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Abstract

LLM-as-a-judge—often with multiple judges—is now the standard for scalable1

model evaluation, yet judge biases and correlations can amplify errors. We cast2

aggregation as inference in a latent-factor Markov random field that jointly mod-3

els a latent true-quality variable, inter-judge correlations, and confounders (e.g.,4

generation length). We address two key technical challenges—identifiability and5

learning a higher-rank latent structure—via CARE, a two-stage estimator that6

uses sparse+low-rank structure recovery and tensor decomposition to separate7

quality from spurious factors. This enables us to better understand the quality and8

behavior of judges, leading to improved evaluation capabilities. Empirically, it9

reduces aggregation error by up to 25.15% and seamlessly incorporates cheaply10

constructed programmatic judges, while matching or surpassing individual-judge11

intervention strategies.12

1 Introduction13

Large language models (LLMs) are now widely used for automated evaluation of model outputs. A14

common practice is to ensemble multiple LLM judges to form consensus scores [1], avoiding the15

cost of expert annotation [2]. However, such ensembles are unreliable: judges exhibit systematic16

biases (e.g., verbosity, position) [3, 4, 5], are highly correlated from shared training data, and thus17

may amplify rather than reduce errors [6, 7]. Existing fixes—including order shuffling, prompt18

calibration, or fine-tuned evaluators [8, 9, 10, 5]—target individual biases, while aggregation methods19

like majority vote or averaging [11] rely on unrealistic independence assumptions.20

We take a principled approach, recasting multi-judge aggregation as inference in a higher-rank21

latent variable Markov Random Field (MRF). This model captures (i) a latent quality variable22

Q, (ii) additional confounders (e.g., length, style), and (iii) correlations between judges. Learning23

such models raises two challenges: (1) estimating parameters without observing latent factors, and24

(2) identifying which factor corresponds to true quality rather than spurious signals. Our solution,25

CARE, combines sparse+low-rank decomposition with a tensor step to separate Q from confounders,26

and further supports integration of programmatic judges—cheaply synthesized evaluation functions27

that expand the judge pool [12].28

Our Contributions. CARE (i) introduces a confounder-aware aggregation framework unifying29

single-judge debiasing with principled statistical fusion, (ii) provides identifiability guarantees,30

sample complexity bounds, and misspecification analysis, (iii) reduces aggregation error by up to31

25.15% on public benchmarks compared to majority vote, weak supervision baselines, and prompt-32

level interventions, and (iv) seamlessly integrates programmatic judges while supporting progressive33

expansion of evaluator pools.34
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(a) Naive: only true-quality (b) Connection-aware (c) Confounder-aware (Ours)

Figure 1: Graphical models for aggregating judge scores under different structural assumptions.
(a) A naive model assumes scores reflect only a true latent quality (Q) and that all judges are
equally reliable and represent independent views. (b) Connection-aware approach models intra-judge
interactions (J2 − J3 − J4), but still assumes the presence of a single latent quality score. (c) Our
Confounder-aware model introduces additional latent confounders (C) influencing judge scores.

Algorithm 1 CARE (Confounder-Aware Aggregation) (Condensed, full version in Algorithm 2)

Input: Judge score matrix J ∈ Rn×p

Output: Estimated true-quality scores {q̂(i)}ni=1

1: Estimate judge graph sparse structure from J

2: Recover sparse + low-rank decomposition (Ŝ, L̂)

3: Extract latent factors from L̂ (SVD or tensor methods; see App. C)
4: Identify the quality factor among latent components
5: Aggregate along this factor to produce q̂(i)

2 CARE: Confounder-Aware Aggregation for Reliable Evaluation35

Motivation. LLM-as-a-judge is appealing for scalable evaluation, but naive ensembling can amplify36

shared biases. Judges may favor longer generations, prefer particular styles, or otherwise correlate in37

ways that obscure the underlying quality. Existing heuristics (e.g., weighting or filtering judges) only38

partially address these issues. We instead adopt a probabilistic graphical model perspective, which39

provides a principled way to separate latent true quality from other spurious factors.40

Latent-factor MRF. We model judges as nodes in a Markov random field with multiple latent factors:41

one unknown true-quality variable Q, one or more confounders C, and the observed judge scores42

X1, . . . , Xm. This higher-rank structure captures both genuine signal and correlated biases (Fig. 3).43

The main technical challenges are (i) identifying which latent dimension corresponds to Q, and (ii)44

estimating such higher-rank latent-variable models from limited samples.45

CARE algorithm. Our approach, CARE (Confounder-Aware Aggregation), addresses these chal-46

lenges with a two-stage estimator. First, we recover a sparse+low-rank decomposition of the precision47

matrix of judge scores: the sparse part captures direct conditional links between judges, while the48

low-rank part reveals latent factors. Second, we apply a symmetric tensor decomposition to resolve49

rotational ambiguity and isolate Q from confounders. This produces an interpretable set of factor50

loadings, showing how each judge aligns with true quality versus spurious dimensions. CARE51

then aggregates scores along the inferred quality dimension, yielding robustness to confounders and52

correlations. Programmatic judges, such as length counters or keyword checkers, can be included53

alongside LLM judges and are naturally placed onto confounder dimensions when appropriate. Full54

pseudocode, optimization details, and proofs appear in Appendix C.55

Theoretical guarantees. We provide three main results for Algorithm 1. (i) Identifiability: under56

latent-independence and orthogonality assumptions, CARE exactly recovers latent directions and is57

stable to mild perturbations (App. D.2). (ii) Sample complexity: we bound the number of samples58

needed for consistent estimation of latent-observable connections, with rates depending on eigengaps59

and manifold curvature (App. D.3). (iii) Misspecification error: omitting confounders introduces60

systematic bias; we provide explicit bounds on the resulting conditional-mean errors (App. D.4).61
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Table 1: Aggregation performance across different datasets, measured by MAE and Kendall’s τ .
CARE outperforms baseline methods in most cases.

FeedbackQA HelpSteer2 UltraFeedback

MAE (↓) τ (↑) MAE (↓) τ (↑) MAE (↓) τ (↑)

MV 0.8812 0.3703 0.9951 0.1629 0.8522 0.2985
AVG 0.8492 0.4497 0.9822 0.1611 0.6860 0.3621
WS 0.8144 0.4401 1.3030 0.1511 1.1603 0.3306
UWS 0.9051 0.4580 0.9849 0.1697 0.6794 0.3669
CARE 0.7866 0.4542 0.9742 0.1805 0.6379 0.3806

Table 2: Performance on different datasets using both LLM and programmatic judges. Programmatic
judges are beneficial in FeedbackQA but may introduce noise in HelpSteer2 and UltraFeedback. In
both cases, CARE consistently outperforms other baselines.

FeedbackQA HelpSteer2 UltraFeedback

MAE (↓) τ (↑) MAE (↓) τ (↑) MAE (↓) τ (↑)

MV 0.8607 0.3815 1.0244 0.1465 0.8751 0.3179
AVG 0.8128 0.4671 1.1012 0.1268 1.0371 0.3733
UWS 0.8179 0.4816 0.9992 0.1040 0.9534 0.3047
CARE 0.7582 0.4796 0.9800 0.1398 0.7351 0.3520

3 Experimental Results62

We evaluate CARE across diverse experimental setups, including real-world and semi-synthetic63

datasets, to validate the following key claims:64

• Improving aggregation of LLM judges: CARE produces more accurate and robust aggregate65

scores from multiple LLM judges compared to existing methods (Sec. 3.1).66

• Effective integration of programmatic judges: CARE can integrate programmatic judges, which67

are often systematically biased, by explicitly modeling confounders (Sec. 3.2).68

• Progressive expansion of judges: CARE robustly incorporates additional judges over time,69

adapting to larger evaluation pools (Sec. 3.3).70

• Competitiveness against manual interventions: CARE matches or surpasses prompt-level71

interventions at the individual judge level, avoiding costly manual tuning (Sec. 3.4).72

Additional experiments, including robustness under controlled confounding factors, and validation of73

theoretical results in synthetic settings, are deferred to Appendix E. We also offer ablations, per-judge74

breakdowns, and further programmatic judge analyses in Appendix E.75

3.1 Improving Aggregation of LLM judges76

Setup. We compare aggregation methods using the 10 LLM judges (listed in the Appendix E). To77

ensure consistency, we adapt the prompt template from [13], modifying it to fit our experimental78

setup. The exact used prompt is provided in Appendix E.79

Results. We report aggregation performance in Table 1. CARE consistently outperforms baseline80

methods, achieving the lowest MAE on FeedbackQA (0.7866) and UltraFeedback (0.6379), surpass-81

ing majority vote (MV) by 10.74% and 25.15%, respectively. These gains demonstrate CARE’s82

ability to model correlations among LLM judges and mitigate compounding biases.83

3.2 Effective Integration of Programmatic Judges84

Setup. We integrate our LLM-based evaluators with ten programmatic judges, each encoding85

its evaluation logic into executable code synthesized by OpenAI’s GPT-4o [14]. These judges86

are designed to assess response quality through specific, individual dimension, such as structure,87

readability, safety, relevance, and factuality. While it’s cost-effective to construct them, their88

deterministic nature may introduce systematic biases, potentially leading to noisy evaluation signals.89

This setup allows us to test CARE’s robustness in a more challenging aggregation scenario. Further90

details on the programmatic judge generation process are provided in Appendix E.91
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Table 3: Comparison of aggregation methods using individually intervened LLM judges. While other
baselines aggregate scores from debiased LLM judges, CARE operates directly on raw outputs.

FeedbackQA HelpSteer2 UltraFeedback

MAE (↓) τ (↑) MAE (↓) τ (↑) MAE (↓) τ (↑)

MV 0.8004 0.3964 0.9951 0.1629 0.8562 0.2799
AVG 0.8029 0.4412 0.9822 0.1611 0.6801 0.3704
WS 0.7674 0.4429 1.3030 0.1511 1.1516 0.3588
UWS 0.8117 0.4390 0.9849 0.1697 0.6683 0.3782
CARE 0.7866 0.4542 0.9742 0.1805 0.6379 0.3806

Results. Table 2 shows that adding programmatic judges improves FeedbackQA, where CARE92

attains the lowest MAE (0.7582) and highest τ (0.4796), outperforming MV by 11.92%. On93

HelpSteer2 and UltraFeedback, performance drops (MAE 0.9800 and 0.7351) but still surpasses MV94

by 4.33% and 15.99%. Overall, CARE consistently outperforms baselines on MAE, even under95

noisy signals.96

3.3 Progressive Judge Expansion97

Setup. Next, we start with a fixed set of LLM judges and progressively add programmatic judges98

from a pool of 23. At each step, we greedily select the programmatic judge that yields the largest99

improvement in the validation of MAE. The process stops when no further reduction in validation100

MAE is observed. We evaluate aggregation methods as in previous sections, using FeedbackQA,101

where programmatic judges were most beneficial.102
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Figure 2: Progressive judge selection
on the FeedbackQA dataset. CARE ro-
bustly integrates new judges and consis-
tently outperforms baseline aggregation
methods.

