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Abstract

As generative AI systems become competent and democratized in science, business,
and government, deeper insight into their failure modes now poses an acute need.
The occasional volatility in their behavior, such as the propensity of transformer
models to hallucinate, impedes trust and adoption of emerging AI solutions in
high-stakes areas. In the present work, we establish how and when hallucinations
arise in pre-trained transformer models through concept representations captured
by sparse autoencoders, under scenarios with experimentally controlled uncertainty
in the input space. Our systematic experiments reveal that the number of semantic
concepts used by the transformer model grows as the input information becomes
increasingly unstructured. In the face of growing uncertainty in the input space,
the transformer model becomes prone to activate coherent yet input-insensitive
semantic features, leading to hallucinated output. At its extreme, for pure-noise
inputs, we identify a wide variety of robustly triggered and meaningful concepts in
the intermediate activations of pre-trained transformer models, whose functional
integrity we confirm through targeted steering. We also show that hallucinations
in the output of a transformer model can be reliably predicted from the concept
patterns embedded in transformer layer activations. This collection of insights
on transformer internal processing mechanics has immediate consequences for
aligning AI models with human values, AI safety, opening the attack surface for
potential adversarial attacks, and providing a basis for automatic quantification of
a model’s hallucination risk.

1 Introduction

Generative AI systems are becoming always more capable, demonstrating remarkable performance on
a wide range of tasks, across diverse data modalities. Yet, transformer models can at times confidently
misstate facts, invent details in generated content, and engage in confabulated reasoning. These model
behaviors occur even when accurate information for the task is abundantly present in the models’
training data. These plausible-seeming yet incorrect outputs are often referred to as “hallucinations”,
and range from simple factual mistakes to potentially harmful and deceptive or mis-aligned behaviors
[1][2][3][4][5].

While it may be trivial to quantify the error rate of a transformer model using various performance
benchmarks, working towards a truly mechanistic understanding of model hallucinations, errors,
and inherent biases will be unavoidable as we entrust AI systems with increasingly sensitive and
consequential real-world tasks.

For the goal of dissecting the units of meaning on which transformer models internally operate,
sparse autoencoders (SAEs) have imposed themselves as a widely adopted tool in the mechanistic
interpretability community [6][7]. This class of autoencoders now provides the means for disentan-
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gling the opaque visceral workings of large language models (LLMs) into human understandable
components. Such SAEs learn a mapping function from intermediate transformer model activations
to a sparse overcomplete representational space, which has an interpretable basis by nature, that
can be used to faithfully reconstruct the latent activations. Recent work has shown that human
interpretable features of consequence can be identified in transformer models at scale, from toy
models to commercial-scale LLMs using SAEs [8].

Much of this interpretability research is rooted in the “linear representation hypothesis”. It posits that
semantic concepts are represented as single-dimensional linear directions in a representation space
derived from transformer layer activations [9][10]. While there is some evidence that certain features
may be inherently multi-dimensional in SAE embedding activations [11], there is a growing body
of research underscoring the validity and utility of these linearly decomposable single-dimensional
features [12][13][14][10].

However, a highly important open question remains: to what extent do these learned representations
in transformer models reflect properties of the input data itself, as opposed to inherent biases or
structural priors that emerged during model training? How do these internal representations behave
when the transformer model is facing uncertainty due to confusing, ambiguous, or noisy inputs?

Using SAEs as a tool to probe the emergent conceptual landscape of transformer internals, we show
that pre-trained transformers impose coherent, steerable conceptual structure even on pure noise
or randomly shuffled inputs, with the repertoire of activated concepts expanding as input structure
degrades, across both images and text. Crucially, we show that patterns of concept activation elicited
by the input prompt reliably predict hallucinations in the transformer’s generated output, providing
a practical signal for anticipating unfaithful generations and directly linking high-level inferred
concepts to model errors. Taken together, our exploratory and interventional experiments yield three
key contributions:

1. First, common pre-trained transformer models exhibit a strong form of input-insensitive
inductive bias: these systems tend to impose semantic structure on inputs, tying them into
learned conceptual webs, even if the model inputs are ambiguous or lack any coherent
meaning.

2. Second, this skewing as information trickles through transformer processing layers exac-
erbates as input uncertainty increases: the more randomness we experimentally introduce
in the input observations, the more persistently the transformer model is drawn towards
operating on semantic units that align with familiar internal model representations. We show
a demonstrable expansion of semantic concepts that are triggered, localized especially to the
middle layers of the transformer model, as the coherence of input information degrades.

3. Third, the constellation of concept activations in a transformer model’s intermediate process-
ing representations can be used to reliably predict the tendency of hallucinated or unfaithful
output. This insight suggests an automatically measurable link between spurious internal
feature recruitment of the input and the fidelity of the output produced by these increasingly
popular deep learning systems.

2 Preliminaries

In this section, we introduce our experimental framework to probe the emergence of semantic structure
in transformer models, from layer to layer, by means of SAE training and concept evaluation. To
address our research aims, we employ SAEs trained on transformer activations from pure noise
inputs, SAEs trained conventionally from scratch for smaller transformer models, and conventionally
pre-trained SAEs for larger transformer models. To ensure that our results are as general and widely
relevant as possible, we investigated latent activations from vision and language transformers of
varying sizes (detailed in the following subsections and in Appendix A); thus covering several choices
of data modality, model size, and model type.

2.1 Transformer models

For the vision transformer (ViT) [15], we study the CLIP-ViT-B/32 [16] architecture: the base variant
of the vision transformer from OpenCLIP [17], pre-trained on the LAION dataset [18] with 1.4
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Figure 1: Workflow to examine hallucination risk in each layer of the transformer. To assess the
extent to which transformer models infer meaningful concepts from semantically void inputs, we study
the semanticity of concepts in SAEs trained on residual stream activations of 1.3 million Gaussian
noise samples from a pre-trained CLIP vision transformer at each layer by probing the concepts with
natural images from the ImageNet-1k validation set. Many concepts are highly interpretable and
consistent, despite the SAEs only ever being exposed to pure noise residual stream activations during
training. While this noise training setup is specific to our first experiment, subsequent experiments
adopt the same concept evaluation approach with alternative transformer models and input modalities.
See Preliminaries and Appendix A for further experimental details.

billion image-text pairs using contrastive supervision. In the case of language transformers [19], we
use Pythia-160m-deduped [20], trained on 300 billion tokens from the Pile [21]. We also use Gemma
2B-IT [22] for experiments where coherent text generation and instruction following is required. For
all transformer models, the object of investigation is the activations in the residual stream: the hidden
state of the deep neural network, updated by attention and multi-layer perceptron (MLP) blocks at
each layer. The residual stream is the core conduit for information flow and representation refinement
to which layers read from and write to, in the transformer architecture [23] [24].

