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ABSTRACT

With the rise of large-scale foundation models, efficiently adapting them to down-
stream tasks remains a central challenge. Linear probing, which freezes the back-
bone and trains a lightweight head, is computationally efficient but often restricted
to last-layer representations. We show that task-relevant information is distributed
across the network hierarchy rather than solely encoded in any of the last lay-
ers. To leverage this distribution of information, we apply an attentive probing
mechanism that dynamically fuses representations from all layers of a Vision
Transformer. This mechanism learns to identify the most relevant layers for a
target task and combines low-level structural cues with high-level semantic ab-
stractions. Across 20 diverse datasets and multiple pretrained foundation models,
our method achieves consistent, substantial gains over standard linear probes. At-
tention heatmaps further reveal that tasks different from the pre-training domain
benefit most from intermediate representations. Overall, our findings underscore
the value of intermediate layer information and demonstrate a principled, task-
aware approach for unlocking their potential in probing-based adaptation.

1 INTRODUCTION

Foundation models have transformed machine learning across various domains, ranging from lan-
guage (Devlin et al., 2019; Brown et al., [2020) to vision (Radford et al., [2021} |Oquab et al.,|[2024),
by providing powerful pretrained backbones trained on large, general-purpose datasets. How to
adapt these models to specific downstream tasks most effectively remains a central question. Al-
though fine-tuning and its parameter-efficient variants (e.g., LORA; Hu et al., 2022; Jia et al.} [2022;
Chen et al., 2022) have been proven to yield strong performance, these methods are computation-
ally expensive and require adapting the weights of the backbone during training which changes the
underlying model from general-purpose to task-specific. A lighter alternative is (linear) probing
(Razavian et al., 2014} [Yosinski et al.l 2014} Kornblith et al., [2019b)), where the backbone remains
unchanged and a small head is trained on top of it. Probing is attractive in settings with limited
resources, although its accuracy is typically inferior to fine-tuning (Kornblith et al.,2019b).

The standard linear probing approach operates exclusively on the final-layer representation, which
in Vision Transformers (ViTs;|Dosovitskiy et al., [2021) is typically represented by the CLS token.
This design implicitly assumes that the CLS token encodes all task-relevant information. How-
ever, recent work challenges this assumption: |Chen et al.| (2024) show that attentive probing over
final-layer patch tokens outperforms CLS-only approaches by facilitating task-dependent spatial in-
formation fusion. Similarly, DINOv2 (Oquab et al.| 2024) demonstrates that concatenating CLS
tokens from several of the last layers can surpass single-layer methods by exploiting some hierar-
chical information fusion. Together, these results suggest that information crucial for downstream
tasks is distributed across layers and tokens rather than exclusively captured by the final CLS token
representation.

If dependence on the final layer is a limiting factor, a potential solution is to fuse the information
distributed across the different levels of model layers. ViTs process information across multiple lay-
ers: early layers capture low-level visual patterns and structural cues (e.g., edges, textures), whereas
later layers encode high-level semantic concepts aligned with the pre-training objective (Raghu et al.,
20215 Dorszewski et al., [2025). When downstream tasks differ from the pre-training domain, the
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final layer likely discards structural or textural information that remains crucial for the target appli-
cation, yet this information often persists in intermediate layers.
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ity underscores the need for more flexible AP tokens from multiple transformer layers, automat-
mechanisms that effectively harness inter- ically discovering which representations contain the
mediate features in probing settings. most task-relevant features.

In this work, we demonstrate how to effectively leverage valuable task-relevant information from
a model’s intermediate layers to substantially improve performance on diverse downstream tasks.
Our evaluation shows that although intermediate layers hold valuable, complementary information,
applying standard linear probing to representations from numerous layers leads to instability. This
indicates a challenge in effectively combining features from a wide range of depths using a simple
linear classifier. To solve this, we use an attention-based fusion method that dynamically weights
the most informative layers for each task. Our approach considers both CLS and average-pooled
(AP) tokens, combining semantic and aggregated spatial information. This method improves perfor-
mance across various domains and, through the analysis of attention heatmaps, additionally helps
us understand how different tasks use the model’s hierarchical structure. Through evaluation across
20 diverse datasets and vision models from 3 different families, we find that different tasks adap-
tively leverage distinct layers of the representational hierarchy. Hierarchical fusion is particularly
effective for datasets outside the pretraining domain and for models that compress information into
summary tokens. In contrast, tasks that depend on localized spatial cues benefit from augmenting
our approach with complementary spatial aggregation, highlighting the orthogonality between hi-
erarchical and spatial information fusion. Fig.[T| provides an overview of our proposed multi-layer
Attentive Probe.

In summary, our work makes three key contributions:

* We propose attentive probing using CLS and AP tokens from all intermediate layers,
achieving consistent gains across 20 datasets with an average accuracy improvement of
5.54 percentage points compared to standard linear probing.

* We show that intermediate layer fusion provides consistent improvements across small,
base, and large models, indicating that the approach generalizes across model scales with-
out diminishing returns.

* We find that performance gains are largest for tasks that are different from the pre-training
domain. Interpretable attention patterns show that natural image tasks rely more on later
layers, while structural or specialized datasets benefit from intermediate representations,
particularly from the AP tokens, underscoring the adaptive behavior of our probe.



Under review as a conference paper at ICLR 2026

2 RELATED WORK

ViTs (Dosovitskiy et al., 2021 pretrained on large-scale datasets, such as CLIP (Radford et al.,
2021) and DINOv2 (Oquab et al., 2024), have become fundamental to computer vision. A key
challenge is to efficiently adapt these foundation models to downstream tasks.

2.1 PROBING AND LIGHTWEIGHT ADAPTATION

Parameter-efficient fine-tuning (PEFT) aims to adapt large neural networks without updating all
weights of the backbone. Popular methods include adapters (Chen et al.| |2022)), visual prompt
tuning (Jia et al.| 2022)), and LoRA (Hu et al.| [2022). An even more efficient paradigm is probing,
where the entire pretrained backbone remains frozen, and only a lightweight module is trained on
top of its features (Alain & Bengio, 2017). While early work focused on simple linear classifiers,
recent studies have introduced more powerful attentive probes (Bardes et al., 2024; [El-Nouby et al.,
2024])). This idea builds on earlier attention pooling methods such as the Set Transformer (Lee et al.,
2019) and uses learnable attention modules to aggregate token features from the final layer (Yu et al.,
2022; |Chen et al., [2024} [Psomas et al.| |2025). However, their focus is confined to the final layer’s
output, implicitly assuming that the final representation is optimal for any given downstream task.

2.2 THE VALUE OF INTERMEDIATE REPRESENTATIONS

The principle that hierarchical features are crucial for robust recognition is fundamental to deep
learning. In CNNs, representations progress from low-level patterns in early layers to high-level
semantics in later ones (Zeiler & Fergus| 2014). The transferability differs across depth, with earlier
layers being more general and later ones being more specialized (Yosinski et al., [ 2014)). This led to
iconic architectures, such as U-Net (Ronneberger et al.| 2015)) and Feature Pyramid Networks (Lin
et al., 2017), which explicitly fuse features from shallow and deep layers to combine fine-grained
details with high-level semantics. This principle extends to ViTs.