Results. Figure 2 reports the results of scaling the number103

of programmatic judges. As the number of programmatic104

judges increases, CARE consistently achieves lower er-105

ror, demonstrating its ability to adapt and improve with106

additional supervision. These findings suggest a promis-107

ing path toward building dynamic and expandable judge108

ensembles.109

3.4 Comparison with Individual Intervention110

Setup. An alternative to our confounder-aware approach111

is direct interventions at the individual judge level. Specif-112

ically, we compare CARE to prompt-based interventions113

proposed by [15], which instruct LLM judges to account114

for known sources of bias. The intervened prompt used115

for this comparison is included in Appendix E.116

Results. Table 3 presents the results. While bias-aware prompting improves performance in most117

cases, CARE remains the top performer in the majority of settings, and even when not, it is com-118

petitive with the best. This suggests that CARE can effectively mitigate biases without relying on119

careful prompt engineering.120

We next evaluate robustness under controlled bias injections (e.g., beauty, authority, gender), as well121

as synthetic experiments validating our theory. Due to space constraints, these results are presented122

in Appendix E, where we also include expanded analyses such as prompt-based intervention effects123

(Appendix E.5) and controlled confounder demonstrations (Appendix E.6, E.7).124

4 Conclusion125

We presented CARE, a confounder-aware aggregation framework that casts multi-judge scoring126

as inference in a higher-rank latent-variable model. It explicitly models shared confounders, pro-127

vides principled estimators with identifiability guarantees, and achieves consistent gains on public128

benchmarks, reducing MAE and improving Kendall’s τ by up to 25.15%.129
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The appendix is structured as follows. It starts with the glossary table, defining key notations287

used throughout the paper in Appendix A. Next, Appendix B discusses additional related work. In288

Appendix C, we introduce details about our tensor-based CARE algorithm, discussion for general289

CARE method, and additional discussion about method heuristics. Following this, Appendix D offers290

theoretical support of our approach and supported proofs. It includes the graphical model formulation,291

graph structure recovery error bound, sample complexity, and the misspecification error arising from292

incorrectly characterized confounding factors. Subsequently, Appendix E provides experimental293

details and additional experiment results. Finally, Appendix F concludes by discussing the broader294

impacts and limitations of the work.295

A Glossary296

The notations are summarized in Table 4 below.

Table 4: Glossary of variables and symbols used in this paper.

Symbol Definition

(J1, . . . , Jp) p vector of Judges score
Q True-quality latent variable
(C1, . . . , Ck) k latent confounder variables (Rp)
H All the hidden variables (true + confounder) i.e (Q C1, . . . , Ck)
h dimension of H i.e all hidden variables = k + 1
X Observed judge score matrix of dimension (n× p) where n is the number of examples and p is the number of judges

K Precision matrix
KJJ Observable-observable connection matrix
KJH Observable-latent connection matrix
KHH Latent-latent connection matrix
ΣJJ Covariance matrix of observable variables
S Sparse matrix (Rp×p) which encodes edges between judges
L Low-rank matrix (with rank(L) ≤ h) which captures dependencies mediated by latent variables
R Rotation matrix (Rh×h)

γn Regularization for sparse and low-rank matrix S in Algorithm 2
τ Regularization for low-rank matrix L in Algorithm 2
ŝ
(i)
agg Aggregated scores for ith example in the dataset from p judges
Σ̂ Sample precision estimation or covariance matrix
Ŝ Sample Sparse matrix (Rp×p) which encodes direct connectional edges among judges
L̂ Sample Low-rank matrix (with rank(L) ≤ h) which captures dependencies mediated by latent variables
U Latent factor extraction matrix i.e latent-judge connections (Rp×h) from Algorithm 2
Θ Precision matrix
w Weight for aggregating judges
λ Singular values of L
u⋆ Singular vector of L corresponds to true quality factor
λ⋆ Singular value of L that corresponds to true quality factor
µqc Conditional mean of judges given Q = q, C = c
µ̂qc Estimated conditional mean of judges given Q = q, C = c
πqc Probability of Q = q, C = c
π̂qc Estimation of probability of Q = q, C = c
{Gℓ}3ℓ=1 Groups of judges that are independent of judges outside the group
T̂ Empirical 3-way tensor
µ̂
(1)
qc , µ̂(2)

qc , µ̂(3)
qc Estimated conditional mean of three views

µ̂ρ(r) Estimated conditional mean of judges after permutation
µanchor(r) Conditional mean of anchor sets

297
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B Related Work298

B.1 Biases in LLM–as–a–Judge299

Large language models have quickly become the standard automatic evaluators for generation tasks300

because they correlate well with human judgments in translation and summarization [16, 17, 18]. Yet301

a growing body of work shows that these models are far from impartial. Positional bias—preferring302

the second answer in a pairwise comparison—was first noted in MT-Bench [2] and later quantified in303

detail by [19], who observed reversals of up to 30% when simply swapping order. Verbosity bias,304

wherein longer answers receive higher scores regardless of quality, is highlighted by [8]. LLM judges305

also display self-enhancement bias, overrating responses produced by models from the same family306

[20]. Less studied but equally problematic are concreteness/authority biases: judges over-reward307

answers that contain citations, numbers, or confident tone even when these features are irrelevant308

[21].309

Mitigation strategies span two levels. Prompt-level interventions randomize answer order, enforce310

symmetric formatting, and instruct the judge to ignore superficial features [19, 22]. Adding chain-311

of-thought rationales or decomposing the rubric into sub-criteria (accuracy, conciseness, style) also312

moderates shallow heuristics [23]. On the model level, fine-tuned evaluators such as JudgeLM [24]313

and Split-and-Merge Judge [22] are trained on curated data that explicitly counter positional and314

length biases. Peer-review and debate schemes go a step further: PRD lets a second LLM critique315

the first judge and often corrects biased decisions [25], while [23] show that dialog with a more316

persuasive model leads to more truthful verdicts.317

Despite progress, most debiasing work treats a single judge in isolation. When evaluations aggregate318

many LLM scorers—for robustness, cost sharing, or diversity—biases can compound in complex319

ways that individual fixes do not capture.320

B.2 Label Aggregation for Multiple Noisy Evaluators321

Weak-supervision. Treating each LLM prompt or model as a noisy labeling function aligns322

aggregation with modern weak supervision. Snorkel [26, 27] estimates source accuracies and323

dependencies to denoise programmatic labels, laying the foundation for LLM-prompt aggregation.324

[28] introduces a scalable moment-matching estimator with closed-form weights.[29] generalizes325

label models beyond categorical labels to arbitrary metric spaces, greatly expanding their applicability.326

[30] jointly optimizes a classifier and a differentiable label model, outperforming two-stage pipelines327

when sources are dependent. Firebolt further removes requirements on known class priors or source328

independence, estimating class-specific accuracies and correlations in closed form [31]. [32] shows329

that fixing source bias in labeling functions using optimal transport can improve both accuracy and330

fairness.331

Aggregation of multiple LLM judges. Recent work shows that ensembling smaller evaluators can332

beat a single large judge. The PoLL jury combines three diverse 7–35B models and attains higher333

correlation with human ratings than GPT-4 while costing 7× less and reducing bias [33]. GED merges334

preference graphs from weak evaluators (Llama3-8B, Mistral-7B, Qwen2-7B) and denoises cycles; its335

DAG ranking surpasses a single 72B judge on ten benchmarks [34]. JudgeBlender ensembles either336

multiple models or multiple prompts, improving precision and consistency of relevance judgments337

over any individual LLM [35]. These findings echo classic “wisdom-of-crowds” results—when338

paired with principled aggregation, a panel of smaller, heterogeneous judges can outperform a much339

larger model, offering a practical path toward reliable, low-cost evaluation.340

B.3 Our Contribution in Context341

Prior research either (i) debiases one judge at a time or (ii) aggregates multiple judges assuming342

independent noise. Our confounder-aware aggregation unifies these threads. We posit latent factors343

(e.g., verbosity, formality) that influence all judges simultaneously and show how to infer both the344

latent truth and the shared confounders. This yields more reliable consensus scores when individual345

judges—human or LLM—share systemic biases.346
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(a) Naive: only true-quality (b) Connection-aware (c) Confounder-aware (Ours)

Figure 3: Graphical models for aggregating judge scores under different structural assumptions.
(a) A naive model assumes scores reflect only a true latent quality (Q) and that all judges are
equally reliable and represent independent views. (b) Connection-aware approach models intra-judge
interactions (J2 − J3 − J4), but still assumes the presence of a single latent quality score. (c) Our
Confounder-aware model introduces additional latent confounders (C) influencing judge scores.