2.2 SAE objective

For each SAE formulation, we work with SAEs whose parameters are trained to produce the following
approximation for a given transformer model activation vector x ∈ Rdmodel at a particular layer:

x ≈
dSAE∑

i

fi(x)di + b ,

that is, each transformer layer’s intermediate activation can be approximated as a (sparse) linear
combination of unit direction vectors di ∈ Rdmodel scaled by concept activation coefficients fi(x) ≥
0, with b ∈ Rdmodel being the bias term. Practically speaking, this SAE is a simple neural network
with a learned encoder F : Rdmodel → RdSAE projecting each transformer activation into a sparse
concept space, typically of much larger dimensionality than the transformer model activation space.
For instance, the ViT embedding dimensionality is dmodel = 768 with the corresponding SAE concept
space dimension being dSAE = 49, 152. Conversely, the learned decoder D : RdSAE → Rdmodel

component of the SAE aims to reconstruct the original transformer residual stream activation solely
from this pattern of sparse concept activations. Each SAE in this work is trained with the following
loss function:

L = ||x− x̂(f(x))||22 + λ||f(x)||1 ,
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where the left (main) term encourages faithful reconstruction (denoted by x̂) of the residual stream
activations of the transformer layer at hand, while the right (penalty) term is an L1 regularization
constraint encouraging parsimony in the concept space. The composite loss of these two terms
motivates the SAE to learn a pruned yet semantically relevant mapping from dense transformer model
activations to a sparse semantic concept space.

2.3 SAE experimental setups

Noise trained SAEs For each layer’s residual stream probe of the frozen vision transformer from
the OpenCLIP ViT-B/32 model, we train a dedicated SAE on activations corresponding to 1.3 million
samples of Gaussian noise. Each sample is a 3x224x224 tensor sampled independently from standard
Gaussians N (0, 1), clipped to ±3σ and min-max rescaled to [0, 1] before standard ViT normalization.

SAEs trained conventionally from scratch To examine overarching principles of the thus de-
composed concept spaces of pre-trained transformer models, we also train SAEs on the residual
stream activations from each layer of the transformer model under investigation using conventional
image and text datasets. We train SAEs on the intermediate activations of OpenCLIP ViT-B/32
from ImageNet-1k [25], and SAEs on the intermediate activations of Pythia-160m-deduped from
FineWeb-Edu [26]. For each layer of these transformer models, we train a separate SAE instance;
here and in all analogous experiments.

Pre-trained SAEs For larger transformer models, we use publicly available SAEs pre-trained on
conventional text datasets for comparability with prior interpretability work and to allow analysis
on models whose outputs are more realistic, coherent, and representative of practical use cases. In
particular, we implement pre-trained Gemma 2B SAEs [27] across layers 1, 7, 11, 13, and 18.

2.4 Concept evaluation

To rule out the possibility that the features identified by the noise setting SAE are mere artifacts of the
inductive bias of the SAE, we subject each feature in a randomly sampled subset of the SAE features
to two complementary, model-agnostic metrics:

1. Semantic purity: To quantify the unequivocality with which a particular feature fi is present,
we collect the top-k (k = 16) images that maximize the mean activation of fi across the
sequence of image patches, obtain their CLIP text embeddings (label) and compute the mean
cosine similarity (-1.0 to +1.0) of the text embeddings. High semantic purity (close to +1.0)
indicates that the images cluster around a single coherent semantic theme.

2. Steerability: To try to “hijack” a particular feature fi in the transformer model, we add the
scaled SAE decoder direction α · di of that feature to the residual stream activations. The
scalar α is chosen via a grid search over a pre-defined range of values. We then run the
transformer model on feature-naive “neutral” image inputs that originally do not activate fi.
If this single vector addition to a given transformer model layer makes the model’s top-1
prediction switch to the feature’s own majority label (the concept identified from its images
that activate maximally) we consider fi as "steerable".

2.5 Hallucination

Evaluation of model hallucination is generally recognized to be challenging [1] [28]. As a straight-
forward empirical test, we prompt Gemma 2B-IT to summarize a long-form text, and employ the
purpose-built and widely used HHEM-2.1 model [29] to provide a continuous hallucination score
from 0.0 (no hallucination) to 1.0 (maximum hallucination) for the summary based on its faithfulness
to the original text. To directly link hallucinations to our SAE-identified concepts, we fit a partial least
squares (PLS) regression layer by layer to predict the hallucination score of the transformer output
based on the concept activations of the input prompt. PLS is a linear model that enables interpretable
links between concepts and hallucination behavior. To estimate the hallucination score, h, we fit:

ĥ = XmaxW(PTW)−1QT ,

where Xmax ∈ Rnsample×dSAE is calculated by taking the maximum concept activations across input
tokens for a source, W ∈ RdSAE×ncomp is the learned projection matrix into the PLS latent space,
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P ∈ RdSAE×ncomp are the concept loadings, and Q ∈ R1×ncomp are the hallucination score loadings.
More details can be found in Appendix E.

Figure 2: Semantic concepts are reliably invoked by transformer layer 9 activations from pure
noise. Each panel shows the top 4 images among 50,000 candidate images from the ImageNet-1k
validation set that most activated a particular semantic concept. These semantic concepts are defined
by an SAE trained on pure noise activations from the residual stream at layer 9 of a CLIP vision
transformer. Above each image we report the corresponding semantic label for that image. Patch
colors indicate the individual patch activation strengths within that image for a given semantic concept
(yellow = more activation of the concept). See Appendix B for additional concept examples.

3 Transformers represent semantic concepts for pure noise inputs

To investigate the emergence of semantic structure when pretrained transformers are presented with
structurally incoherent inputs, we train SAEs on the residual stream activations from pure noise inputs
to the CLIP vision transformer. If the pre-trained vision transformer is able to interpret semantic
structure from inputs that by construction contain no semantic signal, the ensuing identified semantic
concepts could be said to reveal the model’s ingrained conceptual biases (Figure 1).

