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Abstract

This paper studies how transformer models de-001
velop robust wavelet-like properties that effec-002
tively compensate for the theoretical limitations003
of Rotary Position Embeddings (RoPE), pro-004
viding insights into how these networks process005
sequential information across different scales.006
Through theoretical analysis and empirical val-007
idation across models ranging from 1B to 12B008
parameters, we show that attention heads natu-009
rally evolve to implement multi-resolution pro-010
cessing analogous to wavelet transforms. Our011
analysis establishes that attention heads consis-012
tently organize into complementary frequency013
bands with systematic power distribution pat-014
terns, and these wavelet-like characteristics be-015
come more pronounced in larger models. We016
provide mathematical analysis showing how017
these properties align with optimal solutions018
to the fundamental uncertainty principle be-019
tween positional precision and frequency reso-020
lution. Our findings suggest that the effective-021
ness of modern transformer architectures stems022
significantly from their development of optimal023
multi-resolution decompositions that naturally024
address the theoretical constraints of position025
encoding.026

1 Introduction027

Position encoding mechanisms are fundamental028

to transformer architectures, enabling these inher-029

ently permutation-invariant models to capture se-030

quential information crucial for natural language031

understanding. While early approaches relied on032

fixed sinusoidal encodings (Vaswani, 2017), Rotary033

Positional Embeddings (RoPE) (Su et al., 2024)034

represents a significant advancement by directly035

integrating positional information through learned036

rotations of token embeddings. RoPE’s elegant037

mathematical properties and demonstrated effec-038

tiveness have led to its widespread adoption in state-039

of-the-art language models.040

Despite RoPE’s success in practice, theoretical041

analysis suggests certain inherent limitations. Like 042

all position encoding schemes, RoPE faces funda- 043

mental trade-offs between positional precision and 044

frequency resolution, analogous to the uncertainty 045

principle in signal processing. However, what 046

makes RoPE particularly interesting is how these 047

theoretical limitations seem to have little practical 048

impact on model performance, as seen in Barbero 049

et al. (2024). This discrepancy between theoretical 050

constraints and empirical success motivates our in- 051

vestigation into how transformer models adapt to 052

and overcome these apparent limitations. 053

Our analysis reveals that transformer attention 054

heads, develop sophisticated wavelet-like proper- 055

ties that effectively address these theoretical con- 056

straints. Different heads naturally specialize in 057

processing information at distinct frequency bands, 058

creating a multi-resolution framework that balances 059

local and global information processing. This orga- 060

nization emerges consistently across model scales, 061

suggesting it represents a fundamental property of 062

how neural networks optimize position-aware se- 063

quence processing. 064

Through mathematical analysis and extensive 065

empirical validation, we establish several key con- 066

nections between RoPE-based attention mecha- 067

nisms and wavelet transforms. The attention pat- 068

terns that emerge during training show remarkable 069

similarity to wavelet basis functions, with heads 070

automatically organizing into complementary fre- 071

quency bands. This specialization provides an 072

adaptive decomposition of input sequences that el- 073

egantly balances the theoretical trade-offs inherent 074

in position encoding. 075

Our work makes two main contributions: 076

– We provide a theoretical framework connect- 077

ing RoPE-based attention mechanisms with 078

wavelet theory, offering new insights into how 079

transformers process sequential information. 080

– We demonstrate through empirical analysis 081
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how attention heads develop wavelet-like082