C Algorithm Details347

We introduce CARE (Confounder-Aware Aggregation for Reliable Evaluation), a graphical348

model–based framework that robustly estimates the true quality of LLM-as-a-judge assessments349

by explicitly modeling the influence of both a latent true-quality variable and additional latent con-350

founders on observed judge scores. This section details the implementation of CARE, including351

the full CARE tensor algorithm, an SVD baseline for comparison, generalizations beyond Gaussian352

assumptions, practical heuristics for symmetry breaking and handling non-orthogonal latent factors,353

and justification for sparse structure recovery in mixed Gaussian data.354

C.1 Graphical Model Framework And Assumptions355

For each prompt-response pair, we observe scores J = (J1, . . . , Jp)
⊤ from p judges. We assume356

these observed scores depend on latent variables including one true quality variable Q and one357

or more confounders C = (C1, . . . , Ck), which we define as H = (Q,C). Our graphical model358

encodes the conditional independence structure among the nodes in (J,Q,C): if there is no edge359

between a pair of nodes, they are independent conditioned on the other nodes. An example is shown360

on the right in Fig. 3. We assume this structure is sparse; i.e., there are not too many edges in the361

graph, and make this precise later on.362

This framework is quite general and is compatible with a variety of distributions. For example, we363

may take J,Q,C to involve discrete variables, Gaussians, or mixed models. We can take the model364

to be an MRF or alternatively a mixture model. Our approaches are compatible with a broad range of365

choices, with practitioners able to select the most suitable modeling assumptions for their settings.366

Goals and Assumptions. Under the chosen modeling assumptions, our goal is to learn the distribution367

over J,Q,C. This involves handling three challenges. First, C1: we never observe the latents in368

H—neither ground truth nor confounders. Second, C2: we cannot assume any particular interaction369

in the graph. Third, C3: even if we recover the model parameters, we must be able to distinguish370

between Q and the confounders C to identify the model. The latter is required to discover which371

latent is the ground-truth quality—and which is a confounder. Once these obstacles are overcome,372

we seek to perform aggregation, e.g., compute a posterior P (Q|J), the Bayesian estimate for the373

latent true quality conditioned on all observable judge scores.374

In the following, we will work under the assumption that the judge scores J conditioned on the latents375

form a multivariate Gaussian distribution, i.e., J | H ∼ N (µH ,Σ), where µH is the conditional376

mean of observable variables. We defer other scenarios to the Appendix.377

C.2 CARE Algorithm378

The idea behind CARE is to examine two techniques, each of which is stymied by one of the379

obstacles C2 or C3 and to delicately combine them in a novel way. First, the sparsity of the380

conditional independence graph is encoded into an two-dimensional object that can be empirically381

estimated (e.g., the observable covariance matrix, or a cross-moment matrix). However, the presence382

of the latent variables (C1) obscures this structure—but a sparse + low-rank decomposition can383
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Algorithm 2 CARE: Confounder-Aware Aggregation for Reliable Evaluation

Input: Score matrix J ∈ Rn×p, parameters (γn, τ), decomposition method D ∈ {SVD,Tensor}
Output: Estimated True Quality {q̂(i)}ni=1

1: Graph Sparse Structure Estimation: Compute appropriate observed matrix f(J).
2: Sparse + low-rank decomposition:

(Ŝ, L̂)← argmin
S,L

1
2∥f(J)− S − L∥

2
F + γn(∥S∥1 + τ∥L∥∗)

3: Latent Factor Extraction:
4: if D = SVD then ▷ Fully Gaussian scenario
5: Compute UΛU⊤ ← SVD(L̂), where U ∈ Rp×h

6: else if D = Tensor then ▷ Binary-Gaussian mixture scenario
7: Partition judges into independent groups using Ŝ
8: Form empirical third-order tensor from judge groups
9: Run tensor decomposition, obtain latent conditional means µqc and mixture proportions πqc

10: end if
11: Symmetry Breaking: Identify the true-quality factor using heuristics described in §C.3
12: Latent Quality Estimation: Use the identified quality factor, compute q̂(i) for each example,

where q̂(i) = P (Q = 1 | Ji) for mixture model or q̂(i) = E[Q | J ] for fully gaussian

reveal it [36]. However, while we can decompose the resulting low-rank term via SVD in the hope of384

identifying the model, we can only do so up to rotations. Therefore we are blocked by C3.385

Conversely, tensor product decompositions [37] exploit tensor rigidity to enable this decomposition386

to be uniquely identified. However, for these techniques the judges must be independent conditioned387

on the latents—and we cannot assume this by C2.388

CARE (Algorithm 2) combines these approaches. First, it estimates the underlying graph structure389

from the observed judge scores via the sparse + low-rank decomposition, overcoming C1 and C2. It390

then uses recovered sparse term to estimate the graph and discover subsets of judges with sufficient391

conditional independence. These sets are then used to construct a tensor that can be decomposed via392

standard approaches (e.g., tensor power method) to recover the model, mitigating C3.393

This procedure is then followed by a symmetry-breaking step. This requires a weak assumption on394

the quality of the judges; in practice, even this assumption can be removed by employing simple395

heuristics to identify the true-quality factor among the latent factors. Finally, we aggregate judge396

scores into robust evaluations by weighting according to loadings from the identified quality factor.397

We study two special cases to build our intuition; more general settings are shown in the Appendix.398

CARE For Gaussian Mixtures. We have binary latents (Q,C) with Pr
(
Q = q, C = c

)
= πqc,399

where the judges follow a Gaussian conditional distribution with mean µqc ∈ Rp and covariance Σ:400

J
∣∣ (Q = q, C = c) ∼ N

(
µqc, Σ

)
, (q, c) ∈ {0, 1}2.

Here, performing the sparse + low-rank decomposition and obtaining L̂ is insufficient: the eigen-401

decomposition of L̂ does not directly yield identifiable latent-judge connections. We rely on third-402

order tensor statistics to identify conditional distributions explicitly:403

E(X1 ⊗X2 ⊗X3 | Q,C) = E(X1 | Q,C)⊗ E(X2 | Q,C)⊗ E(X3 | Q,C),
where judges are partitioned into independent groups X1, X2, X3 using the learned sparse structure404

Ŝ. Performing a tensor decomposition yields the conditional means µqc and mixture proportions πqc.405

Then, applying Bayes’ rule allows estimation of latent variables given observed scores:406

P (Q = 1|J) ∝ π10µ10 + π11µ11. (1)

CARE for Fully Gaussian Models. Under the fully Gaussian assumption, latent variables H are407

continuous, and the inverse covariance matrix (the precision matrix) encodes independence:408

Σ = Cov
[
(J,H)⊤

]
, Σ−1 = K =

(
KJJ KJH

KHJ KHH

)
, S = KJJ , L = KJHK

−1
HHKHJ .
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If assuming connections KJH between latent variables and judges are orthogonal and no direct409

connections among latent variables (i.e. KHH is diagonal), the low-rank matrix L̂ admits eigen-410

decomposition L̂ = UΛU⊤, where eigenvectors in U directly correspond to latent-judge edges411

(KJH ), and eigenvalues correspond to KHH . Each eigenvector represents how one latent variable412

influences observable judges. With these edges recovered, the conditional mean of true quality Q can413

be estimated by E(Q | J) = K−1
QQKQJJ , a weighted linear combination of observed scores.414

The fully Gaussian model prevents decomposing the low-rank term uniquely (due to rotational415

invariance). This holds regardless of whether we apply SVD or a tensor decomposition, leading to416

the special handling in Algorithm 2. As a result, in this case, orthogonal and independent latent417

assumptions are needed for identifying the latent-judge connection. This works the best when each418

judge is connected to exactly one latent variable. If a judge depends on both the confounder C and419

the true quality Q with comparable weights, the recovered columns {µ̂r} are only identifiable up to420

an arbitrary rotation, causing estimation errors.421

C.3 Heuristics for Identifiability and Robust Estimation422

Any instantiation of CARE will require symmetry-breaking procedures for latent variable identifia-423

bility. For example, the fully Gaussian case needs a heuristic to identify the true-quality direction424

among latent factors, distinguishing Q from confounders C. In the binary-Gaussian mixture scenario,425

an additional step resolves ambiguity between latent states (Q = 0 vs. Q = 1). Doing so will require426

additional information that can come from modeling assumptions, the use of ground-truth samples,427

or heuristics. We detail some examples below:428

Identifying True-Quality Factor for Joint-Gaussian Model. We introduce heuristics particularly429

aimed at distinguishing the true-quality latent variable from confounding latent variables. First, the430

human-anchor criterion leverages a small validation set containing human ratings. By including431

these human judgments in the graphical model, we anchor the latent quality variable to ground truth432

by selecting the latent factor exhibiting the strongest connection to the human evaluations. Second,433

we apply a loading balance heuristic, identifying the true-quality factor as one that loads broadly and434

with similar magnitude across all competent judges. Conversely, factors dominated by a few judges435

typically indicate shared confounding rather than true quality.436

Identifying Latent States for Mixed Model. In scenarios such as the tensor-based method, symmetry437

breaking additionally involves distinguishing latent states corresponding to different quality levels438

(e.g., Q = 0 versus Q = 1). In practice, we can use known labeled samples (such as high-439

quality examples) to anchor and identify latent-state configurations. By comparing different latent440

configurations with these known labeled samples, we select the latent-state assignment that best441

aligns with empirical observations, effectively removing latent state ambiguity.442

C.4 SVD Baseline in Synthetic Experiment443

We form the empirical two-way moment between view 1 and view 2:444

M̂1,2 =
1

n

n∑
i=1

X
(i)
1 X

(i)⊤
2 =

∑
q,c

πq,c µ1,q,c µ
⊤
2,q,c + sampling noise,

where πq,c = Pr[Q = q, C = c] and µv,q,c = E[Jv | Q = q, C = c] for judge/view v A445

singular-value decomposition446

M̂1,2 = U12 Σ12 V
⊤
12

yields factor matrices447

U12 Σ
1/2
12 ≈ [µ1,q,c]R, V12 Σ

1/2
12 ≈ [µ2,q,c]R,

where R ∈ O(4) is an unknown orthogonal matrix.448

Repeating on M̂1,3 = 1
n

∑
iX

(i)
1 X

(i)⊤
3 = U13 Σ13 V

⊤
13 produces a second rotated copy of [µ1,q,c].449

We solve the Procrustes problem450

R = arg min
O∈O(4)

∥∥U12 Σ
1/2
12 − U13 Σ

1/2
13 O

∥∥ ∗ F,
13



Algorithm 3 CARE (T)

Input: Score matrix J ∈ Rn×p, tolerance ε.
Output: Estimates

{
µ̂qc, π̂qc

}
q,c∈{0,1}.

A. Anchor discovery (graph partition)
1: Compute the sample covariance Σ̂ = J⊤J/n and perform the sparse+low-rank split Σ̂ ≈ Ŝ + L̂

(Alg. 2).
2: Partition judges into three disjoint groups {Gℓ}3ℓ=1 that satisfy

a ̸=b, j1∈Ga, j2∈Gb =⇒ |Ŝj1,j2 | ≤ ε,

ensuring no direct edges with strength greater than ϵ can exist across groups.

B. Empirical third-order moment tensor
3: for ℓ = 1, 2, 3 do
4: Xℓ ← columns of J indexed by Gℓ ▷ Xℓ ∈ Rn×|Gℓ|

5: end for
6: Compute

T̂ =
1

n

n∑
i=1

X
(i)
1 ⊗X

(i)
2 ⊗X

(i)
3 ∈ R|G1|×|G2|×|G3|.

C. Tensor decomposition
7: Run a CP tensor-power decomposition on T̂ to obtain k = 4 components{

(π̂qc, µ̂
(1)
qc , µ̂

(2)
qc , µ̂

(3)
qc )
}
q,c∈{0,1}2 , where π̂qc > 0 and µ̂(ℓ)

qc ∈ R|Gℓ|.

