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Abstract

LLM-as-a-judge—often with multiple judges—is now the standard for scalable
model evaluation, yet judge biases and correlations can amplify errors. We cast
aggregation as inference in a latent-factor Markov random field that jointly mod-
els a latent true-quality variable, inter-judge correlations, and confounders (e.g.,
generation length). We address two key technical challenges—identifiability and
learning a higher-rank latent structure—via CARE, a two-stage estimator that
uses sparse+low-rank structure recovery and tensor decomposition to separate
quality from spurious factors. This enables us to better understand the quality and
behavior of judges, leading to improved evaluation capabilities. Empirically, it
reduces aggregation error by up to 25.15% and seamlessly incorporates cheaply
constructed programmatic judges, while matching or surpassing individual-judge
intervention strategies.

1 Introduction

Large language models (LLMs) are now widely used for automated evaluation of model outputs. A
common practice is to ensemble multiple LLM judges to form consensus scores [1], avoiding the
cost of expert annotation [2]. However, such ensembles are unreliable: judges exhibit systematic
biases (e.g., verbosity, position) [3, 4, 5], are highly correlated from shared training data, and thus
may amplify rather than reduce errors [6, 7]. Existing fixes—including order shuffling, prompt
calibration, or fine-tuned evaluators [8, 9, 10, 5]—target individual biases, while aggregation methods
like majority vote or averaging [11] rely on unrealistic independence assumptions.
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(a) Naive: only true-quality (b) Connection-aware (c) Confounder-aware (Ours)

Figure 1: Graphical models for aggregating judge scores under different structural assumptions.
(a) A naive model assumes scores reflect only a true latent quality (Q) and that all judges are
equally reliable and represent independent views. (b) Connection-aware approach models intra-judge
interactions (J2 − J3 − J4), but still assumes the presence of a single latent quality score. (c) Our
Confounder-aware model introduces additional latent confounders (C) influencing judge scores.

We take a principled approach, recasting multi-judge aggregation as inference in a higher-rank
latent variable Markov Random Field (MRF). This model captures (i) a latent quality variable
Q, (ii) additional confounders (e.g., length, style), and (iii) correlations between judges. Learning
such models raises two challenges: (1) estimating parameters without observing latent factors, and
(2) identifying which factor corresponds to true quality rather than spurious signals. Our solution,
CARE, combines sparse+low-rank decomposition with a tensor step to separate Q from confounders,
and further supports integration of programmatic judges—cheaply synthesized evaluation functions
that expand the judge pool [12].

Our Contributions. CARE (i) introduces a confounder-aware aggregation framework unifying
single-judge debiasing with principled statistical fusion, (ii) provides identifiability guarantees,
sample complexity bounds, and misspecification analysis, (iii) reduces aggregation error by up to
25.15% on public benchmarks compared to majority vote, weak supervision baselines, and prompt-
level interventions, and (iv) seamlessly integrates programmatic judges while supporting progressive
expansion of evaluator pools.

2 CARE: Confounder-Aware Aggregation for Reliable Evaluation

Motivation. LLM-as-a-judge is appealing for scalable evaluation, but naive ensembling can amplify
shared biases. Judges may favor longer generations, prefer particular styles, or otherwise correlate in
ways that obscure the underlying quality. Existing heuristics (e.g., weighting or filtering judges) only
partially address these issues. We instead adopt a probabilistic graphical model perspective, which
provides a principled way to separate latent true quality from other spurious factors.

Latent-factor MRF. We model judges as nodes in a Markov random field with multiple latent factors:
one unknown true-quality variable Q, one or more confounders C, and the observed judge scores
X1, . . . , Xm. This higher-rank structure captures both genuine signal and correlated biases (Fig. 3).
The main technical challenges are (i) identifying which latent dimension corresponds to Q, and (ii)
estimating such higher-rank latent-variable models from limited samples.

CARE algorithm. Our approach, CARE (Confounder-Aware Aggregation), addresses these chal-
lenges with a two-stage estimator. First, we recover a sparse+low-rank decomposition of the precision
matrix of judge scores: the sparse part captures direct conditional links between judges, while the
low-rank part reveals latent factors. Second, we apply a symmetric tensor decomposition to resolve
rotational ambiguity and isolate Q from confounders. This produces an interpretable set of factor
loadings, showing how each judge aligns with true quality versus spurious dimensions. CARE
then aggregates scores along the inferred quality dimension, yielding robustness to confounders and
correlations. Programmatic judges, such as length counters or keyword checkers, can be included
alongside LLM judges and are naturally placed onto confounder dimensions when appropriate. Full
pseudocode, optimization details, and proofs appear in Appendix C.

Theoretical guarantees. We provide three main results for Algorithm 1. (i) Identifiability: under
latent-independence and orthogonality assumptions, CARE exactly recovers latent directions and is
stable to mild perturbations (App. D.2). (ii) Sample complexity: we bound the number of samples
needed for consistent estimation of latent-observable connections, with rates depending on eigengaps
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Algorithm 1 CARE (Confounder-Aware Aggregation) (Condensed, full version in Algorithm 2)

Input: Judge score matrix J ∈ Rn×p

Output: Estimated true-quality scores {q̂(i)}ni=1

1: Estimate judge graph sparse structure from J

2: Recover sparse + low-rank decomposition (Ŝ, L̂)

3: Extract latent factors from L̂ (SVD or tensor methods; see App. C)
4: Identify the quality factor among latent components
5: Aggregate along this factor to produce q̂(i)

Table 1: Aggregation performance across different datasets, measured by MAE and Kendall’s τ .
CARE outperforms baseline methods in most cases.

FeedbackQA HelpSteer2 UltraFeedback

MAE (↓) τ (↑) MAE (↓) τ (↑) MAE (↓) τ (↑)

MV 0.8812 0.3703 0.9951 0.1629 0.8522 0.2985
AVG 0.8492 0.4497 0.9822 0.1611 0.6860 0.3621
WS 0.8144 0.4401 1.3030 0.1511 1.1603 0.3306
UWS 0.9051 0.4580 0.9849 0.1697 0.6794 0.3669
CARE 0.7866 0.4542 0.9742 0.1805 0.6379 0.3806

and manifold curvature (App. D.3). (iii) Misspecification error: omitting confounders introduces
systematic bias; we provide explicit bounds on the resulting conditional-mean errors (App. D.4).

3 Experimental Results

We evaluate CARE across diverse experimental setups, including real-world and semi-synthetic
datasets, to validate the following key claims:

• Improving aggregation of LLM judges: CARE produces more accurate and robust aggregate
scores from multiple LLM judges compared to existing methods (Sec. 3.1).

• Effective integration of programmatic judges: CARE can integrate programmatic judges, which
are often systematically biased, by explicitly modeling confounders (Sec. 3.2).

• Progressive expansion of judges: CARE robustly incorporates additional judges over time,
adapting to larger evaluation pools (Sec. 3.3).

• Competitiveness against manual interventions: CARE matches or surpasses prompt-level
interventions at the individual judge level, avoiding costly manual tuning (Sec. 3.4).

Additional experiments, including robustness under controlled confounding factors, and validation of
theoretical results in synthetic settings, are deferred to Appendix E. We also offer ablations, per-judge
breakdowns, and further programmatic judge analyses in Appendix E.

3.1 Improving Aggregation of LLM judges

Setup. We compare aggregation methods using the 10 LLM judges (listed in the Appendix E). To
ensure consistency, we adapt the prompt template from [13], modifying it to fit our experimental
setup. The exact used prompt is provided in Appendix E.

Results. We report aggregation performance in Table 1. CARE consistently outperforms baseline
methods, achieving the lowest MAE on FeedbackQA (0.7866) and UltraFeedback (0.6379), surpass-
ing majority vote (MV) by 10.74% and 25.15%, respectively. These gains demonstrate CARE’s
ability to model correlations among LLM judges and mitigate compounding biases.

3.2 Effective Integration of Programmatic Judges

Setup. We integrate our LLM-based evaluators with ten programmatic judges, each encoding
its evaluation logic into executable code synthesized by OpenAI’s GPT-4o [14]. These judges
are designed to assess response quality through specific, individual dimension, such as structure,
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Table 2: Performance on different datasets using both LLM and programmatic judges. Programmatic
judges are beneficial in FeedbackQA but may introduce noise in HelpSteer2 and UltraFeedback. In
both cases, CARE consistently outperforms other baselines.

FeedbackQA HelpSteer2 UltraFeedback

MAE (↓) τ (↑) MAE (↓) τ (↑) MAE (↓) τ (↑)

MV 0.8607 0.3815 1.0244 0.1465 0.8751 0.3179
AVG 0.8128 0.4671 1.1012 0.1268 1.0371 0.3733
UWS 0.8179 0.4816 0.9992 0.1040 0.9534 0.3047
CARE 0.7582 0.4796 0.9800 0.1398 0.7351 0.3520

Table 3: Comparison of aggregation methods using individually intervened LLM judges. While other
baselines aggregate scores from debiased LLM judges, CARE operates directly on raw outputs.

FeedbackQA HelpSteer2 UltraFeedback

MAE (↓) τ (↑) MAE (↓) τ (↑) MAE (↓) τ (↑)

MV 0.8004 0.3964 0.9951 0.1629 0.8562 0.2799
AVG 0.8029 0.4412 0.9822 0.1611 0.6801 0.3704
WS 0.7674 0.4429 1.3030 0.1511 1.1516 0.3588
UWS 0.8117 0.4390 0.9849 0.1697 0.6683 0.3782
CARE 0.7866 0.4542 0.9742 0.1805 0.6379 0.3806

readability, safety, relevance, and factuality. While it’s cost-effective to construct them, their
deterministic nature may introduce systematic biases, potentially leading to noisy evaluation signals.
This setup allows us to test CARE’s robustness in a more challenging aggregation scenario. Further
details on the programmatic judge generation process are provided in Appendix E.

Results. Table 2 shows that adding programmatic judges improves FeedbackQA, where CARE
attains the lowest MAE (0.7582) and highest τ (0.4796), outperforming MV by 11.92%. On
HelpSteer2 and UltraFeedback, performance drops (MAE 0.9800 and 0.7351) but still surpasses MV
by 4.33% and 15.99%. Overall, CARE consistently outperforms baselines on MAE, even under
noisy signals.

