
RvLLM: LLM Runtime Verification with Domain
Knowledge

Yedi Zhang∗
National University of Singapore

Singapore

Sun Yi Emma
National University of Singapore

Singapore

Annabelle Lee Jia En
National University of Singapore

Singapore

Jin Song Dong
National University of Singapore

Singapore

Abstract

Large language models (LLMs) have emerged as a dominant AI paradigm due
to their exceptional text understanding and generation capabilities. However,
their tendency to generate inconsistent or erroneous outputs challenges their relia-
bility, especially in high-stakes domains requiring accuracy and trustworthiness.
Existing research primarily focuses on detecting and mitigating model misbehav-
ior in general-purpose scenarios, often overlooking the potential of integrating
domain-specific knowledge. In this work, we advance misbehavior detection by
incorporating domain knowledge. The core idea is to design a general specification
language that enables domain experts to customize domain-specific constraints in
a lightweight and intuitive manner, supporting later runtime monitoring of LLM
outputs. To achieve this, we design a novel specification language ESL and in-
troduce a runtime verification framework RvLLM to validate LLM output against
domain-specific constraints defined in ESL. RvLLM operates in two main stages:
interpretation and reasoning. During interpretation, it derives interpretations of the
specification based on the context, which then guide the reasoning process to iden-
tify inconsistencies. When new knowledge is derived, RvLLM issues a follow-up
query to the LLM to further verify the consistency. We evaluate RvLLM on three
representative tasks: violation detection against Singapore Rapid Transit Systems
Act, numerical comparison, and inequality solving. Experimental results show that
RvLLM effectively detects erroneous outputs across various LLMs in a lightweight
and flexible manner. The results reveal that despite their impressive capabilities,
LLMs remain prone to low-level errors due to a lack of formal guarantees during
inference, and our framework offers a potential long-term solution by leveraging
expert domain knowledge to rigorously and efficiently verify LLM outputs.

1 Introduction

Unlike rule-based systems [52] operating on predefined and deterministic rules, large language
models (LLMs) [1, 23, 62, 43] learn data representation and processing automatically from the
training datasets, achieving human-like or even superhuman performance, and have driven significant
advancements in various practical applications [10, 33, 55, 44, 24]. However, their non-deterministic
and unpredictable nature sometimes leads to inconsistent or erroneous outputs [3, 49], posing
significant risks in safety-critical or knowledge-intensive domains. Recent studies [61, 5] have shown

∗Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

that such misbehavior in LLMs cannot be fully eliminated, underscoring the urgent need for dedicated
verification and validation methodologies to enhance the reliability of LLM-generated outputs.

LLM testing [67, 27, 30, 68] primarily aims to establish comprehensive benchmarks to evaluate
the overall model performance against domain-agnostic criteria–such as accuracy, coherence, and
fairness–in alignment with the intended application. While these approaches effectively assess general
behavior and reveal edge cases that may provoke unexpected responses, they are limited to predefined
benchmarks and lack the specificity needed to address domain-specific assessment needs. LLM
verification, instead, may serve as a complementary mechanism to LLM testing by providing formal
guarantees on model behavior. Despite substantial progress over the past decade in neural network
verification [8, 19, 29, 34, 59, 48, 65], existing methods exhibit notable limitations: they are primarily
tailored to simpler model architectures–such as deep or convolutional networks–and classification
tasks, struggling to scale to the complexity of modern AI models and their diverse functionalities.
Furthermore, these approaches target general properties such as robustness and fairness, making them
ill-suited for domain-specific properties. Therefore, developing a dedicated verification paradigm
tailored to LLMs is crucial for ensuring certified and reliable outputs.

On the other hand, the decline of rule-based expert systems [25, 31, 22] in the late 20th century can
be attributed to their inability to handle incomplete information and poor scalability in real-world
complexity. Defining comprehensive rule sets for open domains has been proven infeasible [52, 28].
We argue that such rules can only be statistically approximated–a capability exemplified by LLMs.
However, this approximation cannot substitute for explicit rule encoding, and learning-based models
remain inherently unreliable, particularly in edge cases demanding strict adherence to domain-specific
requirements. This highlights the need for verifying explicitly defined rules in a lightweight and
incremental manner for practical deployment and maintainability.

This paper. Building on these foundations, we propose runtime verification with domain knowledge
as a sustainable solution to ensuring reliable LLM behavior, motivated by two key insights: i)
Runtime verification offers a lightweight yet rigorous means to bridge testing and formal verification
by assessing system behavior against formal properties during execution; ii) Existing work primarily
focuses on generic misbehavior detection while often overlooking the critical role of domain-specific
expertise. Integrating such knowledge is crucial for handling edge cases and enhancing LLM
reliability in specialized tasks, where domain knowledge can significantly improve performance.

To achieve this, we introduce RvLLM, an innovative runtime verification framework tailored to
LLMs to ensure reliable outputs, particularly against axiomatic domain specifications. The idea is to
automatically check whether the LLM-generated responses adhere to domain-specific constraints
expressed in a simple, adaptable specification language. This simplicity and flexibility empower
domain experts to encode their knowledge and formally define constraints that capture the expected
behavior of LLMs in specialized applications. To support this, we introduce ESL, a general language
tailored for encoding rule-based domain expertise. ESL integrates natural language with formal logic
to ensure the adaptability to the natural language settings of LLMs while enabling the structured and
formal representation of properties to verify. This design allows for the rigorous specification of
domain-specific criteria across diverse LLM applications.

Figure 1 presents an overview of our proposed framework. Given an ESL specification provided by
domain experts, RvLLM first extracts relevant information from the LLM’s context and outputs to
interpret the specification, generating a set of propositional formulae along with truth assignments for
the corresponding propositions. Following a normalization step, these formulae are transformed into
a standard form and subsequently validated using a forward chaining procedure. This process either
detects inconsistencies due to logical contradictions or infers new knowledge. Once new knowledge
is inferred, the query generation module issues targeted queries, evaluates the LLM responses, and
detects inconsistencies when outputs contradict the previously inferred knowledge.