D. Assemble full means
8: for q, c ∈ {0, 1}2 do
9: µ̂qc ← concat

(
µ̂
(1)
qc , µ̂

(2)
qc , µ̂

(3)
qc

)
∈ Rp.

10: end for
E. State alignment with anchors

11: Find the permutation ρ of {1, . . . , 4} that minimizes
∑4

r=1

∥∥µ̂ρ(r) − µanchor(r)
∥∥2
2
, where the four

anchor prototypes correspond to (Q,C)={00, 01, 10, 11}.
12: (µ̂00, µ̂01, µ̂10, µ̂11)← (µ̂ρ(1), µ̂ρ(2), µ̂ρ(3), µ̂ρ(4)).

F. Mixing weights
13: (π̂00, π̂01, π̂10, π̂11)← (π̂ρ(1), π̂ρ(2), π̂ρ(3), π̂ρ(4)).

14: return {µ̂qc, π̂qc}q,c∈{0,1}.

then set µ̂2,q,c = (V12 Σ
1/2
12 )R⊤ and µ̂3,q,c = (V13 Σ

1/2
13 )R⊤ to align all three views.451

This SVD baseline recovers {µv,q,c} up to the permutation/sign ambiguity inherent in any orthogonal452

transform.453

C.5 Genral CARE Setup454

Extension Beyond the Gaussian Observation Model. The multivariate-Gaussian assumption455

for J |H is convenient—its first two or three moments already encode all information needed for456

the sparse + low-rank and tensor steps—but it is not a requirement. Because CARE learns the457

graphical structure, the same pipeline applies whenever each judge’s conditional distribution lies in458

an exponential family or, more generally, a latent-variable generalized linear model (GLM):459

• Categorical or ordinal scores. For Likert ratings or pairwise preferences we can set460

Ji | H ∼ Categorical
(
softmax(W⊤

i H)
)

or Ordinal−logit(W⊤
i H).

The graph—hence the sparse mask S—is unchanged; only the node-wise likelihoods differ. We still461

recover S from conditional-mutual-information or pseudo-likelihood scores, and we still factorize462

higher-order indicator moments such as E
[
1{Ja=ℓ} 1{Jb=m} 1{Jc=n}

]
.463
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• Mixed Discrete-Continous Scores. When some judges output real scores and others categorical464

flags, we use a mixed conditional distribution:465

p(J |H) =
[
Πi∈Cont.N (Ji;µHi

, σ2
i )
] [

Πj∈Disc.Bernoulli(σ(W⊤
j H))

]
.

CARE forms mixed raw/indicator moments, and identifiability again follows from standard tensor-466

decomposition guarantees for mixed conditional means.467

• Heavy-tailed or skewed real scores. When numeric scores are skewed or contain outliers, a468

multivariate-t or Gaussian scale mixture is appropriate. Up to a scalar factor, the covariance still469

decomposes as sparse + low-rank, so Steps 1–2 of Algorithm 2 work after a simple rescaling.470

Empirically, we find that replacing the Gaussian local likelihood only affects the estimation of471

sparse structure and extraction of latent factors, not the subsequent symmetry-breaking or posterior472

computation; thus the overall CARE pipeline generalizes with minimal adjustments.473

C.6 Heuristics and Justifications474

Heuristics for symmetry breaking Any instantiation of CARE will require symmetry-breaking475

procedures for latent variable identifiability. For example, the fully Gaussian case needs a heuristic to476

identify the true-quality direction among latent factors, distinguishing Q from confounders C. In the477

binary-Gaussian mixture scenario, an additional step resolves ambiguity between latent states (Q = 0478

vs. Q = 1). Doing so will require additional information that can come from modeling assumptions,479

the use of ground-truth samples, or heuristics. We detail some examples below:480

• Identifying True-Quality Factor for Joint-Gaussian Model. We introduce heuristics particularly481

aimed at distinguishing the true-quality latent variable from confounding latent variables. First, the482

human-anchor criterion leverages a small validation set containing human ratings. By including483

these human judgments in the graphical model, we anchor the latent quality variable to ground484

truth by selecting the latent factor exhibiting the strongest connection to the human evaluations.485

Second, we apply a loading balance heuristic, identifying the true-quality factor as one that loads486

broadly and with similar magnitude across all competent judges. Conversely, factors dominated by487

a few judges typically indicate shared confounding rather than true quality.488

• Identifying Latent States for Mixed Model. In scenarios such as the tensor-based method,489

symmetry breaking additionally involves distinguishing latent states corresponding to different490

quality levels (e.g., Q = 0 versus Q = 1). In practice, we can use known labeled samples (such as491

high-quality examples) to anchor and identify latent-state configurations. By comparing different492

latent configurations with these known labeled samples, we select the latent-state assignment that493

best aligns with empirical observations, effectively removing latent state ambiguity.494

Heuristic for Addressing Orthogonality Violations in CARE (SVD).495

Existing heuristics for identifying the true quality latent factor can estimate corresponding weights,496

but they often suffer from bias when the orthogonality assumption—central to the application of497

SVD—is violated. This issue commonly arises in real-world datasets. We found the following498

weighting rule effective in both synthetic and real-world settings:499

w ← λ⋆u⋆ −
∑

ui∈U\{u⋆}

λiui,

where w represents the learned weights for each judge, λ∗ and u∗ is the singular value and vector of500

L that corresponds to the direction that is closest to true quality latent variable, λi, ui represent rest501

of the singular values and vectors, which can be interpreted as spurious/confounding factors.502

This rule intuitively subtracts the influence of overlapping (non-orthogonal) confounding components503

from the estimated true score factor.504

Figure 4 illustrates the effect of this heuristic in a synthetic fully Gaussian setup. In the non-orthogonal505

case—where confounding components overlap with the true signal—the heuristic improves the506

estimation of the true latent variable. In contrast, it underperforms in the orthogonal case, where507

judges influenced by true scores are cleanly separated from those influenced by confounders.508

Justification of Decomposing Covariance Matrix. In the joint-Gaussian setting we decompose the509

precision matrix, whose sparsity pattern directly encodes conditional independences in an undirected510
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Figure 4: Effect of the proposed heuristic in a fully Gaussian synthetic setup. We estimate the true
quality variable Q and report the mean squared error. The heuristic improves estimation in the
non-orthogonal setting, but slightly degrades performance in the orthogonal setting where true and
confounding components are disjoint.

graphical model. For a mixed Gaussian model, however, each observation J ∈ Rp is generated by511

first drawing a latent class label Q,C ∈ {0, 1}2 (with probabilities πqc) and then sampling512

J | Q,C = q, c ∼ N
(
µqc, Σ

)
,

where the within-component covariance Σ does not depend on q, c. Because the latent variable only513

perturbs the mean, the marginal covariance of J splits, via the law of total covariance, into514

Cov(J) = E
[
Cov(J | Q,C)

]︸ ︷︷ ︸
=Σ

+ Cov
(
E[J | Q,C]

)︸ ︷︷ ︸
=
∑

q,c πqc (µqc−µ̄)(µqc−µ̄)⊤

, µ̄ :=
∑
q,c

πqcµqc. (2)

The first term, Σ, is the same sparse block-diagonal matrix we plant in the simulator to model515

direct judge–judge interactions; the second term is an outer-product mixture of at most 4 linearly516

independent directions and hence has rank ≤ 4. Equation 2 therefore exhibits the population517

covariance as a sparse + low-rank decomposition,518

Cov(J) = S + L, S = Σ (sparse), L = Cov
(
E[J | Q,C]

)
(low rank).

Because sparsity now lives in S, not in the inverse covariance, estimating S and L by fitting a sparse-519

plus-low-rank model directly to the empirical covariance is both natural and statistically identifiable520

for the mixed Gaussian case.521
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D Theory522

We formalize the graphical model under joint gaussian distribution and notation (Section D.1), then523

discuss the identifiability of graph structure with exact and approximate recovery (Section D.2)524

and quantify the sample complexity required for consistent recovery of our SVD-based algorithm525

(Section D.3). Next, we present the model misspecification error when confounding factor is not526

correctly characterized (Section D.4). Finally, we discuss sample complexity required for tensor-527

based algorithm under mixed Gaussian distribution (Section D.5). All proofs are included in Section528

D.6.529

D.1 Model and Notation530

We discuss the model under joint-gaussian distribution where all variables follow the same definitions531

as in Section 2. Briefly, J = (J1, . . . , Jp)
⊤ stacks the p observable judge scores, and H =532

(Q,C1, . . . , Ck)
⊤ collects the h = k + 1 latent variables.533

Σ = Cov
[
(J,H)⊤

]
, Σ−1 = K =

(
KJJ KJH

KHJ KHH

)
,

where the subscript J (resp. H) refers to observable (resp. latent) coordinates.534

The observable block factorizes via the Schur complement:535

(ΣJJ)
−1 = S + L, S = KJJ , L = KJH K−1

HH KHJ .

Here Σo is the covariance matrix of observable variables, S ∈ Rp×p is sparse and encodes direct536

conditional edges among judges, L is low-rank with rank(L) ≤ h and captures dependencies537

mediated by the latent variables. Entry (KJH)iℓ is the edge weight between judge i and latent538

factor ℓ.539

D.2 Graph Structure Identifiability540

While (S,L) can be recovered (e.g. via convex sparse-plus-low-rank regularization [36], the finer541

structure of KJH is usually not identifiable from L. For example, for arbitrary rotation matrix R ∈542

Rh×h, L = (KJHK
−1/2
HH R)(R⊤K

−1/2
HH KHJ), this indicates one cannot distinguish KJHK

−1/2
HH543

from KJHK
−1/2
HH R without further constraints. Hence, we need to impose additional assumptions:544

Assumption D.1 (Latent–latent independence and eigen-gap). KHH = diag(d1, . . . , dh) with545

d1 > d2 > · · · > dh > 0.546

Assumption D.2 (Orthogonal latent–observable connections). The columns of KJH are orthogonal,547

i.e. K⊤
JHKJH is diagonal. A special case is the disjoint-support model where each judge connects to548

exactly one latent factor.549

Next, we provide an exact recovery result given the above assumptions.550

Theorem D.3 (Exact Recovery). Under Assumptions 1 and 2, columns in KJH are identifiable up to551

column permutations and sign flips.552

Real-world data rarely satisfy the exact orthogonality in Assumption D.2. To assess robustness,553

consider the following perturbed connection matrix:554

K̃JH = KJH + E, ∥E∥2 small.
The associated low-rank part is L̃ = K̃JHK

−1
HHK̃HJ . Let the eigen-pairs of L = KJHK

−1
HHKHJ555

and L̃ be {(λi, ui)}hi=1 and {(λ̃i, ũi)}hi=1, ordered so that λ1 > · · · > λh > 0, and denote the556

eigen-gap by557

δi = min
j ̸=i
|λi − λj | > 0.