3.3 Progressive Judge Expansion

Setup. Next, we start with a fixed set of LLM judges and progressively add programmatic judges
from a pool of 23. At each step, we greedily select the programmatic judge that yields the largest
improvement in the validation of MAE. The process stops when no further reduction in validation
MAE is observed. We evaluate aggregation methods as in previous sections, using FeedbackQA,
where programmatic judges were most beneficial.
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Figure 2: Progressive judge selection
on the FeedbackQA dataset. CARE ro-
bustly integrates new judges and consis-
tently outperforms baseline aggregation
methods.

Results. Figure 2 reports the results of scaling the number
of programmatic judges. As the number of programmatic
judges increases, CARE consistently achieves lower er-
ror, demonstrating its ability to adapt and improve with
additional supervision. These findings suggest a promis-
ing path toward building dynamic and expandable judge
ensembles.

3.4 Comparison with Individual Intervention

Setup. An alternative to our confounder-aware approach
is direct interventions at the individual judge level. Specif-
ically, we compare CARE to prompt-based interventions
proposed by [15], which instruct LLM judges to account
for known sources of bias. The intervened prompt used
for this comparison is included in Appendix E.

Results. Table 3 presents the results. While bias-aware prompting improves performance in most
cases, CARE remains the top performer in the majority of settings, and even when not, it is com-
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petitive with the best. This suggests that CARE can effectively mitigate biases without relying on
careful prompt engineering.

We next evaluate robustness under controlled bias injections (e.g., beauty, authority, gender), as well
as synthetic experiments validating our theory. Due to space constraints, these results are presented
in Appendix E, where we also include expanded analyses such as prompt-based intervention effects
(Appendix E.5) and controlled confounder demonstrations (Appendix E.6, E.7).

4 Conclusion

We presented CARE, a confounder-aware aggregation framework that casts multi-judge scoring
as inference in a higher-rank latent-variable model. It explicitly models shared confounders, pro-
vides principled estimators with identifiability guarantees, and achieves consistent gains on public
benchmarks, reducing MAE and improving Kendall’s τ by up to 25.15%.
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The appendix is structured as follows. It starts with the glossary table, defining key notations
used throughout the paper in Appendix A. Next, Appendix B discusses additional related work. In
Appendix C, we introduce details about our tensor-based CARE algorithm, discussion for general
CARE method, and additional discussion about method heuristics. Following this, Appendix D offers
theoretical support of our approach and supported proofs. It includes the graphical model formulation,
graph structure recovery error bound, sample complexity, and the misspecification error arising from
incorrectly characterized confounding factors. Subsequently, Appendix E provides experimental
details and additional experiment results. Finally, Appendix F concludes by discussing the broader
impacts and limitations of the work.

A Glossary

The notations are summarized in Table 4 below.

Table 4: Glossary of variables and symbols used in this paper.

Symbol Definition

(J1, . . . , Jp) p vector of Judges score
Q True-quality latent variable
(C1, . . . , Ck) k latent confounder variables (Rp)
H All the hidden variables (true + confounder) i.e (Q C1, . . . , Ck)
h dimension of H i.e all hidden variables = k + 1
X Observed judge score matrix of dimension (n× p) where n is the number of examples and p is the number of judges

K Precision matrix
KJJ Observable-observable connection matrix
KJH Observable-latent connection matrix
KHH Latent-latent connection matrix
ΣJJ Covariance matrix of observable variables
S Sparse matrix (Rp×p) which encodes edges between judges
L Low-rank matrix (with rank(L) ≤ h) which captures dependencies mediated by latent variables
R Rotation matrix (Rh×h)

γn Regularization for sparse and low-rank matrix S in Algorithm 2
τ Regularization for low-rank matrix L in Algorithm 2
ŝ
(i)
agg Aggregated scores for ith example in the dataset from p judges
Σ̂ Sample precision estimation or covariance matrix
Ŝ Sample Sparse matrix (Rp×p) which encodes direct connectional edges among judges
L̂ Sample Low-rank matrix (with rank(L) ≤ h) which captures dependencies mediated by latent variables
U Latent factor extraction matrix i.e latent-judge connections (Rp×h) from Algorithm 2
Θ Precision matrix
w Weight for aggregating judges
λ Singular values of L
u⋆ Singular vector of L corresponds to true quality factor
λ⋆ Singular value of L that corresponds to true quality factor
µqc Conditional mean of judges given Q = q, C = c
µ̂qc Estimated conditional mean of judges given Q = q, C = c
πqc Probability of Q = q, C = c
π̂qc Estimation of probability of Q = q, C = c
{Gℓ}3ℓ=1 Groups of judges that are independent of judges outside the group
T̂ Empirical 3-way tensor
µ̂
(1)
qc , µ̂(2)

qc , µ̂(3)
qc Estimated conditional mean of three views

µ̂ρ(r) Estimated conditional mean of judges after permutation
µanchor(r) Conditional mean of anchor sets

9



B Related Work

B.1 Biases in LLM–as–a–Judge

Large language models have quickly become the standard automatic evaluators for generation tasks
because they correlate well with human judgments in translation and summarization [16, 17, 18]. Yet
a growing body of work shows that these models are far from impartial. Positional bias—preferring
the second answer in a pairwise comparison—was first noted in MT-Bench [2] and later quantified in
detail by [19], who observed reversals of up to 30% when simply swapping order. Verbosity bias,
wherein longer answers receive higher scores regardless of quality, is highlighted by [8]. LLM judges
also display self-enhancement bias, overrating responses produced by models from the same family
[20]. Less studied but equally problematic are concreteness/authority biases: judges over-reward
answers that contain citations, numbers, or confident tone even when these features are irrelevant
[21].

Mitigation strategies span two levels. Prompt-level interventions randomize answer order, enforce
symmetric formatting, and instruct the judge to ignore superficial features [19, 22]. Adding chain-
of-thought rationales or decomposing the rubric into sub-criteria (accuracy, conciseness, style) also
moderates shallow heuristics [23]. On the model level, fine-tuned evaluators such as JudgeLM [24]
and Split-and-Merge Judge [22] are trained on curated data that explicitly counter positional and
length biases. Peer-review and debate schemes go a step further: PRD lets a second LLM critique
the first judge and often corrects biased decisions [25], while [23] show that dialog with a more
persuasive model leads to more truthful verdicts.

Despite progress, most debiasing work treats a single judge in isolation. When evaluations aggregate
many LLM scorers—for robustness, cost sharing, or diversity—biases can compound in complex
ways that individual fixes do not capture.

B.2 Label Aggregation for Multiple Noisy Evaluators

Weak-supervision. Treating each LLM prompt or model as a noisy labeling function aligns
aggregation with modern weak supervision. Snorkel [26, 27] estimates source accuracies and
dependencies to denoise programmatic labels, laying the foundation for LLM-prompt aggregation.
[28] introduces a scalable moment-matching estimator with closed-form weights.[29] generalizes
label models beyond categorical labels to arbitrary metric spaces, greatly expanding their applicability.
[30] jointly optimizes a classifier and a differentiable label model, outperforming two-stage pipelines
when sources are dependent. Firebolt further removes requirements on known class priors or source
independence, estimating class-specific accuracies and correlations in closed form [31]. [32] shows
that fixing source bias in labeling functions using optimal transport can improve both accuracy and
fairness.

Aggregation of multiple LLM judges. Recent work shows that ensembling smaller evaluators can
beat a single large judge. The PoLL jury combines three diverse 7–35B models and attains higher
correlation with human ratings than GPT-4 while costing 7× less and reducing bias [33]. GED merges
preference graphs from weak evaluators (Llama3-8B, Mistral-7B, Qwen2-7B) and denoises cycles; its
DAG ranking surpasses a single 72B judge on ten benchmarks [34]. JudgeBlender ensembles either
multiple models or multiple prompts, improving precision and consistency of relevance judgments
over any individual LLM [35]. These findings echo classic “wisdom-of-crowds” results—when
paired with principled aggregation, a panel of smaller, heterogeneous judges can outperform a much
larger model, offering a practical path toward reliable, low-cost evaluation.

B.3 Our Contribution in Context

Prior research either (i) debiases one judge at a time or (ii) aggregates multiple judges assuming
independent noise. Our confounder-aware aggregation unifies these threads. We posit latent factors
(e.g., verbosity, formality) that influence all judges simultaneously and show how to infer both the
latent truth and the shared confounders. This yields more reliable consensus scores when individual
judges—human or LLM—share systemic biases.

10



(a) Naive: only true-quality (b) Connection-aware (c) Confounder-aware (Ours)

Figure 3: Graphical models for aggregating judge scores under different structural assumptions.
(a) A naive model assumes scores reflect only a true latent quality (Q) and that all judges are
equally reliable and represent independent views. (b) Connection-aware approach models intra-judge
interactions (J2 − J3 − J4), but still assumes the presence of a single latent quality score. (c) Our
Confounder-aware model introduces additional latent confounders (C) influencing judge scores.

C Algorithm Details

We introduce CARE (Confounder-Aware Aggregation for Reliable Evaluation), a graphical
model–based framework that robustly estimates the true quality of LLM-as-a-judge assessments
by explicitly modeling the influence of both a latent true-quality variable and additional latent con-
founders on observed judge scores. This section details the implementation of CARE, including
the full CARE tensor algorithm, an SVD baseline for comparison, generalizations beyond Gaussian
assumptions, practical heuristics for symmetry breaking and handling non-orthogonal latent factors,
and justification for sparse structure recovery in mixed Gaussian data.

C.1 Graphical Model Framework And Assumptions

For each prompt-response pair, we observe scores J = (J1, . . . , Jp)
⊤ from p judges. We assume

these observed scores depend on latent variables including one true quality variable Q and one
or more confounders C = (C1, . . . , Ck), which we define as H = (Q,C). Our graphical model
encodes the conditional independence structure among the nodes in (J,Q,C): if there is no edge
between a pair of nodes, they are independent conditioned on the other nodes. An example is shown
on the right in Fig. 3. We assume this structure is sparse; i.e., there are not too many edges in the
graph, and make this precise later on.

This framework is quite general and is compatible with a variety of distributions. For example, we
may take J,Q,C to involve discrete variables, Gaussians, or mixed models. We can take the model
to be an MRF or alternatively a mixture model. Our approaches are compatible with a broad range of
choices, with practitioners able to select the most suitable modeling assumptions for their settings.