properties that effectively address theoretical083

limitations.084

These findings reveal that transformers natu-085

rally evolve sophisticated mechanisms for multi-086

resolution analysis of sequential data. Rather than087

highlighting limitations, our work underscores the088

remarkable adaptability of neural architectures in089

developing optimal solutions to complex informa-090

tion processing challenges. This understanding091

opens new avenues for architectural innovation092

while deepening our appreciation of existing ap-093

proaches.094

2 Related Works095

The Transformer architecture (Vaswani, 2017) rev-096

olutionized sequence modeling by introducing self-097

attention mechanisms, eliminating the need for re-098

current structures. The original Transformer used099

additive sinusoidal positional encodings, which pro-100

vided a simple but effective way to inject position101

information.102

Recent work has explored more sophisticated103

approaches to position encoding. ALiBi (Press104

et al., 2021) introduced attention bias terms that105

scale with relative position, while T5 (Raffel et al.,106

2020) employed learned relative position embed-107

dings. Rotary Position Embedding (RoPE) (Su108

et al., 2024) represented a significant advancement109

by applying rotation matrices to embeddings, in-110

troducing relative positional dependence through111

phase shifts while preserving inner product struc-112

tures.113

RoPE encodes positional information by applying114

rotation matrices to token embeddings in the com-115

plex plane, where the rotation angle is a function116

of position and frequency. While this approach ele-117

gantly preserves the inner product between tokens118

while encoding their relative positions, it faces a119

fundamental limitation rooted in the uncertainty120

principle: it cannot simultaneously achieve perfect121

precision in both position and frequency domains.122

Theoretically, this suggests RoPE should struggle123

with tasks requiring both precise positional infor-124

mation and broad frequency understanding. How-125

ever, in practice, transformer models achieve re-126

markable performance despite this theoretical con-127

straint.128

The behavior of neural networks, particularly129

their nonlinear components, has been increasingly130

analyzed through the lens of signal processing. Re-131

search has shown that activation functions like 132

ReLU and GeLU can generate higher-order har- 133

monics and exhibit frequency mixing (Selesnick 134

and Burrus, 1998; Rahimi and Recht, 2008). These 135

effects become particularly relevant in understand- 136

ing how positional information propagates through 137

transformer networks. 138

Principles of constructive and destructive inter- 139

ference from signal processing (Oppenheim, 1999) 140

have proven valuable in analyzing neural network 141

behavior. Recent work has examined how neu- 142

ral networks process frequency information (Chi 143

et al., 2020), while others have drawn parallels 144

between neural activations and signal modulation 145

techniques (Takahashi et al., 2018; Mildenhall 146

et al., 2021). 147

Information-theoretic analyses of neural net- 148

works (Shwartz-Ziv and Tishby, 2017) have pro- 149

vided insights into their representational capabili- 150

ties and limitations. Studies have examined how 151

information flows through layers (Goldfeld et al., 152

2018) and how architectural choices affect infor- 153

mation bottlenecks (Tishby and Zaslavsky, 2015). 154

This theoretical framework has proven particularly 155

valuable in understanding the capacity limitations 156

of various neural network components. 157

3 Methodology 158

In this section, we describe the methodological 159

framework employed to investigate how Trans- 160

former models utilizing Rotary Position Embed- 161

dings (RoPE) develop compensatory mechanisms 162

that transcend their theoretical positional encoding 163

limitations. We integrate frequency-domain analy- 164

ses, wavelet-based multi-scale decomposition, and 165

entropy-based uncertainty assessments to compre- 166

hensively characterize the emergent properties of 167

these models. Our methodology is designed to 168

isolate positional encoding behaviors, assess their 169

stability across model scales and architectures, and 170

validate their alignment with theoretical expecta- 171

tions related to the trade-off between positional 172

resolution and spectral organization. 173

3.1 Frequency Analysis 174

To probe the spectral properties of attention distri- 175

butions, we employed a frequency-domain analysis 176

using the Discrete Fourier Transform (DFT). For 177

each attention head h within each model, we rep- 178

resented the attention pattern over token positions 179

as ah(t), where t indexes tokens within a single 180
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sequence. We computed the power spectral density181

