ensemble of policies of heterogeneous (unknown) qualities across the clients, along with their
corresponding critics of variable accuracy. We will see that naïvely federating such offline RL trained
policies and critics using a standard federation approach, such as FedAvg (McMahan et al., 2017)
can lead to a policy that is even worse than the constituent policies. We hence identify the following
basic challenges of federated offline RL: (i) Ensemble heterogeneity: Heterogeneous client datasets
will generate policies of different performance levels. It is vital to capture the collective wisdom
of this ensemble of policies, not average them. (ii) Pessimistic value computation: Offline RL
employs a pessimistic approach toward computing the value of actions poorly represented in the
data to minimize distribution shift (and so reduce the probability of taking these actions). However,
federation must be ambitious in extracting the highest values as represented in the ensemble of critics
(and so promote high-value actions). (iii) Data heterogeneity: As with other federated learning,
multiple local gradient steps based on heterogeneous data at each client between federation rounds
may lead to biased models. We must regularize local policies to reduce such drift.

1

Under review as a conference paper at ICLR 2024

In this work, we propose Federated Ensemble-Directed Offline RL Algorithm (FEDORA), which
collaboratively produces a high-quality control policy and critic function. FEDORA estimates the
performance of client policies using only local data (of unknown quality) and, at each round of
federation, produces a weighted combination of the constituent policies that maximizes the overall
objective, while regularizing by the entropy of the weights. The same approach is followed to federate
client critics. Following the principle of maximum entropy in this manner produces both federated
policies and critics that extract the collective wisdom of the ensemble. In doing so, it constructs a
federated policy and a critic based on the relative merits of each client policy in an ensemble learning
manner. FEDORA ensures optimism across evaluation by the federated and local critic at each client
and so sets ambitious targets to train against. It addresses data heterogeneity by regularizing client
policies with respect to both the federated policy and the local dataset. Finally, FEDORA prunes the
influence of irrelevant data by decaying the reliance on a dataset based on the quality of the policy it
can generate. To the best of our knowledge, no other work systematically identifies these fundamental
challenges of offline federated RL, or designs methods to explicitly tackle each of them.

We develop a framework for implementing FEDORA either on a single system or over distributed
compute resources. We evaluate FEDORA on a variety of MuJoCo environments and real-world
datasets and show that it outperforms several other approaches, including performing offline RL on a
pooled dataset. We also demonstrate FEDORA’s excellent performance via real-world experiments
on a TurtleBot robot (Amsters & Slaets, 2020). We provide our codebase, several experimental
results and a video of the robot experiments in the supplementary material.

2 RELATED WORK

Offline RL:The goal of offline RL is to learn a policy from a fixed dataset generated by a behavior
policy (Levine et al., 2020). One of the key challenges of the offline RL approach is the distribution
shift problem where the state-action visitation distribution of learned policy may be different from
that of the behavior policy which generated the offline data. It is known that this distribution shift
may lead to poor performance of the learned policy (Levine et al., 2020). A common method used
by offline RL algorithms to tackle this problem is to learn a policy that is close to the behavior
policy that generated the data via regularization either on the actor or critic (Fujimoto & Gu, 2021;
Fujimoto et al., 2019; Kumar et al., 2020a; 2019; Wu et al., 2019). Some offline RL algorithms
perform weighted versions of behavior cloning or imitation learning on either the whole or subset of
the dataset (Wang et al., 2018; Peng et al., 2019; Chen et al., 2020). Yue et al. (2022; 2023) propose
data rebalancing methods designed to prioritize highly-rewarding transitions that can be augmented
to offline RL algorithms to alleviate the distribution shift issue for heterogeneous data settings.

Federated Learning: McMahan et al. (2017) introduced FedAvg, a federation strategy where clients
collaboratively learn a joint model without sharing data. A generalized version of FedAvg was
presented in Reddi et al. (2021). A key problem in federated learning is data heterogeneity wherein
clients have non-identically distributed data, which causes unstable and slow convergence (Wang
et al., 2021; Karimireddy et al., 2020; Li et al., 2020). To tackle the issue of data heterogeneity, Li
et al. (2020) proposed FedProx, a variant of FedAvg, where a proximal term is introduced reduce
deviation by the local model from the server model.

Federated Reinforcement Learning: Federated learning has recently been extended to the online
RL setting. Khodadadian et al. (2022) analyzed the performance of federated tabular Q-learning. Qi
et al. (2021) combined traditional online RL algorithms with FedAvg for multiple applications. Some
works propose methods to vary the weighting scheme of FedAvg according to performance metrics
such as the length of a rally in the game of Pong (Nadiger et al., 2019) or average return in the past
10 training episodes (Lim et al., 2021) to achieve better performance or personalization. Wang et al.
(2020) proposed a method to compute weights using attention over performance metrics of clients
such as average reward, average loss, and hit rate for an edge caching application. Hebert et al. (2022)
used a transformer encoder to learn contextual relationships between agents in the online RL setting.
Hu et al. (2021) proposed an alternative approach to federation where reward shaping is used to
share information among clients. Xie & Song (2023) proposed a KL divergence-based regularization
between the local and global policy to address the issue of data heterogeneity in an online RL setting.

In the offline RL setting, Zhou et al. (2022) propose federated dynamic treatment regime algorithm
by formulating offline federated learning using a multi-site MDP model constructed using linear

2

Under review as a conference paper at ICLR 2024

MDPs. However, this approach relies on running the local training to completion followed by just
one step of federated averaging. Unlike this work, our method does not assume linear MDPs, which
is a limiting assumption in many real-world problems. Moreover, we use the standard federated
learning philosophy of periodic federation followed by multiple local updates. To the best of our
knowledge, ours is the first work to propose a general federated offline RL algorithm for clients with
heterogeneous data.

3 PRELIMINARIES

Federated Learning: The goal of federated learning is to minimize the following objective,
F (θ) = Ei∼P [Fi(θ)] , (1)

where θ represents the parameter of the federated (server) model, Fi denotes the local objective
function of client i, and P is the distribution over the set of clients N . The FedAvg algorithm
(McMahan et al., 2017) is a popular method to solve Eq. (1) in a federated way. FedAvg divides
the training process into rounds, where at the beginning of each round t, the server broadcasts its
current model θt to all the clients, and each client initializes its current local model to the current
server model. Clients perform multiple local updates on their own dataset Di to obtain an updated
local model θti . The server then averages these local models proportional to the size of their local
dataset to obtain the server model θt+1 for the next round of federation, as

θt+1 =

|N |∑
i=1

wiθ
t
i , wi =

|Di|
|D|

, |D| =
|N |∑
i=1

|Di|. (2)

Reinforcement Learning: We model RL using the Markov Decision Process (MDP) framework
denoted as a tuple (S,A, R, P, γ, µ), where S is the state space, A is the action space, R : S×A → R
is the reward function, and P : S×A×S → [0, 1] denotes the transition probability function that gives
the probability of transitioning to a state s′ by taking action a in state s, γ is the discount factor, and µ is
the distribution of the initial state s0. A policy π is a function that maps states to actions (deterministic
policy) or states to a distribution over actions (stochastic policy). The goal of RL is to maximize
the infinite horizon discounted reward of policy π, defined as J(π) = Eπ,P,µ [

∑∞
t=0 γ

tR(st, at)],
which is the expected cumulative discounted reward obtained by executing policy π. The state-
action value function (or Q function) of a policy π at state s and executing action a is the expected
cumulative discounted reward obtained by taking action a in state s and following policy π thereafter:
Qπ(s, a) = Eπ,P [

∑∞
t=0 γ

tR(st, at)|s0 = s, a0 = a].