Although Raghu et al.|(2021)) showed that their representations are more uniform across layers than
in CNNs and representation similarity evolves smoothly over depth (Lange et al., [2022), research
confirms that ViT layers still gradually encode more complex semantic concepts (cf., Ghiasi et al.,
2022} |Dorszewski et al., 2025). Recognizing this, architectural extensions such as MViT (Fan et al.}
2021)), CrossViT (Chen et al., [2021)), and Swin Transformer (Liu et al., 2021) explicitly integrate
information at different resolutions. More recently, lightweight methods such as Head2Toe (Evci
et al.} 2022) and Visual Query Tuning (Tu et al., |2023)) have shown that explicitly exploiting inter-
mediate ViT layers can enhance transfer performance. Similar findings have emerged in language
models, where probing has revealed that intermediate layers can even outperform the final layer
depending on the task (Liu et al.|[2019; |Skean et al., [2025]).

Building on these insights, we propose an adaptive attentive probe that learns to dynamically fuse
representations from across the entire network hierarchy. Unlike prior work relying on fixed fusion
schemes or manually chosen layer subsets, our method automatically discovers and weights the
most task-relevant layers, combining the efficiency of probing with the power of adaptive multi-
scale feature fusion.

3 METHOD

ViTs learn hierarchical feature representations where early layers capture low-level visual patterns
while deeper layers encode high-level semantic concepts (Raghu et al.,|2021). Conventional prob-
ing methods, which primarily use a model’s last layers, may not be optimal for diverse downstream
tasks because valuable, task-specific information often resides in intermediate layers. This mis-
match necessitates adaptive layer selection to better align the model’s feature representations with
the specific requirements of the downstream task. We propose an attention-based fusion mechanism
that dynamically weights and combines contributions from different transformer layers, allowing
the model to automatically find the most relevant features for each downstream task.

Problem Statement. Consider a ViT encoder with L attention layers processing an input im-
age v € RIXWXC  For each encoder layer £ € {1,...,L}, we extract token embeddings
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z® = [2{",289,... 2] € RP+Dxd from the intermediate representation after the second

layer normalization, where zéé) denotes the [CLS] token representation, {zy) P | correspond to

P patch-level embeddings, and d is the hidden dimension.

To capture both global and spatial information at each layer ¢, we extract two complementary repre-
sentations, which have been shown to improve performance (see Appx.|[A.10):

1 L

his =z hid =35> 2", )
i=1

The CLS token provides a learned global summary while average pooling captures spatial feature

statistics. Building on evidence that intermediate layers independently encode valuable task-relevant

information (Appx.[A.§), we aim to leverage the hierarchical feature evolution across intermediate

layers to improve downstream task performance.

Formally, given a subset of layers £ = {/1,... 4|} € {1,..., L}, we stack their representations
to form -
He=[pl) o pl) p@) o pllen] e melx )

The goal is to learn an attention-based fusion function fy : R241¥4 — R? with learnable parameters
6 that produces an optimal task-specific representation.

3.1 ATTENTION-BASED LAYER FUSION

To combine representations, we extend the attentive probing paradigm of |Chen et al.| (2024) from
final-layer patch tokens to the complete set of intermediate layer features.

Multi-Head Attention Design. We employ a multi-head cross-attention mechanism that uses the
CLS and AP tokens from intermediate transformer layers as input, rather than all final-layer patches
as in prior work. Our method attends over the complete set of intermediate representations H,
enabling task-adaptive selection of optimal abstraction levels.

Foreachhead m € {1,..., M}, we introduce trainable projection matrices Wk(;; ) , WV(aT) , Wq@?y €
R?*dn  with head dimensionality dj, = 2d /M. The shared learnable query matrix Q@ € R'*? serves
as a task-relevance prototype. It adapts during training to prioritize layers containing task-relevant
features. For each head m, we compute keys and values from the layer representations H, and
queries from the shared query matrix Q:

K™ =H W, v =HWY, Q™ =W (3)

The output of each head is computed as:

(m) g(m) T
hﬁ?ﬁ = dropout (softmax (%)) yim), 4)
h

where the attention dropout is used as regularization during training. The fused representation is
obtained after a linear transformation of the concatenated heads:

hfused = [hl(lide S---D hﬁ?gg} Wou + bout- 5

Classification for a downstream task with K classes is performed using a single linear layer with
softmax activation y = softmax(Wqthpysea + beir). This design keeps the parameter count inde-
pendent of the number of layers, with the hidden dimension d being the dominant factor and adds
minimal computational overhead, requiring only lightweight attention computations over interme-
diate representations while keeping the pretrained backbone frozen (Appx. [A.J9). The attention
computation scales with O (|£|?) rather than O (P?) for attentive probes on all patches of the last
layer. For ImageNet-sized input images, P ~ 200, L =~ 12, thus, |£| < P yields an order of mag-
nitude reduction in attention complexity. Rather than manually selecting which layers to include,
we find that the use of all intermediate representations L,y = {1,2,..., L} performs best, as the
learned attention weights automatically determine layer relevance.
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3.2 LINEAR (CONCATENATION-BASED) LAYER FUSION

To validate the effectiveness of adaptive weighting, we additionally consider the naive approach of
combining intermediate representations through concatenation, which we refer to as Linear in our
plots. This baseline applies a linear classifier directly to the concatenated features:

'g = softmax (Wclf [@ h((:ZL)S D hE\Z\ZG + bclf> . (6)

lel

This approach leverages intermediate features but lacks the adaptive weighting capability of our
attention-based fusion. The importance of each layer’s contribution is learned by the single linear
classifier but remains fixed for all inputs after training, whereas the attentive probe, in principle,
adapts its weighting.

4 EXPERIMENTS

To validate attention-based layer fusion, we conduct a large-scale empirical study asking: (1) Does
adaptively fusing intermediate representations outperform strong last-layer baselines? (2) How do
learned fusion strategies vary across architectures, training paradigms, and task domains? We ob-
serve consistent improvements from using intermediate layers, with the attention mechanism learn-
ing effective layer weights for each downstream task.

4.1 EXPERIMENTAL SETUP

We first outline our experimental framework, including the probing methods we compare against
and our selection of evaluation models and datasets. For reproducibility, we release our codd'|and
provide further implementation details in Appx.[A.T]

Probing Methods. We evaluate probing strategies along three axes: the source layer (intermediate
vs. last), the tokens (CLS and/or AP), and the fusion method (linear vs. attentive). To ensure
consistency, we denote probes as [layers] ([tokens], [fusion type]). We consider two main baselines:
Last layer (CLS, linear), the standard linear probe; and Last layer (all tokens, attentive), an attentive
probe (Chen et al.l 2024) applying multi-head attention over all Ly, tokens (AAT).

Our primary approach applies attention-based fusion across all layers (L,;). For completeness, we
also test concatenation and attention over subsets £ € Liast, Lmid+last; Lquarterly, Lai. Here, Lmideiast
selects the middle and last ViT layers, and Lguarterly selects the last layer from each quarter of a ViT.

Models. We evaluate nine pretrained ViTs spanning three families (supervised ViTs, self-supervised
DINOV2, and image—text aligned CLIP), each available in small, base, and large variants, to study
the effects of training objective and model capacity. We freeze the backbone, training only the
attention-fusion module and classifier on extracted features. See Appx. for details. All three
families use CLS tokens in their training objectives, which may compress information into this
summary representation. We additionally evaluate Masked Autoencoders (He et al.| [2022), which
avoid such compression, in Appx.