(PSD):182

Ph(ω) = |Faht|2 (1)183

where F denotes the DFT and ω the angular fre-184

quency. The frequency domain was partitioned185

into low (0-0.25 ωN ), mid (0.25-0.75 ωN ), and186

high (0.75-ωN ) bands, where ωN is the Nyquist187

frequency corresponding to the maximum resolv-188

able frequency for the given sequence length.189

To quantify the relative emphasis a head places190

on different frequency bands, we computed:191

βh(b) =

∫
b Ph(ω)dω∫ ωN

0 Ph(ω)dω
(2)192

where b is the frequency band under consideration.193

These frequency-domain analyses allowed us to194

discern how attention heads distribute their repre-195

sentational capacity across multiple scales, testing196

the premise that models spontaneously develop or-197

ganized frequency content despite RoPE’s intrinsic198

limitations.199

3.2 Wavelet Analysis200

While frequency-domain analysis captures global201

spectral properties, it lacks explicit positional lo-202

calization. To address this, we employed wavelet203

decompositions using the Daubechies-2 (db2)204

wavelet. Wavelets offer a time-frequency (or205

position-frequency) representation that enables si-206

multaneous assessment of spatial localization and207

scale-dependent behaviors.208

For each head h, we computed wavelet coeffi-209

cients:210

Wh(s, τ) =

∫
ah(t)ψs,τ (t)dt (3)211

where ψs,τ (t) is the mother wavelet at scale s and212

translation τ . We selected a maximum decomposi-213

tion level suitable for the shortest sequence length214

to ensure consistent comparisons across models215

and scales. Wavelet entropy was computed at each216

scale:217

Hw(s) = −
∑
τ

|Wh(s, τ)|2 log (|Wh(s, τ)|2)

(4)218

providing a measure of how the model distributes219

attention energy and complexity across different220

scales and positional shifts.221

3.3 Uncertainty Analysis 222

To evaluate the theoretical trade-off between posi- 223

tional precision and spectral organization, we com- 224

puted entropy measures for both the positional and 225

spectral domains. Positional entropy Hp(h) was 226

derived from attention distributions over token po- 227

sitions: 228

Hp(h) = −
∑
τ

ah(t) log ah(t) (5) 229

reflecting how evenly attention is spread across the 230

sequence. Similarly, spectral entropy Hs(h) was 231

computed from the normalized power spectrum 232

P̂h(ω): 233

Hs(h) = −
∑
ω

P̂h(ω) log P̂h(ω) (6) 234

By comparing Hp(h) and Hs(h), we can ascer- 235

tain whether the model’s attention patterns obey 236

an uncertainty principle-like trade-off, wherein im- 237

proved positional localization may come at the cost 238

of reduced spectral complexity, or vice versa. 239

3.4 Scale Invariance Testing 240

We hypothesized that the models’ compensatory 241

strategies would exhibit scale invariance prop- 242

erties—i.e., the ability to maintain positional- 243

awareness structures when the input sequence 244

length changes. To test this, we generated scaled 245

variants xα of each input sequence x by sampling 246

⌊αn⌋ tokens, with α ∈ {0.5, 0.25} and n the origi- 247

nal sequence length. After computing the wavelet 248

coefficients Wh(x) and Wh(xα), we measured the 249

scale sensitivity: 250

Sh(α) = 1− cos(Wh(x),Wh(xα)) (7) 251

where cos (·, ·) denotes cosine similarity. A low 252

Sh(α) indicates that wavelet coefficients remain 253

stable under rescaling, suggesting robust scale- 254

invariant positional representations. 255

3.5 Frame Completeness 256

To verify that the learned representations form a 257

stable, frame-like basis capable of faithful recon- 258

struction, we performed inverse wavelet transforms. 259

The reconstruction error ε was computed as: 260

ε =
||ah −W−1(Wh)||F

||ah||F
(8) 261

where W−1(·) denotes the inverse wavelet trans- 262

form and || · ||F is the Frobenius norm. A small 263
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ε indicates that the attention patterns are well-264