Offline Reinforcement Learning: The goal of offline RL is to learn a policy π only using a static
dataset D of transitions (s, a, r, s′) collected using a behavior policy πb without any additional
interactions with the environment. Offline RL algorithms typically utilize some kind of regularization
with respect to the behavior policy to ensure that the learned policy does not deviate from the behavior
policy. This regularization is done to prevent distribution shift, a significant problem in offline RL,
where the difference between the learned policy and behavior policy can lead to erroneous Q-value
estimation of state-action pairs not seen in the dataset (Kumar et al., 2020a; Levine et al., 2020).

Our approach is compatible with most offline RL algorithms, such as CQL Kumar et al. (2020b) or
TD3-BC Fujimoto & Gu (2021). We choose TD3-BC for illustration, motivated by its simplicity and
its superior empirical performance in benchmark problems. The TD3-BC algorithm is a behavior
cloning (BC) regularized version of the TD3 algorithm (Fujimoto et al., 2018). The policy in TD3-BC
is updated using a linear combination of TD3 objective and behavior cloning loss, where the TD3
objective ensures policy improvement and the BC loss prevents distribution shift. More precisely, the
TD3-BC objective can be written as

π = argmax
π

UD(π),where UD(π) = Es,a∼D
[
λQπ(s, π(s))− (π(s)− a)2

]
, (3)

and λ is a hyperparameter that determines the relative weight of the BC term.

4 FEDERATED OFFLINE REINFORCEMENT LEARNING

In real-world offline RL applications, data is typically obtained from the operational policies of
multiple agents (clients) with different (unknown) levels of expertise. Clients often prefer not to

3

Under review as a conference paper at ICLR 2024

share data. We aim to learn the optimal policy for the underlying RL problem using only such offline
data, without the clients knowing the quality of their data, or sharing it with one another or the server.
Furthermore, neither the clients nor server have access to the underlying model or the environment.
We denote the set of clients as N . Each client i ∈ N has the offline dataset Di = {(sj , aj , rj , s′j)

mi
j=1}

generated according to a behavior policy πb
i . We assume that the underlying MDP model P and

reward function R(·, ·) are identical for all the clients, and the statistical differences between the
offline datasets Di are only due to the difference in behavior policies πb

i used for collecting the data.

In a standard federated learning algorithm such as FedAvg, each client performs multiple parameter
updates before sending its parameters to the server. It is known that performing multiple local updates
in federated learning can reduce the communication cost significantly without compromising on the
optimality of the converged solution (Kairouz et al., 2021; Wang et al., 2021). In federated offline
RL, since each client has to perform multiple steps of policy evaluation and policy update using its
local offline data Di, it is reasonable to consider a client objective function that is consistent with
a standard offline RL algorithm objective. We choose the objective function used in the TD3-BC
algorithm (Fujimoto & Gu, 2021), i.e., UDi

given in Eq. (3), as the client objective function. Our
choice is motivated by the simplicity of the TD3-BC objective function and its empirical success in a
variety of environments. Similar to the standard federated learning objective given in Eq. (1), we can
now define the federated offline RL objective as

U(πfed) =

|N |∑
i=1

wiUDi(πfed), (4)

where wi are weights to be determined.

One approach to leveraging experiences across users without sharing data would be to combine
existing federated learning techniques with offline RL algorithms. Is such a naïve federation strategy
sufficient to learn an excellent federated policy collaboratively? Furthermore, is federation even
necessary? In this section, we aim to understand the challenges of federated offline RL with the goal
of designing an algorithmic framework to address these challenges.

We start by illustrating the issues in designing a federated offline RL algorithm. We consider the
Hopper environment from MuJoCo (Todorov et al., 2012), with |N | = 10, |Di| = 5000, and we
use the data from the D4RL dataset (Fu et al., 2020). However, instead of using the data generated
by the same policy for all clients, we consider the setting where five clients use the data from the
hopper-expert-v2 dataset (which was generated using a completely trained (expert) SAC policy) and
five clients use the data from the hopper-medium-v2 dataset (which was generated using a partially
trained (medium) policy achieving only a third of the expert performance). The clients and the server
are unaware of the quality (expert or medium) of the data. Fig. 1 shows the performance comparison
of multiple algorithms, where the mean and the standard deviation are calculated over 4 seeds.

Algorithm0

500

1000

1500

2000

2500

3000

3500

Cu
m

ul
at

iv
e

Re
wa

rd

Centralized
Individual (expert)

Individual (medium)
Fed-A

Fed-AC
FEDORA

Figure 1: Performance comparison
of federated and centralized offline
RL algorithms.

Combining All Data (Centralized): Combining data and learn-
ing centrally is the ideal scenario in supervised learning. How-
ever, as seen in Fig. 1, performing centralized training over
combined data generated using different behavior policies in
offline RL can be detrimental. This is consistent with Yu et al.
(2021) that proves that pooling data from behavior policies
with different expertise levels can exacerbate the distributional
shift between the learned policy and the individual datasets,
leading to poor performance. Similar deterioration due to com-
bining data has also been observed in other offline RL literature
(Fujimoto & Gu, 2021; Kumar et al., 2020a).

Individual Offline RL: Here, agents apply offline RL to their
own datasets without collaborating with others. In Fig. 1, we observe that clients with either expert
or medium data do not learn well and exhibit a large standard deviation. This observation may be
attributed to no client having sufficient data to learn a good policy.

Naïve Federated Offline RL: A simple federation approach is to use the offline RL objective as the
local objective and apply FedAvg (Eq. (2)). However, offline RL algorithms typically comprise two
components – an actor and a critic. It is unclear a priori which components should be federated, so
we conduct experiments where we federate only the actor (Fed-A) or both the actor and the critic

4

Under review as a conference paper at ICLR 2024

(Fed-AC). Surprisingly, these naïve strategies result in federated policies that perform worse than
individual offline RL, as witnessed in Fig. 1.

4.1 ISSUES WITH FEDERATED OFFLINE RL

Our example illustrates several fundamental issues that must be addressed while designing viable
federated offline RL algorithms, including:

1. Ensemble Heterogeneity: Performing offline RL over heterogeneous data yields a set of policies
of different qualities. It is crucial to leverage the information contained in these varied policies rather
than simply averaging them. However, federation after a single-step local gradient at each client
using weights in the manner of FedAvg, wi = |Di|/|

∑|N |
i=1 |Di|, is equivalent to solving the offline

RL problem using the combined dataset of all clients (Wang et al., 2021). This approach leads to
poor performance due to the resulting distribution shift, as shown in Fig. 1. How should we optimally
federate the ensemble of policies learned by the clients?

2. Pessimistic Value Computation: Most offline RL algorithms involve a pessimistic term with
respect to the offline data for minimizing the distribution shift. Training a client critic using only the
local data with this pessimistic term could make it pessimistic towards actions poorly represented
in its dataset but well represented in other clients’ data. How do we effectively utilize the federated
critic along with the locally computed critic to set ambitious targets for offline RL at each client?