Experimental results. We evaluate the effectiveness of RvLLM through experiments on three
representative tasks: violation detection against Singapore Rapid Transit Systems Act [51], numerical
comparison, and inequality solving, using a diverse set of LLMs. The experimental results show
that RvLLM significantly enhances the reliability of LLM output in these domain-specific tasks. In
the violation detection task, employing RvLLM as a complementary mechanism increases the true
positive rate (TPR) by 15.7% to 50.2% across various models. In the numerical comparison task,
RvLLM detects nearly all errors in the LLM responses across 100 randomly generated questions. In
the inequality solving task, RvLLM facilitates a systematic analysis of the step-by-step reasoning

2

Domain Experts

Interpretation
Abstraction

!

" Rule-like FormulaTransformation

ESL Spec.

Forward
Chaining

Knowledge derived
!

Inconsistent!
Target LLM

" Consistent
Query

Generation
as Oracle

$ Query related to !

Output

Context & Output

" ! Consistent Inconsistent

Interpretation

Rule-like propositional formulae
&

Value-assigned propositions

Figure 1: An overview of RvLLM. Given an LLM’s context and outputs, RvLLM first extracts relevant
propositions and translates the ESL specification into normalized propositional logic formulae. These
are then processed through forward chaining to detect inconsistencies and infer new knowledge, which
subsequently guides follow-up queries and consistency checks across successive LLM responses.

process from LLMs, effectively identifying its deviations from expert-defined specifications. These
specifications are primarily grounded in fundamental algebraic inequality properties typically covered
at the junior college level. Notably, despite the incomplete domain knowledge in the inequality
solving task, RvLLM still achieves a TPR of 50% in detecting erroneous solutions. We argue that
such a runtime verification approach can function as a critical safeguard for LLMs, particularly in
rule-based or reasoning-intensive domains where adherence to specific constraints is essential. We
further compare RvLLM with existing runtime hallucination-detection methods. Results show that
RvLLM demonstrates superior performance by maintaining both high true positive and negative rates,
whereas existing methods often exhibit a non-negligible trade-off between these metrics.

2 ESL: a simple way of specifying domain-specific properties

In this section, we introduce a general language, Expert Specification Language (ESL), which can be
customized with domain-specified predicates by experts to impose behavioral constraints on LLMs.

2.1 Design guidance

In the following, we give our high-level requirements for designing a specification language that
encapsulates LLM behavioral constraints from the perspective of domain experts. The core objective
is to strike a balance between user-friendliness and expressiveness. We illustrate this with the
following regulation from Singapore Rapid Transit System Act [51]:

“No person shall consume or attempt to consume any chewing gum or bubble gum while in or
upon any part of the railway premises.”

Accessibility for domain experts. The primary goal of this specification language is to empower
domain experts, even those with limited programming or formal methods experience, to effectively
define and enforce constraints on the LLM’s behavior. To balance expressiveness and user-friendliness,
we base the specification rule on predicate logic [53, 20], restricted to prenex normal forms [53, 20]
and consisting solely of universal quantifiers. We further constrain its quantifier-free part to a rule-like
form (or implication), yielding a simplified variant of predicate logic expressible as ∀x⃗.(f(x⃗) ⇒
g(x⃗))2. Specifically, both the left-hand side (LHS) and right-hand side (RHS) of the rule-like part
are quantifier-free predicate formulae composed of predicates applied to terms that may include
variables (e.g., x), constants (e.g., “bubble gum”), and functions of terms (e.g., sin(x)). For example,
ChewGum(x) is an atomic predicate with a single variable argument x, and IsGreater(Square(x), 0)
is also an atomic predicate with two arguments: the function term Square(x) and the constant term 0.

Ease of customization. The specification language should be designed to support seamless cus-
tomization, enabling adaptation to diverse domain-specific requirements. To facilitate this, we require
each predicate in the specification to be associated with a natural language description that aligns
with domain expertise. These descriptions allow customized predicates to remain clear, semanti-
cally grounded, and adaptable to specific application contexts. Additionally, built-in terms such as

2We use x⃗ instead of x as there could be a sequence of variables.

3

arithmetic functions can be provided to streamline constraint formulation and reduce the need for
extensive customization. For example, a domain expert can define their specialized atomic predicates
ChewGum(x) and InRailway(x) associated with a natural language description as follows:

“ChewGum(x) := a person x consumes or attempts to consume chewing gum or bubble gum.”
“InRailway(x) := a person x is in some part of railway premises.”

Efficient interpretation. The language should also support an efficient interpretation procedure
to obtain propositional formulae from the specification rule for subsequent logical verification. To
this end, we remove the universal quantifier from the standard predicate formulas. For example, the
regulation previously mentioned, typically expressed as ∀x.(InRailway(x) ⇒ ¬ChewGum(x)), will
be simplified to InRailway(x) ⇒ ¬ChewGum(x).

2.2 Formalization

In this section, we formalize our specification language, ESL. We begin with the definition of
Deductive Normal Form (DeNF), which serves as a foundation for the remainder of this paper.

Definition 1. Given a propositional formula ψ1 ⇒ ψ2, if ψ1 is a disjunctive norm form [53] and ψ2

is a conjunctive norm form [53], then we call ψ1 ⇒ ψ2 is a deductive normal form (DeNF).

Definition 2. An ESL rule is a DeNF where each proposition is substituted by a predicate.

An ESL specification E comprises three components: a variable set V , a predicate set P , and an ESL
rule set RE . For each predicate f ∈ P , an associated natural language description is required. For
instance, the following ESL specification encodes the regulation aforementioned in Section 2.1:

"Variables": {"x"},
"Predicates": {"ChewGum(x) := a person x consumes or attempts to consume chewing gum or bubble gum.",

"InRailway(x) := a person x is in some part of railway premises"},
"Rules": {"InRailway(x) => not ChewGum(x)"}

Interpretation of ESL rules. An interpretation of an ESL rule r assigns objects to variables (i.e.,
variable binding) in the predicate of r and evaluates the truth value (True, False, or Unknown) of
the resulting proposition after substitution. Note that we adopt the open-world assumption [17] to
better accommodate the open-ended nature of LLMs. In this work, interpretations are derived from
the context and LLM outputs, serving as the domain of discourse [26]. Now, consider the following
contextual scenario:

“In a crowded MRT train, Alex nervously chews gum to ease stress before an interview. Suddenly,
the train jolts, and the gum flies out, landing on a stranger’s shirt. Awkward glances turn into
laughter as apologies spill out, diffusing tension in the confined space.”