After training one SAE instance per layer on the residual stream activations for 1.3 million Gaussian
noise samples, we probe a randomly sampled subset of the noise SAE-identified concepts using
50,000 example images from the ImageNet-1k validation set. To evaluate the interpretability of these
concepts, we obtain the top-k (k = 16 in this case) maximally activating images (mean concept
activation across all patches) for each concept (Figure 2). Additional concept examples from our
noise trained SAEs are presented in Appendix B. We then computed the semantic purity of the
concept (cf. Preliminaries) as a proxy for its interpretability, computed by the cosine similarity of the
semantic CLIP labels from the top 16 maximally activating evaluation images.

We define a feature as interpretable if its semantic purity is at least 0.75. Using this strict threshold,
we observe many high purity features, each corresponding to a coherent high level concept, despite
the SAE being trained solely on Gaussian noise activations and never seeing naturalistic image
activations during training. We also observe that a subset of these highly interpretable concepts are
steerable (cf. Preliminaries): injecting the concept-related activation vector into the residual stream
as the transformer model is processing a neutral image can shift the model’s semantic label prediction
toward the label associated with the concept of interest (Figure 3).

As a further test of concept robustness and layer-wise structuring, we train different noise SAE
instances with varying seeds and hyperparameters on the same transformer layer activations. A
consistent core of robust concepts [30] emerges across comparable layers. Comparing two sets of
noise-setting SAEs reveals a distinctive three-phase pattern in concept overlap, offering insight into
how the vision transformer structures information. The first three layers share 35% of their concepts,
because the residual stream here still reflects the statistical structure of the raw input, and the space of
the viable concepts is highly constrained given the minimal inductive bias at the onset of processing.
Conceptual overlap drops sharply to 14% at layers 5-6, marking a stochastic exploration phase within
the vision transformer’s latent space, exploring a much broader semantic hypothesis space reducing
the probability that randomly sampled features from both sets of SAEs will have a large overlap.
In deeper layers of the vision transformer model, overlap rebounds to 25% onto a more stable set
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Figure 3: Transformers fed with noise inputs lead to neuron activations with detectable and
controllable semantic structure in many layers. We measure the interpretability of a concept
by the semantic similarity of the labels of the top 16 images that maximally activate that concept.
As a more stringent test, we also measure a concept’s steerability by the ability of that concept to
causally induce its own class label when added to the residual stream of neutral input images. We
find that a very large portion of our noise-derived semantic concepts are highly interpretable, and
a non-negligible number of these concepts are even steerable, particularly in the early and middle
layers. We report the percentage of unique concepts across our noise-trained SAE meeting the
aforementioned interpretability and steerability thresholds.

of high-level features. See Appendix C for further details. In effect, the model settles on the most
explanatory subset of concepts for the task, collapsing the expanded mid layer space back into a
shared semantic scaffold. Taken together, this three phase pattern indicates that the vision transformer
incrementally restructures noise-based activations into coherent task-relevant concepts, and that these
emergent representations are sufficiently robust to be discovered by noise-setting SAEs trained with
different random initializations.

Grounding our evaluation with the ImageNet-1k validation set gives us a strict, reproducible baseline.
Since the concept space is limited by the samples in the validation set, any feature aligned with
concepts beyond ImageNet’s dictionary is treated as unclassified, making our interpretability and
steerability counts understated. A more diverse evaluation set, with images supporting a wider array
of ground-truth concepts, would likely show an increase in both of these metrics. Regardless, we have
demonstrated that transformer models ascribe distinct, coherent, and causally actionable concepts to
inputs that, by construction, have no semantic content.

4 More unstructured transformer inputs invoke more semantic concepts

To get a better grip on how the transformer models progressively mold the conceptual structure
embedded in the input as information flows through the processing layers, we train one conventional
SAE instance on each transformer layer independently. These per-layer SAEs are trained on trans-
former activations from natural images/text, not noise. We provide these normal input activations
as a baseline, and then compare the differences in the SAE concept space for varying levels of
experimentally induced ambiguity in the input examples. In the case of image inputs to the vision
transformer, we randomly shuffle small patches to break the spatial relationship between adjacent
parts of the image in natural images (28x28, 56x56, and 112x112 pixel patches shuffled per image),
with smaller patches leading to more ambiguous inputs. To this end, for text inputs to the language
transformer, we randomly shuffle sets of consecutive words in varying n-gram sizes (single, 2, 6,
10, and 30 word sections), with lower n introducing higher uncertainty in the input space. The
transformer layer’s ensuing residual stream activations corresponding to these inputs are then fed into
the appropriate SAEs for each layer.

A useful macro-level metric for overall SAE concept discovery is the SAE L0: the average number
of non-zero concepts across the input sequence activated through transformer processing over the
entire dataset. In the case of our image SAEs, remarkably, we notice a steep increase in the average

6



Figure 4: Increasing uncertainty in vision or text inputs elicits more semantic structure in mid-
layers of transformers. The average number of SAE concepts identified (L0) increases dramatically
with increasing input perturbation. We report the average change in L0 from baseline, corresponding
to the number of SAE concepts with non-zero activations, across (a) patch-shuffled image activations
and (b) n-gram-shuffled text activations for each transformer layer. Error bars show one standard
deviation. Smaller patches and lower n-gram count induce greater input uncertainty for images
and text, respectively. For both modalities, the L0 difference between natural inputs and perturbed
inputs peaks in the middle layers, and increases with increasing levels of deliberate scrambling of
transformer input information.

number of concepts activated for randomly shuffled inputs compared to the baseline, peaking at layer
6 with 38 additional concepts activated on average (Figure 4a) for the smallest 28x28 pixel patch size.
This pattern holds in the language domain as well. The number of concepts identified per input above
the baseline peaks at layer 9 with 81 extra concepts triggered, on average (Figure 4b) for the single
word shuffled text. Furthermore, we observe that the degree of input perturbation strongly influences
the magnitude of this effect. Input activations with finer-grained shuffling (e.g. single word level or
smaller image patches) result in significantly higher L0 count values than input activations shuffled
in larger chunks (e.g. 30-word sections or large image patches). See Appendix D for a full table of
layer-wise results.

These results, converging across different data modalities, are suggestive of the middle layers of
pre-trained transformer models playing a more influential role in mediating the model’s internal
conceptual instantiation in response to degraded input structure. One might expect transformer
models to intuit fewer concepts in shuffled inputs; instead, we find that ambiguity drives an expansion
in concept usage, revealing an unanticipated property of how these transformer models organize and
impose structure on input processing cascades.