3. Data Heterogeneity: Federated learning calls for performing multiple local gradient steps at each
client before federation to enhance communication efficiency. However, numerous epochs would bias
a client’s local model to its dataset. This client drift effect is well known in federated (supervised)
learning and could lead to policies that are not globally optimal. In turn, this could cause the federated
policy’s performance to be worse than training locally using only the client’s data, as seen in Fig. 1.
How should we regularize local policies to prevent this?

5 FEDORA DESIGN APPROACH

We desire to develop a Federated Ensemble-Directed Offline RL Algorithm (FEDORA) that addresses
the issues outlined in Section 4 in a systematic manner. Three fundamental requirements drive our
approach. First, the clients jointly possess an ensemble of local policies of different (unknown)
qualities, and the server must leverage the collective knowledge embedded in this ensemble during
federation. Second, the quality of these policies must be assessed using an ensemble of critics that
depend on local data for policy evaluation. Finally, after each round of federation, clients must update
their local policies via offline RL utilizing both their local data and the received federated policy.

Maximizing the federated offline reinforcement learning (RL) objective in Eq. (4) using FedAvg would
set weights as in Eq. (2), i.e., each client’s contribution is weighted by the size of its dataset. This is is
equivalent to solving the offline RL problem using the combined dataset of all clients. However, such
an approach exacerbates the distribution shift problem that affects offline RL algorithms, leading to
poor performance. This issue has been verified analytically and empirically in Yu et al. (2021). We
illustrated this phenomenon in Fig. 1, where offline RL over pooled data resulted in a sub-optimal
policy. The recommendation in Yu et al. (2021) is to share data conservatively by identifying which
samples are likely to result in policy improvement. However, we cannot share any of the data across
clients in the federated offline RL setting.

Our solution is to follow the principle of maximum entropy to choose weights that best represent the
current knowledge about the relative merits of the clients’ policies. Here, the weights are prevented
from collapsing over a few clients that have the best current performance by adding an entropy
regularization over the weights with temperature parameter β resulting in the following objective:

U(πfed) =

|N |∑
i=1

wiUDi(πfed)−
1

β

|N |∑
i=1

wi logwi. (5)

We can then show using a Lagrange dual approach that this objective is maximized when

wi =
eβUDi

(πfed)∑|N |
i=1 e

βUDi
(πfed)

. (6)

5

Under review as a conference paper at ICLR 2024

Based on these soft-max type of weights suggested by the entropy-regularized objective, we now
design FEDORA accounting for each of the three requirements indicated above.

In what follows, π(t,k)
i denotes the policy of client i in round t of federation after k local policy

update steps. Since all clients initialize their local policies to the federated policy at the beginning of
each round of federation, π(t,0)

i = πt
fed for each client i. We also denote πt

i = π
(t,K)
i , where K is the

maximum number of local updates. Since all clients initialize their local critics to the federated critic,
we can similarly define Q

(t,k)
i , Q(t,0)

i = Qt
fed, and Qt

i = Q
(t,K)
i for the local critic.

5.1 ENSEMBLE-DIRECTED LEARNING OVER CLIENT POLICIES

We first require a means of approximating UDi
(πfed) in order to determine the weight wi of client i

as shown in Eq. (6). We utilize the performance of the final local policy J t
i = Es∼Di

[Qt
i(s, π

t
i(s))] ,

which also characterizes the relative performance at client i, as a proxy for UDi
(πfed). Here, Qt

i is
the local critic function at round t after K local updates. It is hard to directly obtain such an unbiased
local critic Qt

i in offline RL, since we do not have access to the environment for executing the policy
and evaluating its performance. Our approach toward computing Qt

i and πt
i are described later. The

accuracy of the local estimates J t
i are highly dependent on the number of data samples available at i,

and so in the usual manner of federated averaging, we need to account for the size of the dataset |Di|
while computing weights. We thus have client weights and federated policy update as

wt
i =

eβJ
t
i |Di|∑|N |

i=1 e
βJt

i |Di|
, πt+1

fed =

|N |∑
i=1

wt
iπ

t
i . (7)

5.2 FEDERATED OPTIMISM FOR CRITIC TRAINING

The critic in our algorithm plays two major roles. First, offline RL for policy updates at each client
requires policy evaluation using local data. Second, policy evaluation by the critic determines weight
wt

i of the local policy at client i for ensemble learning during each round t of federation. We desire a
local critic at each client that can utilize the knowledge from the ensemble of critics across all clients
while also being tuned to the local data used for policy evaluation.

A critic based on offline data suffers from extrapolation errors as state-action pairs not seen in the
local dataset will be erroneously estimated, greatly impacting actor-critic style policy updates in
federated offline RL. Since the federated policy is derived from the set of local policies, it may take
actions not seen in any client’s local dataset. This problem is exacerbated when the local policy at
the beginning of each communication round is initialized to the federated policy. We introduce the
notion of federated optimism to train local critics, wherein critics leverage the wisdom of the crowd
and are encouraged to be optimistic. We achieve this federated optimism via two steps.

First, we use an ensemble-directed federation of the critics, where the local critic of client i at round
t is weighed according to its merit to compute the federated critic as

Qt+1
fed =

|N |∑
i=1

wt
iQ

t
i. (8)

Such entropy-regularized averaging ensures that the critics from clients with good policies signifi-
cantly influence the federated critic.

Second, for the local critic update, we choose the target value as the maximum value between the
local critic and the federated critic, given by Q̃

(t,k)
i (s, a) = max

(
Q

(t,k)
i (s, a), Qt

fed(s, a)
)
, where

Q̃
(t,k)
i (s, a) is the target value of state s and action a at the tth round of federation after k local critic

updates. This ensures that the local critic has an optimistic (but likely feasible) target seen by the
system. Using this optimistic target in the Bellman error, we update the local critic as

Q
(t,k+1)
i = argmin

Q
E(s,a,r,s′)∼Di

[(r + γQ̃
(t,k)
i (s′, a′)−Q(s, a))2], (9)

where a′ = π
(t,k)
i . In practice, we obtain Q

(t,k+1)
i after a single gradient update.

6

Under review as a conference paper at ICLR 2024

5.3 PROXIMAL POLICY UPDATE FOR HETEROGENEOUS DATA

While essential in order to set ambitious estimates, an optimistic critic might erroneously estimate
the value of Q̃(t,k)

i . Therefore, regularizing the local policy update w.r.t. both the local data and the
federated policy is crucial. For regularization w.r.t. to the local offline data, we use the same method as
in the TD3-BC algorithm and define the local loss function Llocal(π) = E(s,a)∼Di

[−Q
(t,k)
i (s, π(s))+

(π(s)−a)2]. We then define the actor loss Lactor in Eq. (10), where the second term is a regularization
w.r.t. to the federated policy. The local policy is updated using Lactor,

Lactor(π) = Llocal(π) + E(s,a)∼Di
[(π(s)− πt

fed(s))
2], πt,k+1

i = argmin
π

Lactor(π). (10)

5.4 DECAYING THE INFLUENCE OF LOCAL DATA

FEDORA uses a combination of local data loss and a proximal term for its policy update Eq.
(10). However, the local data loss might hamper the updated policy’s performance since the local
dataset may be generated according to a non-expert behavior policy. Hence, a client must decay
the influence of its local data if it is reducing the performance of the updated policy by lowering
the influence of Llocal in Lactor. To do so, we first evaluate the performance of the federated policy
using the federated critic and local data at round t. For this evaluation, we use the proxy estimate
J fed,t
i = Es∼Di [Q

t
fed(s, π

t
fed(s))]. We compare this value with the performance of the updated policy,

J t
i , which is obtained using the updated critic. This difference provides us with an estimate of the

improvement the local data provides. We decay the influence of Llocal by a factor δ if J fed,t
i ≥ J t

i .
We summarize FEDORA in Algorithm 1 and 2.