The interpretation of the rule InRailway(x) ⇒ ¬ChewGum(x) is {InRailway(o1) = True,
InRailway(o2) = True, ChewGum(o1) = True, ChewGum(o2) = Unknown}, where o1 = ‘Alex’
and o2 = ‘stranger’.

3 Methodologies of RvLLM

As illustrated in Figure 1, RvLLM conducts runtime verification through four stages: interpretation
abstraction, rule normalization, forward chaining, and query generation. In this section, we detail the
methodology of each stage and demonstrate its application using an example given in Figure 2.

3.1 Interpretation abstraction

Given a context and LLM outputs (the union denoted as σ) as the domain of discourse D and an ESL
specification E = ⟨V,P,RE⟩, we first leverage a perception agent to obtain all possible objects from
D and propositionalize as much as possible of the predicates defined in σ. We call this the perception
process. Then, for each rule r ∈ RE , we bind the variables in each predicate to all possible objects
in a search-and-replace operation, to generate the propositional formulae set. Note that, given a

4

The specification provided by an expert and written in ESL:
- Variables: !, #, $
- Predicates: {IsGreater !, # 	≔ the	number	!	is	greater	than	number	#. }
- Rules: {IsGreater !, # 	&	IsGreater $, 0 → IsGreater ! ∗ $, # ∗ $ }

Query: 15.2 and 15.12, which one is greater? Response by GPT 4.1 nano: 15.12 is greater than 15.2.

New Query: Please output True or False.
Is 151.2 greater than 152? New Response by GPT 4.1 nano: False.

{<=>?@AB@? C!, C" = EAF=@}Inconsistent!

Level-1 interpretation <#: {IsGreater G$, G% = True, G$ = 15.12, G% = 15.2}

New knowledge derived via FC under interpretation <&	: {<=>?@AB@? C!, C" = L?M@, G' = 151.2, G(= 152}

Level-2 interpretation <&: <# ∪ {IsGreater G), 0 = True, G) = 10}

!

Figure 2: Runtime verification of GPT 4.1 nano by RvLLM for a number comparison task.

variable binding for a rule r ∈ RE , the interpretation has two different results: i) all predicates in the
LHS of r are propositionalized successfully with assigned truth value under the binding, which we
call a complete binding in this work, or ii) only part of predicates are propositionalized due to the
insufficient information from the domain of discourse, which we call a partial binding.

Given this distinction, we introduce two levels of interpretation in this work: Level-1 and Level-2.
Specifically, Level-1 interpretation disregards all the partial variable binding and operates only on the
complete variable bindings. Given a partial binding, Level-2 interpretation, in contrast, employs a
perception agent to instantiate all the variables that are not assigned with an object in the binding, in
a way such that the resultant proposition returns True given the domain of discourse.
Example 1. Consider the example in Figure 2, which illustrates our approach using a simple
numerical comparison question with a specification encoding a basic algebraic property of multipli-
cation, the interpretation abstraction process first gets all possible objects and propositionalizes the
predicate IsGreater as follows: {p0 = IsGreater(o1, o2) = True, p1 = IsGreater(o2, o1) = False}
with o1 = 15.2 and o2 = 15.12. Then, it can obtain all possible variable binding {♭1, ♭2} for
the rule ψ where ♭1 = {x 7→ o1, y 7→ o2} and ♭2{x 7→ o2, y 7→ o1}. ♭1 results in a formula
p0∧ IsGreater(z, 0) ⇒ IsGreater(15.2∗z) for ψ, which is an partial binding. Similarly, ♭2 is also par-
tial. Consequently, for the Level-1 interpretation, no propositional formula is successfully generated,
and the checking procedure exits with no inconsistency detected. While for the Level-2 interpretation,
it successfully instantiates the variable z for the partial bindings ♭1 and ♭2 with an object o3 = 10,
and obtain an additional proposition p2 = IsGreater(o3, 0) = True. Then, the updated bindings are:
♭′1 = {x 7→ o1, y 7→ o2, z 7→ o3}, ♭′2 = {x 7→ o2, y 7→ o1, z 7→ o3}. By applying ♭′1, we can obtain a
new proposition p3 = IsGreater(o1∗o3, o2∗o3) = IsGreater(15.2∗10, 15.12∗10) but with unknown
truth value. Similarly, we obtain p4 = IsGreater(o2∗o3, o1∗o3) = IsGreater(15.12∗10, 15.2∗10) =
Unknown by ♭′2. Finally, we generate two propositional formulae: ψ1 = p0 ∧ p2 ⇒ p3 via ♭′1 and
ψ2 = p1 ∧ p2 ⇒ p4 via ♭′2 for the following component.

3.2 Rule-like propositional formula transformation

Given a DeNF formula ψ = D1 ∨ D2 ∨ · · · ∨ Dm ⇒ C1 ∧ C2 ∧ · · · ∧ Cn, where each Di is a
conjunction of literals lDi1∧ lDi2∧· · ·∧ lDimi

and each Cj is a disjunction of literals lCj1∨ lCj2∨· · ·∨ lCjnj
,

the formula transformation module is designed to reformulate ψ into a set of propositional formulae
Γψ in a rule-like form, i.e., an implication, such that the LHS of each formula in Γψ is a literal
conjunction and the RHS is a single literal.