Goals and Assumptions. Under the chosen modeling assumptions, our goal is to learn the distribution
over J,Q,C. This involves handling three challenges. First, C1: we never observe the latents in
H—neither ground truth nor confounders. Second, C2: we cannot assume any particular interaction
in the graph. Third, C3: even if we recover the model parameters, we must be able to distinguish
between Q and the confounders C to identify the model. The latter is required to discover which
latent is the ground-truth quality—and which is a confounder. Once these obstacles are overcome,
we seek to perform aggregation, e.g., compute a posterior P (Q|J), the Bayesian estimate for the
latent true quality conditioned on all observable judge scores.

In the following, we will work under the assumption that the judge scores J conditioned on the latents
form a multivariate Gaussian distribution, i.e., J | H ∼ N (µH ,Σ), where µH is the conditional
mean of observable variables. We defer other scenarios to the Appendix.

C.2 CARE Algorithm

The idea behind CARE is to examine two techniques, each of which is stymied by one of the
obstacles C2 or C3 and to delicately combine them in a novel way. First, the sparsity of the
conditional independence graph is encoded into an two-dimensional object that can be empirically
estimated (e.g., the observable covariance matrix, or a cross-moment matrix). However, the presence
of the latent variables (C1) obscures this structure—but a sparse + low-rank decomposition can
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Algorithm 2 CARE: Confounder-Aware Aggregation for Reliable Evaluation

Input: Score matrix J ∈ Rn×p, parameters (γn, τ), decomposition method D ∈ {SVD,Tensor}
Output: Estimated True Quality {q̂(i)}ni=1

1: Graph Sparse Structure Estimation: Compute appropriate observed matrix f(J).
2: Sparse + low-rank decomposition:

(Ŝ, L̂)← argmin
S,L

1
2∥f(J)− S − L∥

2
F + γn(∥S∥1 + τ∥L∥∗)

3: Latent Factor Extraction:
4: if D = SVD then ▷ Fully Gaussian scenario
5: Compute UΛU⊤ ← SVD(L̂), where U ∈ Rp×h

6: else if D = Tensor then ▷ Binary-Gaussian mixture scenario
7: Partition judges into independent groups using Ŝ
8: Form empirical third-order tensor from judge groups
9: Run tensor decomposition, obtain latent conditional means µqc and mixture proportions πqc

10: end if
11: Symmetry Breaking: Identify the true-quality factor using heuristics described in §C.3
12: Latent Quality Estimation: Use the identified quality factor, compute q̂(i) for each example,

where q̂(i) = P (Q = 1 | Ji) for mixture model or q̂(i) = E[Q | J ] for fully gaussian

reveal it [36]. However, while we can decompose the resulting low-rank term via SVD in the hope of
identifying the model, we can only do so up to rotations. Therefore we are blocked by C3.

Conversely, tensor product decompositions [37] exploit tensor rigidity to enable this decomposition
to be uniquely identified. However, for these techniques the judges must be independent conditioned
on the latents—and we cannot assume this by C2.

CARE (Algorithm 2) combines these approaches. First, it estimates the underlying graph structure
from the observed judge scores via the sparse + low-rank decomposition, overcoming C1 and C2. It
then uses recovered sparse term to estimate the graph and discover subsets of judges with sufficient
conditional independence. These sets are then used to construct a tensor that can be decomposed via
standard approaches (e.g., tensor power method) to recover the model, mitigating C3.

This procedure is then followed by a symmetry-breaking step. This requires a weak assumption on
the quality of the judges; in practice, even this assumption can be removed by employing simple
heuristics to identify the true-quality factor among the latent factors. Finally, we aggregate judge
scores into robust evaluations by weighting according to loadings from the identified quality factor.

We study two special cases to build our intuition; more general settings are shown in the Appendix.

CARE For Gaussian Mixtures. We have binary latents (Q,C) with Pr
(
Q = q, C = c

)
= πqc,

where the judges follow a Gaussian conditional distribution with mean µqc ∈ Rp and covariance Σ:

J
∣∣ (Q = q, C = c) ∼ N

(
µqc, Σ

)
, (q, c) ∈ {0, 1}2.

Here, performing the sparse + low-rank decomposition and obtaining L̂ is insufficient: the eigen-
decomposition of L̂ does not directly yield identifiable latent-judge connections. We rely on third-
order tensor statistics to identify conditional distributions explicitly:

E(X1 ⊗X2 ⊗X3 | Q,C) = E(X1 | Q,C)⊗ E(X2 | Q,C)⊗ E(X3 | Q,C),
where judges are partitioned into independent groups X1, X2, X3 using the learned sparse structure
Ŝ. Performing a tensor decomposition yields the conditional means µqc and mixture proportions πqc.
Then, applying Bayes’ rule allows estimation of latent variables given observed scores:

P (Q = 1|J) ∝ π10µ10 + π11µ11. (1)

CARE for Fully Gaussian Models. Under the fully Gaussian assumption, latent variables H are
continuous, and the inverse covariance matrix (the precision matrix) encodes independence:

Σ = Cov
[
(J,H)⊤

]
, Σ−1 = K =

(
KJJ KJH

KHJ KHH

)
, S = KJJ , L = KJHK

−1
HHKHJ .
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If assuming connections KJH between latent variables and judges are orthogonal and no direct
connections among latent variables (i.e. KHH is diagonal), the low-rank matrix L̂ admits eigen-
decomposition L̂ = UΛU⊤, where eigenvectors in U directly correspond to latent-judge edges
(KJH ), and eigenvalues correspond to KHH . Each eigenvector represents how one latent variable
influences observable judges. With these edges recovered, the conditional mean of true quality Q can
be estimated by E(Q | J) = K−1

QQKQJJ , a weighted linear combination of observed scores.

The fully Gaussian model prevents decomposing the low-rank term uniquely (due to rotational
invariance). This holds regardless of whether we apply SVD or a tensor decomposition, leading to
the special handling in Algorithm 2. As a result, in this case, orthogonal and independent latent
assumptions are needed for identifying the latent-judge connection. This works the best when each
judge is connected to exactly one latent variable. If a judge depends on both the confounder C and
the true quality Q with comparable weights, the recovered columns {µ̂r} are only identifiable up to
an arbitrary rotation, causing estimation errors.

C.3 Heuristics for Identifiability and Robust Estimation

Any instantiation of CARE will require symmetry-breaking procedures for latent variable identifia-
bility. For example, the fully Gaussian case needs a heuristic to identify the true-quality direction
among latent factors, distinguishing Q from confounders C. In the binary-Gaussian mixture scenario,
an additional step resolves ambiguity between latent states (Q = 0 vs. Q = 1). Doing so will require
additional information that can come from modeling assumptions, the use of ground-truth samples,
or heuristics. We detail some examples below:

Identifying True-Quality Factor for Joint-Gaussian Model. We introduce heuristics particularly
aimed at distinguishing the true-quality latent variable from confounding latent variables. First, the
human-anchor criterion leverages a small validation set containing human ratings. By including
these human judgments in the graphical model, we anchor the latent quality variable to ground truth
by selecting the latent factor exhibiting the strongest connection to the human evaluations. Second,
we apply a loading balance heuristic, identifying the true-quality factor as one that loads broadly and
with similar magnitude across all competent judges. Conversely, factors dominated by a few judges
typically indicate shared confounding rather than true quality.

Identifying Latent States for Mixed Model. In scenarios such as the tensor-based method, symmetry
breaking additionally involves distinguishing latent states corresponding to different quality levels
(e.g., Q = 0 versus Q = 1). In practice, we can use known labeled samples (such as high-
quality examples) to anchor and identify latent-state configurations. By comparing different latent
configurations with these known labeled samples, we select the latent-state assignment that best
aligns with empirical observations, effectively removing latent state ambiguity.

C.4 SVD Baseline in Synthetic Experiment

We form the empirical two-way moment between view 1 and view 2:

M̂1,2 =
1

n

n∑
i=1

X
(i)
1 X

(i)⊤
2 =

∑
q,c

πq,c µ1,q,c µ
⊤
2,q,c + sampling noise,

where πq,c = Pr[Q = q, C = c] and µv,q,c = E[Jv | Q = q, C = c] for judge/view v A
singular-value decomposition

M̂1,2 = U12 Σ12 V
⊤
12

yields factor matrices

U12 Σ
1/2
12 ≈ [µ1,q,c]R, V12 Σ

1/2
12 ≈ [µ2,q,c]R,

where R ∈ O(4) is an unknown orthogonal matrix.

Repeating on M̂1,3 = 1
n

∑
iX

(i)
1 X

(i)⊤
3 = U13 Σ13 V

⊤
13 produces a second rotated copy of [µ1,q,c].

We solve the Procrustes problem

R = arg min
O∈O(4)

∥∥U12 Σ
1/2
12 − U13 Σ

1/2
13 O

∥∥ ∗ F,
13



Algorithm 3 CARE (T)

Input: Score matrix J ∈ Rn×p, tolerance ε.
Output: Estimates

{
µ̂qc, π̂qc

}
q,c∈{0,1}.

A. Anchor discovery (graph partition)
1: Compute the sample covariance Σ̂ = J⊤J/n and perform the sparse+low-rank split Σ̂ ≈ Ŝ + L̂

(Alg. 2).
2: Partition judges into three disjoint groups {Gℓ}3ℓ=1 that satisfy

a ̸=b, j1∈Ga, j2∈Gb =⇒ |Ŝj1,j2 | ≤ ε,

ensuring no direct edges with strength greater than ϵ can exist across groups.

B. Empirical third-order moment tensor
3: for ℓ = 1, 2, 3 do
4: Xℓ ← columns of J indexed by Gℓ ▷ Xℓ ∈ Rn×|Gℓ|

5: end for
6: Compute

T̂ =
1

n

n∑
i=1

X
(i)
1 ⊗X

(i)
2 ⊗X

(i)
3 ∈ R|G1|×|G2|×|G3|.

C. Tensor decomposition
7: Run a CP tensor-power decomposition on T̂ to obtain k = 4 components{

(π̂qc, µ̂
(1)
qc , µ̂

(2)
qc , µ̂

(3)
qc )
}
q,c∈{0,1}2 , where π̂qc > 0 and µ̂(ℓ)

qc ∈ R|Gℓ|.

D. Assemble full means
8: for q, c ∈ {0, 1}2 do
9: µ̂qc ← concat

(
µ̂
(1)
qc , µ̂

(2)
qc , µ̂

(3)
qc

)
∈ Rp.