5 Input-related internal concept activations predict output hallucinations

We have seen how pre-trained transformer models, when confronted with noisy, uncertain, and
ambiguous inputs, appear to traverse the landscape of possible concepts more widely, attempting
to impose structure that may not actually be present. Next, we aim to directly link this transformer
model-imposed structure in the concept space of the inputs to hallucination propensity with respect
to the model-generated outputs. To this end, we first instructed Gemma 2B-IT to produce a generated
summary for 1,006 articles from the Vectara hallucination leaderboard [31], employing the purpose-
built HHEM-2.1 rating model to give each source/summary pair a real-valued hallucination score,
ranging from 0.0 (no hallucination) to 1.0 (most hallucinated). Simultaneously, the transformer’s
residual stream activations of the original article text were projected into the sparse concept space
formed by the pre-trained Gemma 2B SAEs. With these concept vectors in hand, we fit a 4-
component PLS on the maximum concept activations across tokens in a sample, attempting to predict
the hallucination score of the Gemma 2B-IT-generated text summary.

7



(a) (b)

Figure 5: Transformer layer activations can be used to directly predict risk of hallucinated
model output. (a) Hallucination score prediction for the task of faithful summarization of 1,006
source articles. We compare Gemma 2B-IT-generated summaries against the ground truth source
articles. We use the sparse SAE concept activations, derived from Gemma 2B-IT residual stream
activations, as input to a PLS regression model, predicting the hallucination score for each example.
We report 10-fold cross-validated coefficient of determination (R2) on unseen examples, with error
bars showing one standard deviation. (b) Suppressing the top 10 SAE concepts in Layer 11’s residual
stream, identified by the PLS model to be the primary drivers of hallucination, significantly reduces
mean hallucination scores across the top quartile most hallucinated examples (n = 252). We show a
histogram of hallucination scores before (grey) and after (blue) suppression: many examples report
significant reductions in hallucination, with a mean score drop of 0.19 in this subset (dashed lines).

Indeed, we find that hallucinations present in the Gemma 2B-IT-generated summaries can be robustly
predicted, in unseen text examples, solely from the sparse concept vectors derived from the layer
activations of the source prompt using the SAEs. The most accurate predictions are observed for the
layer 13 residual stream SAE concepts with a coefficient of determination of 0.271± 0.010 (out of
sample, 10-fold cross validation) for the continuous hallucination scores. For binary classification
predicting above vs. below the median hallucination score, we reach a mean accuracy of 73.0%±5.3%
across 10 cross validation folds. In fact, transformer layer 18 SAE source concepts do not allow us to
predict the continuous summary hallucination scores above chance level (Figure 5a).

Based on this independent mode of investigation, our results reinforce our other findings (cf. above)
that it is especially the intermediate transformer model layers where concept exploration and risk of
“concept wandering" occur. According to the present analyses, later transformer layers do not appear
to participate in this process to a large extent.

We finally explore the practical implications of these findings. Since PLS is a linear model, we can
easily reverse-engineer specific key concepts in each transformer layer that have the most influence
on the hallucination score predictions. This is because each PLS input dimension corresponds to a
distinct SAE-derived concept activation. We select the top 10 key hallucination-associated concepts
in layer 11 by variance importance in projection (VIP). With these 10 concepts in hand, we simply
suppress them in the residual stream of layer 11 for the input prompt by setting their SAE concept
activations to 0, with the SAE decoder yielding hallucination-suppressed residual stream activations.
These hallucination-suppressed activations are then swapped in instead of the actual vector of residual
stream activations in Gemma 2B-IT’s forward pass. Intriguingly, for the top quartile most hallucinated
examples in our dataset (252 samples in total), suppressing just these 10 features (out of a total of
16,384) leads to a decrease in the mean hallucination score of 0.19 for this subset (Figure 5b), from
0.91 to 0.72 after suppression. Further details are provided in Appendix E.

This constellation of results shows a clear link between concept space activations of the input prompt
and the tendency of the transformer model to hallucinate its generated content. More than this, we
present a primitive mechanism to tamp down this tendency to hallucinate.
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6 Related Work

Hallucination and perturbed inputs The occurrence of hallucinations in generated content is
a well-documented issue, persisting across language models regardless of scale or capability [1]
[5] [32]. These hallucinations refer to model-generated outputs that are syntactically plausible but
factually incorrect or ungrounded to the input prompt. There have been many attempts to benchmark
this phenomenon across various tasks [33][31][34][35]. There have been relatively fewer attempts to
explain the mechanisms within transformers that underlie these behaviors. [36] attempts to explain
(and control) hallucinations based on syntactic errors in particular components of the transformer
architecture such as specific attention heads or MLPs. [37] looks at hallucination through the
lens of output token dynamics. [38] studies model self-evaluation, and [39] rigorously shows that
well-calibrated models will always hallucinate on certain “arbitrary” facts at a baseline rate. These
approaches largely employ custom-made datasets and work on the level of single token probabilities
and token-wise syntactic dynamics. Our approach links the phenomenon of hallucination directly
to interpretable, high-level concepts, and as far as we know is the first study to present a unifying
mechanism across both images and text. Our approach also bears some similarities to a large body
of research on neural network input perturbation and adversarial examples, where small, often
imperceptible changes to the input can lead to erroneous model outputs [40][41][42][43][44][45]. In
our work, we introduce highly perturbed inputs as an experimental tool to test the interaction of the
actual semantic content of the inputs and the information imposed on the inputs by the transformer.

Sparse autoencoders Early word embedding approaches, such as word2vec [46] and GloVe [47],
demonstrated the power of linearly composable embedding spaces for capturing high-level semantic
relationships in natural language [48]. More recently, this result has been formalized through the
linear representation hypothesis [9], which suggests that many meaningful features of input data
can be disentangled and inspected via linear transformations [10][49][50]. Leveraging this insight,
sparse autoencoders (SAEs) have proven to be particularly effective tools for breaking down dense
high dimensional transformer representations into an overcomplete basis of linear pieces that can be
independently studied [6][7][51]. SAEs have surfaced coherent and even manipulable concepts from
transformer models of various sizes [8][52]; recent work has extended these techniques to vision
transformers with similar success [53][54][55]. There has also been much focus on improving the
intelligibility and relevance of SAE-identified features through various alternative training regimes
and architectures [14][56][57]. Our experiments leverage SAE-disentangled concepts to localize
transformer model behaviors such as hallucinations and conceptual drift, with results that rely solely
on the presence of high-level concepts rather than specific SAEs, datasets, or even data modalities.
Our approaches are likely to gain strength as interpretability techniques advance.