To achieve this, we first transform ψ to a formula set Γ′
ψ = {Di ⇒ Cj | i ∈ [m], j ∈ [n]}. Then, for

each single formula ψi,j = Di ⇒ Cj = lDi1 ∧ lDi2 ∧ · · · ∧ lDimi
⇒ lCj1 ∨ lCj2 ∨ · · · ∨ lCjnj

, we reformulate
it as the implicant formula set Γ′

ψi,j
, following the idea of unit propagation [63]:

Γ′
ψi,j

= {lDi1 ∧ lDi2 ∧ · · · ∧ lDimi
∧ (

∧
k∈[nj]∧k ̸=t

¬lCjk) ⇒ lCjt | t ∈ [nj]}

Finally, given a DeNF ψ, we obtain the corresponding reformulated rule-like propositional formula
set Γψ =

⋃
i∈[m],j∈[n] Γ

′
ψi,j

, and given a DeNF set R, we use ΓR to denote the union of all rule-like

5

form formulae transformed by each formula in R, i.e., ΓR =
⋃
ψ∈R Γψ. In the remainder of this

paper, we use LitR (resp. Litψ) to denote the set of all the literals that appeared in R (resp. ψ). The
rules ψ1 and ψ2 obtained in Example 1 are already expressed in the rule-like form.

Example 2. Consider a DeNF ψ = (a1 ∧ b1) ∨ a2 ⇒ (c1 ∨ d1) ∧ c2. We first transform ψ
into an equivalent formula set Γ′

ψ = {ψ1,1, ψ1,2, ψ2,1, ψ2,2}, where ψ1,1 = a1 ∧ b1 ⇒ c1 ∨ d1,
ψ1,2 = a1 ∧ b1 ⇒ c2, ψ2,1 = a2 ⇒ c1 ∨ d1, and ψ2,2 = a2 ⇒ c2. For each single formula
in Γ′

ψ, we then reformulate it as follows: Γ′
ψ1,1

= {a1 ∧ b1 ∧ ¬c1 ⇒ d1, a1 ∧ b1 ∧ ¬d1 ⇒ c1},
Γ′
ψ1,2

= {a1 ∧ b1 ⇒ c1}, Γ′
ψ2,1

= {a1 ∧¬c1 ⇒ d1, a1 ∧¬d1 ⇒ c1}, Γ′
ψ2,2

= {a2 ∧ c2}, and finally
obtain the set of rule-like propositional formulae as Γψ = Γ′

ψ1,1
∪ Γ′

ψ1,2
∪ Γ′

ψ2,1
∪ Γ′

ψ2,2
.

3.3 Forward chaining

Given a rule set ΓR obtained as above with corresponding literal set as LitR and a subset of literals
Lit ⊆ LitR with predetermined truth values, the forward chaining (FC) procedure is designed to:
i) verify consistency, and ii) infer truth values for the undefined literal l ∈ LitR\Lit. The truth
value inference of undefined literals is operated based on the inference rule of modus ponens [14],
which is closely aligned with the traditional forward chaining algorithm [52] utilized in rule-based
systems. However, compared to the traditional FC algorithm, which requires each rule to be strictly a
Horn Clause, a significant distinction between our algorithm and the traditional one is: we require
that all negative literals appearing in LitR are also included in the forward chaining graph. Such an
extension enables us to detect the inconsistency by identifying truth values for undefined literals. For
instance, consider a rule set {a ∧ b⇒ c} and literals defined as a = b = True and c = False. In this
case, the truth value of literal c is inconsistent with the inference result derived from the rule set.

To achieve it, given a rule set ΓR and an initially defined literals Lit with truth values, we first
construct an initial graph G through the following steps:

• Step 1 (Literal Nodes): Create a node for each literal that appears in the rule set ΓR.
• Step 2 (LHS Node): Create an LHS node for each rule-like propositional formula in ΓR.
• Step 3 (Edges): For each formula in ΓR, such as l1 ∧ · · · ∧ ln ⇒ ln+1 ∈ ΓR, add a directed

edge from each literal node li (i ∈ [n]) to the corresponding LHS node, and add a directed
edge from this LHS node to the literal node ln+1.

Next, according to the initially defined literals, we mark all the literal nodes valued True as Lit↑ and
mark all the literal nodes valued False as Lit↓, based on the truth value of literals from Lit. Then,
we perform forward chaining procedure on the graph G and update Lit↑ and Lit↓ as follows until
no more update can be done or an inconsistency is detected by Lit↑ ∩ Lit↓ ̸= ∅:

• Update of Lit↑ and Lit↓: For each LHS node encoding the rule-like formula (or implication)
l1 ∧ · · · ∧ ln ⇒ ln+1, if {l1, . . . , ln} ⊆ Lit↑, then we have Lit↑ = Lit↑ ∪ ln+1 and
Lit↓ = Lit↓ ∪ ¬ln+1.

Example 3. We now illustrate the graph construction and the corresponding FC procedure for the rule
set Γψ = {ψ1, ψ2} under the Level-2 interpretation given in Example 1. We first obtain all the literals
as LitR = {p0, p1, p2, p3, p4} with Lit↑ = {p0, p2} and Lit↓ = {p1}, construct the literal nodes
correspondingly, and construct the LHS node set as {p0&p2, p1&p2}. Then, directed edges are added
as follows: p0 → p0&p2, p2 → p0&p2, p0&p2 → p3, p1 → p1&p2, p2 → p1&p2, p1&p2 → p4,
resulting an initial graph. Next, we check the logic consistency. For the LHS node p0&p2, since
{p0, p2} ⊆ Lit↑, we update Lit↑ = Lit↑∪p3 = {p0, p2, p3} and Lit↓ = Lit↓∪¬p3 = {p1,¬p3},
where “p3 = True” is the new knowledge derived. For the LHS node p1&p2, since p1 /∈ Lit↑, there
is no update on Lit↑ and Lit↑, hence no new knowledge inferred.

3.4 Query generation

Once RvLLM obtains the newly inferred knowledge, the query generation module generates a
concrete query to the target LLM related to the knowledge, and requires the LLM to analyze its truth
value. For the inferred knowledge p3 = IsGreater(151.2, 152) = True in Example 3, we generate
the corresponding query as “Is 151.2 greater than 152?”, as shown in Figure 2. Since the target LLM
returns False, an inconsistency is detected, indicating a diagnostic error in the target LLM.

6

Clarification. The soundness of this work—the ability to detect inconsistencies with respect to
domain-specific constraints—depends on the accurate and faithful encoding of domain knowledge by
the expert. Thus, the validity of RvLLM hinges on the alignment between the specification given
in ESL and the underlying domain knowledge, and any misrepresentations in this encoding may
compromise the soundness of the method.