Theorem D.4 (Stability under approximate orthogonality). For every i ∈ [h],558

∥ûi − ui∥2 ≤
2∥K−1

HH∥2 ∥E∥2
δi

+ O
(
∥E∥22

)
.

This indicates that latent–observable directions remain identifiable (up to column permutations and559

sign flips) whenever the perturbation norm ∥E∥2 is small relative to the eigen-gap δi. We defer the560

proof to Appendix D.6.561
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D.3 Sample Complexity Bound562

We now quantify how many i.i.d. samples are needed for the two–stage estimator in Algorithm 2 to563

recover the latent–observable directions KJH ∈Rp×h.564

As detailed in Algorithm 2, our estimator for KJH proceeds in two stages: first, a sparse + low-rank565

decomposition of sample precision matrix. Second, we extract the latent–observable directions by566

taking the rank-h eigen-decomposition L̂n =
∑h

i=1 λ̂i ûiû
⊤
i and setting K̂JH := [û1, . . . , ûh].567

Theorem D.5 (Sample complexity for recovering KJH ). Let L∗ = KJHK
−1
HHKHJ ∈ Rp×p have568

distinct eigenvalues λ1 > · · · > λh and define the (global) eigengap δ := min1≤i<j≤h|λi − λj |.569

Assume the identifiability, incoherence, and curvature conditions of [36]. Then for any ϵ > 0, with570

probability at least 1− 2e−ϵ,571

max
i≤h

∥∥ ûi − ui ∥∥2 = O
( √

ϵ√
n ξ(T ) δ

)
,

where n is the sample size, ûi and ui are the i-th eigenvectors of L̂n and L∗ respectively. T = T (L∗)572

is the tangent space of L∗, ξ(T ) is the curvature constant from [36].573

We defer the proof to Appendix D.6. At a high-level, we adapt the identifiability, incoherence and574

curvature conditions from Theorem 4.1 of [36] and combine it with extended result of Davis-Khan’s575

theorem [38].576

This bound shows that the column-wise ℓ2 error decays at the standard parametric rate n−1/2, and577

is attenuated by both the manifold curvature ξ(T ) and the eigengap δ. Achieving an accuracy of at578

most α ∈ (0, 1) therefore requires579

n = Õ
( ϵ

ξ(T )2δ2α2

)
samples, up to universal constants and log-factors.580

D.4 Misspecification Error581

Many label aggregation frameworks (e.g.,[39, 28, 29]) assume a single latent variable that explains the582

observed labels. However, in setups like LLM-as-a-judge, the scores may be influenced by additional583

latent factors or confounders that also affect the observed annotations. Ignoring these confounder584

latents leads to model misspecification, which can bias the aggregated labels. We characterize this585

bias and analyze its impact on the estimated aggregation weights.586

Let L∗ =
∑h

ℓ=1
1
dℓ
kℓk

T
ℓ be the true rank-h low-rank component of the observable precision matrix,587

derived from the latent-observable connection matrix KJH = [k1, . . . ,kh] and latent-latent precision588

KHH = diag(d1, . . . , dh). Let utrue
1 = k1/||k1||2 be the true direction of influence for the quality589

score latent variable Q (assuming k1 ̸= 0).590

Define A = 1
d1
k1k

T
1 . Its principal (and only non-zero) eigenvalue is λ1 = 1

d1
||k1||22, and its spectral591

gap (to its other zero eigenvalues) is δ = λ1. Let E =
∑h

ℓ=2
1
dℓ
kℓk

T
ℓ be the confounding component,592

so L∗ = A+E. Let v1 be the principal unit-norm eigenvector of L∗. When a rank-1 model is fitted,593

the estimated direction is ûpop
1 = v1.594

Theorem D.6. If ||E||op ≤ δ/2, the ℓ2 deviation of the estimated direction v1 from utrue
1 is bounded595

by:596 ∣∣∣∣v1 − sutrue
1

∣∣∣∣
2
≤

2 ||E||op

δ
=

2
∣∣∣∣∣∣∑h

ℓ=2
1
dℓ
kℓk

T
ℓ

∣∣∣∣∣∣
op

1
d1
||k1||22

for a sign s = ±1 (chosen so that s(utrue
1 )Tv1 ≥ 0).597

Proof. By Davis-Kahan theorem (Theorem 2 in [38]), if ||E||op ≤ δ/2, then the ℓ2 distance between598

v1 and utrue
1 (after aligning their signs via s = ±1) is bounded by:599 ∣∣∣∣v1 − s · utrue

1

∣∣∣∣
2
≤

2 ||E||op

δ
.
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Plugging in E yields the desired result:600

∣∣∣∣v1 − s · utrue
1

∣∣∣∣
2
≤

2
∣∣∣∣∣∣∑h

ℓ=2
1
dℓ
kℓk

T
ℓ

∣∣∣∣∣∣
op

1
d1
||k1||22

.

601

The theorem quantifies the directional bias in the estimated influence of Q when confounders are602

ignored. This bias is proportional to the collective “strength” of confounders in the precision domain603

(numerator) and inversely proportional to Q’s own “strength” (denominator). Fitting a rank-1 model604

forces this bias, while a higher-rank model offers the capacity to separate these influences.605

Corollary D.7 (Error Bound for Estimated Conditional Mean of Q). Denote the true conditional606

mean of true quality score latent variable Q given the observable variables O = (J1, ..., Jp)607

be denoted by E[Q|O]true. Then, E[Q|o]true = − ||k1||2
d1

(utrue
1 )To. Let an estimated conditional608

mean with the misspecified direction, E[Q|o]mis, be formed using the misspecified direction v1 be609

E[Q|o]mis = −
||k1||2

d1
(s · v1)

To, where s = ±1 is chosen such that s · (utrue
1 )Tv1 ≥ 0. Then, the610

absolute error in the estimated conditional mean due to the directional misspecification is bounded611

by:612

|E[Q|o]mis − E[Q|o]true| ≤
2
∣∣∣∣∣∣∑h

ℓ=2
1
dℓ
kℓk

T
ℓ

∣∣∣∣∣∣
op

||k1||2
||o||2

This holds if the condition from the main theorem, ||E||op ≤ δ/2 = 1
2d1
||k1||22, is met, where613

E =
∑h

ℓ=2
1
dℓ
kℓk

T
ℓ .614

Proof. The absolute difference is:615

|E[Q|o]mis − E[Q|o]true| =
∣∣∣∣−||k1||2

d1
(s · v1)

To−
(
−
||k1||2
d1

(utrue
1 )To

)∣∣∣∣
=

∣∣∣∣−||k1||2
d1

(s · v1 − utrue
1 )To

∣∣∣∣
=
||k1||2
d1

∣∣(s · v1 − utrue
1 )To

∣∣
By the Cauchy-Schwarz inequality,

∣∣(x)Ty∣∣ ≤ ||x||2 ||y||2. Applying this:616

|E[Q|o]mis − E[Q|o]true| ≤
||k1||2
d1

∣∣∣∣s · v1 − utrue
1

∣∣∣∣
2
||o||2

The term ||s · v1 − utrue
1 ||2 is equivalent to ||v1 − s · utrue

1 ||2 from the main theorem statement, where617

s aligns utrue
1 with v1. From the preceding Theorem, we have the bound (where δ = 1

d1
||k1||22):618

∣∣∣∣v1 − s · utrue
1

∣∣∣∣
2
≤

2 ||E||op

δ
=

2
∣∣∣∣∣∣∑h

ℓ=2
1
dℓ
kℓk

T
ℓ

∣∣∣∣∣∣
op

1
d1
||k1||22

Substituting this bound into the inequality for the error in the conditional mean:619

|E[Q|o]mis − E[Q|o]true| ≤
||k1||2
d1

(
2 ||E||op
1
d1
||k1||22

)
||o||2

=
||k1||2
d1

·
2d1 ||E||op

||k1||22
· ||o||2

=
2 ||E||op

||k1||2
||o||2

=
2
∣∣∣∣∣∣∑h

ℓ=2
1
dℓ
kℓk

T
ℓ

∣∣∣∣∣∣
op

||k1||2
||o||2

620

19



This corollary shows that the error in the estimated conditional mean of Q (due to using the misspeci-621

fied direction for Q’s influence) scales with:622

• The magnitude of the observable vector o (specifically, ||o||2).623

• The collective strength of the confounding latent variables in the precision domain624

(
∣∣∣∣∣∣∑h

ℓ=2
1
dℓ
kℓk

T
ℓ

∣∣∣∣∣∣
op

).625

• Inversely with the ℓ2-norm of the true connection weights of Q (||k1||2).626

Especially, we see that strong confounders widen the gap bound, whereas heavier connection weights627

to the true score shrink it. Put differently, misspecification hurts most when confounders are strong628

and the quality signal is weak.629

D.5 Sample Complexity for CARE tensor algorithm630

Assumption D.8 (Model and identifiability). Let J = (X⊤
1 , X

⊤
2 , X

⊤
3 )⊤ ∈ Rp (p = p1 + p2 + p3)631

be one observations i.i.d generated as632

(Q,C) ∼ Multinomial({πqc}q,c∈{0,1}), Xℓ | (Q = q, C = c) ∼ N
(
µ(ℓ)
qc , Σ

)
,

with ℓ ∈ {1, 2, 3}. Write r ∈ [4]↔ (q, c) ∈ {0, 1}2 and define wr := πqc, ar := µ
(1)
qc ∈ Rp1 , br :=633

µ
(2)
qc ∈ Rp2 , cr := µ

(3)
qc ∈ Rp3 .634

(A1) Block-conditional independence. X1 ⊥ X2 ⊥ X3 | (Q,C).635

(A2) Full-rank moment tensor. The population third-order moment M := E[X1 ⊗ X2 ⊗636

X3] =
∑4

r=1 wr ar ⊗ br ⊗ cr has rank 4, with πmin := minr πr > 0 and λmin :=637

minr ∥ar∥2∥br∥2∥cr∥2 > 0.638

(A3) Non-degenerate covariance. σ2
max := ∥Σ∥op <∞.639

(A4) Spectral gap. The CP factors are uniquely defined up to scaling/sign and satisfy the eigenvalue-640

gap condition of Theorem 5.1 in [37]. Denote that gap by δ > 0.641

(A5) Correct graph partition. There exist a graph partition such that judges between different642

groups are conditional independent. Step A of Algorithm 3 returns the true groups G1,G2,G3.643

Theorem D.9 (Sample complexity of CARE tensor step). Fix 0 < ε < 1 and let the assumptions644

above hold. Run Algorithm 2 (CARE) on n i.i.d. samples to obtain {µ̂qc, π̂qc}q,c∈{0,1}. Under645

Assumption D.8, there exist universal constants C1, C2 > 0 such that if646

n ≥ C1
σ6
max

δ2 π2
min

p log
(
p/ε
)
,

then with probability at least 1− ε647

max
q,c

∥∥µ̂qc − µqc

∥∥
2
≤ C1

σ3
max

δ

√
p log(p/ε)

n
, max

q,c

∣∣π̂qc − πqc∣∣ ≤ C2

√
p log(p/ε)

n
.