Datasets. Our evaluation covers a diverse suite of 20 datasets from the clip-benchmark (Cherti
& Beaumont, 2025) and the Visual Task Adaptation Benchmark (VTAB) (Zhai et al., [2020). We
provide details in Appx. Tab.

Training Objective. To handle class imbalance, we apply a weighted cross-entropy loss (Aurelio
et al} [2019), where the loss for each class is inversely weighted by its sample. This weighting
scheme balances learning across minority and majority classes. To reduce overfitting in the probing
module, we apply standard regularization techniques including attention dropout, weight decay, and
light jittering of intermediate representations (see Appx. [A.T).

Evaluation Metric. We evaluate model performance using top-1 balanced accuracy on the respec-
tive test sets. To enable an intuitive comparison of performances across datasets, we report the
absolute accuracy gain (in percentage points [pp]) of each method over the standard linear probe

'https://anonymous.4open.science/r/intermediate-layer-fusion
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Figure 2: Absolute accuracy gain (percentage points) of linear (blue) and attentive probes (orange)
when fusing an increasing number of intermediate layer representations (Liast, Lmid+last> Lquarterlys
and L,), as well as AAT (grey) aggregated across datasets for the three base models. Including
more intermediate layers improves for all models, with our attentive probe over all layers achieving
the highest median gain and consistently outperforms the simple linear probe (zero line).

CLS baseline:
Apce(method) = Accpy (method) — Accpa (CLSjinear)s @)

which is positive if the method outperforms the baseline. A single run is reported for each ex-
periment, as preliminary tests indicate small variance across runs with different random seeds (see

Appx.[AT5).

4.2 THE EFFECT OF INTERMEDIATE LAYERS ON DOWNSTREAM PERFORMANCE

In this section, we aim to assess (1) the impact of adding intermediate layers on the downstream
performance compared to using only the final layer, and (2) the performance differences between
attentive and linear fusion strategies. To test this, we evaluate the three base models (CLIP-B-16,
DINOV2-B-14, and ViT-B-16) and measure the accuracy gain (Eq.[/)) relative to the standard linear
probe on the CLS token as we include more intermediate representations.

Fig. [2] shows that adding representations boosts performance. Both naive concatenation and our
attentive fusion significantly benefit from deeper feature pools (p-value < 0.04, FDR-corrected
Wilcoxonﬂ confirming that intermediate layers encode complementary information absent in the
final layer’s CLS and AP tokens. However, the two fusion strategies differ substantially in robust-
ness. While concatenation shows positive median gains, it exhibits high variance across tasks, with
some datasets experiencing substantial performance degradation. In contrast, our attentive probe on
all layers shows the largest (median) performance gains, consistently outperforming the concate-
nation fusion strategy (p-value < 0.013, FDR-corrected Wilcoxonﬂ demonstrating its capacity to
adaptively emphasize useful layers while ignoring irrelevant ones.

We compare against the attentive probe on all tokens (AAT) in the last layer, which accesses fine-
grained semantic as well as spatial information from all patch tokens (incl. CLS). AAT proves
unstable with high variance and occasional underperformance. Our method, which attends over
summary tokens from all layers, achieves higher median gains with markedly less variance. Finally,
we find that our observations are robust across different attentive parameterizations of probes, which
we analyze in detail in Appx.[A.T4]

Testing “All layers (CLS + AP, attentive)” and “All layers (CLS + AP, linear)” against “Last layer (CLS +
AP, attentive)” and “Last layer (CLS + AP, linear)”, respectively for all models.
3Testing “All layers (CLS + AP, attentive)” against “All layers (CLS + AP, linear)” for all models
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Figure 3: Balanced accuracy distributions of baseline (left panel) and absolute accuracy gains in per-
centage points (right panel) for different representation fusion methods across model architectures,
aggregated over all 20 datasets. The substantial benefits from attentive probing of intermediate lay-
ers [All layers (CLS +AP, attentive)] persist even for large models, indicating that large models fail
to encode all task-relevant information in their final layer’s CLS token.

Together, these findings validate two central claims of our work: (1) intermediate layers contain
valuable information for downstream tasks that is not captured by the final layer alone, and (2)
an attentive fusion mechanism is crucial to harness this information safely and consistently across
diverse downstream tasks.

4.3 INTERMEDIATE LAYER FUSION ACROSS MODEL SCALES

To assess whether intermediate-layer fusion depends on model size, we evaluate small, base, and
large variants across three model families. Consistent with previous results, adding intermediate lay-
ers improves performance at all scales (Fig. [3), with attentive probes outperforming concatenation.
Detailed per-dataset results for each model are provided in Appx. Fig.[5] However, the magnitude
of these gains varies by training objective, yielding distinct scaling behaviors across families.

CLIP models show the most consistent gains, with smaller models (CLIP-B-32/16) benefiting more
than the large model, likely because they fail to distill all relevant information into the final layer.

In contrast, DINOv2 models exhibit the opposite trend: performance gains increase with model size,
reflecting richer features throughout the network hierarchy. While the CLS linear probe already
substantially improves from DINOv2-S-14 to DINOv2-L-14, attentive fusion adds a further mean
gain of 6.04 [pp] for DINOv2-L-14. AAT yields a slightly higher average gain (6.23 [pp]), but
suffers from greater instability and lower median gain. This instability likely stems from AAT’s
reliance on hundreds of patch tokens (257 for DINOv2-S/B/L-14), which amplifies task-specific
noise. In contrast, our method aggregates only 24/48 summary tokens, producing more consistent
improvements across tasks.

Finally, for supervised ViT models, gains peak at the base architecture. The large variant benefits
less proportionally, which could be due to overfitting from the higher hidden dimension or to dimin-
ishing returns in representational richness as backbone capacity grows. In either case, while relative
improvements shrink, absolute performance still increases when attending across layers.

In summary, attentive fusion consistently improves performance across model sizes. Contrary to
the intuition that smaller models would benefit more due to their weaker base performance, we find
that larger models obtain equally substantial gains. Highlighting our method’s ability to scale with
model capacity, it complements rather than replaces the final-layer representation. At the same time,
the variability across datasets suggests that the benefits are task dependent, which we elaborate on
in the following section.

4.4 TASK DEPENDENT BENEFITS OF INTERMEDIATE LAYER FUSION

Tab. [T] summarizes the effect of different probing strategies across the 20 benchmark datasets, aver-
aged over the nine models considered in this work. The strongest gains are achieved by attentively
fusing representations from all layers (yielding the highest mean rank).
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Table 1: Absolute performance gains (pp) of probing methods relative to baseline CLS token linear
probe on the final layer. Results show mean + standard deviation across all 9 models. Bold indi-
cates the largest performance gain per dataset, and underlined indicates the second-largest. Baseline
balanced accuracy reported for reference. Dataset categories: Natural multi-domain (MD) images;
Natural single domain (SD) images; Specialized (domain-specific imagery); Structured (datasets
with structural patterns).