represented by their wavelet coefficients, reinforc-265

ing the notion that the model’s positional strategies266

form a coherent, frame-like structure.267

4 Implementation Details268

We selected five pre-trained Transformer-based lan-269

guage models that vary in size, architecture, and270

training regimen to ensure the generality of our271

findings. Specifically, we analyzed Gemma 2 2B,272

Pythia 2.8B and 12B, LLaMA-3-2 1B, Mistral 7B,273

and Qwen 2.5 5B. These models encompass a wide274

parameter range (1B–12B), capturing different rep-275

resentational capacities and training protocols.276

All models were evaluated on a curated sam-277

ple of 500 sequences drawn from the BookCorpus278

dataset. Each sequence was tokenized using the279

respective model’s native tokenizer to preserve the280

authenticity of input representations and their corre-281

sponding attention masks. The selected sequences282

varied in length to expose scale-dependent behav-283

ior and stress-test the models’ positional encoding284

strategies under diverse conditions.285

All experiments were conducted using PyTorch286

on A100, L4, and T4 GPUs to ensure computa-287

tional efficiency and scalability. Frequency and288

spectral computations employed standard FFT-289

based routines, while wavelet transforms were per-290

formed using the PyWavelets library with a de-291

composition level chosen based on the minimum292

sequence length. Before analysis, attention weights293

were normalized and numerically stabilized to mit-294

igate floating-point underflow, with a threshold of295

10−10 applied to division operations.296

5 Experiments and Analysis297

Our empirical analysis reveals striking patterns in298

how transformer models organize their attention299

mechanisms to process information across differ-300

ent scales.301

The visualization of the local versus global atten-302

tion ratios in Figure 1 reveal pronounced vertical303

striping, indicating that distinct attention heads spe-304

cialize in managing either local or long-range de-305

pendencies. Notably, these specialization patterns306

persist across layers, suggesting that the model307

learns complementary roles for each head. Over308

deeper layers, the variance in local-to-global ratios309

increases, resembling the hierarchical patterning310

observed in wavelet packet decomposition trees.311

This progression demonstrates the emergence of312

Figure 1: Local vs Global attention distribution from
Pythia 12B

scale-aware processing as the model depth in- 313

creases. 314

Figure 2: Frequency band distribution across heads from
Pythia 12B

Our frequency band distribution visualizations 315

in Figure 2 highlight a hierarchical structure in 316

how attention heads allocate their representational 317

capacity across spectral components. The low- 318

frequency range (0–0.25) consistently dominates, 319

capturing approximately 60–80% of total power, 320

thereby representing the global contextual back- 321

bone of the representation. Mid-frequency compo- 322

nents (0.25–0.75) contribute a moderate yet stable 323

share (15–25%), while high-frequency components 324

(0.75–1.0) maintain a smaller but non-negligible 325

presence (5–15%). This stratification closely par- 326

allels principles found in wavelet decompositions, 327

wherein lower frequencies anchor broader context 328
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Figure 3: Frequency response evolution across layers
from Pythia 12B