4 Experiments

To evaluate the effectiveness of RvLLM, we apply it to the runtime verification of LLMs across three
representative tasks that require domain-specific knowledge: violation detection against Singapore
Rapid Transit Systems Act [51], numerical comparison, and inequality solving. For a comprehensive
evaluation, we include both SOTA and non-SOTA LLMs as our benchmark, including Qwen 2.5
(max, plus, turbo, 7B, 14B, 32B, 72B), GPT (4.1, 4.1 mini, 4.1 nano), Gemini 2.0 (Flash, Flash Lite),
and DeepSeek-V3. All experiments are conducted on a machine with an Intel (R) Xeon(R) w7-2475X
processor. A dedicated guideline for designing interpretation abstraction prompts for the perception
agent is provided in the appendices, along with additional experimental details and descriptions of
the datasets and specifications used throughout the experiments.

To ensure a comprehensive evaluation, we also compare RvLLM with other runtime approaches,
including SelfCheckGPT [47] and a prompt-based augmentation method that explicitly encodes
domain-specific constraints within prompts. Due to the computational overhead and API costs
associated with large-scale evaluations, we restrict our comparison to cost-efficient model variants.
Additional experimental results and missing implementation details/justifications can be found in [64].

4.1 Case study 1: violation detection against Singapore Rapid Transit Systems Act

For this case study, we apply RvLLM under the Level-1 interpretation to evaluate the LLM’s responses
in detecting violations within contextual scenarios against the Singapore Rapid Transit Systems Act.
In this capacity, RvLLM can be regarded as a complementary mechanism to enhance the LLM’s
capability in detecting the law violations in this study. We conduct experiments using contextual
scenarios derived from [58], consisting of 304 cases in total–281 labeled as involving violations
(unsafe) and 23 as not (safe). To incorporate relevant domain knowledge, we carefully encode 31
of the 53 regulations from Singapore Rapid Transit System Act into ESL specifications. It took a
research scientist three days to interpret the law and develop corresponding specifications–a one-time
effort applicable for verifying any LLM application against these regulations. In this study, the same
model serves both as the target LLM and as the perception agent.

Results. Table 1 reports the violation detection results by various LLMs, with and without our
framework as a complementary analysis method, where TPR and TNR denote the true positive rate
and true negative rate for the violation detection, i.e., a violation is a positive example. The last
column gives the average execution time for each scenario analysis. In the standalone LLM setting,
a true positive is defined as a case where the model successfully identifies a violation in an unsafe
scenario, and a true negative corresponds to a case where the model confirms the absence of violations
in a safe scenario. In the combined LLM+RvLLM setting, a true positive is recorded if either the
LLM or RvLLM detects a violation in an unsafe scenario, whereas a true negative is defined as a case
that both the LLM and RvLLM determine the absence of any violation in a safe scenario. The results
show that integrating RvLLM significantly enhances the TPR, improving the target LLM’s capability
to identify violations. However, we also observe that the integration of RvLLM can reduce the TNR
in some models. This decline is primarily due to inaccuracies or incompleteness in the interpretation
procedure by the perception agent. We also find that, among all evaluated models, DeepSeek-V3
achieves the highest TPR in both standalone and integrated settings, demonstrating superior detection
capabilities in this domain-specific task and good performance on language understanding.

Figure 3 gives the comparison results of RvLLM against other baseline methods. We observe that
SelfCheckGPT often yields the highest TPR gains, as it labels nearly all outputs as “hallucinations”,
resulting in near-zero TNR. This outcome is expected since SelfCheckGPT relies solely on output
stability without leveraging domain knowledge, making it more suitable for open-domain generation.
The prompt augmentation method achieves TPR performance comparable to RvLLM but accompanied
by a non-negligible TNR decrease. In contrast, RvLLM achieves a better balance between TPR and
TNR, yielding more reliable and interpretable results.

7

Table 1: Violation detection results of LLMs with and without RvLLM against the Singapore Rapid
Transit Systems Act [51]. All percentage values are reported rounded to one decimal place.

LLM LLM + RvLLM Performance of RvLLM
Target LLMs TPR TNR TPR TNR TPR TNR Time (s)

Qwen max [62] 56.2% 91.3% 86.1% 91.3% +29.9% 0 3.00
Qwen plus [62] 58.4% 1 81.9% 1 +23.5% 0 5.32
Qwen turbo [62] 39.1% 1 74.7% 1 +35.6% 0 1.64

Qwen 2.5 (7B) [62] 16.0% 1 61.2% 87.0% +45.2% -13.0% 2.28
Qwen 2.5 (14B) [62] 38.8% 95.7% 80.4% 87.0% +41.6% -8.7% 3.11
Qwen 2.5 (32B) [62] 56.6% 95.7% 87.5% 95.7% +31.0% 0 2.55
Qwen 2.5 (72B) [62] 57.3% 1 80.4% 95.7% +23.1% -4.3% 2.57

GPT 4.1 [1] 57.7% 95.7% 81.1% 91.3% +23.5% -4.3% 3.11
GPT 4.1 mini [1] 39.1% 95.7% 65.1% 95.7% +26.0% 0 3.94
GPT 4.1 nano [1] 11.7% 1 29.9% 1 +18.1% 0 1.82

Gemini 2.0 Flash [23] 37.0% 1 87.2% 82.6% +50.2% -17.4% 2.69
Gemini 2.0 Flash Lite [23] 54.8% 95.7% 79.0% 95.7% +24.2% 0 1.72

DeepSeek-V3 [43] 78.3% 87.0% 94.0% 82.6% +15.7% -4.3% 15.84

QW-plus QW-turbo GPT-mini
GF GF-Lite DS-V3

Target LLMs

0%

20%

40%

60%

80%

100%

*I
nc

re
as

e*
 o

f T
P

R

SelfCheckGPT
Prompt Augmentation

RvLLM

(a) The increase of TPR across models.

QW-plus QW-turbo GPT-mini
GF GF-Lite DS-V3

Target LLMs

-100%

-80%

-60%

-40%

-20%

0%

*D
ec

re
as

e*
 o

f T
N

R

SelfCheckGPT
Prompt Augmentation

RvLLM

(b) The decrease of TNR across models.