10: end for
E. State alignment with anchors

11: Find the permutation ρ of {1, . . . , 4} that minimizes
∑4

r=1

∥∥µ̂ρ(r) − µanchor(r)
∥∥2
2
, where the four

anchor prototypes correspond to (Q,C)={00, 01, 10, 11}.
12: (µ̂00, µ̂01, µ̂10, µ̂11)← (µ̂ρ(1), µ̂ρ(2), µ̂ρ(3), µ̂ρ(4)).

F. Mixing weights
13: (π̂00, π̂01, π̂10, π̂11)← (π̂ρ(1), π̂ρ(2), π̂ρ(3), π̂ρ(4)).

14: return {µ̂qc, π̂qc}q,c∈{0,1}.

then set µ̂2,q,c = (V12 Σ
1/2
12 )R⊤ and µ̂3,q,c = (V13 Σ

1/2
13 )R⊤ to align all three views.

This SVD baseline recovers {µv,q,c} up to the permutation/sign ambiguity inherent in any orthogonal
transform.

C.5 Genral CARE Setup

Extension Beyond the Gaussian Observation Model. The multivariate-Gaussian assumption
for J |H is convenient—its first two or three moments already encode all information needed for
the sparse + low-rank and tensor steps—but it is not a requirement. Because CARE learns the
graphical structure, the same pipeline applies whenever each judge’s conditional distribution lies in
an exponential family or, more generally, a latent-variable generalized linear model (GLM):

• Categorical or ordinal scores. For Likert ratings or pairwise preferences we can set

Ji | H ∼ Categorical
(
softmax(W⊤

i H)
)

or Ordinal−logit(W⊤
i H).

The graph—hence the sparse mask S—is unchanged; only the node-wise likelihoods differ. We still
recover S from conditional-mutual-information or pseudo-likelihood scores, and we still factorize
higher-order indicator moments such as E

[
1{Ja=ℓ} 1{Jb=m} 1{Jc=n}

]
.
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• Mixed Discrete-Continous Scores. When some judges output real scores and others categorical
flags, we use a mixed conditional distribution:

p(J |H) =
[
Πi∈Cont.N (Ji;µHi

, σ2
i )
] [

Πj∈Disc.Bernoulli(σ(W⊤
j H))

]
.

CARE forms mixed raw/indicator moments, and identifiability again follows from standard tensor-
decomposition guarantees for mixed conditional means.

• Heavy-tailed or skewed real scores. When numeric scores are skewed or contain outliers, a
multivariate-t or Gaussian scale mixture is appropriate. Up to a scalar factor, the covariance still
decomposes as sparse + low-rank, so Steps 1–2 of Algorithm 2 work after a simple rescaling.

Empirically, we find that replacing the Gaussian local likelihood only affects the estimation of
sparse structure and extraction of latent factors, not the subsequent symmetry-breaking or posterior
computation; thus the overall CARE pipeline generalizes with minimal adjustments.

C.6 Heuristics and Justifications

Heuristics for symmetry breaking Any instantiation of CARE will require symmetry-breaking
procedures for latent variable identifiability. For example, the fully Gaussian case needs a heuristic to
identify the true-quality direction among latent factors, distinguishing Q from confounders C. In the
binary-Gaussian mixture scenario, an additional step resolves ambiguity between latent states (Q = 0
vs. Q = 1). Doing so will require additional information that can come from modeling assumptions,
the use of ground-truth samples, or heuristics. We detail some examples below:

• Identifying True-Quality Factor for Joint-Gaussian Model. We introduce heuristics particularly
aimed at distinguishing the true-quality latent variable from confounding latent variables. First, the
human-anchor criterion leverages a small validation set containing human ratings. By including
these human judgments in the graphical model, we anchor the latent quality variable to ground
truth by selecting the latent factor exhibiting the strongest connection to the human evaluations.
Second, we apply a loading balance heuristic, identifying the true-quality factor as one that loads
broadly and with similar magnitude across all competent judges. Conversely, factors dominated by
a few judges typically indicate shared confounding rather than true quality.

• Identifying Latent States for Mixed Model. In scenarios such as the tensor-based method,
symmetry breaking additionally involves distinguishing latent states corresponding to different
quality levels (e.g., Q = 0 versus Q = 1). In practice, we can use known labeled samples (such as
high-quality examples) to anchor and identify latent-state configurations. By comparing different
latent configurations with these known labeled samples, we select the latent-state assignment that
best aligns with empirical observations, effectively removing latent state ambiguity.

Heuristic for Addressing Orthogonality Violations in CARE (SVD).

Existing heuristics for identifying the true quality latent factor can estimate corresponding weights,
but they often suffer from bias when the orthogonality assumption—central to the application of
SVD—is violated. This issue commonly arises in real-world datasets. We found the following
weighting rule effective in both synthetic and real-world settings:

w ← λ⋆u⋆ −
∑

ui∈U\{u⋆}

λiui,

where w represents the learned weights for each judge, λ∗ and u∗ is the singular value and vector of
L that corresponds to the direction that is closest to true quality latent variable, λi, ui represent rest
of the singular values and vectors, which can be interpreted as spurious/confounding factors.

This rule intuitively subtracts the influence of overlapping (non-orthogonal) confounding components
from the estimated true score factor.

Figure 4 illustrates the effect of this heuristic in a synthetic fully Gaussian setup. In the non-orthogonal
case—where confounding components overlap with the true signal—the heuristic improves the
estimation of the true latent variable. In contrast, it underperforms in the orthogonal case, where
judges influenced by true scores are cleanly separated from those influenced by confounders.

Justification of Decomposing Covariance Matrix. In the joint-Gaussian setting we decompose the
precision matrix, whose sparsity pattern directly encodes conditional independences in an undirected
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Figure 4: Effect of the proposed heuristic in a fully Gaussian synthetic setup. We estimate the true
quality variable Q and report the mean squared error. The heuristic improves estimation in the
non-orthogonal setting, but slightly degrades performance in the orthogonal setting where true and
confounding components are disjoint.

graphical model. For a mixed Gaussian model, however, each observation J ∈ Rp is generated by
first drawing a latent class label Q,C ∈ {0, 1}2 (with probabilities πqc) and then sampling

J | Q,C = q, c ∼ N
(
µqc, Σ

)
,

where the within-component covariance Σ does not depend on q, c. Because the latent variable only
perturbs the mean, the marginal covariance of J splits, via the law of total covariance, into

Cov(J) = E
[
Cov(J | Q,C)

]︸ ︷︷ ︸
=Σ

+ Cov
(
E[J | Q,C]

)︸ ︷︷ ︸
=
∑

q,c πqc (µqc−µ̄)(µqc−µ̄)⊤

, µ̄ :=
∑
q,c

πqcµqc. (2)

The first term, Σ, is the same sparse block-diagonal matrix we plant in the simulator to model
direct judge–judge interactions; the second term is an outer-product mixture of at most 4 linearly
independent directions and hence has rank ≤ 4. Equation 2 therefore exhibits the population
covariance as a sparse + low-rank decomposition,

Cov(J) = S + L, S = Σ (sparse), L = Cov
(
E[J | Q,C]

)
(low rank).

Because sparsity now lives in S, not in the inverse covariance, estimating S and L by fitting a sparse-
plus-low-rank model directly to the empirical covariance is both natural and statistically identifiable
for the mixed Gaussian case.
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D Theory

We formalize the graphical model under joint gaussian distribution and notation (Section D.1), then
discuss the identifiability of graph structure with exact and approximate recovery (Section D.2)
and quantify the sample complexity required for consistent recovery of our SVD-based algorithm
(Section D.3). Next, we present the model misspecification error when confounding factor is not
correctly characterized (Section D.4). Finally, we discuss sample complexity required for tensor-
based algorithm under mixed Gaussian distribution (Section D.5). All proofs are included in Section
D.6.

D.1 Model and Notation

We discuss the model under joint-gaussian distribution where all variables follow the same definitions
as in Section 2. Briefly, J = (J1, . . . , Jp)

⊤ stacks the p observable judge scores, and H =
(Q,C1, . . . , Ck)

⊤ collects the h = k + 1 latent variables.

Σ = Cov
[
(J,H)⊤

]
, Σ−1 = K =

(
KJJ KJH

KHJ KHH

)
,

where the subscript J (resp. H) refers to observable (resp. latent) coordinates.

The observable block factorizes via the Schur complement:
(ΣJJ)

−1 = S + L, S = KJJ , L = KJH K−1
HH KHJ .

Here Σo is the covariance matrix of observable variables, S ∈ Rp×p is sparse and encodes direct
conditional edges among judges, L is low-rank with rank(L) ≤ h and captures dependencies
mediated by the latent variables. Entry (KJH)iℓ is the edge weight between judge i and latent
factor ℓ.

D.2 Graph Structure Identifiability

While (S,L) can be recovered (e.g. via convex sparse-plus-low-rank regularization [36], the finer
structure of KJH is usually not identifiable from L. For example, for arbitrary rotation matrix R ∈
Rh×h, L = (KJHK

−1/2
HH R)(R⊤K

−1/2
HH KHJ), this indicates one cannot distinguish KJHK

−1/2
HH

from KJHK
−1/2
HH R without further constraints. Hence, we need to impose additional assumptions:

Assumption D.1 (Latent–latent independence and eigen-gap). KHH = diag(d1, . . . , dh) with
d1 > d2 > · · · > dh > 0.
Assumption D.2 (Orthogonal latent–observable connections). The columns of KJH are orthogonal,
i.e. K⊤

JHKJH is diagonal. A special case is the disjoint-support model where each judge connects to
exactly one latent factor.

Next, we provide an exact recovery result given the above assumptions.
Theorem D.3 (Exact Recovery). Under Assumptions 1 and 2, columns in KJH are identifiable up to
column permutations and sign flips.

Real-world data rarely satisfy the exact orthogonality in Assumption D.2. To assess robustness,
consider the following perturbed connection matrix:

K̃JH = KJH + E, ∥E∥2 small.
The associated low-rank part is L̃ = K̃JHK

−1
HHK̃HJ . Let the eigen-pairs of L = KJHK

−1
HHKHJ

and L̃ be {(λi, ui)}hi=1 and {(λ̃i, ũi)}hi=1, ordered so that λ1 > · · · > λh > 0, and denote the
eigen-gap by

δi = min
j ̸=i
|λi − λj | > 0.