We defer the proof to D.6.648

D.6 Proofs649

Proof of Theorem D.3650

Proof. Let low-rank matrix satisfies L =
∑h

i=1 di uiu
⊤
i with ui the i-th column of Koh. By651

Assumption D.2 the ui are mutually orthogonal, and by Assumption D.1 the eigenvalues d1 > · · · >652

dh are distinct; hence this rank-1 decomposition is the (unique) spectral decomposition of L. Thus653

each ui is identifiable from L up to sign and ordering, proving the theorem.654
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Proof of Theorem D.4655

Proof. We apply standard matrix perturbation theory for eigenvectors. Starting from the eigenvalue656

decomposition:657

Lui = λi ui,

we write the perturbed matrix as658

L̃ = (Koh + E)K−1
hh (Koh + E)⊤ = L + KohK

−1
hhE

⊤ + EK−1
hhK

⊤
oh + EK−1

hhE
⊤.

Let ∆L = L̃− L. By the Davis–Kahan theorem,659

∥ûi − ui∥2 ≤
2 ∥∆L∥2

δi
,

where δi = minj ̸=i |λi − λj | > 0. Moreover,660

∥∆L∥2 ≤ 2 ∥Koh∥2 ∥K−1
hh ∥2 ∥E∥2 + O(∥E∥22)

and ∥Koh∥2 = 1. Hence661

∥ûi − ui∥2 ≤
2 ∥K−1

hh ∥2 ∥E∥2
δi

+ O(∥E∥22).

This completes the proof.662

Proof of Theorem D.5663

Proof of Theorem D.5. Step 1 – Spectral error of L̂n. Apply Chandrasekaran et al.’s Theorem 4.1664

with the regularization parameters665

γn =
48
√
2Dψ(2− ν)
ξ(T )ν

√
ϵ

n
, σ, θ as in their conditions (3)–(4).

Under the incoherence and curvature conditions of their Proposition 3.3, there exists a universal666

constant C1 > 0 such that, with probability at least 1− 2e−ϵ,667 ∥∥ L̂n − L∗∥∥
2
≤ C1

√
ϵ/n

ξ(T )
. (3)

Step 2 – Eigenvector perturbation via Davis–Kahan. Let L∗ = UΛU⊤ with Λ =668

diag(λ1, . . . , λh, 0, . . . , 0) and collect the top–h eigenvectors in Uh = [u1, . . . , uh]. Write the669

spectral decomposition of the estimator as L̂n = ÛhΛ̂Û
⊤
h + R, where R contains only the eigen-670

components of rank > h. Set the perturbation E := L̂n − L∗.671

Applying Corollary 3 from [38] to the i-th eigenpair gives672

∥ui − ûi∥2 ≤
23/2∥E∥2

δi
. (4)

Step 3 – Combine the two bounds. Insert equation 3 into equation 4:673

∥ ûi − ui ∥2 ≤
23/2C1

δ ξ(T )

√
ϵ

n
∀ i ∈ [h],

and take the maximum over i. This proves the advertised high-probability bound674

max
i≤h
∥ ûi − ui ∥2 = O

(√
ϵ/n

ξ(T ) δ

)
.

Step 4 – Invert to a sample-size requirement. Setting the right-hand side to a target accuracy675

ε ∈ (0, 1) and solving for n yields n ≥ 4C2
1

ε2
ϵ

ξ(T )2δ2 , which is the sample-complexity statement in676

the theorem.677
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Proof for Theorem D.9678

Proof sketch. Step 1: Concentration of the empirical tensor. Let M̂ := 1
n

∑n
i=1X

(i)
1 ⊗X

(i)
2 ⊗679

X
(i)
3 . Because each Xℓ is sub-Gaussian with proxy σmax, the operator-norm Bernstein bound for680

order-3 tensors (Lemma 5 of 40) yields681

∥M̂ −M∥op = O
(
σ3
max

√
p log(p/ε)

n

)
w.p. 1− ε/2.

Step 2: Robust CP decomposition. Applying the non-symmetric tensor power method of [37,682

Alg. 2] to M̂ and invoking their perturbation bound (Theorem 5.1 therein) gives, for every component683

r ∈ [4],684 ∥∥(âr, b̂r, ĉr)− (ar, br, cr)
∥∥
2

= O
(

1
δ ∥M̂ −M∥op

)
.

Step 3: Assembling full means. Algorithm 3 concatenates the three block-means, so µ̂r − µr =685

(âr − ar, b̂r − br, ĉr − cr), and the same O(·) factor carries through.686

Step 4: Mixing-weight estimation. Given accurate factor recovery, the usual least-squares re-687

estimation of weights satisfies |π̂qc − πqc| = O
(
∥M̂ −M∥op

)
(37, Theorem B.1), yielding the stated688

rate.689

Step 5: Union bound. Combine Steps 1–4 and union-bound over the four components to obtain the690

final probability 1− ε.691
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E Experimental Details and Extended Results692

This appendix provides additional details on our experimental setup and supplementary analyses.693

We first describe the datasets, metrics, baseline methods, and the pool of LLM judges used in our694

evaluation (E.1), followed by the exact prompt templates used to elicit judgments (E.2). We then695

report the performance of individual LLM judges (E.3) and introduce our suite of programmatic696

judges, including their construction and standalone accuracy (E.4). Next, we examine ablations697

on prompt-based interventions (E.5) and evaluate robustness to confounding factors, covering both698

injected stylistic and semantic biases as well as controlled experiments with dummy judges (E.6–E.7).699

We then present additional validations: synthetic experiments demonstrating the benefits of tensor700

decomposition (E.8), graph-aware tensor decomposition (E.9), and a real-world Gaussian mixture701

setting on CivilComments (E.10). Together, these results expand on the main text and demonstrate702

the generality and robustness of our CARE framework.703

E.1 Setup.704

Datasets & Metrics. We use FeedbackQA [41], UltraFeedback [42], and HelpSteer2 [43] datasets705

for response scoring. Performance is benchmarked using Mean Absolute Error (MAE) to measure706

numerical accuracy and Kendall’s τ rank correlation [44] to evaluate ranking consistency, accommo-707

dating variations in judge scales and calibration.708

• FeedbackQA [41]: question–answer pairs rated for helpfulness on a 1–5 scale. We use the709

validation set, treating the average of two human ratings as ground truth.710

• HelpSteer2 [43]: large-scale assistant responses annotated on multiple axes (0–4). We use the711

validation set and take the helpfulness score as ground truth.712

• UltraFeedback [42]: responses rated 0–10 for overall quality, with scores aggregated from GPT-4713

and human raters. We randomly sample 5,000 examples for evaluation.714

• Synthetic Dataset (Section E.8). We construct a synthetic dataset with latent state probabilities715

set to πqc = [0.2, 0.2, 0.3, 0.3], corresponding to latent states (Q,C) as (0, 0), (0, 1), (1, 0), (1, 1)716

respectively. The judges are organized into three distinct groups, each containing four judges whose717

conditional means µqc are randomly drawn from a uniform distribution ranging between 1 and 4.718

Dependence structures are imposed explicitly: for judges independent of the true quality variable719

Q, we constrain their conditional means such that averages depend solely on the confounder C720

(i.e., rows corresponding to Q = 0 and Q = 1 are identical for each C state).721

Baselines. We compare CARE to following baseline aggregation methods: (i) majority voting722

(MV), (ii) simple averaging (AVG) [11], (iii) discrete-based weak supervision (WS) [39], and (iv)723

continuous-based weak supervision (UWS) [29].724

LLM Judges. We consider the following LLMs as judges to score responses: Llama-3.2-1B725

[45], Llama-3.2-3B [45], Llama-3.1-8B-Instruct [45], Mistral-7B-Instruct-v0.3726

[46], Qwen3-0.6B [47], Qwen3-1.7B [47], Qwen3-4B [47], Qwen3-8B [47],727

Phi-4-mini-instruct [48], gemma-3-1b-it [49], gemma-3-4b-it [49].728

Computing Resources. We used a server equipped with an NVIDIA RTX 4090 (24GB). Generating729

LLM judge outputs took up to 3 hours per dataset. In contrast, the aggregation algorithms were730

efficient, completing in under 1 minute for datasets with approximately 5,000 rows.731

E.2 Prompt Templates732

In this subsection we provide the prompts we used for collecting LLM judgements.733

LLM Judge Scoring Template (FeedbackQA, HelpSteer2, Ultrafeedback)

You will be given a user_question and system_answer couple.

Your task is to provide a ‘total rating’ scoring how well the system_answer answers the
user concerns expressed in the user_question. Give your answer as a float on a scale of
{min_rating} to {max_rating}, where {min_rating} means that the system_answer is not

734

23



helpful at all, and {max_rating} means that the answer completely and helpfully addresses the
question.

Provide your feedback as follows:

Feedback:::
Total rating: (your rating, as a float between {min_rating} and {max_rating})

Now here are the question and answer.

Question: {question}
Answer: {answer}

Feedback:::
Total rating:

735

Intervened LLM Judge Scoring Template (Section 3.4)

You are a careful and impartial evaluator. Your task is to rate how well the system_answer
responds to the user_question, focusing on substance, correctness, and completeness.

Rate the answer on a scale from {min_rating} to {max_rating}, where:
- {min_rating} means the answer does not address the question or is misleading,
- {max_rating} means the answer fully and helpfully addresses the question with accurate,
relevant, and concise information.

Avoid common judgment biases:
- Do **not** reward irrelevant fluency, length, or politeness.
- Do **not** penalize answers solely for brevity if they are complete.
- Do **not** be influenced by phrasing style unless it affects clarity or correctness.

Judge only the answer’s content in relation to the question. Ignore formatting, gram-
mar, or tone unless they impact understanding or utility.