Algorithm 1 Outline of Client i’s Algorithm

1: function train_client(πt
fed, Qt

fed)
2: π

(t,0)
i = πt

fed, Q
(t,0)
i = Qt

fed
3: for 1 ≤ k < K do
4: Update Critic by one gradient step w.r.t.

Eq. (9)
5: Update Actor by one gradient step w.r.t.

Eq. (10)
6: end for
7: Decay Llocal by δ if J fed,t

i ≥ J t
i

8: end function

Algorithm 2 Outline of Server Algorithm

1: Initialize π1
fed, Q

1
fed

2: for t ∈ 1 . . . do
3: Send πt

fed and Qt
fed to i ∈ N

4: Sample Nt ⊂ N
5: for i ∈ Nt do
6: i.train_client (πt

fed, Q
t
fed) (Client side)

7: end for
8: Compute πt+1

fed and Qt+1
fed for clients in Nt

using Eq. (7) and (8) respectively.
9: end for

6 EXPERIMENTAL EVALUATION

We conduct experiments to answer three broad questions: (i) Comparative Performance: How
does FEDORA perform compared to other approaches with client data generated by heterogeneous
behavior policies?, (ii) Sensitivity to client updates and data quality: How does the performance
depend on the number of local gradient steps at clients, the randomness in the available number of
agents for federation, and the quality of the data at the clients?, and (iii) Ablation: How does the
performance depend on the different components of FEDORA? We implement FEDORA over the
Flower federated learning platform (Beutel et al., 2020) which supports learning across devices. We
also provide a simulation setup that can be executed on a single machine (See Appendix A).

Baselines: We consider the following baselines. (i) Fed-A: The local objective of all clients follows
TD3-BC (Eq. 3). The server performs FedAvg over the actor’s parameters, whereas each client
learns the critic locally. (ii) Fed-AC: The local objective of all clients follows TD3-BC and the
server performs FedAvg over the parameters of both the actor and the critic. (iii) Fed-AC-Prox:
We add a proximal term to Fed-AC, which has been shown to help in federated supervised learning
when clients have heterogeneous data (Li et al., 2020). (iv) Heterogeneous Data-Aware Federated
Learning (HDAFL) We extend HDAFL (Yang et al., 2020) to the offline RL setting by dividing the
actor network into generic and client-specific parts and then federating only the generic part during

7

Under review as a conference paper at ICLR 2024

0 200 400 600 800 1000
Communication Round

0

2000

4000

6000

8000

10000
Se

rv
er

 R
ew

ar
d

HalfCheetah

0 200 400 600 800 1000
Communication Round

0
500

1000
1500
2000
2500
3000
3500

Hopper

0 200 400 600 800 1000
Communication Round

0

1000

2000

3000

4000

5000
Walker2D

FEDORA Fed-AC-Prox Fed-AC Fed-A HDAFL Centralized

Figure 2: Evaluation of algorithms on different MuJoCo environments.

each round. (v) Centralized: We perform offline RL (TD3-BC) over the pooled data by combining
the data present in all clients.

6.1 EXPERIMENTS ON SIMULATED ENVIRONMENTS

Experimental Setup: We focus on a scenario where clients are collaboratively learning to solve
the same task, but the behavior policies used to collect data for each client could differ. We run
experiments with the number of clients |N | = 50, with each client having a local dataset of size
|Di| = 5000. Of these 50 clients, 25 are provided with data from the D4RL (Fu et al., 2020) expert
dataset, while the other 25 are provided with data from the D4RL medium dataset. The clients (and
the server) are unaware of the quality of their datasets. Further, both the client and server do not have
access to the environment. We choose |Nt| = 20 clients at random to participate in each round t
of federation. The server obtains weights from clients in |Nt| and computes the federated weight
πt+1

fed and Qt+1
fed . For each plot, we evaluate the performance with four different seeds. We evaluate

the performance of FEDORA and baselines over three MuJoCo tasks: Hopper, HalfCheetah, and
Walker2D. During a round of federation, each client performs 20 epochs of local training in all
algorithms, which is roughly 380 local gradient steps in our experimental setup.

Comparative Performance of FEDORA: In Fig. 2, we plot the cumulative episodic reward of the
server/federated policy during each round of communication/federation. We observe that FEDORA
outperforms all federated baselines and achieves performance equivalent to or better than centralized
training. Furthermore, the federated baselines fail to learn a good server policy even after training for
many communication rounds and plateau at lower levels compared to FEDORA, emphasizing that
the presence of heterogeneous data hurts their performance.

0

2000

4000

6000

8000

10000

Se
rv

er
 R

ew
ar

d

HalfCheetah

0

500

1000

1500

2000

2500

3000

3500

Hopper

0

1000

2000

3000

4000

5000

Walker2D
FEDORA Centralized

Figure 3: Comparison of FE-
DORA and centralized train-
ing with heterogeneous data.

To understand the effect of data coming from multiple behavior
policies on centralized training, we consider a scenario where 50
clients with datasets of size |Di| = 5000 participate in federation,
with 25 clients having expert data and the other 25 having random
data, i.e., data generated from a random policy. From Fig. 3, we
notice that combining data of all clients deteriorates performance
as compared to FEDORA. This observation highlights the fact that
performing centralized training with data collected using multiple
behavior policies can be detrimental.

Sensitivity to Client Updates and Data Quality: We study the sensitivity of FEDORA to client
update frequency and data quality in the Hopper environment in the same setting as in Fig. 2.
Increasing the number of local training steps can improve communication efficiency, but is detrimental
under heterogeneous data due to client drift (Karimireddy et al., 2020). In Fig. 4(a), we study the
effect of varying the number of local training epochs. We observe that increasing the number of
epochs leads to faster learning, emphasizing that FEDORA can effectively learn with heterogeneous
data. Not all clients may participate in every round of federation due to communication/compute
constraints. In Fig.4(b), we study the effect of the fraction of clients participating in federation. We
observe that FEDORA is robust towards variations in the fraction of clients during federation. Finally,
in Fig. 4(c) we study the effect of data heterogeneity by varying the percentage of clients with expert
datasets. We observe that FEDORA performs well even when only 20% of the total clients have
expert-quality data. We present several ablation studies and additional experiments in appendix B.

8

Under review as a conference paper at ICLR 2024

0 250 500 750 1000
Communication Round

0
500

1000
1500
2000
2500
3000
3500

Se
rv

er
 R

ew
ar

d

Varying local epochs

1 epoch
5 epochs

10 epochs
20 epochs

40 epochs

0 250 500 750 1000
Communication Round

0
500

1000
1500
2000
2500
3000
3500

Varying participating clients

10% clients
20% clients

30% clients
40% clients

50% clients

0 250 500 750 1000
Communication Round

0
500

1000
1500
2000
2500
3000
3500

Varying the number of expert clients

20% expert
30% expert

40% expert
50% expert

Figure 4: Effect of varying the number of (a) local gradient steps, (b) participating clients in each
round, and (c) expert clients in FEDORA.