Theorem D.4 (Stability under approximate orthogonality). For every i ∈ [h],

∥ûi − ui∥2 ≤
2∥K−1

HH∥2 ∥E∥2
δi

+ O
(
∥E∥22

)
.

This indicates that latent–observable directions remain identifiable (up to column permutations and
sign flips) whenever the perturbation norm ∥E∥2 is small relative to the eigen-gap δi. We defer the
proof to Appendix D.6.
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D.3 Sample Complexity Bound

We now quantify how many i.i.d. samples are needed for the two–stage estimator in Algorithm 2 to
recover the latent–observable directions KJH ∈Rp×h.

As detailed in Algorithm 2, our estimator for KJH proceeds in two stages: first, a sparse + low-rank
decomposition of sample precision matrix. Second, we extract the latent–observable directions by
taking the rank-h eigen-decomposition L̂n =

∑h
i=1 λ̂i ûiû

⊤
i and setting K̂JH := [û1, . . . , ûh].

Theorem D.5 (Sample complexity for recovering KJH ). Let L∗ = KJHK
−1
HHKHJ ∈ Rp×p have

distinct eigenvalues λ1 > · · · > λh and define the (global) eigengap δ := min1≤i<j≤h|λi − λj |.
Assume the identifiability, incoherence, and curvature conditions of [36]. Then for any ϵ > 0, with
probability at least 1− 2e−ϵ,

max
i≤h

∥∥ ûi − ui ∥∥2 = O
( √

ϵ√
n ξ(T ) δ

)
,

where n is the sample size, ûi and ui are the i-th eigenvectors of L̂n and L∗ respectively. T = T (L∗)
is the tangent space of L∗, ξ(T ) is the curvature constant from [36].

We defer the proof to Appendix D.6. At a high-level, we adapt the identifiability, incoherence and
curvature conditions from Theorem 4.1 of [36] and combine it with extended result of Davis-Khan’s
theorem [38].

This bound shows that the column-wise ℓ2 error decays at the standard parametric rate n−1/2, and
is attenuated by both the manifold curvature ξ(T ) and the eigengap δ. Achieving an accuracy of at
most α ∈ (0, 1) therefore requires

n = Õ
( ϵ

ξ(T )2δ2α2

)
samples, up to universal constants and log-factors.

D.4 Misspecification Error

Many label aggregation frameworks (e.g.,[39, 28, 29]) assume a single latent variable that explains the
observed labels. However, in setups like LLM-as-a-judge, the scores may be influenced by additional
latent factors or confounders that also affect the observed annotations. Ignoring these confounder
latents leads to model misspecification, which can bias the aggregated labels. We characterize this
bias and analyze its impact on the estimated aggregation weights.

Let L∗ =
∑h

ℓ=1
1
dℓ
kℓk

T
ℓ be the true rank-h low-rank component of the observable precision matrix,

derived from the latent-observable connection matrix KJH = [k1, . . . ,kh] and latent-latent precision
KHH = diag(d1, . . . , dh). Let utrue

1 = k1/||k1||2 be the true direction of influence for the quality
score latent variable Q (assuming k1 ̸= 0).

Define A = 1
d1
k1k

T
1 . Its principal (and only non-zero) eigenvalue is λ1 = 1

d1
||k1||22, and its spectral

gap (to its other zero eigenvalues) is δ = λ1. Let E =
∑h

ℓ=2
1
dℓ
kℓk

T
ℓ be the confounding component,

so L∗ = A+E. Let v1 be the principal unit-norm eigenvector of L∗. When a rank-1 model is fitted,
the estimated direction is ûpop

1 = v1.
Theorem D.6. If ||E||op ≤ δ/2, the ℓ2 deviation of the estimated direction v1 from utrue

1 is bounded
by: ∣∣∣∣v1 − sutrue

1

∣∣∣∣
2
≤

2 ||E||op

δ
=

2
∣∣∣∣∣∣∑h

ℓ=2
1
dℓ
kℓk

T
ℓ

∣∣∣∣∣∣
op

1
d1
||k1||22

for a sign s = ±1 (chosen so that s(utrue
1 )Tv1 ≥ 0).

Proof. By Davis-Kahan theorem (Theorem 2 in [38]), if ||E||op ≤ δ/2, then the ℓ2 distance between
v1 and utrue

1 (after aligning their signs via s = ±1) is bounded by:∣∣∣∣v1 − s · utrue
1

∣∣∣∣
2
≤

2 ||E||op

δ
.
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Plugging in E yields the desired result:

∣∣∣∣v1 − s · utrue
1

∣∣∣∣
2
≤

2
∣∣∣∣∣∣∑h

ℓ=2
1
dℓ
kℓk

T
ℓ

∣∣∣∣∣∣
op

1
d1
||k1||22

.

The theorem quantifies the directional bias in the estimated influence of Q when confounders are
ignored. This bias is proportional to the collective “strength” of confounders in the precision domain
(numerator) and inversely proportional to Q’s own “strength” (denominator). Fitting a rank-1 model
forces this bias, while a higher-rank model offers the capacity to separate these influences.
Corollary D.7 (Error Bound for Estimated Conditional Mean of Q). Denote the true conditional
mean of true quality score latent variable Q given the observable variables O = (J1, ..., Jp)

be denoted by E[Q|O]true. Then, E[Q|o]true = − ||k1||2
d1

(utrue
1 )To. Let an estimated conditional

mean with the misspecified direction, E[Q|o]mis, be formed using the misspecified direction v1 be
E[Q|o]mis = −

||k1||2
d1

(s · v1)
To, where s = ±1 is chosen such that s · (utrue

1 )Tv1 ≥ 0. Then, the
absolute error in the estimated conditional mean due to the directional misspecification is bounded
by:

|E[Q|o]mis − E[Q|o]true| ≤
2
∣∣∣∣∣∣∑h

ℓ=2
1
dℓ
kℓk

T
ℓ

∣∣∣∣∣∣
op

||k1||2
||o||2

This holds if the condition from the main theorem, ||E||op ≤ δ/2 = 1
2d1
||k1||22, is met, where

E =
∑h

ℓ=2
1
dℓ
kℓk

T
ℓ .

Proof. The absolute difference is:

|E[Q|o]mis − E[Q|o]true| =
∣∣∣∣−||k1||2

d1
(s · v1)

To−
(
−
||k1||2
d1

(utrue
1 )To

)∣∣∣∣
=

∣∣∣∣−||k1||2
d1

(s · v1 − utrue
1 )To

∣∣∣∣
=
||k1||2
d1

∣∣(s · v1 − utrue
1 )To

∣∣
By the Cauchy-Schwarz inequality,

∣∣(x)Ty∣∣ ≤ ||x||2 ||y||2. Applying this:

|E[Q|o]mis − E[Q|o]true| ≤
||k1||2
d1

∣∣∣∣s · v1 − utrue
1

∣∣∣∣
2
||o||2

The term ||s · v1 − utrue
1 ||2 is equivalent to ||v1 − s · utrue

1 ||2 from the main theorem statement, where
s aligns utrue

1 with v1. From the preceding Theorem, we have the bound (where δ = 1
d1
||k1||22):

∣∣∣∣v1 − s · utrue
1

∣∣∣∣
2
≤

2 ||E||op

δ
=

2
∣∣∣∣∣∣∑h

ℓ=2
1
dℓ
kℓk

T
ℓ

∣∣∣∣∣∣
op

1
d1
||k1||22

Substituting this bound into the inequality for the error in the conditional mean:

|E[Q|o]mis − E[Q|o]true| ≤
||k1||2
d1

(
2 ||E||op
1
d1
||k1||22

)
||o||2

=
||k1||2
d1

·
2d1 ||E||op

||k1||22
· ||o||2

=
2 ||E||op

||k1||2
||o||2

=
2
∣∣∣∣∣∣∑h

ℓ=2
1
dℓ
kℓk

T
ℓ

∣∣∣∣∣∣
op

||k1||2
||o||2
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This corollary shows that the error in the estimated conditional mean of Q (due to using the misspeci-
fied direction for Q’s influence) scales with:

• The magnitude of the observable vector o (specifically, ||o||2).

• The collective strength of the confounding latent variables in the precision domain
(
∣∣∣∣∣∣∑h

ℓ=2
1
dℓ
kℓk

T
ℓ

∣∣∣∣∣∣
op

).

• Inversely with the ℓ2-norm of the true connection weights of Q (||k1||2).

Especially, we see that strong confounders widen the gap bound, whereas heavier connection weights
to the true score shrink it. Put differently, misspecification hurts most when confounders are strong
and the quality signal is weak.

D.5 Sample Complexity for CARE tensor algorithm

Assumption D.8 (Model and identifiability). Let J = (X⊤
1 , X

⊤
2 , X

⊤
3 )⊤ ∈ Rp (p = p1 + p2 + p3)

be one observations i.i.d generated as

(Q,C) ∼ Multinomial({πqc}q,c∈{0,1}), Xℓ | (Q = q, C = c) ∼ N
(
µ(ℓ)
qc , Σ

)
,

with ℓ ∈ {1, 2, 3}. Write r ∈ [4]↔ (q, c) ∈ {0, 1}2 and define wr := πqc, ar := µ
(1)
qc ∈ Rp1 , br :=

µ
(2)
qc ∈ Rp2 , cr := µ

(3)
qc ∈ Rp3 .

(A1) Block-conditional independence. X1 ⊥ X2 ⊥ X3 | (Q,C).

(A2) Full-rank moment tensor. The population third-order moment M := E[X1 ⊗ X2 ⊗
X3] =

∑4
r=1 wr ar ⊗ br ⊗ cr has rank 4, with πmin := minr πr > 0 and λmin :=

minr ∥ar∥2∥br∥2∥cr∥2 > 0.

(A3) Non-degenerate covariance. σ2
max := ∥Σ∥op <∞.

(A4) Spectral gap. The CP factors are uniquely defined up to scaling/sign and satisfy the eigenvalue-
gap condition of Theorem 5.1 in [37]. Denote that gap by δ > 0.

(A5) Correct graph partition. There exist a graph partition such that judges between different
groups are conditional independent. Step A of Algorithm 3 returns the true groups G1,G2,G3.