7 Conclusion

We here introduce an objective framework for detecting and profiling structural biases and failure
modes in common pre-trained transformer models. Our approach scales organically to transformer
models of any size. Crucially, it allows for dataset-independent assessments—eliminating reliance on
arbitrary benchmark data subsets and subjective observer-dependent judgements such as highlighting
a handful of specific semantic concepts or zooming in on small functional circuits in billion-parameter
transformer models. By systematic probing of internal representations as they trickle through the
transformer architecture following simple random noise and other controlled input perturbations, we
show how to compute a continuous degree of hallucination risk, even on a layer-by-layer basis. We
surface presupposed semantic concepts of interest, study the trajectory of their propagation throughout
the deep neural network, and examine the nature of how experimentally perturbed inputs become
internally represented through fully quantitative, automatically computed measures. In doing so, we
reveal important ways in which transformer models are prone to “conceptual wandering”, invoking
rich semantic structure in inputs with pure noise or degraded semantic information content. Such
frameworks may shift interpretability efforts to see deeper into transformer models from qualitative
judgements and hand-picked examples to a pipelinable methodology that generalizes across multiple
data modalities, expansive model architectures, and experimental setups. Ultimately, our work lays a
cornerstone for both robust monitoring and principled intervention of transformer model behavior,
supporting the safe and responsible deployment of emergent AI abilities to the wider society.
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Limitations While our experiments span a broad range of model sizes and modalities, it remains
to be seen how exactly these findings may manifest in the largest frontier models on the order of
10-100+ billion parameters. Nonetheless, the consistency of observed behaviors across architectures
and scales in this work suggests strong potential for generalization. We also do not claim that SAEs
are perfect oracles for interpretability; rather, our study builds upon the observation that SAEs have
been shown repeatedly (in this work and many other works) to extract many useful semantic concepts
from transformer activations. Indeed, we have shown here that these concepts can be used to directly
predict relevant behavior of model-generated content.
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A SAE hyperparameters and training metrics

In Tables 1-3, we report the hyperparmeters used for training SAEs from scratch in this work. In
Tables 4-5, we report evaluation metrics for SAEs that we train from scratch in this work.

Table 1: Hyperparameters for OpenCLIP ViT-B/32 SAEs trained on residual stream activations of
Gaussian noise inputs. Training time was approximately 35 mins on a single NVIDIA L40S GPU.

Layer learning rate batch size L1 coef. dSAE dmodel # training images

1 3e-3 4096 2e-6 49,152 768 1.3M
2 1e-3 4096 4e-6 49,152 768 1.3M
3 7e-3 4096 2e-6 49,152 768 1.3M
4 2e-3 4096 2e-6 49,152 768 1.3M
5 9e-4 4096 2e-6 49,152 768 1.3M
6 3e-3 4096 1e-6 49,152 768 1.3M
7 7e-3 4096 1e-6 49,152 768 1.3M
8 6e-3 4096 1e-6 49,152 768 1.3M
9 1e-2 4096 3e-6 49,152 768 1.3M

10 3e-4 4096 1e-5 49,152 768 1.3M
11 1e-4 4096 1e-6 49,152 768 1.3M
12 1e-4 4096 1e-6 49,152 768 1.3M

Table 2: Hyperparameters for OpenCLIP ViT-B/32 SAEs trained on residual stream activations of
natural ImageNet-1k images. Training time was approximately 45 mins on a single NVIDIA L40S
GPU.

Layer learning rate batch size L1 coef. dSAE dmodel # training images

1 6e-04 4096 1e-1 49,152 768 1.3M
2 1e-02 4096 3e-1 49,152 768 1.3M
3 2e-03 4096 4e-1 49,152 768 1.3M
4 1e-04 4096 2e-8 49,152 768 1.3M
5 2e-04 4096 3e-8 49,152 768 1.3M
6 3e-04 4096 1e-8 49,152 768 1.3M
7 2e-03 4096 1e-8 49,152 768 1.3M
8 7e-04 4096 1e-8 49,152 768 1.3M
9 1e-02 4096 3e-8 49,152 768 1.3M

10 1e-02 4096 9e-8 49,152 768 1.3M
11 1e-02 4096 4e-10 49,152 768 1.3M
12 1e-02 4096 3e-7 49,152 768 1.3M

Table 3: Hyperparameters for Pythia-160m-deduped SAEs trained on residual stream activations of
natural FineWeb-Edu text. Training time was approximately 4 hours on a single NVIDIA L40S GPU.

Layer learning rate batch size L1 coef. dSAE dmodel # training tokens

1 — 11 5e-5 2048 5 24,576 768 204.8M
12 5e-5 2048 2 24,576 768 204.8M
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Table 4: Evaluation metrics for OpenCLIP ViT-B/32 SAEs trained on residual stream activations of
natural ImageNet-1k images

Layer L0 explained variance recon. cos sim. % alive features

1 989.19 0.99 0.99 100.00
2 757.83 0.99 0.99 45.39
3 1007.89 0.99 0.99 97.93
4 935.06 0.99 0.99 100.00
5 965.15 0.99 0.99 100.00
6 966.38 0.99 0.99 100.00
7 1006.62 0.99 0.99 99.97
8 984.19 0.99 0.99 100.00
9 965.12 0.99 1.00 92.37

10 854.92 0.99 1.00 85.43
11 1141.99 0.99 1.00 100.00
12 829.09 0.99 1.00 55.71

Table 5: Evaluation metrics for Pythia-160m-deduped SAEs trained on residual stream activations of
natural FineWeb-Edu text

Layer L0 explained variance recon. cos sim. % alive features

1 29.50 0.92 0.97 100.00
2 16.18 0.85 0.95 100.00
3 13.25 0.81 0.93 100.00
4 21.41 0.84 0.91 98.84
5 22.31 0.77 0.90 97.35
6 31.98 0.72 0.92 89.58
7 45.89 0.79 0.92 87.28
8 65.53 0.82 0.93 87.80
9 67.55 0.81 0.93 80.48