Category Dataset Baseline Last layer Last layer All layers Last layer All layers
Bal. accuracy (all tokens, (CLS + AP, (CLS+AP, (CLS + AP, (CLS+AP,
(CLS, linear) attentive) linear) linear) attentive) attentive)
Natural MD)  STL-10 99.29 +0.51 0.01£0.16 -0.01+0.12 0.03+0.10 0.03+0.08 0.04 +0.17
CIFAR-10 9691+193 | 042+0.58 0.08+0.11 0.61+£0.71 0.19+0.29 0.77 £0.79
Caltech-101 9557+1.40 | 023+0.52 043+041 036+x063 0.09+042 0.88+0.77
PASCAL VOC 2007 | 87.82+231 | -022+1.24 138+049 146099 1.19+088 1.24+0.89
ImageNet-1k 81.40+449 | 0.85+143 033+046 099+1.75 0.15£0.62 1.24+1.62
CIFAR-100 85.45+5.71 1.73+£1.33 061+£021 276+248 0.87+0.56 3.33+2.75
Country-211 21.48+635 | -083+1.66 1.18+0.54 326+1.05 135+0.65 4.96+1.37
Natural (SD)  Pets 93.98 £2.36 | -0.23+£0.83 -0.05+041 -2.01+1.04 0.12+0.53 0.29+0.76
Flowers 98.03+2.60 | 041+093 040+0.75 -0.25+0.57 0.06+£0.76 0.46 +0.97
Stanford Cars 77.81 £10.65 | 897+522 050+1.07 -086+3.76 197+195 6.35+3.71
FGVC Aircraft 55.69 £12.18 | 9.27+4.37 -096+2.22 -1.62+501 1.84+2.09 643+3.25
GTSRB 71.51+746 | 18.02+6.37 4.23+2.60 876+420 4.69+241 13.47+4.92
SVHN 56.06 £591 | 30.31+5.08 694+£259 2440+441 739+£3.70 27.25+4.24
Specialized PCAM 82.04+2.15 | 503+147 138+0.56 532+1.62 266+1.33 285+253
EuroSAT 93.89+2.52 | 3.38+218 1.65+1.17 4.08+248 1.82+1.22 437+241
RESISC45 9045+1.69 | 407+1.05 132+0.74 453+099 1.82+0.59 523+1.10
Diabetic Retinopathy | 45.80 +2.46 1.94+190 1.55+044 592+2.03 1.86+0.77 6.86=2.00
Structured DTD 75.99 +3.47 141£2.19 1.18x1.76 4.04+2.19 253+1.67 4.05+1.92
FER2013 59.08 +4.61 7.74+£2.15 218+1.05 625+1.19 361+1.13 10.05+1.76
Dmlab 4491 +£349 | 13.69+2.77 1.81+£045 792+195 2.61+1.65 10.68+2.78
Mean rank ‘ - ‘ 2.75 4.30 2.80 3.70 145

The exact magnitude of the improvements from intermediate layers is somewhat task-dependent.
On natural multi-domain datasets (CIFAR-10, STL-10), the baseline accuracy is near saturation,
and fusion therefore yields relatively small but still significant gains. Fine-grained natural-image
tasks (Stanford Cars, FGVC Aircraft, GTSRB, SVHN) benefit most from attentive probing, with
gains of 6-30 [pp]. These datasets require subtle distinctions between visually similar categories
or precise spatial reasoning, which the final CLS token, optimized for global summarization, tends
to suppress. While AAT surpasses our method on these particular tasks by leveraging fine-grained
spatial cues from patch embeddings, our approach remains the second-best in almost all cases and,
importantly, provides the best average performance and best average rank across all 20 datasets
(Tab. [T[). Our attentive fusion, relying on aggregated patch information, may miss some subtle
spatial details but remains far more stable than AAT and substantially outperforms standard linear
probing, highlighting the value and robustness of distributed intermediate features.

Domain-specialized (satellite or medical imagery) and structured datasets (textures, facial expres-
sions, synthetic environments) benefit substantially from including intermediate layers, reflecting
the transferability of mid-level features to novel domains and their encoding of compositional pat-
terns. A notable exception is DMLab, where patch-level aggregation performs better, because fine
spatial detail is critical for this task.

Beyond mean performance gains, stability matters. Attending to all last-layer tokens can excel on
certain fine-grained tasks but is brittle, sometimes degrading performance when the CLS token al-
ready suffices (e.g., Pets). In contrast, our attention over summary tokens from all layers consistently
delivers performance gains across all datasets. Only for PCAM and PASCAL VOC 2007, the linear
combination of intermediate layers outperforms the attentive weighting, likely due to overfitting as

discussed in Appx.[A.T1]

Taken together, these results demonstrate that the usefulness of intermediate features varies by task.
The benefits are greatest for datasets outside the pretraining domain, where the CLS token alone
often proves to be insufficient. While outliers such as PCAM reveal the risk of overfitting, adap-
tive fusion remains the most reliable strategy for exploiting task-specific signals from intermediate
layers.
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Figure 4: Attention weights across layers and datasets for base models, averaged over heads and
samples, are distributed across multiple layers, demonstrating their relevance for downstream tasks.

4.5 ANALYZING ADAPTIVE LAYER SELECTION

To understand how our approach adapts to different downstream tasks, we analyze the attention
weights of intermediate layers. These weights reveal which layer’s representations are most crucial
for a given dataset. By aggregating over the attention heads and data samples, the heatmaps indicate
how much each layer contributes to the fused representation (Fig. [ for base and Appx. Fig. [6] for
small/large model sizes).

Early layers’ CLS tokens receive little attention, which is expected since the global summary only
becomes semantically rich in later layers. In contrast, average-pooled representations are used across
a much wider range of layers. This confirms our hypothesis that spatial averaging preserves valuable
textural and structural information throughout the network, complementing the highly processed
CLS tokens.

Attention distribution varies by dataset. For tasks similar to pretraining, like CIFAR or Pets, atten-
tion is high on the last layers’ CLS and AP tokens, as these abstract features are directly useful.
In contrast, for tasks that differ from pretraining, such as EuroSAT and FER2013, attention shifts
to intermediate layers and their AP tokens, consistent with the largest performance gains observed
on these datasets. As shown in Appx. and [A.8] intermediate layers alone can achieve com-
parable performance to the last layer, despite having dissimilar representations. This suggests that
these layers provide potential complementary, non-redundant information across layers. Overall,
the heatmap confirms that adaptive fusion effectively leverages these lower-level features that might
otherwise be lost in the last layers.

5 DISCUSSION

The field has long hold the belief that most, if not all, task-relevant information is encoded in the
last layers of a neural network model (cf. Devlin et al.| 20195 Zhai et al.| |2020; [Dosovitskiy et al.,
2021; |Radford et al., [2021}; |Kornblith et al.| 2021} Raghu et al.|[2021) and, hence, gravitated toward
using the penultimate or final layer for adapting model representations via linear probing (Alain &
Bengiol, 2017; |Kornblith et al.l 2019b; Muttenthaler et al., [2023)). However, there has recently been
suggestive evidence that information relevant for successfully deploying a model downstream may
be distributed across several tokens and layers (Oquab et al.,2024; Tu et al.,[2023};/Chen et al.,[2024)).

Here, we provide further evidence that intermediate layers in ViTs encode relevant task-specific sig-
nals that the CLS representation of the final layer does not capture alone. In a supplementary anal-
ysis, we find that intermediate layers perform comparably to last layers on certain datasets despite
having dissimilar representations, suggesting they hold complementary knowledge. Our attention
mechanism allocates significant weights to both intermediate and last layers, indicating interme-
diate representations contribute meaningful information for downstream predictions. The learned
attention weights show that specialized domains like medical and satellite imaging rely heavily on
information encoded in intermediate layers, whereas natural image tasks focus on last-layer se-
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mantics. We demonstrate that probing via cross-attention, rather than simple affine transformations,
effectively leverages intermediate layer representations, and show these benefits hold robustly across
different attentive probing architectures.