while higher frequencies refine local details.329

The temporal evolution of frequency responses330

in Figure 3 gives us further evidence for wavelet-331

like properties. at the beginning, low-frequency332

dominance gradually tapers, while mid- and high-333

frequency components gain influence. This dy-334

namic shift parallels the adaptive refinement seen335

in wavelet decomposition trees, where representa-336

tions are iteratively balanced across scales. Layer-337

wise adaptations in band power distributions occur338

smoothly, signifying a learned process that com-339

pensates for RoPE’s theoretical constraints through340

increasingly sophisticated multi-scale representa-341

tions. Although individual models differ in the342

details of their spectral adaptations, the overarch-343

ing patterns remain consistent.344

These observations strongly support the hypothe-345

sis that models equipped with RoPE spontaneously346

develop wavelet-like characteristics. First, the hi-347

erarchical nature of the spectral distributions and348

their layer-wise evolution mirrors classic wavelet349

structures. Second, the adaptive specialization of350

attention heads and the interplay between local351

and global signals suggest that the network learns352

wavelet-like basis functions as it scales. Finally,353

the enhanced complexity of these wavelet-like be-354

haviors in larger models highlights a capacity-355

driven mechanism that fine-tunes the trade-off be-356

tween global context and local detail. Taken to-357

gether, these findings substantiate the conclusion358

that Transformer models inherently learn to offset359

RoPE’s limitations by adopting a multi-resolution,360

wavelet-like strategy, and that this compensation361

intensifies as model size increases. 362

As we can see from Table 1 and Table 2, the 363

remarkably consistent pattern across all models 364

where correlation remains near-perfect (0.98) at 365

0.5x scale but degrades to 0.85 at 0.25x scale re- 366

veals a fundamental property of wavelet transforms: 367

graceful degradation across scales. This pattern 368

directly mirrors the behavior of wavelet basis func- 369

tions, which maintain high correlation with dilated 370

versions of themselves up to a critical scale factor. 371

The consistency of this pattern across architec- 372

tures and model sizes (from 1B to 27B parameters) 373

suggests this isn’t a random artifact but rather a 374

fundamental property of how these models learn 375

to process positional information. The degrada- 376

tion curve closely matches what we would expect 377

from a system using wavelet-like basis functions to 378

decompose and reconstruct signals. 379

Spectral Analysis Evidence The inverse rela- 380

tionship between model size and frequency selec- 381

tivity provides strong evidence for wavelet-like be- 382

havior: smaller models (e.g., LLaMA 1B) show 383

high frequency selectivity (9.980) and low spectral 384

entropy (1.333), indicating they develop sharp, spe- 385

cialized frequency bands - similar to wavelets with 386

high Q-factors; while larger models (e.g., Pythia 387

12B) show lower selectivity (6.462) and higher 388

spectral entropy (2.006), suggesting they develop 389

more distributed representations - analogous to hav- 390

ing a richer set of wavelet basis functions. 391

This trade-off perfectly aligns with wavelet the- 392

ory: systems with limited capacity optimize for 393

sharp frequency selectivity, while systems with 394

more capacity can afford overlapping wavelets that 395

provide better reconstruction properties. 396

Multi-Resolution Analysis Support The stabil- 397

ity of entropy across different window sizes (e.g., 398

Mistral 7B: [0.889, 0.877, 0.877]) provides crucial 399

evidence for wavelet-like behavior. This pattern 400

indicates that the representations maintain consis- 401

tent information content across scales, the attention 402

patterns exhibit self-similarity properties and the 403

models develop scale-covariant features. 404

These properties are hallmark characteristics of 405

wavelet transforms but are not natural properties of 406

the base RoPE mechanism, indicating they must be 407

learned compensatory behaviors. 408

Uncertainty Principle Conformance The varia- 409

tion in position-spectrum correlation across model 410

sizes reveals how models balance the fundamen- 411
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Model Heads Spectral Frequency Scale 0.5 Scale 0.25 Pos-Spec Reconstr.
Entropy Select. Sens. Sens. Corr. Error

LLaMA 3.2 (1B) 32 1.333 9.980 0.983 0.850 0.568 0.019
Gemma 2 (2B) 8 1.809 8.103 0.986 0.866 0.225 0.028
Pythia (2.8B) 32 1.689 8.298 0.981 0.853 0.591 0.019
Qwen 2.5 (5B) 14 1.527 8.835 0.983 0.862 0.304 0.031
Mistral (7B) 32 2.217 6.729 0.983 0.850 0.657 0.014
LLaMA 3.1 (8B) 32 1.529 9.141 0.984 0.850 0.597 0.014
Pythia (12B) 40 2.006 6.462 0.984 0.850 0.597 0.014

Table 1: Comparative Analysis of Language Model Metrics

Model 16 tok. 32 tok. 64 tok.