10 49.12 0.75 0.92 84.20
11 31.57 0.70 0.92 93.95
12 11.03 0.71 0.98 22.34

B Additional noise trained SAE concept examples

We present additional examples of concepts identified by the SAEs trained on Gaussian noise
activations from the residual stream of the OpenCLIP ViT-B/32, at various layers (Figures 6-15).
Evaluation is carried using 50,000 images from the ImageNet-1k validation set. Early layers largely
identify concepts associated with low-level visual features and repeating patterns. Later layers identify
very coherent and high-level concepts. These figures extend the results presented in Figure 2.
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Figure 6: Maximally activating images for three features from an SAE trained on Layer 3
activations of a ViT with Gaussian noise input. These features, also representative of early
transformer layers (Layers 1 and 2), include: (i) a positional feature that consistently activates for
the final patch token across rows, (ii) a texture-sensitive feature that activates for highly repetitive,
noise-like patterns resembling dishrags, and (iii) a feature capturing water-like backgrounds with
birds in the foreground.
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Figure 7: Maximally activating images for three features from an SAE trained on Layer 4
activations of a ViT with Gaussian noise input. These features remain grounded in low-level visual
patterns but display more variation compared to earlier layers, without forming coherent semantic
concepts: i) a feature that activates for vertically folded fabrics such as theater curtains and mosquito
nets, likely driven by repetitive linear structures; ii) a feature that responds to mesh-covered textures,
such as window shades with overlaid nets, producing a noisy visual appearance; iii) a feature that
activates for grassy textures, possibly due to fine-grained spatial repetition.
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Figure 8: Maximally activating images for three features from an SAE trained on Layer 5
activations of a ViT with Gaussian noise input. At this layer, semantic structure begins to emerge,
marking a departure from purely textural or position-based features: i) a feature that activates for
natural scenes containing clouds and water bodies, indicating sensitivity to environmental layouts;
ii) a feature that responds to food items with soft, clumped textures—such as mashed potatoes, ice
cream, and cauliflower—highlighting texture-based abstraction; iii) a feature that activates for the
presence of printed text, capturing more symbolic and structured content.
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Figure 9: Maximally activating images for three features from an SAE trained on Layer 6
activations of a ViT with Gaussian noise input. At this layer, we have features with clear semantics:
i) a feature that activates for furry dogs; ii) a feature that activates for food items such as cheeseburgers;
iii) a feature that activates for the watermarks on images.
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Figure 10: Maximally activating images for three features from an SAE trained on Layer 7
activations of a ViT with Gaussian noise input. The features at this depth increasingly correspond
to distinct semantic categories and complex scene elements: i) a feature that activates for dogs with
upright posture and distinct facial structure, reflecting refined animal categorization; ii) a feature
that responds to natural landscapes featuring prominent vertical structures such as mountain peaks,
suggesting emerging scene-level abstraction; iii) a feature that activates for human crowds or densely
populated scenes, particularly those with small, background-scale human figures.
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Figure 11: Maximally activating images for three features from an SAE trained on Layer 8
activations of a ViT with Gaussian noise input. At this stage, features begin to consolidate around
coherent semantic clusters that span both foreground entities and background textures: i) a feature
that activates for human fingers, in the context of them being used to hold some organic objects; ii) a
feature that activates for dog ears, showing refined selectivity for specific facial features; iii) a feature
that strongly activates for odometers.
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Figure 12: Maximally activating images for three features from an SAE trained on Layer 9
activations of a ViT with Gaussian noise input. These features reveal increasingly abstracted and
high-level regularities in structured visual scenes: i) a feature that activates for glossy or metallic
surfaces with high reflectance, capturing regularities in material properties and lighting conditions;
ii) a feature that activates for scenes with snow-covered elements; iii) a feature that activates for
bookshelves or library aisles.
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Figure 13: Maximally activating images for three features from an SAE trained on Layer 10
activations of a ViT with Gaussian noise input. These features demonstrate increasing semantic
clarity and category specificity: i) a feature that activates for close-up views of birds of prey and owls,
capturing high-level animal features such as eyes and beaks; ii) a feature that activates for elevated
natural landscapes, including snowy peaks, alpine valleys, and volcanoes, emphasizing large-scale
geographic structures; iii) a feature that activates for floral structures—especially daisy-like flowers.
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Figure 14: Maximally activating images for three features from an SAE trained on Layer 11
activations of a ViT with Gaussian noise input. These features exhibit advanced semantic grouping
and fine-grained category emergence: i) a feature that activates for sharks, in different perspectives
underwater; ii) a feature that activates for historical architecture and vaulted interiors; iii) a feature
that activates for small to medium-sized furry dog breeds.
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Figure 15: Maximally activating images for three features from an SAE trained on Layer 12
activations of a transformer with Gaussian noise input. At this deepest layer, we observe strong
category-level alignment and rich semantic specificity: i) a feature that activates for jack-o’-lanterns,
capturing lighting, shape, and facial carve patterns across varied contexts; ii) a feature that consistently
activates for elephants, invariant to pose and background, indicating robust object identity abstraction;
iii) a feature that activates for cat faces, spanning multiple breeds and subspecies, reflecting high-
resolution encoding of facial features and textures.
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C Noise trained SAE concept overlap with different initializations

We train two sets of noise SAE instances across all layers with different initialization seeds on
the vision transformer residual stream activations derived from Gaussian noise inputs. We then
compute the Jaccard index on a randomly sampled feature subset, to estimate the amount of concepts
shared between these two sets of SAEs. The Jaccard index is calculated by dividing the number
of overlapping concepts by the total number of concepts identified by both SAEs in the subset.
For ease of reference, we superimpose the difference in L0 observed for natural image inputs to
the L0 observed for maximally shuffled image inputs onto Figure 16 (see Figure 4a for reference).
Interestingly, the Jaccard index between the two noise SAEs trained with different random seeds has
an inverse pattern to the change in L0 from baseline to unstructured inputs. This provides further
evidence that the vision transformer engages in "conceptual wandering" in its middle layers, since
the noise SAEs trained from different initializations infer disjoint sets of concepts in the middle
layer activations of Gaussian noise. We see this distinct three phase pattern: (i) early layers identify
consistent, low-level features, (ii) middle layers widely explore the concept space and impose structure
that may not be present in the inputs, and (iii) later layers crystallize the explored concepts into more
consistent outputs.