While standard linear probing becomes unstable when naively extended to multiple layers, our atten-
tive probing mechanism consistently provides improvements across 20 datasets. Although attention
over all tokens from the last layer can be highly performative on tasks where precise spatial infor-
mation is required, it proves brittle with high variance across datasets, making intermediate layers
with compact summary tokens a more robust choice for reliable improvements, especially if knowl-
edge about the downstream task is limited. This distinction reflects orthogonal design choices:
hierarchical aggregation across layers versus spatial aggregation across patches. For models with
CLS-focused pretraining (CLIP, DINOv2, supervised ViTs), our hierarchical fusion using summary
tokens (CLS +AP) is sufficient: average pooling provides spatial statistics to complement CLS se-
mantics (Fig.[T2), while maintaining stability across tasks. Supplementary experiments with Masked
Autoencoders (Appx.[A.6), whose pretraining is not CLS-based, show that patch-centric models also
benefit from hierarchical aggregation, though direct spatial attention (AAT) becomes more advanta-
geous when information remains distributed across individual patches. First experiments (Fig[TT) on
combining these orthogonal fusion approaches show superior performance, suggesting that incorpo-
rating information across the different model’s layers is a viable and robust approach for improving
downstream adaptation.

Limitations. Our attentive probe’s token selection strategy (CLS +AP) is optimized for models with
CLS-focused pretraining; spatial averaging may neglect localization cues critical for tasks requiring
precise spatial reasoning. Additionally, its greater expressivity introduces additional computational
and memory overhead compared to using only the final output token, and can increase overfitting
risk, requiring careful regularization. In addition, the spatial averaging used to summarize the re-
maining tokens may neglect fine-grained spatial details that some tasks require, in particular those
necessitating precise localization, where patch-level representations may be more suitable.

Outlook. The findings of this paper are in accordance with similar discoveries in language models,
where intermediate layers can outperform final representations (Liu et al.,|2019; |Skean et al.| [2025)).
Together, results across vision and language domains suggest that adaptive access to intermediate
representations represents a fundamental principle for the successful deployment of foundation mod-
els. This principle extends naturally to emerging biological foundation models for sequences (Brixi
et al. 2025), genomics (Theodoris et al.l 2023} |Schaar et al.| 2024])), and proteins (Lin et al.,|2023),
where specialized tasks may benefit from intermediate representations that final layers abstract away.
As foundation models proliferate across domains, principled methods to access their full represen-
tational hierarchy could prove increasingly valuable for maximizing their utility.

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our study focuses on probing and adaptation meth-
ods for vision transformers using publicly available benchmark datasets from the VTAB and clip-
benchmark. No human subjects, private data, or personally identifiable information were used. The
datasets we rely on are widely adopted in the vision community, and our experiments follow their
respective licenses and usage guidelines. The proposed methods do not pose foreseeable risks of
misuse beyond standard applications of image classification. We are committed to transparency and
reproducibility, and release code to facilitate verification and further research.

REPRODUCIBILITY STATEMENT

We provide extensive details to ensure reproducibility of our results. The main paper gives an
overview of the experimental setup in Sec. .1} with further implementation details, including fea-
ture extraction, training protocols, hyperparameter search, and regularization strategies, provided
in Appx. [A-l] Dataset descriptions are given in Appx. Tab. 2] We release our full code at
https://anonymous.4open.science/r/intermediate—layer—fusion to
enable exact replication of our experiments.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

This section describes the technical implementation approach and experimental setup used to evalu-
ate the attention-based intermediate layer fusion mechanisms.

A frozen backbone strategy was adopted, training only the attention fusion mechanism and clas-
sification head on top of pre-extracted features. The latent representations (of intermediate
and last layers) for each model-dataset combination were extracted using the Python package
thingsvision (Muttenthaler & Hebart, [2021)), and the experiment code was built on top of
the code from |Ciernik et al.| (2025). Input images were resized to 256px and center-cropped to
224px before applying the model-specific normalizations from the pre-training. Extracted features
were then L2-normalized to yield comparable magnitudes. To handle models with varying feature
dimensions across layers (e.g., CLIP), we ensured dimensional consistency through zero-padding.

All models were trained for at least 40 epochs using AdamW optimization with cosine annealing
learning rate scheduling and a batch size of at most 2048. For small datasets, we adjusted the batch
sizes to ensure at least 5 batches per epoch, and increased the number of epochs to guarantee at least
1000 gradient update steps.

To address class imbalance, we trained with a weighted cross-entropy objective (Aurelio

et al [2019), scaling each class by the inverse of its frequency. The loss is Loss(y,§) =

f% ;\;1 ZLK=1 w;Y;; 1og §;:, where y;; is the one-hot ground-truth label for sample j and class i,

and §;; is the predicted probability. w; are class weights computed as w; = %, with N being the
total number of training samples, K the number of classes, and n; the number of samples in class 3.

This weighting balances learning across minority and majority classes.

Hyperparameter selection used a stratified 80/20 train-validation split with grid search over learn-
ing rates {0.1,0.01,0.001}, attention dropout rates {0.0,0.1,0.3}, and weight decay values
{1076,1075,107*,0.001,0.01,0.1, 1.0}, except for the AAT baseline, where we used the reported
weight decay of 0.1|Chen et al.|(2024). We selected the combination that achieved the best validation
balanced accuracy.

To prevent overfitting, we applied gradient norm clipping at 5.0 and added Gaussian noise
N(0,0.05) to representations with probability 0.5 during training.

For the representation-fusion attention mechanism, we adjust the number of heads to match the
number of representations being fused (cf. Appx.[A.I2). For example, when fusing CLS and AP
tokens from all 12 layers of a ViT-B-16 model, we used M = 24 heads. For the AAT baseline, we
used 8 attention heads following Chen et al.| (2024)), as increasing the number of heads did not yield
substantial improvements. The learned query tokens were initialized from a normal distribution

N(0,0.02).
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A.2 MODEL DETAILS

This section provides the specific model variants and patch sizes used in our experiments across
three model families: supervised ViTs, self-supervised DINOv2 models, and image-text aligned
CLIP models.

 Supervised ViT: ViT-S/16, ViT-B/16, and ViT-L/16 pretrained on ImageNet-21K and fine-
tuned on ImageNet-1K (Deng et al.| 2009} Ridnik et al.l 2021)).

* Self-Supervised DINOv2: ViT-S-14, ViT-B-14, and ViT-L-14 , pretrained on the LVD-
142M dataset (Oquab et al., [2024).

* Image-Text Alignment CLIP: OpenCLIP models ViT-B-32, ViT-B-16, and ViT-L-
14 (Cherti et al.| 2023; [Ilharco et al.l |2021)) following the CLIP architecture and using
its pretrained weights (Radford et al.l |2021)). As a small-capacity CLIP model, we use
ViT-B/32; its larger patch size significantly reduces the number of input tokens, making its
computational and representational capacity analogous to the “Small” variants in the other
families.