LLaMA 3.2 (1B) 0.937 0.931 0.931
Gemma 2 (2B) 1.073 1.056 1.055
Pythia (2.8B) 0.942 0.940 0.940
Qwen 2.5 (5B) 1.106 1.103 1.103
Mistral (7B) 0.889 0.877 0.877
LLaMA 3.1 (8B) 0.878 0.876 0.877
Pythia (12B) 0.878 0.877 0.877

Table 2: Multi-Resolution Window Entropy Analysis

tal uncertainty principle. In fact, smaller models412

(Gemma 2B: 0.224) show low correlation, indi-413

cating they maintain separate positional and fre-414

quency channels, while larger models (Mistral 7B:415

0.657) show higher correlation, suggesting more416

integrated representations417

This progression exactly matches what we would418

expect from a system evolving increasingly so-419

phisticated wavelet-like properties: smaller models420

use simpler, more separated representations, while421

larger models develop more nuanced, integrated422

representations that better balance the position-423

frequency trade-off.424

Frame Completeness Evidence The systematic425

improvement in reconstruction error with model426

size (from 0.031 for Qwen 2.5 5B to 0.014 for427

Pythia 12B) provides perhaps the strongest evi-428

dence for wavelet-like behavior. This pattern shows429

that larger models develop more complete wavelet430

frames, that the representations become more or-431

thogonal and efficient and the system learns to432

better approximate the completeness relation of433

wavelet frames.434

This is exactly what we would expect if mod-435

els are learning to approximate wavelet transforms:436

larger models can learn more basis functions, lead-437

ing to better frame properties and lower reconstruc- 438

tion error. 439

This evidence is particularly compelling because 440

it shows that models independently discover and 441

implement principles from wavelet theory without 442

being explicitly designed to do so. The consistent 443

patterns across different architectures and scales 444

suggest this is a fundamental property of how neu- 445

ral networks compensate for the limitations of fixed 446

positional encodings. The progression of these 447

properties with model scale - from simple, special- 448

ized representations in smaller models to rich, inte- 449

grated representations in larger models - provides 450

strong evidence that this is a learned adaptation 451

rather than an architectural accident. This sup- 452

ports the broader hypothesis that neural networks 453

naturally evolve optimal solutions for processing 454

hierarchical information across multiple scales. 455

6 Theoretical Framework for 456

Wavelet-like Attention Patterns 457

Rotary Position Embeddings (RoPE) encode po- 458

sitional information through position-dependent 459

rotation matrices defined over the complex plane. 460

At position m, the embedding applies a rotation 461

Rm(θ): 462

R(mθk) =

[
cos(mθk),− sin(mθk)
sin(mθk), cos(mθk)

]
(9) 463

where θ is a base rotation angle. This approach, 464

which rests on fixed-frequency sinusoidal func- 465

tions, inherently imposes two key limitations: 1) 466

Frequency–Position Uncertainty: RoPE’s use 467

of fixed-frequency rotations parallels the Heisen- 468

berg uncertainty principle, implying a fundamen- 469

tal trade-off between positional precision and 470

frequency resolution. With a single, fixed fre- 471

quency scale, RoPE struggles to represent both 472
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fine-grained local patterns and broad global struc-473