Theorem D.9 (Sample complexity of CARE tensor step). Fix 0 < ε < 1 and let the assumptions
above hold. Run Algorithm 2 (CARE) on n i.i.d. samples to obtain {µ̂qc, π̂qc}q,c∈{0,1}. Under
Assumption D.8, there exist universal constants C1, C2 > 0 such that if

n ≥ C1
σ6
max

δ2 π2
min

p log
(
p/ε
)
,

then with probability at least 1− ε

max
q,c

∥∥µ̂qc − µqc

∥∥
2
≤ C1

σ3
max

δ

√
p log(p/ε)

n
, max

q,c

∣∣π̂qc − πqc∣∣ ≤ C2

√
p log(p/ε)

n
.

We defer the proof to D.6.

D.6 Proofs

Proof of Theorem D.3

Proof. Let low-rank matrix satisfies L =
∑h

i=1 di uiu
⊤
i with ui the i-th column of Koh. By

Assumption D.2 the ui are mutually orthogonal, and by Assumption D.1 the eigenvalues d1 > · · · >
dh are distinct; hence this rank-1 decomposition is the (unique) spectral decomposition of L. Thus
each ui is identifiable from L up to sign and ordering, proving the theorem.
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Proof of Theorem D.4

Proof. We apply standard matrix perturbation theory for eigenvectors. Starting from the eigenvalue
decomposition:

Lui = λi ui,

we write the perturbed matrix as

L̃ = (Koh + E)K−1
hh (Koh + E)⊤ = L + KohK

−1
hhE

⊤ + EK−1
hhK

⊤
oh + EK−1

hhE
⊤.

Let ∆L = L̃− L. By the Davis–Kahan theorem,

∥ûi − ui∥2 ≤
2 ∥∆L∥2

δi
,

where δi = minj ̸=i |λi − λj | > 0. Moreover,

∥∆L∥2 ≤ 2 ∥Koh∥2 ∥K−1
hh ∥2 ∥E∥2 + O(∥E∥22)

and ∥Koh∥2 = 1. Hence

∥ûi − ui∥2 ≤
2 ∥K−1

hh ∥2 ∥E∥2
δi

+ O(∥E∥22).

This completes the proof.

Proof of Theorem D.5

Proof of Theorem D.5. Step 1 – Spectral error of L̂n. Apply Chandrasekaran et al.’s Theorem 4.1
with the regularization parameters

γn =
48
√
2Dψ(2− ν)
ξ(T )ν

√
ϵ

n
, σ, θ as in their conditions (3)–(4).

Under the incoherence and curvature conditions of their Proposition 3.3, there exists a universal
constant C1 > 0 such that, with probability at least 1− 2e−ϵ,∥∥ L̂n − L∗∥∥

2
≤ C1

√
ϵ/n

ξ(T )
. (3)

Step 2 – Eigenvector perturbation via Davis–Kahan. Let L∗ = UΛU⊤ with Λ =
diag(λ1, . . . , λh, 0, . . . , 0) and collect the top–h eigenvectors in Uh = [u1, . . . , uh]. Write the
spectral decomposition of the estimator as L̂n = ÛhΛ̂Û

⊤
h + R, where R contains only the eigen-

components of rank > h. Set the perturbation E := L̂n − L∗.

Applying Corollary 3 from [38] to the i-th eigenpair gives

∥ui − ûi∥2 ≤
23/2∥E∥2

δi
. (4)

Step 3 – Combine the two bounds. Insert equation 3 into equation 4:

∥ ûi − ui ∥2 ≤
23/2C1

δ ξ(T )

√
ϵ

n
∀ i ∈ [h],

and take the maximum over i. This proves the advertised high-probability bound

max
i≤h
∥ ûi − ui ∥2 = O

(√
ϵ/n

ξ(T ) δ

)
.

Step 4 – Invert to a sample-size requirement. Setting the right-hand side to a target accuracy
ε ∈ (0, 1) and solving for n yields n ≥ 4C2

1

ε2
ϵ

ξ(T )2δ2 , which is the sample-complexity statement in
the theorem.
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Proof for Theorem D.9

Proof sketch. Step 1: Concentration of the empirical tensor. Let M̂ := 1
n

∑n
i=1X

(i)
1 ⊗X

(i)
2 ⊗

X
(i)
3 . Because each Xℓ is sub-Gaussian with proxy σmax, the operator-norm Bernstein bound for

order-3 tensors (Lemma 5 of 40) yields

∥M̂ −M∥op = O
(
σ3
max

√
p log(p/ε)

n

)
w.p. 1− ε/2.

Step 2: Robust CP decomposition. Applying the non-symmetric tensor power method of [37,
Alg. 2] to M̂ and invoking their perturbation bound (Theorem 5.1 therein) gives, for every component
r ∈ [4], ∥∥(âr, b̂r, ĉr)− (ar, br, cr)

∥∥
2

= O
(

1
δ ∥M̂ −M∥op

)
.

Step 3: Assembling full means. Algorithm 3 concatenates the three block-means, so µ̂r − µr =

(âr − ar, b̂r − br, ĉr − cr), and the same O(·) factor carries through.

Step 4: Mixing-weight estimation. Given accurate factor recovery, the usual least-squares re-
estimation of weights satisfies |π̂qc − πqc| = O

(
∥M̂ −M∥op

)
(37, Theorem B.1), yielding the stated

rate.

Step 5: Union bound. Combine Steps 1–4 and union-bound over the four components to obtain the
final probability 1− ε.
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E Experimental Details and Extended Results

This appendix provides additional details on our experimental setup and supplementary analyses.
We first describe the datasets, metrics, baseline methods, and the pool of LLM judges used in our
evaluation (E.1), followed by the exact prompt templates used to elicit judgments (E.2). We then
report the performance of individual LLM judges (E.3) and introduce our suite of programmatic
judges, including their construction and standalone accuracy (E.4). Next, we examine ablations
on prompt-based interventions (E.5) and evaluate robustness to confounding factors, covering both
injected stylistic and semantic biases as well as controlled experiments with dummy judges (E.6–E.7).
We then present additional validations: synthetic experiments demonstrating the benefits of tensor
decomposition (E.8), graph-aware tensor decomposition (E.9), and a real-world Gaussian mixture
setting on CivilComments (E.10). Together, these results expand on the main text and demonstrate
the generality and robustness of our CARE framework.

E.1 Setup.

Datasets & Metrics. We use FeedbackQA [41], UltraFeedback [42], and HelpSteer2 [43] datasets
for response scoring. Performance is benchmarked using Mean Absolute Error (MAE) to measure
numerical accuracy and Kendall’s τ rank correlation [44] to evaluate ranking consistency, accommo-
dating variations in judge scales and calibration.

• FeedbackQA [41]: question–answer pairs rated for helpfulness on a 1–5 scale. We use the
validation set, treating the average of two human ratings as ground truth.

• HelpSteer2 [43]: large-scale assistant responses annotated on multiple axes (0–4). We use the
validation set and take the helpfulness score as ground truth.

• UltraFeedback [42]: responses rated 0–10 for overall quality, with scores aggregated from GPT-4
and human raters. We randomly sample 5,000 examples for evaluation.

• Synthetic Dataset (Section E.8). We construct a synthetic dataset with latent state probabilities
set to πqc = [0.2, 0.2, 0.3, 0.3], corresponding to latent states (Q,C) as (0, 0), (0, 1), (1, 0), (1, 1)
respectively. The judges are organized into three distinct groups, each containing four judges whose
conditional means µqc are randomly drawn from a uniform distribution ranging between 1 and 4.
Dependence structures are imposed explicitly: for judges independent of the true quality variable
Q, we constrain their conditional means such that averages depend solely on the confounder C
(i.e., rows corresponding to Q = 0 and Q = 1 are identical for each C state).

Baselines. We compare CARE to following baseline aggregation methods: (i) majority voting
(MV), (ii) simple averaging (AVG) [11], (iii) discrete-based weak supervision (WS) [39], and (iv)
continuous-based weak supervision (UWS) [29].

LLM Judges. We consider the following LLMs as judges to score responses: Llama-3.2-1B
[45], Llama-3.2-3B [45], Llama-3.1-8B-Instruct [45], Mistral-7B-Instruct-v0.3
[46], Qwen3-0.6B [47], Qwen3-1.7B [47], Qwen3-4B [47], Qwen3-8B [47],
Phi-4-mini-instruct [48], gemma-3-1b-it [49], gemma-3-4b-it [49].

Computing Resources. We used a server equipped with an NVIDIA RTX 4090 (24GB). Generating
LLM judge outputs took up to 3 hours per dataset. In contrast, the aggregation algorithms were
efficient, completing in under 1 minute for datasets with approximately 5,000 rows.

E.2 Prompt Templates

In this subsection we provide the prompts we used for collecting LLM judgements.

LLM Judge Scoring Template (FeedbackQA, HelpSteer2, Ultrafeedback)

You will be given a user_question and system_answer couple.

Your task is to provide a ‘total rating’ scoring how well the system_answer answers the
user concerns expressed in the user_question. Give your answer as a float on a scale of
{min_rating} to {max_rating}, where {min_rating} means that the system_answer is not
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helpful at all, and {max_rating} means that the answer completely and helpfully addresses the
question.

Provide your feedback as follows:

Feedback:::
Total rating: (your rating, as a float between {min_rating} and {max_rating})

Now here are the question and answer.

Question: {question}
Answer: {answer}

Feedback:::
Total rating:

Intervened LLM Judge Scoring Template (Section 3.4)

You are a careful and impartial evaluator. Your task is to rate how well the system_answer
responds to the user_question, focusing on substance, correctness, and completeness.

Rate the answer on a scale from {min_rating} to {max_rating}, where:
- {min_rating} means the answer does not address the question or is misleading,
- {max_rating} means the answer fully and helpfully addresses the question with accurate,
relevant, and concise information.

Avoid common judgment biases:
- Do **not** reward irrelevant fluency, length, or politeness.
- Do **not** penalize answers solely for brevity if they are complete.
- Do **not** be influenced by phrasing style unless it affects clarity or correctness.

Judge only the answer’s content in relation to the question. Ignore formatting, gram-
mar, or tone unless they impact understanding or utility.

Provide your feedback as follows:

Feedback:::
Total rating: (a float from {min_rating} to {max_rating})

Now, here are the inputs:

Question: {question}
Answer: {answer}

Feedback:::
Total rating:

LLM Judge Toxicity Scoring Template (CivilComments)

You will be given a user_question and system_answer couple.