Figure 16: Conceptual overlap dips in the middle layers of the vision transformer. We plot the
Jaccard index between the concepts identified by SAEs trained on Gaussian noise for two different
random initializations (left Y-axis). We have also super-imposed the change in L0 plot for the
28x28 patch shuffled images from Figure 4a for reference (right Y-axis). There is significantly more
concept overlap in the early and later layers, which declines in the middle layers. This is an inverse
relationship to the increase in L0 observed for patch shuffled images.

D Layer-wise L0 for unstructured inputs

We provide mean L0s for varying levels of unstructured inputs, for image and text SAEs. Here we
present raw mean L0s and standard deviations in Tables 6-7, as opposed to Figure 4 which shows the
change in L0 from the normal image/text baseline.
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Table 6: Mean layer-wise L0 for SAE trained on OpenCLIP ViT-B/32 residual stream activations

Mean L0 ± s.d.

Layer Normal 28x28 patch 56x56 patch 112x112 patch

1 989.19 ± 0.19 989.89 ± 0.31 989.38 ± 0.23 989.27 ± 0.21
2 757.83 ± 0.01 757.79 ± 0.01 757.83 ± 0.01 757.83 ± 0.01
3 1007.89 ± 0.03 1007.88 ± 0.01 1007.88 ± 0.02 1007.89 ± 0.03
4 935.06 ± 1.17 941.41 ± 1.47 938.24 ± 1.44 937.05 ± 1.40
5 965.15 ± 0.28 973.05 ± 1.85 969.00 ± 1.13 966.88 ± 0.78
6 966.36 ± 1.02 1004.33 ± 6.45 987.49 ± 4.37 974.20 ± 1.96
7 1006.62 ± 0.10 1006.89 ± 0.48 1005.78 ± 0.30 1005.89 ± 0.25
8 984.19 ± 0.24 988.70 ± 0.76 984.80 ± 0.41 984.30 ± 0.28
9 965.12 ± 0.15 965.75 ± 0.13 965.54 ± 0.15 965.34 ± 0.17
10 854.91 ± 0.15 855.21 ± 0.10 855.23 ± 0.11 855.08 ± 0.11
11 1141.99 ± 1.20 1145.59 ± 1.19 1141.99 ± 1.20 1141.99 ± 1.20
12 829.09 ± 0.21 829.62 ± 0.05 829.38 ± 0.10 829.19 ± 0.16

Table 7: Mean layer-wise L0 for SAE trained on Pythia-160m-deduped residual stream activations

Mean L0 ± s.d.

Layer Normal 1-gram 2-gram 6-gram 10-gram 30-gram

1 29.50± 0.19 30.24± 0.20 29.75± 0.20 29.29± 0.20 29.20± 0.19 29.09± 0.20
2 16.18± 0.04 16.20± 0.08 15.93± 0.06 15.85± 0.06 15.86± 0.06 15.90± 0.06
3 13.25± 0.05 13.06± 0.04 12.73± 0.05 12.71± 0.05 12.76± 0.05 12.88± 0.05
4 21.41± 0.10 24.84± 0.05 22.60± 0.08 21.28± 0.09 21.13± 0.10 21.06± 0.10
5 22.31± 0.10 31.62± 0.20 25.04± 0.08 21.84± 0.08 21.57± 0.10 21.55± 0.10
6 31.98± 0.15 43.69± 0.13 38.51± 0.09 33.93± 0.07 33.40± 0.11 33.04± 0.15
7 45.89± 0.23 72.17± 0.27 67.39± 0.44 52.69± 0.27 49.18± 0.23 46.37± 0.22
8 65.53± 0.14 102.59± 0.41 101.24± 0.56 80.53± 0.33 73.63± 0.21 67.85± 0.15
9 67.55± 0.24 149.03± 1.53 130.36± 1.18 91.48± 0.86 80.23± 0.62 71.42± 0.38
10 49.12± 0.24 100.54± 0.69 92.59± 0.65 71.70± 0.60 62.64± 0.51 53.06± 0.32
11 31.57± 0.11 85.71± 0.81 75.50± 0.79 49.56± 0.54 41.42± 0.38 34.16± 0.20
12 11.03± 0.17 14.94± 0.43 13.54± 0.40 10.90± 0.28 10.42± 0.24 10.36± 0.21

E Hallucination task specifications and additional results

We use the popular Vectara hallucination leaderboard [31] evaluation methodology to connect patterns
of activated concepts in inputs to hallucination in model-generated output. For this task, we test
Gemma-2B-IT by inputting the following prompt:

You are a chat bot answering questions using data.
You must stick to the answers provided solely by the
text in the passage provided. You are asked the question
"Provide a concise summary of the following passage, covering
the core pieces of information described." <PASSAGE>\n

Where <PASSAGE> is replaced with a full length source article or story from the Vectara leaderboard
dataset (1,006 examples). This prompt is identical to the prompt used when evaluating models
throughout the Vectara leaderboard, and we also set the temperature parameter to 0 during generation
to match the task specifications. We use the pre-trained HHEM-2.1 model [29] to give a hallucination
score to each model-generated output summary. HHEM-2.1 takes provided a source-summary
pair and returns a continuous hallucination score from 0.0 to 1.0, with 0.0 indicating minimum
hallucination, and 1.0 indicating maximum hallucination. The motivation for this evaluation of
hallucination is straightforward: if HHEM-2.1 detects fabricated content in the summary that is not
present the source text, then the summary is said to be hallucinated and is given a hallucination
score near 1.0. Note that this task does not measure how factually correct the summary is, rather it
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only measures the faithfulness of the summary to the source. Therefore this task is well-suited to
measuring notions of hallucination and alignment with the task objectives.

With these source-summary pairs in hand, we next fit a PLS regression (see Preliminaries section
for details on PLS) on the maximum concept activations across all tokens in the source as given by
pre-trained Gemma-2B SAEs [27]. We fit a new PLS model independently for layers 1, 7, 11, 13,
and 18 on these concept activations, with the continuous hallucination score for the corresponding
model-generated summary as the supervised target. We perform 10-fold cross validation to test the
PLS model’s generalization on new, unseen example concept activations and hallucination scores. To
identify key concept activations in the source that drive hallucinations in the model-generated output
(according to the PLS model), we compute variable importance in projection (VIP) scores for each
concept. VIP is a metric that pools the contribution of a variable across all PLS components, and is
calculated for a single concept j as follows:

VIPj =

√√√√dSAE

∑Ncomp

c=1 SScw2
j,c∑Ncomp

c=1 SSc
,

where dSAE is the number of SAE concepts (in the case of the Gemma-2B SAEs this is 16,384),
Ncomp is the number of PLS components (4 in this case), wj,c is the weight matrix for projection
of the jth SAE concept into the latent space of the cth PLS component, and SSc is the sum of
squares for the portion of the hallucination score explained by the cth PLS component. Specifically,
SSc = q2c (Xmaxwc)

2 where qc are the hallucination score loadings for the cth PLS component.