Provide your feedback as follows:

Feedback:::
Total rating: (a float from {min_rating} to {max_rating})

Now, here are the inputs:

Question: {question}
Answer: {answer}

Feedback:::
Total rating:

736

LLM Judge Toxicity Scoring Template (CivilComments)

You will be given a user_question and system_answer couple.

Your task is to provide a ‘total rating’ scoring how well the system_answer answers the
user concerns expressed in the user_question. Give your answer as a float on a scale of
{min_rating} to {max_rating}, where {min_rating} means that the system_answer is not

737
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helpful at all, and {max_rating} means that the answer completely and helpfully addresses the
question.

Provide your feedback as follows:

Feedback:::
Total rating: (your rating, as a float between {min_rating} and {max_rating})

Now here are the question and answer.

Question: {question}
Answer: {answer}

Feedback:::
Total rating:

738
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E.3 Individual LLM Judge Performance739

Table 5 shows the performance of individual LLM judges. Overall, we find that aggregation methods740

outperform or match the best single judge. Since the relative performance of individual LLM judges741

is not known a priori in practical settings, aggregation offers a useful approach for integrating judges742

in an agnostic manner.743

Table 5: Performance of individual judges across datasets, as evaluated in Section 3.1.

FeedbackQA HelpSteer2 UltraFeedback

MAE (↓) τ (↑) MAE (↓) τ (↑) MAE (↓) τ (↑)

gemma-3-1b-it 1.0073 0.2315 1.0666 0.0825 1.0606 0.1812
gemma-3-4b-it 0.7578 0.4537 0.9920 0.1402 0.8492 0.2309
Llama-3.1-8B-Instruct 0.8148 0.4341 1.1364 0.1261 0.8648 0.3194
Llama-3.2-1B 1.2219 -0.0525 1.0049 -0.0132 1.0119 0.0752
Llama-3.2-3B 1.0362 0.0051 0.9995 0.0251 1.1522 0.1648
Mistral-7B-Instruct-v0.3 1.0244 0.4539 1.0793 0.1116 0.8572 0.1735
Phi-4-mini-instruct 0.8082 0.4557 1.0692 0.1576 0.8355 0.3147
Qwen3-0.6B 1.0969 0.2073 1.1255 0.0370 1.0233 0.1254
Qwen3-1.7B 1.1507 0.2485 1.0693 0.1049 1.1382 0.1926
Qwen3-4B 1.0999 0.2854 0.9675 0.2290 0.7088 0.3921
Qwen3-8B 1.0517 0.4417 0.9675 0.2094 0.7512 0.3140

E.4 Programmatic Judges744

Programmatic judges, synthesized by LLMs, distill and convert evaluation logic into interpretable,745

cheap-to-obtain program code [12, 50, 51]. These program judges provide specialized, independent746

assessments compared to using LLMs directly as evaluators. We integrate these judge sets into CARE747

to enhance evaluation signals.748

We describe the creation of programmatic judges and the criteria they encode. Using OpenAI’s749

GPT-4o [14], we generate judges with the following prompt:750

Programmatic Judge Template

You are now a judge to evaluate LLM generated response with a given question. You will
write your evaluation logic into code and generate python programs to return their scores.
Higher represents better response quality. Consider complex criteria for assessing responses,
leveraging third-party models, embedding models, or text score evaluators as needed.

Function signature: def _judging_function(self, question, response):
751

We synthesize 23 programs and select 10 representative ones for our experiments (see Section 3.2752

and Section 3.3). These programs evaluate responses based on diverse criteria: (i) structure, (ii)753

readability, (iii) safety, (iv) relevance, and (v) factuality. For example:754

• Structure: A judge counts transition markers (e.g., “therefore,” “however”) to assess coherence,755

with more markers indicating better quality.756

• Relevance: A judge uses TF-IDF to convert questions and responses into vectors, computing cosine757

similarity to measure semantic alignment (see Program 1). Another employs semantic embeddings758

for similarity metrics (see Program 2).759

• Readability: A judge leverages a third-party API to evaluate complexity, using metrics like the760

Flesch–Kincaid grade level (see Program 3).761

All judging logic, conditions, and pre-defined keyword lists are generated by the LLM. Below, we762

provide examples to illustrate this approach.763

764
def _lexical_overlap(self , question , response):765

""" Compute lexical overlap using TF -IDF for relevance evaluation.766

"""767
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# Preprocess input question and response (e.g., lowercase , remove768

stopwords)769

question_clean = self._preprocess(question)770

response_clean = self._preprocess(response)771

772

# Return 0.0 if either input is empty after preprocessing773

if not question_clean.strip () or not response_clean.strip ():774

return 0.0775

776

# Transform inputs to TF-IDF vectors using the vectorizer777

tfidf_matrix = self.tfidf_vectorizer.fit_transform ([ question_clean778

, response_clean ])779

question_vec = tfidf_matrix [0] # Extract question vector780

response_vec = tfidf_matrix [1] # Extract response vector781

782

# Compute cosine similarity between vectors and return as float783

return float(cosine_similarity(question_vec , response_vec)[0][0])784785

Program 1: Lexical Overlap Computation using TF-IDF.

786
def _semantic_similarity_strong(self , question , response):787

""" Compute semantic similarity between question and response."""788

# Return 0.0 if either input is empty789

if not question.strip () or not response.strip():790

return 0.0791

792

# Encode question and response into dense vectors using the793

embedding model794

question_embedding = self.semantic_embedding_strong_model.encode(795

question , max_length =4096796

)["dense_vecs"]797

response_embedding = self.semantic_embedding_strong_model.encode(798

response , max_length =4096799

)["dense_vecs"]800

801

# Compute dot product similarity between embeddings802

similarity = question_embedding @ response_embedding803

804

# Clamp similarity score between 0.0 and 1.0 and return as float805

return float(max(0.0, min(1.0, similarity)))806807

Program 2: Semantic Similarity using Embedding Model.

808
def _readability(self , response):809

""" Calculate readability metrics for response."""810

# Compute readability scores using textstat library811

return {812

# Flesch Reading Ease (inverted: higher score means harder to813

read)814

"flesch_reading_ease": 100 - textstat.flesch_reading_ease(815

response),816

# SMOG Index (higher score indicates higher reading difficulty817

)818

"smog_index": textstat.smog_index(response),819

}820821

Program 3: Readability Metrics Calculation.

We report the performance of individual program judges in Table 6. While their standalone perfor-822

mance is limited, they provide useful signals for the integration strategies discussed in Sections 3.2823

and 3.3.824
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Table 6: Performance of individual program judges across datasets, with (*) indicating judges selected
in Section 3.2.

FeedbackQA HelpSteer2 UltraFeedback

MAE (↓) τ (↑) MAE (↓) τ (↑) MAE (↓) τ (↑)

factuality_check_score (*) 1.9956 0.0872 1.1992 0.0075 1.1910 0.0492
factuality_factKB_score (*) 1.0343 0.2288 1.7180 0.0414 1.4342 0.1051
readability_flesch_reading (*) 1.2185 0.0431 2.5682 0.0445 2.5145 0.1396
readability_smog (*) 0.9805 0.1277 2.3286 0.0283 2.3122 0.1604
relevance_bleu 1.4035 0.0126 2.7452 -0.0355 2.7330 0.0560
relevance_keyword_overlap 1.2779 0.1977 2.3735 0.0138 2.2725 0.1461
relevance_lexical_overlap (*) 1.1371 0.2316 2.0148 -0.0144 1.9182 0.1187
relevance_rouge 1.3079 0.2066 2.5603 0.0232 2.4838 0.1327
relevance_semantic_sim_strong (*) 0.8759 0.4092 1.1182 0.0395 0.9866 0.1601
safety_toxicity (*) 1.5396 -0.0380 1.1105 0.0300 1.0139 -0.0043
structure_avg_paragraph_length_dist 1.4560 -0.1883 2.5562 -0.0081 2.4637 0.1074
structure_avg_sentence_length_dist 1.5248 -0.0140 2.4407 -0.0287 2.4179 0.1612
structure_cohesion_score 1.4078 0.2070 2.7139 0.0345 2.6578 0.1567
structure_emphasis_count 1.2826 0.1988 2.6642 0.0482 2.5955 0.2060
structure_headings 1.4765 0.0423 2.6521 -0.0340 2.5916 0.1049
structure_lexical_diversity 1.0672 0.1625 2.1864 0.0444 2.0981 0.1935
structure_list_usage 1.6284 0.0159 3.0208 -0.0108 3.0132 0.0872
structure_logical_transitions (*) 1.2694 0.1743 2.2693 0.0520 2.4355 0.2263
structure_max_sentence_length (*) 1.3039 0.1272 2.7532 0.0104 2.7511 0.1377
structure_min_sentence_length 1.3568 0.1887 2.4872 0.0400 2.4322 0.2046
structure_questions 1.2443 0.2692 2.4910 0.0360 2.4064 0.2114
structure_sentence_balance 1.4423 0.1835 2.6757 0.0501 2.6444 0.2203
structure_sentence_count (*) 1.3099 0.1742 2.4408 0.0807 2.6570 0.2300
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E.5 Effects of Prompt-Based Intervention (Section 3.4)825

We begin by analyzing how the intervention using a robust prompt affects the performance of826

individual LLM judges. Figures 5 (MAE) and 6 (Kendall’s τ ) present the performance differences827

relative to the vanilla prompt. While the intervention aims to reduce confounding signals, its impact828

varies—some model–dataset combinations show improvement, while others show degradation.829

We then assess how these shifts influence aggregate performance. Figures 7 and 8 show the corre-830

sponding changes in aggregation accuracy. Most baseline methods benefit from the intervention,831

whereas CARE shows a slight performance drop. A plausible explanation is that once confounding832

signals are mitigated, the additional latent variables in CARE may begin to model residual noise833

rather than meaningful structure, slightly reducing its performance. Nevertheless, as shown in Sec-834

tion 3.4, CARE without intervention still outperforms other baselines with the robustness prompt,835

highlighting its effectiveness even without manually crafted interventions for hidden confounders.836
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Figure 5: Change in MAE (↓) for individual LLM judges after applying the robustness prompt.
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Figure 6: Change in Kendall’s τ (↑) for individual LLM judges after the robustness prompt.
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Figure 7: Change in aggregate MAE (↓) after propagating the robustness prompt through each
aggregation method.
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Figure 8: Change in aggregate Kendall’s τ (↑) after the robustness prompt.
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Table 7: Robustness to artificially injected bias. CARE is particularly effective against stylistic biases
such as beauty (rich content) and authority, but less effective for gender and fallacy biases, which
may impact the actual quality of system answers.