A.3 DATASET DETAILS

Table 2: Overview of the 19 datasets used in our experiments including the size of both train and

test set, number of classes, and the Class Imbalance Ratio (CIR) calculated by %ﬁ:i“
Category Dataset Train Size Test Size  Classes CIR  Reference
STL-10 5000 8000 10 1 |Coates et al.|(2011)
CIFAR-10 45000 10000 10 1.02 |Krizhevsky|(2009)
Natural (MD) ~ Caltech-101 2753 6085 102 1.3 |Fei-Fei et al.|(2006)
PASCAL VOC 2007 7844 14976 20 20.65 |Everingham et al.[(2010)
CIFAR-100 45000 10000 100 1.06 |Krizhevsky|(2009)
Country-211 31650 21100 211 1 |Radford et al.|(2021)
Pets 2944 3669 37  1.24 |Parkhi et al.|(2012)
Flowers 1020 6149 102 1 |Nilsback & Zisserman|(2008)
Natural (SD) Stanford Cars 8144 8041 196 2.83 |Krause et al.[(2013)
FGVC Aircraft 3334 3333 100 1.03 |Maji et al.[(2013)
GTSRB 26640 12630 43 10 |Stallkamp et al.|(2012)
SVHN 65931 26032 10 2.98 |Netzer et al.|(2011)
PCAM 262 144 32768 2 1 |Veeling et al.|{(2018)
Specialized EuroSAT 16200 5400 10 1.58 |Helber et al. (2019")
RESISC45 18900 6300 45  1.16 |Chengetal.[(2017)
Diabetic Retinopathy 35126 42670 5 36.45 |Dugas et al.|(2015)
DTD 1880 1880 47 1 |Cimpoi et al.|(2014)
Structured FER2013 28709 7178 7 16.55 |Goodfellow et al.|(2015)
Dmlab 65550 22735 6 198 [Zhai et al.|(2020)

An overview of all datasets used in this work is given in Tab. E} Following VTAB (Zhai et al.||2020),
the datasets are categorized by domain. We separate natural images into multi-domain (MD) and
single-domain (SD) datasets, and include specialized as well as structured datasets.

A.4 DOWNSTREAM PERFORMANCE FOR ALL DATASETS AND MODELS

We present the balanced test accuracies across all 19 downstream datasets for each of our nine
models. Each table (Figures [5a] [5b] and shows four different probing configurations: (1) last
layer CLS token with linear probing, (2) last layer all tokens with attentive probing, (3) all layers
CLS and AP token with linear probing, and (4) all layers CLS and AP token with attentive probing.

The bottom rows of each table report summary statistics of the absolute performance gains relative
to the baseline last-layer CLS linear probe, including the minimum, median, maximum, mean, and
standard deviation of improvements across all datasets. Color coding indicates relative performance
within each model family, with darker colors representing better performance.
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A.5 ATTENTION HEATMAPS FOR SMALL AND LARGE MODELS
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Figure 6: Aggregated Attention maps from our attentive probe for small (top) and large (bottom)
models. Attention patterns vary more with the dataset than with model scale, underscoring the
task-dependent relevance of intermediate layer features.

Fig. [6] compares the aggregated attention across our small and large models. Despite substantial
differences in scale and twice as many layers for the large models, the attention patterns are very
similar. This underlies our intuition that the relevance of intermediate layers depends more on the
task characteristics than on model size or objective, which seem to learn very similar hierarchies.
Specialized and structural datasets drive attention toward intermediate layers, while natural image
datasets close to the pre-training domain rely more on the later-layer CLS tokens. Notably, in cases
like GTSRB and SVHN, where linear CLS probing fails but our method achieves large gains, the
probe shifts attention to the AP tokens. These results reinforce that our mechanism adapts flexibly
to task demands while remaining consistent across models of very different scales and pre-training
objectives.

A.6 ADDITIONAL EXPERIMENTS WITH MASKED AUTO ENCODER

Masked Autoencoders (MAEs) (He et al.l [2022) represent a distinct class of pretrained models
whose representational structure differs fundamentally from that of CLIP, DINOv2, or supervised
ViTs, as they are trained exclusively via patch-level reconstruction and thus do not use summary
tokens in their loss. Prior work (Przewiezlikowski et al., [2025) has shown that MAEs retain highly
localized information until the final layers and therefore benefit most from probes that attend over
all patch tokens rather than relying on summary tokens. We confirm this observation: for both
MAE-B-16 and MAE-L-16, an attentive probe operating over all tokens achieves the strongest over-
all performance (Fig. [7] and Fig. [§). Nevertheless, our intermediate-layer attentive fusion, which
operates only on the aggregated CLS/AP tokens, still produces large gains over last-layer AP probes,
with mean improvements of 22.4 (base) or 24.7 (large) percentage points. In most datasets, it ranks
second only to the full-token attentive probe, and on two datasets, it even surpasses it. This demon-
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Figure 7: Absolute accuracy gain (percentage points) of linear (blue) and attentive probes (orange)
when fusing an increasing number of intermediate layer representations (Liast, Lmid+last> Lquarterlys
and L,y), as well as AAT (grey) aggregated across datasets for the three base models as well as the
base MAE model. For MAE, the simple linear probe on AP tokens is insufficient for most tasks,
explaining the large gain in accuracy by either including spatial (all tokens last layer) or hierarchical
(CLS & AP, all blocks) information.

strates that layer-wise fusion recovers complementary information across depth, highlighting the
orthogonality between token aggregation (spatial dimension) and layer aggregation (hierarchical di-
mension). These results illustrate an important representational difference. MAEs do not compress
information into the CLS token, so probes that access all patch tokens are inherently favored. Never-
theless, when restricted to summary tokens, multi-layer fusion substantially mitigates this limitation.
Thus, our results on MAE confirm that performance depends both on how information is distributed
across tokens and how it evolves across layers. Our proposed layer-fusion approach remains effec-
tive, especially when a model exposes meaningful layerwise summary representations.

To better understand these results, we inspect the learned attention patterns for MAE-B-16 and
MAE-L-16 (Fig.[9). Since the MAE CLS token is not trained, the probe naturally places nearly all its
attention on the AP tokens, confirming that summary representations are weak in this model family.
The attention also concentrates on the later layers, consistent with the fact that MAEs preserve
spatial detail until the end of the network and perform little semantic compression. As a result,
aggregating information from intermediate AP tokens enables our fusion to recover much of the
depth-wise structure, allowing it to approach the performance of probes with access to all spatial
tokens.

A.7 RELATIONSHIP BETWEEN INTERMEDIATE-LAYER PERFORMANCE AND
REPRESENTATIONAL SIMILARITY

Prior work has shown that intermediate layers contain task-relevant information accessible via lin-
ear probing (Alain & Bengio, [2017). Following [Kornblith et al. (2019a)), we examine the relation-
ship between downstream performance and representational similarity measured by Centered Kernel
Alignment (CKA) with RBF kernel (¢ = 0.2), which emphasizes local neighborhood similarities
relative to the final layer’s representation. To study this across architectures and feature types, we
trained linear probes on all intermediate layers of the four base models (CLIP-B-16, DINOv2-B-14,
ViT-B-16, MAE-B-16) on CIFAR-100, GTSRB, FER2013, and EuroSAT. For all models except
MAE, we probe the CLS token, while for MAE, we use the AP token.

Fig. [T0] shows that CKA similarity to the final layer is not strongly predictive of downstream per-
formance. While similarity tends to increase rapidly in the later layers, the largest accuracy gains
often occur in early or middle layers. Notably, even though these intermediate representations are
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Figure 8: Detailed results of both base and large MAE on all datasets. While attending over interme-
diate layer provides already a large benefit, the aggregation over all tokens is a necessity for masked
image modeling confirming that the information is distributed over image tokens.
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Figure 9: Aggregated intermediate-layer attention maps for MAE-B-16 and MAE-L-16 show that
MAE:s store task-relevant information predominantly in later AP tokens.
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Figure 10: Downstream performance vs. representational similarity across intermediate layers. Top
row: test balanced accuracy of linear probes on layers 1-11 and the final layer. Bottom row: CKA
similarity between each layer and the final layer. Intermediate layers can achieve high performance
despite low similarity to the final layer.

dissimilar to the final layer, they achieve similar or higher performance, for datasets like GTSRB
and EuroSAT, the performance even peaks at layer 6-8.