6.2 REAL-WORLD EXPERIMENTS ON TURTLEBOT

Figure 5: Turtle-
Bot3 Burger.

We evaluated the performance of FEDORA on TurtleBot (Amsters & Slaets,
2020), a two-wheeled differential drive robot (Fig. 5) to collaboratively learn a
control policy to navigate waypoints while avoiding obstacles using offline data
distributed across multiple robots (clients). This scenario is relevant to several
real-world applications, such as cleaning robots in various houses, which aim to
collaboratively learn a control policy to navigate and avoid obstacles using data
distributed across different robots. Collaborative learning is essential, because
a single robot might not have enough data to learn from or have encountered
adequately different scenarios. Additionally, federated learning overcomes the
privacy concerns associated with sharing data among the robots.

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Robot pose - X (m)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ro
bo

t p
os

e
- Y

 (m
)

Start
Target

Behavior 1
Behavior 2

Behavior 3
Behavior 4

(a) Trajectories of behavior policies

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Robot pose - X (m)

1.50

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

Ro
bo

t p
os

e
- Y

 (m
)

Start
Target
FEDORA

Fed-AC-Prox
Fed-AC

Fed-A
HDAFL

(b) Trajectories of learned policies

0 20 40 60 80 100
Communication Round

250

200

150

100

50

0

50

Se
rv

er
 R

ew
ar

d

Fed-A
Fed-AC

Fed-AC-Prox
HDAFL

FEDORA

(c) Comparison of FEDORA with
federated baseline algorithms

Figure 6: Evaluation of FEDORA and other federated baselines for a mobile robot navigation task in
the presence of an obstacle.

We collect data in the real-world using four behavior policies with varying levels of expertise (Fig.
6(a)). We train over 20 clients for 100 communication rounds, each consisting of 20 local epochs (see
Fig. 6(c)). Fig. 6(b) shows the trajectories obtained by the learned policies of different algorithms in
the real-world, and only FEDORA is able to successfully reach the target by avoiding the obstacle.
We provide more details in Appendix C. A video of our experiment and code is provided in
supplementary material. We discuss limitations and societal impact of our work in Appendix D.

7 CONCLUSION

We presented an approach for federated offline RL, accounting for the heterogeneity in the quality of
the ensemble of policies that generated the data at the clients. We solved multiple challenging issues
by systematically developing a well-performing ensemble-directed approach entitled FEDORA,
which extracts the collective wisdom of the policies and critics and discourages excessive reliance on
irrelevant local data. We demonstrated its performance on several simulation and real-world tasks.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Robin Amsters and Peter Slaets. Turtlebot 3 as a robotics education platform. In Robotics in
Education: Current Research and Innovations, pp. 170–181. Springer, 2020.

Daniel J Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Titouan Parcollet, and Nicholas D Lane.
Flower: A friendly federated learning research framework. arXiv preprint arXiv:2007.14390,
2020.

Xinyue Chen, Zijian Zhou, Zheng Wang, Che Wang, Yanqiu Wu, and Keith Ross. Bail: Best-
action imitation learning for batch deep reinforcement learning. Advances in Neural Information
Processing Systems, 33:18353–18363, 2020.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062, 2019.

Liam Hebert, Lukasz Golab, Pascal Poupart, and Robin Cohen. Fedformer: Contextual federation
with attention in reinforcement learning. arXiv preprint arXiv:2205.13697, 2022.

Yiqiu Hu, Yun Hua, Wenyan Liu, and Jun Zhu. Reward shaping based federated reinforcement
learning. IEEE Access, 9:67259–67267, 2021.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pp. 5132–5143, 2020.

Sajad Khodadadian, Pranay Sharma, Gauri Joshi, and Siva Theja Maguluri. Federated reinforcement
learning: Linear speedup under markovian sampling. In International Conference on Machine
Learning, pp. 10997–11057, 2022.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. Advances in Neural Information Processing Systems,
32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020a.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020b.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine Learning and Systems,
2:429–450, 2020.

10

Under review as a conference paper at ICLR 2024

Hyun-Kyo Lim, Ju-Bong Kim, Ihsan Ullah, Joo-Seong Heo, and Youn-Hee Han. Federated rein-
forcement learning acceleration method for precise control of multiple devices. IEEE Access, 9:
76296–76306, 2021.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282, 2017.

Chetan Nadiger, Anil Kumar, and Sherine Abdelhak. Federated reinforcement learning for fast
personalization. In 2019 IEEE Second International Conference on Artificial Intelligence and
Knowledge Engineering (AIKE), pp. 123–127. IEEE, 2019.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Jiaju Qi, Qihao Zhou, Lei Lei, and Kan Zheng. Federated reinforcement learning: techniques,
applications, and open challenges. arXiv preprint arXiv:2108.11887, 2021.

Rongjun Qin, Songyi Gao, Xingyuan Zhang, Zhen Xu, Shengkai Huang, Zewen Li, Weinan Zhang,
and Yang Yu. Neorl: A near real-world benchmark for offline reinforcement learning. arXiv
preprint arXiv:2102.00714, 2021.

Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný,
Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In International
Conference on Learning Representations, 2021.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In Proceedings of the 32nd International Conference on Machine Learning,
volume 37, pp. 1889–1897, 2015.

Denis Tarasov, Alexander Nikulin, Dmitry Akimov, Vladislav Kurenkov, and Sergey Kolesnikov.
CORL: Research-oriented deep offline reinforcement learning library. In 3rd Offline RL Work-
shop: Offline RL as a ”Launchpad”, 2022. URL https://openreview.net/forum?id=
SyAS49bBcv.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033, 2012.

José R Vázquez-Canteli, Sourav Dey, Gregor Henze, and Zoltán Nagy. Citylearn: Standardizing
research in multi-agent reinforcement learning for demand response and urban energy management.
arXiv preprint arXiv:2012.10504, 2020.

Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMahan, Maruan Al-Shedivat,
Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, et al. A field guide to federated
optimization. arXiv preprint arXiv:2107.06917, 2021.

Qing Wang, Jiechao Xiong, Lei Han, Han Liu, Tong Zhang, et al. Exponentially weighted imitation
learning for batched historical data. Advances in Neural Information Processing Systems, 2018.

Xiaofei Wang, Ruibin Li, Chenyang Wang, Xiuhua Li, Tarik Taleb, and Victor CM Leung. Attention-
weighted federated deep reinforcement learning for device-to-device assisted heterogeneous col-
laborative edge caching. IEEE Journal on Selected Areas in Communications, 39(1):154–169,
2020.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Zhijie Xie and Shenghui Song. Fedkl: Tackling data heterogeneity in federated reinforcement
learning by penalizing kl divergence. IEEE Journal on Selected Areas in Communications, 41(4):
1227–1242, 2023.

Lixuan Yang, Cedric Beliard, and Dario Rossi. Heterogeneous data-aware federated learning. arXiv
preprint arXiv:2011.06393, 2020.

11

https://openreview.net/forum?id=SyAS49bBcv
https://openreview.net/forum?id=SyAS49bBcv

Under review as a conference paper at ICLR 2024

Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Sergey Levine, and Chelsea Finn.
Conservative data sharing for multi-task offline reinforcement learning. Advances in Neural
Information Processing Systems, 34:11501–11516, 2021.