Figure 3: Performance comparison of different methods in the violation detection task, where QW,
GF/GF-Lite, and DS-V3 denote Qwen, Gemini 2.0 Flash/Flash Lite, and DeepSeek-V3, respectively.

4.2 Case study 2: numerical comparison problems

For this case study, we apply RvLLM under Level-2 interpretation to verify the numerical comparison
results produced by various LLMs. It is important to note that RvLLM is inherently designed without
mathematical solving capabilities and relies solely on logical inference. Without loss of generality,
we randomly generate 100 questions following the guideline for increasing the likelihood of incorrect
comparison results by LLMs. The specification file used here is the one shown in Figure 2. Again,
we use the same model to serve both the target LLM and the perception agent.

Results. Table 2 gives the verification results by RvLLM on numerical comparison tasks across
various LLMs. Columns Con. and Incon. report the number of cases where RvLLM detects no
inconsistencies and where at least one inconsistency is detected, following the process in Figure 2.
The values in parentheses in Column Con. represent cases where the target LLM produces an
erroneous comparison result on the original comparison question, yet RvLLM fails to identify any
inconsistencies–typically due to incomplete interpretation by the perception agents. In contrast,
the values in parentheses in Column Incon. corresponds to cases where the target LLM returns a
correct comparison result on the original question, but RvLLM indeed detects some inconsistencies.
This usually arises from two main reasons: i) incomplete interpretation, and ii) the target LLM
producing an incorrect diagnosis on newly-inferred knowledge. Overall, RvLLM effectively identifies
erroneous diagnoses by the target LLM in most cases, with exceptions observed in only 3 cases
for GPT 4.1 nano and mini. Among all tested models, Gemini 2.0 Flash Lite and DeepSeek-V3
show the weakest diagnostic performance, and Qwen 2.5 (7B) has the worst language understanding
capabilities, failing all interpretation abstraction. Table 3 presents the performance comparison across
methods. Consistent with the findings in case study 1, we find that RvLLM achieves the best balance,
maintaining both high true positive and high true negative rates among all evaluated approaches.

8

Table 2: Verification results by RvLLM over
various LLMs for numerical comparison tasks.

Target LLMs Con. Incon. Fail Time (s)

Qwen max [62] 93 7 0 5.03
Qwen plus [62] 99 1 0 7.01
Qwen turbo [62] 94 6(2) 0 2.93

Qwen 2.5 (7B) [62] 0 0 100 N/A
Qwen 2.5 (14B) [62] 90 10(7) 0 5.09
Qwen 2.5 (32B) [62] 98 2 0 4.98
Qwen 2.5 (72B) [62] 96 4 0 6.31

GPT 4.1 [1] 98 2 0 4.84
GPT 4.1 mini [1] 92(1) 8 0 5.37
GPT 4.1 nano [1] 90(3) 10 0 3.73

Gemini 2.0 Flash [23] 93 7 0 4.94
Gemini 2.0 Flash Lite [23] 52 44 4 4.35

DeepSeek-V3 [43] 69 31(5) 0 30.87

Table 3: Performance comparison of different
methods for numerical comparison tasks.

Target LLMs Methods TPR TNR

SelfCheckGPT 0 96.7%

Qwen plus [62] LLM as Judge 0 0

RvLLM 100% 100%

SelfCheckGPT 100% 0

GPT 4.1 mini [1] LLM as Judge 100% 100%

RvLLM 88.9% 100%

SelfCheckGPT 87.5% 0

Gemini 2.0 Flash [23] LLM as Judge 100% 100%

RvLLM 100% 100%

4.3 Case study 3: inequality solving problems

For this case study, we employ RvLLM under Level-1 interpretation to verify the step-by-step
reasoning process of LLMs in inequality-solving tasks. We compile a dataset of 40 inequality
questions sourced from A-Level H2 Mathematics examination papers [32] and carefully design three
specifications to serve as domain knowledge that RvLLM uses for verification. These specifications
consist of basic algebraic inequality properties taught at the junior college level, targeting three
common LLM reasoning errors in inequality solving: incorrect factorization, flawed interval analysis,
and omission of endpoint or critical point checks. Given the higher interpretation complexity in this
case study and the strong language processing capabilities of DeepSeek-V3, we employ it as the
perception agent for all LLMs evaluated and Qwen 2.5 (32B) as an alternative for comparison.

Results. Given the strong performance of RvLLM in detecting true positives, we focus the evaluation
on the questions that the target LLMs answered incorrectly. The results are summarized in Table 4.
Column 2 lists the total number of questions for which the target LLM produces incorrect solutions.
Columns labeled DS-V3 and QW-32B (spanning Columns 3 to 11) show the number of cases
where RvLLM successfully identifies inconsistencies based on the corresponding specifications
using DeepSeek-V3 and Qwen 2.5 (32B) as the perception agent, respectively. Values in parentheses
indicate false positives–cases where the detected inconsistency does not stem from an actual reasoning
error but from inaccuracies of the perception agent during the interpretation abstraction process.
Column GT gives the ground truth number of incorrect responses attributable to the rule specifications.
It is important to note that we define only three specifications as domain knowledge for inequality-
solving tasks, which is insufficient to cover all reasoning patterns required for such problems
comprehensively. As a result, it is expected that RvLLM fails to detect a portion of the errors due
to the lack of knowledge. The final two columns give the true positive rate of RvLLM with three
specifications. We find that RvLLM achieves a TPR of up to 50% when using DeepSeek-V3 as the
perception agent. This result underscores both RvLLM’s potential to detect reasoning errors—even
with limited domain knowledge—and the critical role of a robust perception agent in boosting overall
performance. Although TPR remains below 50% for most models, they rise markedly when restricted
to ground truth cases (Column GT), suggesting substantial gains are possible with richer domain
knowledge in inequality solving.