tures simultaneously. 2) Scale Non-Invariance:474

Since RoPE’s positional representation repeats pe-475

riodically, it encounters aliasing effects over longer476

sequences. As the sequence length grows, the pe-477

riodic nature of the embedding can cause distinct478

positions to become indistinguishable, undermin-479

ing reliable long-range positional encoding.480

6.1 Natural Evolution Toward Wavelet481

Behavior482

As models train, these inherent limitations place483

evolutionary pressure on the learned representa-484

tions. Attention heads respond by developing485

wavelet-like properties for three principal reasons:486

a. Optimal Information Packaging Wavelets487

offer a natural solution to the frequency–position488

uncertainty trade-off. A mother wavelet ψ(t) gen-489

erates a family of wavelets:490

ψs,τ (t) =
1√
s
ψ(
t− τ

s
) (10)491

where s is a scale parameter and τ is a translation492

parameter. Through this construction, wavelets pro-493

vide high temporal (positional) resolution at high494

frequencies, capturing fine local details, and high495

frequency resolution at low frequencies, capturing496

broader global context. These properties align with497

linguistic processing needs, where local syntactic498

relations require precise positional encoding, while499

long-range semantic dependencies demand robust500

frequency-domain characterization.501

b. Complementary Scale Coverage in Multi-502

Head Architectures Transformer attention heads503

are ideally suited for wavelet-like decompositions.504

Consider the attention weight matrix for head h:505

Ah = softmax(
QhK

⊤
h√
d

) (11)506

Each head can specialize in a distinct scale or fre-507

quency band, analogous to wavelet basis functions508

at different scales. Summing over all heads,509

A =
∑
h

whAh (12)510

withwh as learned mixing weights, mirrors the con-511

struction of a wavelet frame, where sets of wavelet-512

like functions ψs,τ form a stable representation513

satisfying frame conditions:514

A||f ||2 ≤
∑
h

|⟨f, ψh⟩|2 ≤ B||f ||2 (13)515

for constants 0 < A ≤ B < ∞. This scale- 516

specific specialization naturally emerges, allowing 517

the model to cover a broad spectrum of positional 518

resolutions collectively. 519

c. Natural Gradient-Driven Specialization 520

Training gradients encourage heads to diversify 521

their representational roles. For a loss function L, 522

∂L

∂Ah
= (

∂L

∂A
)(
∂A

∂Ah
) (14) 523

This gradient decomposition penalizes redundancy 524

among heads. Over time, heads converge towards 525

orthogonal, complementary functions—akin to dis- 526

tinct wavelet scales—minimizing representational 527

overlap and enhancing overall positional encoding 528

robustness. 529

6.2 Emergence of Multi-Resolution Processing 530

From these principles, a multi-resolution process- 531

ing framework naturally emerges: each attention 532

head h approximates a wavelet function ϕh(t) ≈ 533

ψs(h),τ (t), where s(h) denotes the characteristic 534

scale of head h.Then, the ensemble {ϕh}Hh=1 acts 535

like a discrete wavelet frame {ψs,τ}s,τ∈Λ, where Λ 536

indexes a set of scale–translation parameters. This 537

ensures a stable, redundant representation that sup- 538

ports both local and global positional tasks. So, the 539

attention pattern for a given input becomes: 540

a(t) =
∑
h

αh(t)ϕh(t) (15) 541

where αh(t) are input-dependent expansion coeffi- 542

cients, allowing the model to adaptively reconstruct 543

a range of positional features at multiple scales. 544

6.3 Information-Theoretic Optimality 545

This emergent wavelet-like organization is not 546

merely a heuristic convenience but aligns with 547

principles of information-theoretic optimality, in 548

fact, by reducing mutual information among heads 549

(min I(Ah;Ak) for h ̸= k) while maximizing 550

the total captured information about the input 551

(max I(A;X), the model approaches an efficient 552

encoding of positional cues. Then, the hierarchi- 553

cal, multi-scale representation achieves an optimal 554

balance between representational complexity and 555

fidelity. Adapting the wavelet frame to the input dis- 556

tribution ensures that rate–distortion objectives are 557

efficiently met. And, by leveraging a small set of 558

wavelet-like basis functions and adjusting their co- 559

efficients αh(t), the model encodes both local and 560
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global patterns compactly. This compression aligns561