Yang Yue, Bingyi Kang, Xiao Ma, Zhongwen Xu, Gao Huang, and Shuicheng Yan. Boosting offline
reinforcement learning via data rebalancing. arXiv preprint arXiv:2210.09241, 2022.

Yang Yue, Bingyi Kang, Xiao Ma, Gao Huang, Shiji Song, and Shuicheng Yan. Offline prioritized
experience replay. arXiv preprint arXiv:2306.05412, 2023.

Doudou Zhou, Yufeng Zhang, Aaron Sonabend-W, Zhaoran Wang, Junwei Lu, and Tianxi Cai.
Federated offline reinforcement learning. arXiv preprint arXiv:2206.05581, 2022.

12

Under review as a conference paper at ICLR 2024

APPENDIX

We present several results and details in the appendix that illustrates the performance of FEDORA.
These include details of our experimental setup (Appendix A), additional experiments studying
different components of FEDORA and illustrating its performance in different settings (Appendix B),
details of our real-world experiments using a TurtleBot (Appendix C), and discussion on limitations,
societal impact and future work (Appendix D).

A EXPERIMENTAL SETUP

Algorithm Implementation: We use the PyTorch framework to program the algorithms in this
work, based on a publicly-available TD3-BC implementation. The actor and the critic networks
have two hidden layers of size 256 with ReLu non-linearities. We use a discount factor of 0.99, and
the clients update their networks using the Adam optimizer with a learning rate of 3 × 10−4. For
training FEDORA, we fixed the decay rate δ = 0.995 and the temperature β = 0.1. TD3-BC trains
for 5× 105 time steps in the centralized setup. The batch size is 256 in both federated and centralized
training.

The training data for clients are composed of trajectories sampled from the D4RL dataset. In situations
where only a fraction of the clients partake in a round of federation, we uniformly sample the desired
number of clients from the entire set.

Federation Structure: We implement FEDORA over the Flower federated learning platform (Beutel
et al., 2020), which supports learning across devices with heterogeneous software stacks, compute
capabilities, and network bandwidths. Flower manages all communication across clients and the
server and permits us to implement the custom server-side and client-side algorithms of FEDORA
easily. However, since Flower is aimed at supervised learning, it only transmits and receives a single
model at each federation round, whereas we desire to federate both policies and critic models. We
solve this limitation by simply appending both models together, packing and unpacking them at the
server and client sides appropriately.

While ‘FEDORA-over-Flower’ is an effective solution for working across distributed compute
resources, we also desire a simulation setup that can be executed on a single machine. This approach
sequentially executes FEDORA at each selected client, followed by a federation step, thereby allowing
us to evaluate the different elements of FEDORA in an idealized federation setup.

Compute Resources: Each run on the MuJoCo environments (as in Fig. 2) takes around 7 hours
to complete when run on a single machine (AMD Ryzen Threadripper 3960X 24-Core Processor,
2x NVIDIA 2080Ti GPU). This time can be drastically reduced when run over distributed compute
using the Flower framework.

B ADDITIONAL EXPERIMENTS

B.1 IMPORTANCE OF INDIVIDUAL ALGORITHM COMPONENT

We perform an ablation study to examine the different components of our algorithm and understand
their relative impacts on the performance of the federated policy. We use the experimental framework
with 10 clients and the Hopper environment described in Section 4, and plot the performance of the
federated policy with mean and standard deviation over 4 seeds. The ablation is performed in two
ways: (a) We build up FEDORA starting with Fed-A, the naïve method which federates only the
actor, and add one new algorithm component at a time and evaluate its performance. (b) We exclude
one component of FEDORA at a time and evaluate the resulting algorithm.

We observe in Fig. 7a that using priority-weighted averaging of the client’s policy to compute
the federated policy (Eq. (7)), and an optimistic critic (Eq. (8) - (9)) significantly improves the
performance of the federated policy. This is consistent with our intuition that the most important
aspect is extracting the collective wisdom of the policies and critics available for federation, and
ensuring that the critic sets optimistic targets. The proximal term helps regularize local policy updates
(Eq. (10)) by choosing actions close to those seen in the local dataset or by the federated policy.

13

Under review as a conference paper at ICLR 2024

0

500

1000

1500

2000

2500

3000

3500

Se
rv

er
 R

ew
ar

d

1. Fed-A
2. Fed-AC
3. (2) with weighted actor

4. (3) with optimistic critic
5. (4) with proximal term
6. (5) with decay [FEDORA]

(a) Effect of sequentially adding
one algorithm component at a time

0

500

1000

1500

2000

2500

3000

3500

Se
rv

er
 R

ew
ar

d

no weighted actor
no optimistic critic
no proximal term

no decay
FEDORA

(b) Effect of removing one individual
algorithm components from FEDORA

Figure 7: Ablation Studies.

Additionally, decaying the influence of local updates enables the local policy to leverage the federated
policy’s vantage by choosing actions not seen in the local dataset.

From Fig. 7b, we observe that removing priority-weighted actor from FEDORA causes the steepest
drop in performance, followed by the optimistic critic. Again, this is consistent with our intuition on
these being the most important effects. Excluding the proximal term and local decay also results in a
reduction in server performance along with a greater standard deviation.

B.1.1 ABLATION OF DECAYING MECHANISM ON WALKER ENVIRONMENT

We study the effect of decaying the influence of local data (5.4) in the Walker2D environment in
Figure 8. Although the decaying mechanism seems to give only a small improvement in Figure ,
which pertains to experiments on the Hopper environment, we observe that it provides a significant
improvement in the Walker2D environment.

0 200 400 600 800 1000
Communication Round

0

1000

2000

3000

4000

5000

Se
rv

er
 R

ew
ar

d

Walker2D
FEDORA with Decay FEDORA without Decay

(a) Training curve

0

1000

2000

3000

4000

5000

Se
rv

er
 R

ew
ar

d

Walker2D
FEDORA with Decay FEDORA without Decay

(b) Peak performance

Figure 8: Ablation study of decaying mechanism on Walker2d environment (setting similar to Fig 7).

B.2 ANALYSIS OF CLIENT PERFORMANCE

We train FEDORA on MuJoCo environments using a setup similar to Section 6 where 20 out of the
50 clients are randomly chosen to participate in each round of federation. Our goal is to analyze
the contribution of clients with expert data and those with medium data to the learning process. As
before, the clients and the algorithm are unaware of the data quality.

We plot the mean weights wt
i across the expert and medium dataset clients participating in a given

round of federation in Fig. 9a. We observe that the weights of medium clients drop to 0, while the
weights of expert clients rise to 0.1. This finding emphasizes the fact that clients are combined based
on their relative merits.