5 Related work

LLM testing. Research in this area aims to develop comprehensive benchmarks and systematic
evaluation frameworks to assess LLM across general attributes such as robustness, fairness, and
factual consistency [45, 41, 57]. Robustness studies examine model resilience to adversarial input,
paraphrasing, or noise [9, 56, 66], while fairness evaluations assess bias with respect to sensitive
attributes like gender or race [39, 66]. Factual consistency detection, or hallucination detection,
focuses on identifying instances in which LLMs produce plausible yet factually incorrect or unsup-
ported claims [42, 38, 40]. Although large-scale benchmarks like HELM [41] and BIG-bench [54]
offer task suites and metrics for performance evaluation, a critical challenge remains—the dynamic

9

Table 4: Verification results by RvLLM in inequality solving tasks with three specifications, defining
rules related to factorization, interval analysis, and endpoints/critical points checking.

Factorization Error Interval Error Endpoints Error TPR
Target LLMs Incorrect DS-V3 QW-32B GT DS-V3 QW-32B GT DS-V3 QW-32B GT DS-V3 QW-32B

Qwen max [62] 12 1 1 1 1 0 1 2 2 3 33.3% 25%
Qwen plus [62] 10 1 1 2 0 0 0 0 1 2 10% 20%
Qwen turbo [62] 22 0 0 1 1 0 1 3 2 4 18.2% 9.1%

Qwen 2.5 (7B) [62] 25 2 1 3 7 2 7 3 2 5 48% 20%
Qwen 2.5 (14B) [62] 18 0 0 1 3 2(1) 3 3(1) 2 3 27.8% 16.7%
Qwen 2.5 (32B) [62] 16 1 0 1 3 2 4 4 2 5 50% 25%
Qwen 2.5 (72B) [62] 15 1 0 1 4 3 4 0 0 1 33.3% 20

GPT 4.1 [1] 5 1 1(1) 1 0 0 0 0 0 0 20% 0
GPT 4.1 mini [1] 2 0 0 0 0 0 0 1 0 1 50% 0
GPT 4.1 nano [1] 10 0 0 0 1 0 1 1 0 1 20% 0

Gemini 2.0 Flash [23] 5 0 0 0 1 0 1 0 0 0 20% 0
Gemini 2.0 Flash Lite [23] 6 1 1 2 0 0 0 0 0 1 16.7% 16.7%

and open-ended nature of real-world deployments complicates the construction of exhaustive and
representative test suites.

Runtime verification of LLMs. Runtime verification [6, 21] is a dynamic analysis technique that
ensures certified system behavior during execution by monitoring traces against formal specifications.
Owing to its lightweight nature, runtime verification has inspired multiple efforts to verify LLM-
generated outputs at runtime [13, 7, 47, 11, 37, 46, 36]. However, existing approaches center
on open-domain settings, where specifications are often ambiguous and informal. For instance,
SelfCheckGPT [47] and CHECKEMBED [7] operationalize specifications in terms of output
stability. More recently, [12] proposes a fairness monitoring approach leveraging precisely defined
properties in formal specifications. These specifications, informed by linear temporal logic [50]
and its bounded metric variant [2], signal a shift towards formal methods for more accurate and
dependable runtime verification of LLM behaviors. However, these works primarily focus on general
properties and are not well-suited to domain-specific constraints for specialized tasks.

Expert systems with NLP. Rule-based expert systems [15, 16, 18] have effectively tackled domain-
specific problems by coupling knowledge bases with inference engines to emulate expert reasoning for
decades of years. To enhance usability, in the 70s, researchers integrated natural language processing
(NLP), enabling interaction via simplified language, e.g., SHRDLU [60] in virtual environments and
MedLEE [35] in clinical text analysis. These systems relied on symbolic parsing and controlled
vocabularies but suffered from fragile parsing, limited lexical coverage, and ambiguity, often requiring
constrained input or extensive user guidance. Nevertheless, integrating NLP with rule-based reasoning
provides a key proof-of-concept for interactive, user-friendly AI, shaping later knowledge-based
systems and natural language interfaces. Recently, the rise of LLMs has reinvigorated this paradigm.
In this work, we employ a perception LLM to translate the target LLM’s context and outputs into
formal representations for backend reasoning. An improved version could explore other extensions
of Horn clauses beyond those considered here to enhance expressiveness and completeness [4].

6 Conclusion

In this work, we present the first runtime verification framework RvLLM for LLMs, which allows the
incorporation of domain knowledge. To support this, we design a general specification language, ESL,
which enables domain experts to formally encode constraints in a lightweight yet expressive manner,
supporting the rigorous verification of LLM behavior. We implement the proposed framework as
a tool and evaluate its effectiveness on three representative tasks where domain knowledge plays a
critical role. For each task, we develop tailored specifications grounded in relevant domain expertise.
Experimental results indicate that RvLLM effectively leverages expert-defined domain knowledge
to enable precise runtime verification of LLMs and strike a good balance between TPR and TNR,
compared to existing runtime methods. However, despite its good performance, the current framework
suffers from limited expressiveness by ESL, restricting its ability to encode more complex domain
knowledge and behavioral constraints for LLMs. Future work will focus on enriching the specification
language with additional operators to improve its expressiveness and generalization.

10

7 Acknowledgments

This work was partially funded by the Ministry of Education, Singapore, under its Academic
Research Fund Tier 3 (MOET32020-0003). Any opinions, findings, conclusions, or recommendations
expressed in this material are those of the author(s) and do not reflect the views of the Ministry of
Education, Singapore.

References
[1] Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F.L., Almeida, D., Altenschmidt, J.,

Altman, S., Anadkat, S., et al.: Gpt-4 technical report. arXiv preprint arXiv:2303.08774 (2023)

[2] Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. Journal of the ACM (JACM)
43(1), 116–146 (1996)

[3] Armstrong, K.: Chatgpt: Us lawyer admits using ai for case research. https://www.bbc.com/news/w
orld-us-canada-65735769 (2023)

[4] Babka, M., Balyo, T., Čepek, O., Gurskỳ, Š., Kučera, P., Vlček, V.: Complexity issues related to propagation
completeness. Artificial Intelligence 203, 19–34 (2013)

[5] Banerjee, S., Agarwal, A., Singla, S.: Llms will always hallucinate, and we need to live with this. arXiv
preprint arXiv:2409.05746 (2024)

[6] Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime verification. Lectures on
Runtime Verification: Introductory and Advanced Topics pp. 1–33 (2018)