Your task is to provide a ‘total rating’ scoring how well the system_answer answers the
user concerns expressed in the user_question. Give your answer as a float on a scale of
{min_rating} to {max_rating}, where {min_rating} means that the system_answer is not
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helpful at all, and {max_rating} means that the answer completely and helpfully addresses the
question.

Provide your feedback as follows:

Feedback:::
Total rating: (your rating, as a float between {min_rating} and {max_rating})

Now here are the question and answer.

Question: {question}
Answer: {answer}

Feedback:::
Total rating:
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E.3 Individual LLM Judge Performance

Table 5 shows the performance of individual LLM judges. Overall, we find that aggregation methods
outperform or match the best single judge. Since the relative performance of individual LLM judges
is not known a priori in practical settings, aggregation offers a useful approach for integrating judges
in an agnostic manner.

Table 5: Performance of individual judges across datasets, as evaluated in Section 3.1.

FeedbackQA HelpSteer2 UltraFeedback

MAE (↓) τ (↑) MAE (↓) τ (↑) MAE (↓) τ (↑)

gemma-3-1b-it 1.0073 0.2315 1.0666 0.0825 1.0606 0.1812
gemma-3-4b-it 0.7578 0.4537 0.9920 0.1402 0.8492 0.2309
Llama-3.1-8B-Instruct 0.8148 0.4341 1.1364 0.1261 0.8648 0.3194
Llama-3.2-1B 1.2219 -0.0525 1.0049 -0.0132 1.0119 0.0752
Llama-3.2-3B 1.0362 0.0051 0.9995 0.0251 1.1522 0.1648
Mistral-7B-Instruct-v0.3 1.0244 0.4539 1.0793 0.1116 0.8572 0.1735
Phi-4-mini-instruct 0.8082 0.4557 1.0692 0.1576 0.8355 0.3147
Qwen3-0.6B 1.0969 0.2073 1.1255 0.0370 1.0233 0.1254
Qwen3-1.7B 1.1507 0.2485 1.0693 0.1049 1.1382 0.1926
Qwen3-4B 1.0999 0.2854 0.9675 0.2290 0.7088 0.3921
Qwen3-8B 1.0517 0.4417 0.9675 0.2094 0.7512 0.3140

E.4 Programmatic Judges

Programmatic judges, synthesized by LLMs, distill and convert evaluation logic into interpretable,
cheap-to-obtain program code [12, 50, 51]. These program judges provide specialized, independent
assessments compared to using LLMs directly as evaluators. We integrate these judge sets into CARE
to enhance evaluation signals.

We describe the creation of programmatic judges and the criteria they encode. Using OpenAI’s
GPT-4o [14], we generate judges with the following prompt:

Programmatic Judge Template

You are now a judge to evaluate LLM generated response with a given question. You will
write your evaluation logic into code and generate python programs to return their scores.
Higher represents better response quality. Consider complex criteria for assessing responses,
leveraging third-party models, embedding models, or text score evaluators as needed.

Function signature: def _judging_function(self, question, response):

We synthesize 23 programs and select 10 representative ones for our experiments (see Section 3.2
and Section 3.3). These programs evaluate responses based on diverse criteria: (i) structure, (ii)
readability, (iii) safety, (iv) relevance, and (v) factuality. For example:

• Structure: A judge counts transition markers (e.g., “therefore,” “however”) to assess coherence,
with more markers indicating better quality.

• Relevance: A judge uses TF-IDF to convert questions and responses into vectors, computing cosine
similarity to measure semantic alignment (see Program 1). Another employs semantic embeddings
for similarity metrics (see Program 2).

• Readability: A judge leverages a third-party API to evaluate complexity, using metrics like the
Flesch–Kincaid grade level (see Program 3).

All judging logic, conditions, and pre-defined keyword lists are generated by the LLM. Below, we
provide examples to illustrate this approach.

def _lexical_overlap(self , question , response):
""" Compute lexical overlap using TF -IDF for relevance evaluation.

"""
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# Preprocess input question and response (e.g., lowercase , remove
stopwords)

question_clean = self._preprocess(question)
response_clean = self._preprocess(response)

# Return 0.0 if either input is empty after preprocessing
if not question_clean.strip () or not response_clean.strip ():

return 0.0

# Transform inputs to TF-IDF vectors using the vectorizer
tfidf_matrix = self.tfidf_vectorizer.fit_transform ([ question_clean

, response_clean ])
question_vec = tfidf_matrix [0] # Extract question vector
response_vec = tfidf_matrix [1] # Extract response vector

# Compute cosine similarity between vectors and return as float
return float(cosine_similarity(question_vec , response_vec)[0][0])

Program 1: Lexical Overlap Computation using TF-IDF.

def _semantic_similarity_strong(self , question , response):
""" Compute semantic similarity between question and response."""
# Return 0.0 if either input is empty
if not question.strip () or not response.strip():

return 0.0

# Encode question and response into dense vectors using the
embedding model

question_embedding = self.semantic_embedding_strong_model.encode(
question , max_length =4096

)["dense_vecs"]
response_embedding = self.semantic_embedding_strong_model.encode(

response , max_length =4096
)["dense_vecs"]

# Compute dot product similarity between embeddings
similarity = question_embedding @ response_embedding

# Clamp similarity score between 0.0 and 1.0 and return as float
return float(max(0.0, min(1.0, similarity)))

Program 2: Semantic Similarity using Embedding Model.

def _readability(self , response):
""" Calculate readability metrics for response."""
# Compute readability scores using textstat library
return {

# Flesch Reading Ease (inverted: higher score means harder to
read)

"flesch_reading_ease": 100 - textstat.flesch_reading_ease(
response),

# SMOG Index (higher score indicates higher reading difficulty
)

"smog_index": textstat.smog_index(response),
}

Program 3: Readability Metrics Calculation.

We report the performance of individual program judges in Table 6. While their standalone perfor-
mance is limited, they provide useful signals for the integration strategies discussed in Sections 3.2
and 3.3.
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Table 6: Performance of individual program judges across datasets, with (*) indicating judges selected
in Section 3.2.

FeedbackQA HelpSteer2 UltraFeedback

MAE (↓) τ (↑) MAE (↓) τ (↑) MAE (↓) τ (↑)

factuality_check_score (*) 1.9956 0.0872 1.1992 0.0075 1.1910 0.0492
factuality_factKB_score (*) 1.0343 0.2288 1.7180 0.0414 1.4342 0.1051
readability_flesch_reading (*) 1.2185 0.0431 2.5682 0.0445 2.5145 0.1396
readability_smog (*) 0.9805 0.1277 2.3286 0.0283 2.3122 0.1604
relevance_bleu 1.4035 0.0126 2.7452 -0.0355 2.7330 0.0560
relevance_keyword_overlap 1.2779 0.1977 2.3735 0.0138 2.2725 0.1461
relevance_lexical_overlap (*) 1.1371 0.2316 2.0148 -0.0144 1.9182 0.1187
relevance_rouge 1.3079 0.2066 2.5603 0.0232 2.4838 0.1327
relevance_semantic_sim_strong (*) 0.8759 0.4092 1.1182 0.0395 0.9866 0.1601
safety_toxicity (*) 1.5396 -0.0380 1.1105 0.0300 1.0139 -0.0043
structure_avg_paragraph_length_dist 1.4560 -0.1883 2.5562 -0.0081 2.4637 0.1074
structure_avg_sentence_length_dist 1.5248 -0.0140 2.4407 -0.0287 2.4179 0.1612
structure_cohesion_score 1.4078 0.2070 2.7139 0.0345 2.6578 0.1567
structure_emphasis_count 1.2826 0.1988 2.6642 0.0482 2.5955 0.2060
structure_headings 1.4765 0.0423 2.6521 -0.0340 2.5916 0.1049
structure_lexical_diversity 1.0672 0.1625 2.1864 0.0444 2.0981 0.1935
structure_list_usage 1.6284 0.0159 3.0208 -0.0108 3.0132 0.0872
structure_logical_transitions (*) 1.2694 0.1743 2.2693 0.0520 2.4355 0.2263
structure_max_sentence_length (*) 1.3039 0.1272 2.7532 0.0104 2.7511 0.1377
structure_min_sentence_length 1.3568 0.1887 2.4872 0.0400 2.4322 0.2046
structure_questions 1.2443 0.2692 2.4910 0.0360 2.4064 0.2114
structure_sentence_balance 1.4423 0.1835 2.6757 0.0501 2.6444 0.2203
structure_sentence_count (*) 1.3099 0.1742 2.4408 0.0807 2.6570 0.2300
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E.5 Effects of Prompt-Based Intervention (Section 3.4)

We begin by analyzing how the intervention using a robust prompt affects the performance of
individual LLM judges. Figures 5 (MAE) and 6 (Kendall’s τ ) present the performance differences
relative to the vanilla prompt. While the intervention aims to reduce confounding signals, its impact
varies—some model–dataset combinations show improvement, while others show degradation.

We then assess how these shifts influence aggregate performance. Figures 7 and 8 show the corre-
sponding changes in aggregation accuracy. Most baseline methods benefit from the intervention,
whereas CARE shows a slight performance drop. A plausible explanation is that once confounding
signals are mitigated, the additional latent variables in CARE may begin to model residual noise
rather than meaningful structure, slightly reducing its performance. Nevertheless, as shown in Sec-
tion 3.4, CARE without intervention still outperforms other baselines with the robustness prompt,
highlighting its effectiveness even without manually crafted interventions for hidden confounders.
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Figure 5: Change in MAE (↓) for individual LLM judges after applying the robustness prompt.
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Figure 6: Change in Kendall’s τ (↑) for individual LLM judges after the robustness prompt.

29



MV
AV

G WS
UWS

CARE

Models

0.0

0.2

0.4

0.6

0.8

M
AE

feedbackqa
Raw
Intervened

MV
AV

G WS
UWS

CARE

Models

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
AE

helpsteer2
Raw
Intervened

MV
AV

G WS
UWS

CARE

Models

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
AE

ultrafeedback
Raw
Intervened

MAE Comparison: Raw vs Intervened (Aggregation)

Figure 7: Change in aggregate MAE (↓) after propagating the robustness prompt through each
aggregation method.
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Figure 8: Change in aggregate Kendall’s τ (↑) after the robustness prompt.
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Table 7: Robustness to artificially injected bias. CARE is particularly effective against stylistic biases
such as beauty (rich content) and authority, but less effective for gender and fallacy biases, which
may impact the actual quality of system answers.