In Fig. 9b, we plot the mean of the decay value associated with Llocal across participating expert and
medium dataset clients (Section 5.4). The decay of both sets of clients drops as training progresses.
A reduction in decay occurs each time the local estimate of the federated policy’s performance J fed,t

i
is greater than the estimated performance of the updated local policy J t

i . A decreasing decay implies

14

Under review as a conference paper at ICLR 2024

0 200 400 600 800 1000
Communication Round

0.000

0.025

0.050

0.075

0.100
Cl

ie
nt

 W
ei

gh
t

HalfCheetah

0 200 400 600 800 1000
Communication Round

0.00

0.02

0.04

0.06

0.08

0.10

Hopper

0 200 400 600 800 1000
Communication Round

0.000

0.025

0.050

0.075

0.100

Walker2D
expert medium

(a) Client ratio

0 200 400 600 800 1000
Communication Round

0.2

0.4

0.6

0.8

1.0

Cl
ie

nt
 D

ec
ay

HalfCheetah

0 200 400 600 800 1000
Communication Round

0.4

0.6

0.8

1.0
Hopper

0 200 400 600 800 1000
Communication Round

0.4

0.6

0.8

1.0
Walker2D

expert medium

(b) Client decay

Figure 9: Analysis of client performance during federation. The average of the performance metric is
computed across expert and medium clients participating in a given round of federation.

that the federated policy offers a performance improvement over local policies more often as the
rounds t advance. Thus, training only on local data is detrimental, and participation in federation can
help learn a superior policy.

B.3 FEDERATED OFFLINE RL EXPERIMENTS WITH CITYLEARN

0 25 50 75 100 125 150
Communication Round

20000

30000

40000

50000

Se
rv

er
 R

ew
ar

d

FEDORA
Fed AC + Prox

Fed AC
Fed A

Centralized

Figure 10: Evaluation of algorithms on
CityLearn.

Real-world environments often have a large state space
and are stochastic in nature. We run federated experiments
on CityLearn (Vázquez-Canteli et al., 2020) to assess the
effectiveness of FEDORA on such large-scale systems.
CityLearn is an OpenAI Gym environment with the goal
of urban-scale energy management and demand response,
modeled on data from residential buildings. The goal is to
reshape the aggregate energy demand curve by regulating
chilled water tanks and domestic hot water, two modes
of thermal energy storage in each building. The energy
demand of residential buildings changes as communities
evolve and the weather varies. Hence, the controller must
update its policy periodically to perform efficient energy
management. Federated learning would allow utilities that
serve communities in close proximity to train a policy collaboratively while preserving user data
privacy, motivating the use of FEDORA for this environment.

In our experiments, we have 10 clients with 5000 training examples such that they all participate
in 150 rounds of federation. The training data for the clients is obtained from NeoRL, an offline
RL benchmark Qin et al. (2021). 5 clients each have data from the CityLearn High and CityLearn
Low datasets, which are collected by a SAC policy trained to 75% and 25% of the best performance
level, respectively. During each round of federation, each client performs 20 local epochs of training.
The server reward at the end of each federation round is evaluated online and shown in Fig. 10.
We observe that FEDORA outperforms other federated offline RL algorithms as well as centralized
training, which learns using TD3-BC on the data aggregated from every client. These findings
indicate that FEDORA can perform well in large-scale stochastic environments.

15

Under review as a conference paper at ICLR 2024

B.4 EFFECT OF MULTIPLE BEHAVIOR POLICIES AND PROPORTION OF CLIENTS PARTICIPATING
IN FEDERATION

0 250 500 750 1000
Communication Round

0
500

1000
1500
2000
2500
3000
3500

Varying participating clients

10% clients
20% clients

30% clients
40% clients

50% clients

Figure 11: Effect of varying the number of
participating clients in each round on FE-
DORA

In this section, we study the effects of clients hav-
ing data from multiple behavior policies for varying
proportions of clients participating in federation. We
consider a scenario with 50 clients having Di = 5000
in the Hopper-v2 environment where,

• 12 clients have expert data (samples from a
policy trained to completion with SAC.).

• 12 clients have medium data (samples from
a policy trained to approximately 1/3 the
performance of the expert).

• 14 clients have random data (samples from
a randomly initialized policy).

• 12 clients have data from the replay buffer
of a policy trained up to the performance of
the medium agent.

We run FEDORA by varying the the percentage of clients participating in each round of federation.
We observe that the FEDORA is fairly robust to the fraction of clients participating in federation even
when the fraction is as low as 20%.

B.5 CENTRALIZED TRAINING WITH OTHER OFFLINE RL ALGORITHMS

Algorithm0

500

1000

1500

2000

2500

3000

3500
Cu

m
ul

at
iv

e
Re

wa
rd

CQL
IQL

TD3-BC
FEDORA

Figure 12: Comparison
with different Offline RL
algorithms

We consider a scenario similar to the one in Fig. 3 for the Hopper-
v2 environment with 50 clients, having |Di| = 5000 participating in
federation, where 25 clients have expert data, and 25 clients have random
data. We compare the performance of different Offline RL algorithms
over the pooled data with FEDORA. The algorithms we choose are
Conservative Q-Learning for Offline Reinforcement Learning (CQL)
Kumar et al. (2020b) and Offline Reinforcement Learning with Implicit
Q-Learning (IQL) Kostrikov et al. (2021) whose implementations are
obtained from the CORL library Tarasov et al. (2022). We can observe
from Fig. 12 that pooling data from different behavior policies affects
both offline RL algorithms.

C DETAILS OF REAL-WORLD ROBOT EXPERIMENTS

C.1 DEMONSTRATION DATA COLLECTION

We train four behavior policies of varying levels of expertise using TRPO Schulman et al. (2015)
on a custom simulator for mobile robots described in section C.2. The first policy is capable of
waypoint navigation but collides with obstacles. The second policy can reach waypoints while
avoiding obstacles present at one fixed position. The third policy has not fully generalized to avoiding
obstacles at various positions. Finally, the fourth policy can navigate to the goal without any collision.
We execute the behavior policies in the real-world by varying the waypoint (target location) and
location of the obstacle to gather demonstration data, which we then use to train FEDORA and other
baselines. Each client has a dataset consisting of 300 data points collected using a single behavior
policy. After training, we test the learned policies in the real-world on a TurtleBot to ascertain its
feasibility.

C.2 SIMULATOR DESIGN

We develop a first-order simulator for mobile robots using the OpenAI Gym framework, which
enables the training of RL algorithms. The robot’s pose is represented by its X- and Y-coordinates in

16

Under review as a conference paper at ICLR 2024

a 2D space and its orientation with respect to the X-axis, θ. The pose is updated using differential
drive kinematics

xt+1 = xt +∆t v cos θt
yt+1 = yt +∆t v sin θt
θt+1 = θt +∆t ω,

(11)

where (xt, yt, θt) is the pose at time t, v and w are the linear and angular velocity of the robot
respectively, and ∆t is time discretization of the system.

The simulator uses a functional LIDAR to detect the presence of obstacles. We simulate the LIDAR
using a discrete representation of the robot and obstacles in its immediate environment. For each
scanning direction around the LIDAR, we use Bresenham’s line algorithm to generate a path com-
prising of discrete points. The simulator determines LIDAR measurements by counting the number
of points along each path, starting from the robot and continuing until it encounters and obstacle or
reaches the maximum range.