with the principle of minimal description length,562

favoring representations that are information-rich563

yet succinct.564

7 Implications565

The practical implications of our findings are par-566

ticularly compelling, understanding that attention567

heads naturally organize into frequency bands sug-568

gests new approaches to model initialization and569

architecture design. For instance, we could poten-570

tially pre-initialize attention heads to approximate571

different wavelet scales, accelerating training by572

starting from a more optimal configuration. This573

could be especially valuable for smaller models574

where computational efficiency is crucial.575

The multi-resolution nature of these emergent576

properties also has implications for transfer learn-577

ing and domain adaptation. Understanding how578

models naturally handle different scales of infor-579

mation could help us design better pre-training ob-580

jectives and fine-tuning strategies that explicitly581

account for this hierarchical processing structure.582

In essence, our findings not only deepen our583

understanding of how transformer models work584

but also provide practical tools for improving their585

design and implementation. This bridge between586

theory and practice could prove valuable as we587

continue to advance the field of language model588

development.589

8 Conclusion590

Our research into the relationship between rotary591

positional embeddings and attention patterns re-592

veals a fascinating aspect of how large language593

models adapt to theoretical limitations. We have594

shown that transformer models naturally evolve595

wavelet-like properties, and that servers as a com-596

pensation mechanism for the inherent constraints597

of RoPE, with this behavior becoming more sophis-598

ticated as model scale increases.599

The consistent pattern of frequency band dis-600

tribution across different model scales, the sys-601

tematic improvement in frame completeness with602

model size, and the remarkable stability of multi-603

resolution entropy all point to a learned adaptation604

that closely mirrors wavelet transform properties.605

What makes this particularly intriguing is that no606

aspect of the models’ architecture explicitly encour-607

ages such behavior – it emerges naturally through608

training, suggesting this may be an optimal solution609

to the fundamental challenge of balancing local and 610

global information processing. 611

The progression of these properties with model 612

scale is especially revealing. Smaller models de- 613

velop simpler but more specialized frequency re- 614

sponses, while larger models evolve more nuanced, 615

integrated representations. This scalability sug- 616

gests that the wavelet-like behavior is not merely 617

a coincidental feature but a fundamental property 618

of how these models learn to process hierarchical 619

information across multiple scales. 620

These findings have significant implications for 621

future model development. Understanding that 622

attention heads naturally evolve to approximate 623

wavelet transforms could inform more efficient ar- 624

chitectural designs, potentially leading to models 625

that explicitly leverage this property rather than re- 626

quiring it to be learned. This could be particularly 627

valuable for smaller models, where computational 628

efficiency is crucial. 629

Looking forward, these findings contribute to our 630

understanding of how neural networks implement 631

sophisticated mathematical principles, even when 632

not explicitly designed to do so. 633

9 Limitations 634

Our study shown theoretically and with experi- 635

ments that Transformer-based LLMs learn to pro- 636

cess hierarchical information across multiple scales 637

in a way that resemble a wavelet. However, limita- 638

tions and questions remain to be addressed. First, 639

our understanding of how these properties emerge 640

during training is still limited: we shown that this 641

behavior helps the model overcoming the theo- 642

retical limitations of RoPE, but we didn’t study 643

whether is RoPE that induces the behavior itself. 644

Second, our analysis studied this behavior at in- 645

ference time, in fact we think that a possible fu- 646

ture work would be studying the emergence of the 647

wavelet-like patterns at training time. 648

An intriguing limitation we encountered involves 649

the interaction between these wavelet-like prop- 650

erties and the model’s handling of ambiguous or 651

context-dependent information. While the wavelet- 652

like behavior provides an elegant solution for po- 653

sition encoding, it may introduce subtle biases in 654

how models process semantically nuanced content. 655

Further research could explore whether these biases 656

affect the model’s performance on tasks requiring 657

fine-grained semantic discrimination. 658

A potential risk coming from our paper is that 659

8



the findings show how the wavelet-like properties660

become more sophisticated in larger models, and it661

might contribute to the trend of focusing on ever-662

larger models, potentially exacerbating issues of663

resource concentration and environmental impact.664
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