Beauty Bias Fallacy Oversight Bias Gender Bias Authority Bias

MAE (↓) τ (↑) MAE (↓) τ (↑) MAE (↓) τ (↑) MAE (↓) τ (↑)

MV 0.9190 0.3336 1.8971 -0.0284 1.7428 0.1272 0.8239 0.2977
AVG 0.5063 0.3943 1.4007 0.1181 1.1355 0.2879 0.3250 0.4288
WS 1.9225 0.3792 2.5588 0.0680 2.0217 0.2474 0.9296 0.4886
UWS 0.5080 0.4383 1.3826 0.0491 1.1646 0.2576 0.2705 0.5799
CARE 0.3749 0.5334 1.8996 0.0116 1.5985 0.2311 0.2466 0.6327

E.6 Robustness to Confounding Factors

Setup. We evaluate robustness using the dataset from [8], in which LLM responses are systematically
altered to introduce specific biases via targeted GPT-4 prompts. The dataset includes four types of
injected bias: beauty, fallacy oversight, gender, and authority. LLM judges are prompted to assign
scores from 1 to 10 for each response. Robustness is assessed by comparing aggregated scores before
and after bias injection, using mean absolute error (MAE) and Kendall’s τ . Lower MAE and higher
Kendall’s τ indicate better robustness under perturbation.

Injected Confounders. To clarify the setup, Table 8 summarizes the injected confounding factors
with illustrative examples. These perturbations target different dimensions of bias, ranging from
superficial stylistic changes to alterations that directly affect semantic correctness.

Bias Perturbation Injected Example Snippet (from Fig. 1)
Fallacy Oversight Insert a factual error “The square root of 36 is 7. . . ” (correct value is 6)
Authority Add a fake citation “. . . (Weisstein, Eric W. ‘Square Root.’ MathWorld. . . )”
Beauty Add emojis / formatting “ 6⃝ multiplied by 6⃝ equals 36.”
Gender Add a gender-biased remark “This might be a bit difficult for women to understand. . . ”

Table 8: Injected confounding factors and illustrative snippets.

Figure 9: Averaged cross-entropy loss
of our algorithm versus the number of
samples. Markers denote average over
three random seeds, and the shaded band
denotes one standard deviation.

Results. Table 7 reports the robustness of different ag-
gregation methods under these injected biases. We find
that CARE is highly stable against stylistic biases such as
beauty and authority, preserving both rankings and score
magnitudes. In contrast, robustness deteriorates when the
bias directly undermines factual or semantic content—as
in fallacy oversight and gender perturbations.

This distinction aligns with our hypothesis: fallacy over-
sight introduces factual inaccuracies that reduce answer
quality, producing expected shifts in judge scores. Mean-
while, gender bias activates explicit safety mechanisms in
alignment-tuned LLM judges, leading to consistent down-
scoring across models and correspondingly large shifts in
aggregate outcomes.
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E.7 Additional Controlled Experiment on Confounding Factors

Unlike the semi-synthetic perturbations in E.6, here we investigate whether CARE can separate the
true quality latent factor from naturally arising confounders in a more controlled setting. Specifically,
we introduce two dummy judges whose scores are directly correlated with response length or the
presence of specific words. If CARE functions as intended, CARE should recover a factor structure
in which high-quality judges align with the true quality factor Q, while the dummy judges align with
a distinct confounder.

Setup. We ran CARE-SVD with 14 judges on the FEEDBACKQA dataset, combining 10 LLM
judges, 2 programmatic “dummy” judges (sensitive to length or special keywords), and 2 human
annotators. The factor loadings are presented in Table 9.

Results. The observed loadings align with our hypothesis:

• Factor 1 (true quality Q). This factor exhibits broad, balanced loadings across competent LLM
judges and the two human judges, with much weaker loadings for the programmatic dummy judges.
Within model families, larger models have higher loadings (e.g., Llama-3.1-8B > Llama-3.2-3B ≈
Llama-3.2-1B), suggesting that Q reflects underlying capability. Instruction-tuned models (Mistral-
7B-Instruct, Phi-4-mini-instruct, Llama-3.1-8B-Instruct, Gemma-3-4B-it) also show above-median
loadings, consistent with their alignment to human rubrics.

• Factor 2 (length confounder). This factor is dominated by a high, concentrated loading on the
length-sensitive dummy_eval_1, with a secondary loading on gemma-3-1b-it (0.59). In contrast,
nearly all other judges—including both humans and stronger instruction-tuned models—have
near-zero loadings. Such a one-sided, few-judge pattern is characteristic of a confounder rather
than true quality.

Table 9: Judge loadings on latent factors in CARE-SVD. Factor 1 corresponds to true quality Q;
Factor 2 reflects a length confounder.

Judge Q (true quality) Length confounder
Qwen3-8B 0.396 -0.240
Llama-3.1-8B-Instruct 0.664 -0.076
gemma-3-4b-it 0.706 -0.152
Llama-3.2-1B -0.009 -0.140
Qwen3-4B 0.180 0.008
gemma-3-1b-it 0.243 0.595
Llama-3.2-3B 0.033 0.057
Phi-4-mini-instruct 0.715 -0.051
Qwen3-1.7B 0.199 -0.012
Mistral-7B-Instruct-v0.3 0.804 0.016
dummy_eval_1 0.098 0.742
dummy_eval_2 0.035 0.290
human_eval_1 0.337 0.078
human_eval_2 0.338 0.059
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E.8 Synthetic Experiments on Care-Tensor

We evaluate the performance of CARE-Tensor using simulated binary-Gaussian mixture data. Dataset
details deferred to Appendix.

Sample Complexity Result. We investigate how the sample size n influences estimation accuracy.
We estimate conditional means µ̂qc and latent state proportions π̂qc using Algorithm 3. Subsequently,
we compute the posterior probabilities P (Q = 1 | J) via the Bayesian formulation in Eq. 1.
We measure the performance using cross-entropy loss. Lower entropy loss yields more accurate
prediction. We observe a clear decreasing trend in cross-entropy loss as sample size increases.

Tensor Decomposition vs SVD. We illustrate the advantage of tensor decomposition over classical
eigen-decomposition (SVD) in addressing rotation ambiguity with higher-order moments. We
quantify performance using mean squared error (MSE) between true conditional means µqc and
estimated means µ̂qc. Detailed methodologies for SVD estimation are deferred to the appendix.

Evaluating across 10 random seeds, we find substantial performance differences: CARE-Tensor
achieves significantly lower estimation errors with MSE (0.51 ± 0.41) compared to the eigen-
decomposition baseline (SVD) with MSE (1.18±0.74). This shows tensor decomposition accurately
recovers conditional means without affected by rotation ambiguity.

E.9 Synthetic Experiment on Graph-Aware Tensor Decomposition

When judges exhibit conditional dependencies, naively partitioning them into views violates the
independence assumptions required by tensor decomposition. We hypothesize that partitioning judges
via a graph-aware procedure that respects dependency structure yields substantially better estimation
than random partitioning.

Setup. We simulated 10,000 items scored by p = 12 judges, partitioned into three views of four
judges each. To induce conditional dependencies, we planted edges of strength 0.3 within each true
view at 40% density. We then compared two grouping strategies across ten random seeds:

• Random: assign judges to views uniformly at random;

• Graph-Aware: assign views to minimize cross-block edges in the empirical precision matrix.

Performance was measured by the ℓ2 error in recovering the latent component means, i.e.
||µqc − µ̂qc||2).
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Figure 10: ℓ2 reconstruction error (mean
± SD) for random vs. graph-aware
grouping.

Results. As shown in Figure 10, graph-aware grouping
dramatically reduces reconstruction error—by more than
an order of magnitude—compared to random grouping.
This confirms the importance of respecting dependency
structure during view formation and underscores the advan-
tage of CARE, which integrates graph structure directly
into the tensor decomposition procedure.

E.10 Additional
Real-World Experiment on Gaussian Mixture

We consider a Gaussian mixture setting where the latent
variable is binary, but the observables (judge outputs) are
real-valued Gaussian scores. This experiment evaluates
the effectiveness of Algorithm 3 on a real dataset.

Setup. We use a subset of the CivilComments
dataset [52], randomly sample 5,000 examples. The
ground-truth label is binary toxicity (0 or 1), while LLM
judges provide real-valued toxicity scores ranging from 0
to 9. In addition to the original LLM judges, we include
five LLMs:
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(a) Random Partitioning (b) Graph-aware Partitioning

Figure 11: Random Partitioning vs. Graph Aware Partitioning. A random partitioning (a) leaves
cross-view edges that violate the independence assumptions of tensor methods, whereas the graph-
aware partitioning (b) considers cross-view edges and restores the required separation.

• meta-llama/Meta-Llama-3-8B-Instruct,
• mistralai/Mistral-7B-Instruct-v0.2,
• Qwen/Qwen2.5-0.5B-Instruct,
• Qwen/Qwen2.5-1.5B-Instruct,
• Qwen/Qwen2.5-3B-Instruct.

For the MV and WS baselines, we first discretize judge scores using a threshold of 4.5 before
applying majority vote or weighted sum. For AVG and UWS, we aggregate scores first, then apply
the threshold. CARE (Algorithm 3) directly infers the latent binary label from continuous scores.
We evaluate all methods using classification accuracy.

Table 10: Aggregated accuracy (higher is better) in CivilComments dataset.
Method Acc. (%)
MV 74.32%
AVG 73.80%
WS 74.95%
UWS 74.95%
CARE 75.27%

Results. Table 10 shows that CARE achieves the highest accuracy. This result highlights its ability
to better handle confounding factors and perform effective latent inference, even when the observed
data (continuous scores) differ from the latent variable type (binary labels).

F Broader Impact Statement

This work presents a novel approach to aggregate scores from multiple LLMs serving as judges by
identifying confounding variables and thus potentially reducing the bias in the overall judge scores.
The potential broader impact includes a framework for improved LLM-as-a-judge scores which can
be used at various applications. However, it is important to acknowledge that using LLMs as potential
judges to automate labor-intense annotation tasks which is an active area of research carries some
limitations and past research has discussed some unintended consequences, such as over-reliance on
judge outputs, misuse and misinterpretation of results which might carry high real-world stakes. It is
crucial to use automated LLM-as-a-judge tools responsibly and ethically, considering potential biases
in data and models, and ensuring transparency and accountability in their application.
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