To test the practical utility of the most important concepts for hallucination prediction in the PLS, we
get the 10 concepts with the highest VIP scores and set their concept activations to 0 during Gemma
2B-IT’s summary generation. More specifically, we extract the residual stream activations from
Gemma 2B-IT at layer 11, run them through the SAE encoder, and set the resulting SAE concept
activations for the 10 VIP-identified concepts to 0. We then run these modified concept activations
through the SAE decoder to get reconstructed residual stream activations, and sum these modified
reconstructions with the reconstruction error vector for the reconstruction of the unmodified concept
activations.

Table 8 lists a few examples of corrected hallucinations post-suppression of the top 10 VIP features
in the residual stream of layer 11 of Gemma 2B-IT.

F Impact statement

Our work presents and experimentally tests a hypothesis that transformer model hallucination is
connected to an increase in high level concepts inferred by the transformer. We also show that
certain types of inputs (in our case noisy or experimentally perturbed inputs) increase the the number
of concepts imposed on the inputs by the transformer models. We link the pattern of these high
level concepts inferred in the input directly to notions of hallucination in the model-generated
output, and show that the hallucination rate of these outputs can be controlled through targeted
concept suppression. With this in mind, these hypotheses and techniques could be used to positive
(reducing hallucinations, improving output faithfulness) or potentially negative ends (adversarial
attacks, misalignment with human values, degraded model performance). Therefore, we expect
this work and similar work focused on model alignment and faithfulness to have broad societal
impacts in the long run. However, interpretability in transformers and LLMs is still at a relatively
nascent stage, and we do not present immediately actionable recipes for negatively controlling or
adversarially perturbing transformer models at scale. Thus we do not expect immediate negative
societal consequences to stem from this work.
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Table 8: Gemma 2B-IT recovered hallucination examples post layer 11 suppression of top 10 VIP
concepts

Summaries Fabrications Hallucination
Score Change

No Suppression With Suppression (no suppression)

The review is expected to
be completed by the end
of 2023 and will be the
first time that a commis-
sioner has undertaken such
a comprehensive review of
the quality of life and care
of older people in Wales.

The passage is about the re-
view of the quality of life
and care of older people
living in residential care in
Wales by the Older People’s
Commissioner for Wales,
Sarah Rochira.

• The article does not
mention a completion
date
• The article does not
claim that this is the first
time such a comprehen-
sive review has been con-
ducted

-0.95

Sure, here’s a concise sum-
mary of the passage:
Wenger’s contract runs to
the summer, and he has
been linked with the Eng-
land manager’s job.
Southgate has been ap-
pointed as England man-
ager and will lead the team
against Scotland and Spain
in November and Decem-
ber.
Wenger is happy that South-
gate has a chance to show
his quality and believes he
has the necessary experi-
ence to make the right de-
cisions.
Arsenal’s Hector Bellerin
is set to sign a new con-
tract, but the club is still
interested in Barcelona and
Manchester City’s midfield-
ers, Aaron Ramsey and
Thomas Tuchel.

Sure, here’s a concise sum-
mary of the passage:
Wenger’s contract runs to
the summer, and he has
been linked with the Eng-
land manager’s job. South-
gate is in contention for
the role, and he has been
linked to the England na-
tional team. Wenger also
spoke about the future of
Hector Bellerin and Aaron
Ramsey.

• Southgate is serving as
the interim manager
• The matches are in
November, not December
• Aaron Ramsey plays
for Arsenal, not Manch-
ester City
• Thomas Tuchel is a
manager, not a midfielder,
and is not mentioned at all
in the original article

-0.82

Jak Trueman’s story is a re-
minder that even in the face
of adversity, it is important
to stay positive and never
give up hope.

**Summary:** Jak True-
man was a 15-year-old
schoolboy who was suffer-
ing from a rare form of
blood cancer called gamma
delta T-cell lymphoma. He
documented his life and
treatment on social media
and attracted more than
28,000 Likes on his Face-
book page. Despite his ill-
ness, Jak remained positive
and touched the hearts of
many people in West Loth-
ian and beyond.

• Nothing is mentioned
about an illness
• Overly vague, misses
core facts about the article

-0.74
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction explicitly outline our primary contributions, and
these accurately reflect the results presented in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include a Limitations subsection beneath the Conclusion section, outlining
the assumptions made and how the results might be expected to scale with larger architectures
or alternative interpretability approaches.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: We do not present theoretical results. Our paper is focused on empirical
experiments.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We utilize pre-trained models, open model architectures, and publicly available
datasets, and where appropriate we provide full specifications for all hyperparameters and
training setups for models that we train ourselves (Appendix A and C, Preliminaries). We
also provide full and detailed specifications for all experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have provided the scripts necessary to train and evaluate relevant SAEs,
as well as scripts to conduct each experiment. Relevant Python packages are also listed.
All code is provided in the Supplementary Materials. All data and pre-trained models are
available from public sources.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Full experimental details are provided in the Preliminaries, each of the results
sections, and Appendices A, C, and E. We also provide full scripts with the exact setup for
each experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We present figures 4a, 4b, and 5a with error bars of one standard deviation.
We report the meaning of the error bars in the main text. We undertake cross validation for
predicted metrics, and provide further fine-grained results in Appendices C and D.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The details about the resources used to execute the experiments are presented
in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and are confident that our work
is in compliance.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: We discuss potential societal impacts in the Introduction and Conclusion, and
we also include a dedicated Impact statement in Appendix F.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We are not releasing any model or dataset as part of this work that has a high
risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited all the datasets and the packages that were primarily used to
produce the experimental code.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release any new assets for public use as part of this work.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We did not conduct any crowdsourcing experiments or experiments with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We did not conduct any crowdsourcing experiments or experiments with
human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not use any LLMs as part of the core method development.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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