The reward function is designed to encourage effective waypoint navigation while preventing colli-
sions. We define a boundary grid that extends for 1m beyond the start and the goal positions in all
directions. The reward function at time t for navigating to the goal position (xg, yg) is chosen to be

Rt =

+100, if |xt − xg| ≤ thresh and |yt − yg| ≤ thresh

−10, if robot outside boundary
−100, if robot collides
−(c.t.e2t + a.t.et + h.et) +

∑
lidart, otherwise

(12)

where c.t.et is the cross-track error, a.t.et is the along-track error, h.et is the heading error, lidart
is the array of LIDAR measurements at time t, and thresh is the threshold error in distance, chosen as
0.1m. Let the L-2 distance to the goal and the heading to the goal at time t be dgt and θgt respectively.
Then, we have

dgt =
√
(xg − xt)2 + (yg − yt)2,

θgt = tan−1
(

yg−yt

xg−xt

)
,

c.t.et = dgt sin(θg − θt),
a.t.et = |xg − xt|+ |yg − yt|,
h.et = θgt − θt.

(13)

C.3 MOBILE ROBOT PLATFORM

We evaluate the trained algorithms on a Robotis TurtleBot3 Burger mobile robot (Amsters & Slaets,
2020), an open-source differential drive robot. The robot has a wheel encoder-based pose estimation
system and is equipped with an RPLIDAR-A1 LIDAR for obstacle detection. We use ROS as the
middleware to set up communication. The robot transmits its state (pose and LIDAR information)
over a wireless network to a computer, which then transmits back the corresponding action suggested
by the policy being executed.

D LIMITATIONS, SOCIETAL IMPACTS, AND FUTURE WORK

D.1 LIMITATIONS AND FUTURE WORK

In this work, we examine the issue of Federated Offline RL. We make the assumption that all clients
share the same MDP model (transition kernel and reward model), and any statistical variances
between the offline datasets are due to differences in the behavior policies used to collect the data.
Moving forward, we aim to broaden this to cover scenarios where clients have different transition
and reward models. To achieve this, we plan to extend ideas from offline meta RL to the federated
learning scenario. Furthermore, we plan to explore personalization in federated offline RL as an
extension to our research. We also believe that our approach may also be useful in the context of
federated supervised learning, especially when the data is sourced from varying qualities, and we
intend to formally investigate this in the future as a seperate line of work.

17

Under review as a conference paper at ICLR 2024

D.2 ETHICS STATEMENT AND SOCIETAL IMPACTS

In this work, we introduce a novel algorithm for federated offline reinforcement learning. The domain
of federated offline RL offers the potential for widespread implementation of RL algorithms while
upholding privacy by not sharing data, as well as reducing the need for communication. Throughout
our study, no human subjects or human-generated data were involved. As a result, we do not perceive
any ethical concerns associated with our research methodology.

While reinforcement learning holds great promise for the application in socially beneficial systems,
caution must be exercised when applying it to environments involving human interaction. This
caution arises from the fact that guarantees in such scenarios are probabilistic, and it is essential to
ensure that the associated risks remain within acceptable limits to ensure safe deployments.

E ICLR 2024 REBUTTAL

E.1 DATA REBALANCING

Algorithm0

500

1000

1500

2000

2500

3000

3500

Cu
m

ul
at

iv
e

Re
wa

rd

TD3-BC TD3-BC_RB FEDORA

Figure 13: Comparison
with Offline RL with data
rebalancing

We consider a scenario similar to Fig. 1, where we consider the Hopper-
v2 environment with 10 clients having |Di| = 5000 participating in
federation, where 5 clients have expert data, and 5 clients have medium
data. We compare the performance of TD3-BC, TD3-BC with data re-
balancing (TD3-BC_RB) (Yue et al., 2022; 2023), and FEDORA. From
Fig. 13 we can notice that the addition of data rebalancing does help the
performance of offline RL algorithms when data is collected using mul-
tiple behavior policies. We also notice that the performance of TD3-BC
with data rebalancing does not match the performance of FEDORA. We
hypothesise that this could be due to the superior weighting mechanism
employed by FEDORA, and that data rebalancing cannot completely
solve the distribution shift issue caused by data coming from multiple
behavior policies.

E.2 DIFFERENT WEIGHING MECHANISMS

0 250 500 750 1000
Communication Round

0

500

1000

1500

2000

2500

3000

3500

Se
rv

er
 R

ew
ar

d

FEDORA FEDORA_RC RC

Figure 14: Comparison with
different a weighing mecha-
nism

We consider a scenario similar to Fig. 1, where we consider the
Hopper-v2 environment with 10 clients having |Di| = 5000 partic-
ipating in federation, where 5 clients have expert data, and 5 clients
have medium data. We conduct two experiments, (1.) RC: We
combine clients based on the average reward in their dataset using
the weighing scheme proposed in (Yue et al., 2022). In this scenario,
we choose the weights of federation for client i, wi = pi∑

k∈Nt
pk

.

Where pi =
Ri−Rmin

Rmax−Rmin
, and Nt is the set of clients participating in

federation at round t. Here Ri corresponds to the average reward of
client i’s dataset, Rmin = mini∈Nt

Ri, and Rmax = maxi∈Nt
Ri.

Each client runs TD3-BC as their local offline algorithms and does
not employ any of the strategies discussed in section 5. (2.) FE-
DORA_RC: We modify the weighting strategy of FEDORA to
the one described above. This method uses the weighing strategy
described in RC. We keep all the other features of FEDORA.

From Fig. 14 we notice that FEDORA outperforms both baselines, and the addition of the different
components of FEDORA improves the performance of RC. FEDORA outperforms the baselines due
to its superior weighing strategy, and the holistic approach we took to designing it by augmenting
different algorithmic components that help mitigate the problems of federated offline RL described in
section 4.1.

E.3 β HYPTERPARAMETER SWEEP

18

Under review as a conference paper at ICLR 2024

0 250 500 750 1000
Communication Round

0

500

1000

1500

2000

2500

3000

3500

Se
rv

er
 R

ew
ar

d

Varying the temperature parameter

0.1
0.0

0.01
0.05

0.2
0.5

1
5

Figure 15: Varying β

In Fig. 15 run FEDORA for different values of β, which is the
temperature parameter of federation. We consider a scenario similar
to Fig. 1, where we consider the Hopper-v2 environment with 10
clients having |Di| = 5000 participating in federation, where 5
clients have expert data, and 5 clients have medium data. When β =
0, it boils down to a uniform weighting scheme, where the quality
of data present in each client is not considered during federation. As
β → ∞ it tends to a max weighting scheme, where the federated
policy is the same as an individual client’s policy with the highest
quality data.

19

	Introduction
	Related Work
	Preliminaries
	Federated Offline Reinforcement Learning
	Issues with Federated Offline RL

	FEDORA Design Approach
	Ensemble-Directed Learning over Client Policies
	Federated Optimism for Critic Training
	Proximal Policy Update for Heterogeneous Data
	Decaying the Influence of Local Data

	Experimental Evaluation
	Experiments on Simulated Environments
	Real-World Experiments on TurtleBot

	Conclusion
	Experimental Setup
	Additional Experiments
	Importance of Individual Algorithm Component
	Ablation of Decaying mechanism on Walker Environment

	Analysis of Client Performance
	Federated Offline RL experiments with CityLearn
	Effect of multiple behavior policies and proportion of clients participating in federation
	Centralized training with other Offline RL algorithms

	Details of Real-World Robot Experiments
	Demonstration Data Collection
	Simulator Design
	Mobile Robot Platform

	Limitations, Societal Impacts, and Future work
	Limitations and Future Work
	Ethics Statement and Societal Impacts

	ICLR 2024 Rebuttal
	Data Rebalancing
	Different Weighing Mechanisms
	 hypterparameter sweep