These results suggest that intermediate layers capture complementary features that are not redundant
with the final-layer representations, motivating adaptive fusion strategies to leverage this diverse
information effectively.

A.8 COMPARING PER-LAYER LINEAR AND ATTENTIVE PROBE PERFORMANCE

In this section, we contrast three per-layer probing strategies, linear probing on the CLS and AP
tokens, and an attentive probe that aggregates all tokens of a layer, with our multi-layer attentive
fusion, which operates only on the aggregated CLS and AP representations. Additionally, we add
a specialized hybrid probe as discussed below. Results for four datasets and the base models are
shown in Fig. [IT}

Across all settings, the per-layer attentive probe substantially outperforms linear probes on CLS
or AP tokens, indicating that intermediate-layer information is distributed across spatial tokens and
cannot entirely be recovered from a single summary embedding. Despite operating under the stricter
constraint of using only CLS and AP tokens, our multi-layer fusion often exceeds the best per-layer
attentive probe. By combining complementary information across depth, our multi-layer attentive
fusion recovers much of the signal lost in token aggregation.

Two cases deviate from this trend. For GTSRB, performance peaks in shallow layers and is driven
by highly localized features that are not preserved in CLS or AP tokens, making full-token atten-
tion inherently stronger. For MAE, patch tokens encode rich, localized structure from reconstruction
training, whereas the CLS token receives no explicit supervision to serve as a global summary. Thus,
average pooling discards information that an attentive probe over all tokens can utilize. These be-
haviors are expected given the architectural differences and highlight that, even under strong token-
aggregation constraints, our fusion method consistently outperforms all its per-layer components by
combining complementary information across layers. To further validate this orthogonality between
hierarchical and spatial aggregation, we introduce a hybrid attention probe that combines all tokens
from layers 3, 6,9 and the last layer. To stabilize training with this larger token set (788 for CLIP,
ViT, MAE, and 1028 for DINOvV2), we increase attention dropout to 0.5 and the number of heads to
24, leaving all other hyperparameters untouched. This hybrid probe consistently outperforms both
AAT applied to the last layer and our intermediate layer fusion relying only on summary tokens. The
magnitude of improvement depends on the dataset: gains are modest when summary tokens suffice
(e.g., CIFAR-100, EuroSAT), but substantial when spatial details are essential (e.g., GTSRB) or
when the backbone distributes information across patch tokens, as in MAE. These results further
support our claim that intermediate-layer fusion and patch-token selection operate on orthogonal

22



Under review as a conference paper at ICLR 2026

CLIP-B-16 DINOv2-B-14 ViT-B-16 MAE-B-16

o o o
> o ©

CIFAR-100
Test bal. accuracy

o
N

o o o g
ES o o o

GTSRB
Test bal. accuracy

o
N

1.04

EuroSAT
Test bal. accuracy
o o o
< o ©

o
o

o ° g o
> o o <

FER2013
Test bal. accuracy

o
w

I
N

1234567809101llast 12345678 91011ast 12345678 910llast 12 3 456 7 8 9 101llast
—— Single Layer (AP, Linear) —=—- All Layers (CLS+AP, attentive)
—— Single Layer (CLS, Linear) —-- Quartely Layer (All Tokens, attentive)
—— Single Layer (all tokens, attentive)

Figure 11: Downstream performance across intermediate layers for linear probe with AP and CLS
token and attentive probe on all tokens. The dashed line indicates our multi-layer attentive fusion,
which aggregates only the CLS and AP tokens across layers. Additionally, the purple dash-dotted
line shows a hybrid approach, aggregating all tokens of intermediate layers.

representational axes and that incorporating intermediate-layer tokens is significantly more effective
than relying solely on the last layer.

A.9 PARAMETER EFFICIENCY COMPARISON

The linear probe and the attentive probe follow fundamentally different scaling behaviors. Given the
hidden dimension d, the number of layers |£|, and the number of classes K, the linear probe based
on concatenation requires 2 - |£| - d - K + K parameters, scaling linearly with both the number of
layers and the number of classes. In contrast, our attentive probe requires 8 - d? + 10d + d - K + K
parameters, which scales quadratically with the embedding dimension d, linearly with the number
of classes, and remains independent of the number of layers used. While the parameter count of the
attention probe on all final-layer patches (AAT) is the same, its larger number of input tokens leads
to higher computational costs.

Tab. [3] compares parameter counts across three Vision Transformer architectures over a range of
class counts representative of the datasets in our experiments. While the attentive probe has a higher
fixed overhead, its class-dependent growth is substantially slower than that of concatenation. As the
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Table 3: Parameter counts for Linear and Attentive fusion probes using all layers (CLS+AP) across
different numbers of classes (K) and three ViT architectures:
VIT-S (d = 384, | Lay| = 12), ViT-B (d = 768, | La| = 12), and ViT-L (d = 1024, |L,| = 24).

d=384,[Lu]=12 | d=T768,[Lal=12 [ d=1024, [La] =24

K Linear  Attentive Linear Attentive Linear  Attentive

2 18434 1184258 36866 4727810 98306 8400898

5 46085 1185413 92165 4730117 245765 8403973

10 92170 1187338 184330 4733962 491530 8409098

50 460850 1202738 921650 4764722 | 2457650 8450098

100 921700 1221988 | 1843300 4803172 | 4915300 8501348

200 | 1843400 1260488 | 3686600 4880072 | 9830600 8603848
Backbone 22050 664 86567 656 304 368 640
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Figure 12: Absolute performance gains of attention-based intermediate layer fusion using different
token configurations. Left: Distribution of gains across three base models and 20 datasets. Right:
Per-dataset breakdown showing dataset-specific patterns in token utility.

class count increases, the linear probe grows rapidly, whereas the attentive probe remains relatively
stable. In practice, the attentive probe uses fewer than 5% of the backbone’s parameters, offering a
highly efficient solution that scales well to large multi-class problems.

A.10 IMPORTANCE OF INCLUDING STRUCTURAL INFORMATION

We analyze the effect of token selection in our attention-based intermediate layer fusion mecha-
nism. We compare three configurations: attentive layer fusion using only CLS tokens, encoding the
semantic information, only AP tokens, capturing more structural information by averaging spatial
features, or both token types from all layers.

Fig.[12)shows absolute performance gains relative to the last layer CLS linear probe baseline across
our three base models (CLIP-B-16, DINOv2-B-14, ViT-B-16) on all 20 datasets. We set the attention
dropout to 0.1 to reduce the complexity of hyperparameter search.

The results demonstrate three key findings: (1) CLS tokens consistently provide positive gains across
most datasets, (2) AP tokens exhibit high variance, substantially improving performance on some
datasets (e.g., SVHN, GTSRB) while degrading it on others (e.g., FGVC Aircraft, Pets), and (3)
combining both token types achieves the best overall performance, indicating the attention mecha-
nism successfully learns when to utilize each token type.
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Figure 13: Train and test balanced accuracy comparison for each benchmark dataset across 9 models.
The baseline performance (linear probe on last layer’s CLS token) versus attentive probe on CLS
+AP of all intermediate layers are shown. While most datasets show acceptable overfitting patterns,
PCAM and PASCAL VOC 2007 exhibit overfitting where the attentive method’s test performance
approaches the linear baseline despite higher training accuracy.