Beauty Bias Fallacy Oversight Bias Gender Bias Authority Bias

MAE (↓) τ (↑) MAE (↓) τ (↑) MAE (↓) τ (↑) MAE (↓) τ (↑)

MV 0.9190 0.3336 1.8971 -0.0284 1.7428 0.1272 0.8239 0.2977
AVG 0.5063 0.3943 1.4007 0.1181 1.1355 0.2879 0.3250 0.4288
WS 1.9225 0.3792 2.5588 0.0680 2.0217 0.2474 0.9296 0.4886
UWS 0.5080 0.4383 1.3826 0.0491 1.1646 0.2576 0.2705 0.5799
CARE 0.3749 0.5334 1.8996 0.0116 1.5985 0.2311 0.2466 0.6327

E.6 Robustness to Confounding Factors837

Setup. We evaluate robustness using the dataset from [8], in which LLM responses are systematically838

altered to introduce specific biases via targeted GPT-4 prompts. The dataset includes four types of839

injected bias: beauty, fallacy oversight, gender, and authority. LLM judges are prompted to assign840

scores from 1 to 10 for each response. Robustness is assessed by comparing aggregated scores before841

and after bias injection, using mean absolute error (MAE) and Kendall’s τ . Lower MAE and higher842

Kendall’s τ indicate better robustness under perturbation.843

Injected Confounders. To clarify the setup, Table 8 summarizes the injected confounding factors844

with illustrative examples. These perturbations target different dimensions of bias, ranging from845

superficial stylistic changes to alterations that directly affect semantic correctness.

Bias Perturbation Injected Example Snippet (from Fig. 1)
Fallacy Oversight Insert a factual error “The square root of 36 is 7. . . ” (correct value is 6)
Authority Add a fake citation “. . . (Weisstein, Eric W. ‘Square Root.’ MathWorld. . . )”
Beauty Add emojis / formatting “ 6⃝ multiplied by 6⃝ equals 36.”
Gender Add a gender-biased remark “This might be a bit difficult for women to understand. . . ”

Table 8: Injected confounding factors and illustrative snippets.

846

Figure 9: Averaged cross-entropy loss
of our algorithm versus the number of
samples. Markers denote average over
three random seeds, and the shaded band
denotes one standard deviation.

Results. Table 7 reports the robustness of different ag-847

gregation methods under these injected biases. We find848

that CARE is highly stable against stylistic biases such as849

beauty and authority, preserving both rankings and score850

magnitudes. In contrast, robustness deteriorates when the851

bias directly undermines factual or semantic content—as852

in fallacy oversight and gender perturbations.853

This distinction aligns with our hypothesis: fallacy over-854

sight introduces factual inaccuracies that reduce answer855

quality, producing expected shifts in judge scores. Mean-856

while, gender bias activates explicit safety mechanisms in857

alignment-tuned LLM judges, leading to consistent down-858

scoring across models and correspondingly large shifts in859

aggregate outcomes.860
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E.7 Additional Controlled Experiment on Confounding Factors861

Unlike the semi-synthetic perturbations in E.6, here we investigate whether CARE can separate the862

true quality latent factor from naturally arising confounders in a more controlled setting. Specifically,863

we introduce two dummy judges whose scores are directly correlated with response length or the864

presence of specific words. If CARE functions as intended, CARE should recover a factor structure865

in which high-quality judges align with the true quality factor Q, while the dummy judges align with866

a distinct confounder.867

Setup. We ran CARE-SVD with 14 judges on the FEEDBACKQA dataset, combining 10 LLM868

judges, 2 programmatic “dummy” judges (sensitive to length or special keywords), and 2 human869

annotators. The factor loadings are presented in Table 9.870

Results. The observed loadings align with our hypothesis:871

• Factor 1 (true quality Q). This factor exhibits broad, balanced loadings across competent LLM872

judges and the two human judges, with much weaker loadings for the programmatic dummy judges.873

Within model families, larger models have higher loadings (e.g., Llama-3.1-8B > Llama-3.2-3B ≈874

Llama-3.2-1B), suggesting that Q reflects underlying capability. Instruction-tuned models (Mistral-875

7B-Instruct, Phi-4-mini-instruct, Llama-3.1-8B-Instruct, Gemma-3-4B-it) also show above-median876

loadings, consistent with their alignment to human rubrics.877

• Factor 2 (length confounder). This factor is dominated by a high, concentrated loading on the878

length-sensitive dummy_eval_1, with a secondary loading on gemma-3-1b-it (0.59). In contrast,879

nearly all other judges—including both humans and stronger instruction-tuned models—have880

near-zero loadings. Such a one-sided, few-judge pattern is characteristic of a confounder rather881

than true quality.882

Table 9: Judge loadings on latent factors in CARE-SVD. Factor 1 corresponds to true quality Q;
Factor 2 reflects a length confounder.

Judge Q (true quality) Length confounder
Qwen3-8B 0.396 -0.240
Llama-3.1-8B-Instruct 0.664 -0.076
gemma-3-4b-it 0.706 -0.152
Llama-3.2-1B -0.009 -0.140
Qwen3-4B 0.180 0.008
gemma-3-1b-it 0.243 0.595
Llama-3.2-3B 0.033 0.057
Phi-4-mini-instruct 0.715 -0.051
Qwen3-1.7B 0.199 -0.012
Mistral-7B-Instruct-v0.3 0.804 0.016
dummy_eval_1 0.098 0.742
dummy_eval_2 0.035 0.290
human_eval_1 0.337 0.078
human_eval_2 0.338 0.059
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E.8 Synthetic Experiments on Care-Tensor883

We evaluate the performance of CARE-Tensor using simulated binary-Gaussian mixture data. Dataset884

details deferred to Appendix.885

Sample Complexity Result. We investigate how the sample size n influences estimation accuracy.886

We estimate conditional means µ̂qc and latent state proportions π̂qc using Algorithm 3. Subsequently,887

we compute the posterior probabilities P (Q = 1 | J) via the Bayesian formulation in Eq. 1.888

We measure the performance using cross-entropy loss. Lower entropy loss yields more accurate889

prediction. We observe a clear decreasing trend in cross-entropy loss as sample size increases.890

Tensor Decomposition vs SVD. We illustrate the advantage of tensor decomposition over classical891

eigen-decomposition (SVD) in addressing rotation ambiguity with higher-order moments. We892

quantify performance using mean squared error (MSE) between true conditional means µqc and893

estimated means µ̂qc. Detailed methodologies for SVD estimation are deferred to the appendix.894

Evaluating across 10 random seeds, we find substantial performance differences: CARE-Tensor895

achieves significantly lower estimation errors with MSE (0.51 ± 0.41) compared to the eigen-896

decomposition baseline (SVD) with MSE (1.18±0.74). This shows tensor decomposition accurately897

recovers conditional means without affected by rotation ambiguity.898

E.9 Synthetic Experiment on Graph-Aware Tensor Decomposition899

When judges exhibit conditional dependencies, naively partitioning them into views violates the900

independence assumptions required by tensor decomposition. We hypothesize that partitioning judges901

via a graph-aware procedure that respects dependency structure yields substantially better estimation902

than random partitioning.903

Setup. We simulated 10,000 items scored by p = 12 judges, partitioned into three views of four904

judges each. To induce conditional dependencies, we planted edges of strength 0.3 within each true905

view at 40% density. We then compared two grouping strategies across ten random seeds:906

• Random: assign judges to views uniformly at random;907

• Graph-Aware: assign views to minimize cross-block edges in the empirical precision matrix.908

Performance was measured by the ℓ2 error in recovering the latent component means, i.e.909

||µqc − µ̂qc||2).910
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Figure 10: ℓ2 reconstruction error (mean
± SD) for random vs. graph-aware
grouping.

Results. As shown in Figure 10, graph-aware grouping911

dramatically reduces reconstruction error—by more than912

an order of magnitude—compared to random grouping.913

This confirms the importance of respecting dependency914

structure during view formation and underscores the advan-915

tage of CARE, which integrates graph structure directly916

into the tensor decomposition procedure.917

E.10 Additional918

Real-World Experiment on Gaussian Mixture919

We consider a Gaussian mixture setting where the latent920

variable is binary, but the observables (judge outputs) are921

real-valued Gaussian scores. This experiment evaluates922

the effectiveness of Algorithm 3 on a real dataset.923

Setup. We use a subset of the CivilComments924

dataset [52], randomly sample 5,000 examples. The925

ground-truth label is binary toxicity (0 or 1), while LLM926

judges provide real-valued toxicity scores ranging from 0927

to 9. In addition to the original LLM judges, we include928

five LLMs:929
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(a) Random Partitioning (b) Graph-aware Partitioning

Figure 11: Random Partitioning vs. Graph Aware Partitioning. A random partitioning (a) leaves
cross-view edges that violate the independence assumptions of tensor methods, whereas the graph-
aware partitioning (b) considers cross-view edges and restores the required separation.

• meta-llama/Meta-Llama-3-8B-Instruct,930

• mistralai/Mistral-7B-Instruct-v0.2,931

• Qwen/Qwen2.5-0.5B-Instruct,932

• Qwen/Qwen2.5-1.5B-Instruct,933

• Qwen/Qwen2.5-3B-Instruct.934

For the MV and WS baselines, we first discretize judge scores using a threshold of 4.5 before935

applying majority vote or weighted sum. For AVG and UWS, we aggregate scores first, then apply936

the threshold. CARE (Algorithm 3) directly infers the latent binary label from continuous scores.937

We evaluate all methods using classification accuracy.938

Table 10: Aggregated accuracy (higher is better) in CivilComments dataset.
Method Acc. (%)
MV 74.32%
AVG 73.80%
WS 74.95%
UWS 74.95%
CARE 75.27%

Results. Table 10 shows that CARE achieves the highest accuracy. This result highlights its ability939

to better handle confounding factors and perform effective latent inference, even when the observed940

data (continuous scores) differ from the latent variable type (binary labels).941

F Broader Impact Statement942

This work presents a novel approach to aggregate scores from multiple LLMs serving as judges by943

identifying confounding variables and thus potentially reducing the bias in the overall judge scores.944

The potential broader impact includes a framework for improved LLM-as-a-judge scores which can945

be used at various applications. However, it is important to acknowledge that using LLMs as potential946

judges to automate labor-intense annotation tasks which is an active area of research carries some947

limitations and past research has discussed some unintended consequences, such as over-reliance on948

judge outputs, misuse and misinterpretation of results which might carry high real-world stakes. It is949

crucial to use automated LLM-as-a-judge tools responsibly and ethically, considering potential biases950

in data and models, and ensuring transparency and accountability in their application.951
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