A.11 RISK OF OVERFITTING

More expressive probes inherently increase overfitting risk due to their greater capacity to memorize
training-specific patterns. Despite mitigation strategies including weight decay and representational
jittering, Fig. [T3|reveals two overfitting patterns across our benchmark.

For most datasets, both methods exhibit similar train-test gaps, with our attentive fusion method
maintaining superior test performance despite having a higher capacity. This represents acceptable
overfitting where the additional expressiveness provides genuine benefits even with regularization.
However, we observe overfitting on PCAM and PASCAL VOC 2007, where the linear baseline
shows small train-test gaps while our attentive method overfits significantly despite regularization,
resulting in test performance comparable to the simpler baseline (Tab. [I]).

PCAM exemplifies this failure mode, potentially due to substantially more training updates (5,120
vs. 1,320 for our second-largest dataset) that may amplify overfitting effects. Additionally, stan-
dard data augmentation techniques could not be applied as regularization since we work with pre-
extracted frozen features. Finally, the attentive fusion mechanism appears to overfit to noise in
intermediate features, particularly from the AP token, which dilutes localized signals through spatial
averaging, problematic since PCAM’s diagnostic information concentrates in small tissue regions.
By contrast, AAT avoids this issue despite a similar parameter count, as its attention mechanism
operates only on the final layer and can thus focus directly on central patches. By contrast, AAT
avoids this issue despite similar parameter count, as its attention mechanism operates only on the
final layer.

This highlights a boundary condition: when label-relevant information is highly localized, AP-based
aggregation becomes suboptimal, and limiting training steps becomes crucial even with regulariza-
tion.

A.12 IDENTIFYING THE OPTIMAL NUMBER OF HEADS

To determine the optimal number of attention heads for our approach, we conducted experiments
using the DinoV2-B-16 model with all layers (CLS+AP, attentive pooling). While Chen et al.[(2024)
used 8 attention heads by default, we systematically evaluated different head configurations to iden-
tify the best setting for our method.

Due to computational constraints, we performed this analysis on a subset of 8 datasets: Stanford
Cars, Country-211, GTSRB, CIFAR-100, DTD, EuroSAT, Pets, and SVHN. The experimental setup
differed slightly from our main experiments by removing attention dropout, jitter, and gradient clip-
ping to isolate the effect of the number of heads.
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Fig. [T4] shows that optimal performance is achieved when the number of attention heads equals the
number of representations being fused, which we adopt for our method.
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Figure 14: Test balanced accuracy across different numbers of attention heads on 8 datasets, showing
optimal performance when heads equal representations fused.

A.13 FINETUNING COMPARISON

Our work focuses on the probing paradigm, where the pretrained backbone remains frozen and only
a lightweight classification head is trained. This approach is valuable in resource-constrained scenar-
ios or when the model must serve multiple tasks and should therefore not be changed. However, to
contextualize our contributions within the broader landscape of transfer learning methods, we con-
ducted additional fine-tuning for the three base models (CLIP-B-16, DINOv2-B-14, and ViT-B-16)
on GTSRB, CIFAR-100, and EuroSAT. Due to computational constraints, we used fixed hyperpa-
rameters for each model and dataset: learning rate 1 x 1073 and weight decay 1 x 10~! for the
classification head, learning rate 1 x 10> and weight decay 1 x 10~° for the backbone. We train
for 40 epochs with a batch size of 256, enforcing at least 1000 gradient updates as in our main
experiments.

Fig. [I3] reveals that while fine-tuning generally achieves the highest accuracy, our method closely
matches its performance on CIFAR-100 and EuroSAT. On GTSRB, fine-tuning achieves substan-
tially higher accuracy (7-15pp), reflecting the value of direct backbone adaptation for fine-grained
spatial discrimination. Importantly, our method consistently outperforms linear probing across all
datasets while being 36 times faster during training compared to fine-tuning (Fig. [T6), demonstrat-
ing a practical accuracy-efficiency trade-off for resource-constrained scenarios where probing is
preferred.
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Figure 15: Downstream performance of three probing strategies and finetuning for three datasets
(GTSRB, CIFAR-100, and EuroSAT) and the three base models.

A.14 MULTI-LAYER FUSION ACROSS ATTENTION PROBE ARCHITECTURES
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Figure 16: Training times in minutes for three probing strategies and finetuning averaged across
datasets and the three base models.
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Figure 17: Performance of multi-layer attentive fusion using different per-layer attention probes.
We compare our CAE-style probe with V-JEPA, AIM and Efficient Probe (EP), using both CLS and
AP tokens from all layers.

To verify that the benefits of multi-layer attentive fusion do not depend on the specific design of
the attention module, we evaluate several alternative attentive probes in place of our CAE-style
implementation [Chen et al.| (2024). Specifically, we consider AIM [EI-Nouby et al.| (2024), Efficient

Probe (EP)[Psomas et al.|(2025)), and V-JEPA [Bardes et al.| (2024)), assessing their ability to aggregate
intermediate layer information.

Fig. [I7) reports accuracy on four representative datasets. All attentive probe variants consistently
outperform the standard last-layer CLS linear probe, confirming that multi-layer attentive fusion
effectively leverages intermediate representations independent of the attention design. Differences
between probe types are minor, with more complex probes (CAE, V-JEPA) showing slightly higher
gains on some tasks than the simpler variants (EP, AIM). In summary, the results confirm that multi-
layer attentive fusion provides consistent downstream benefits across probe architectures, reinforc-
ing the generality of our approach and validating the key claim that intermediate-layer features
contain task-relevant information beyond the final layer CLS and AP tokens.

A.15 STABILITY OF EXPERIMENT RUNS

To assess the stability of our experimental results, we conducted a seed variation analysis using
the DinoV2-B-16 model with all layers (CLS+AP, attentive pooling). We ran five different random
seeds for each of the 20 datasets in our evaluation. To reduce the hyperparameter search space,
we removed attention dropout and focused the tuning process on learning rate and weight decay
only. Fig.[I8]shows the standard deviation of balanced test accuracy across the five seeds for each
dataset. The results demonstrate that standard deviation remains below 0.01 for all datasets, with
many datasets achieving standard deviations below 0.002. These values indicate that the variance
across different random seeds is limited. Based on this stability analysis, we determined that single
runs for each dataset and configuration would be sufficient for our main experiments, enabling us to
allocate computational resources more efficiently while maintaining reliable results.
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Figure 18: Standard deviation of balanced test accuracy across five random seeds for DinoV2-B-14
with all layers (CLS+AP, attentive pooling) on 20 datasets. All values remain below 0.01, indicating
stable performance across different random initializations.

A.16 USE OF LARGE LANGUAGE MODELS

Large language models (Google’s Gemini, OpenAI’s ChatGPT, and Anthropic’s Claude) were used
as a writing assistant to help refine the language and improve the clarity of the manuscript. Sep-
arately, Al-powered coding tools like Cursor and GitHub Copilot were used for advanced auto-
completion during software development. The human authors directed all scientific aspects of the
work, including the research ideas, methodology, and analysis of results, and are fully responsible
for the content of the paper.
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