[7] Besta, M., Paleari, L., Kubicek, A., Nyczyk, P., Gerstenberger, R., Iff, P., Lehmann, T., Niewiadomski,
H., Hoefler, T.: Checkembed: Effective verification of llm solutions to open-ended tasks. arXiv preprint
arXiv:2406.02524 (2024)

[8] Bunel, R., Lu, J., Turkaslan, I., Torr, P.H.S., Kohli, P., Kumar, M.P.: Branch and bound for piecewise linear
neural network verification. J. Mach. Learn. Res. 21, 42:1–42:39 (2020)

[9] Cai, R., Song, Z., Guan, D., Chen, Z., Li, Y., Luo, X., Yi, C., Kot, A.: Benchlmm: Benchmarking
cross-style visual capability of large multimodal models. In: European Conference on Computer Vision.
pp. 340–358. Springer (2024)

[10] Cascella, M., Montomoli, J., Bellini, V., Bignami, E.: Evaluating the feasibility of chatgpt in healthcare: an
analysis of multiple clinical and research scenarios. Journal of medical systems 47(1), 33 (2023)

[11] Chen, J., Kim, G., Sriram, A., Durrett, G., Choi, E.: Complex claim verification with evidence retrieved
in the wild. In: Proceedings of the 2024 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers). pp. 3569–3587
(2024)

[12] Cheng, C.H., Wu, C., Ruess, H., Zhao, X., Bensalem, S.: Formal specification, assessment, and enforcement
of fairness for generative ais. arXiv preprint arXiv:2404.16663 (2024)

[13] Cohen, R., Hamri, M., Geva, M., Globerson, A.: Lm vs lm: Detecting factual errors via cross examination.
In: Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. pp.
12621–12640 (2023)

[14] Copi, I.M., Cohen, C., McMahon, K.: Introduction to logic. Routledge (2016)

[15] Daniel, M., Hájek, P., Nguyen, P.H.: Cadiag-2 and mycin-like systems. Artificial Intelligence in Medicine
9(3), 241–259 (1997)

[16] Denning, P.J.: Towards a science of expert systems. IEEE Intelligent Systems 1(02), 80–83 (1986)

[17] Drummond, N., Shearer, R.: The open world assumption. In: eSI workshop: the closed world of databases
meets the open world of the semantic web. vol. 15, p. 1 (2006)

[18] Durkin, J.: Expert systems: a view of the field. IEEE Intelligent Systems 11(02), 56–63 (1996)

[19] Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for neural network verification.
In: Proceedings of the 32nd International Conference on Computer Aided Verification. pp. 43–65 (2020)

11

https://www.bbc.com/news/world-us-canada-65735769
https://www.bbc.com/news/world-us-canada-65735769

[20] Enderton, H.B.: A mathematical introduction to logic. Elsevier (2001)

[21] Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verification. Engineering dependable software
systems pp. 141–175 (2013)

[22] Forsyth, R.: Expert systems: principles and case studies. Chapman & Hall, Ltd. (1984)

[23] Gemini, T.: Gemini: A family of highly capable multimodal models (2024), https://arxiv.org/abs/
2312.11805

[24] Guha, N., Nyarko, J., Ho, D., Ré, C., Chilton, A., Chohlas-Wood, A., Peters, A., Waldon, B., Rockmore,
D., Zambrano, D., et al.: Legalbench: A collaboratively built benchmark for measuring legal reasoning in
large language models. Advances in Neural Information Processing Systems 36, 44123–44279 (2023)

[25] Hayes-Roth, F., Waterman, D.A., Lenat, D.B.: Building expert systems. Addison-Wesley Longman
Publishing Co., Inc. (1983)

[26] Hein, J.L.: Discrete mathematics. Jones & Bartlett Learning (2003)

[27] Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M., Song, D., Steinhardt, J.: Measuring massive
multitask language understanding. In: 9th International Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021 (2021)

[28] Hernández-Orallo, J.: The measure of all minds: evaluating natural and artificial intelligence. Cambridge
University Press (2017)

[29] Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks. In: Proceed-
ings of the 29th International Conference on Computer Aided Verification. pp. 3–29 (2017)

[30] Huang, Y., Bai, Y., Zhu, Z., Zhang, J., Zhang, J., Su, T., Liu, J., Lv, C., Zhang, Y., Fu, Y., et al.: C-
eval: A multi-level multi-discipline chinese evaluation suite for foundation models. Advances in Neural
Information Processing Systems 36 (2024)

[31] Jackson, P.: Introduction to expert systems (1990)

[32] Junior college test papers in level: A-level. https://www.testpapersfree.com/junior-college/a
level/ (2024)

[33] Kasneci, E., Seßler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., Gasser, U., Groh,
G., Günnemann, S., Hüllermeier, E., et al.: Chatgpt for good? on opportunities and challenges of large
language models for education. Learning and individual differences 103, 102274 (2023)

[34] Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An efficient SMT solver for
verifying deep neural networks. In: Proceedings of the 29th International Conference on Computer Aided
Verification. pp. 97–117 (2017)

[35] Krauthammer, M., Hripcsak, G.: A knowledge model for the interpretation and visualization of nlp-parsed
discharged summaries. In: Proceedings of the AMIA Symposium. p. 339 (2001)

[36] Laban, P., Kryściński, W., Agarwal, D., Fabbri, A.R., Xiong, C., Joty, S., Wu, C.S.: Llms as factual
reasoners: Insights from existing benchmarks and beyond. arXiv preprint arXiv:2305.14540 (2023)

[37] Laban, P., Schnabel, T., Bennett, P.N., Hearst, M.A.: Summac: Re-visiting nli-based models for incon-
sistency detection in summarization. Transactions of the Association for Computational Linguistics 10,
163–177 (2022)

[38] Li, J., Cheng, X., Zhao, W.X., Nie, J.Y., Wen, J.R.: Halueval: A large-scale hallucination evaluation
benchmark for large language models. In: Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing. pp. 6449–6464 (2023)

[39] Li, M., Li, L., Yin, Y., Ahmed, M., Liu, Z., Liu, Q.: Red teaming visual language models. In: Findings of
the Association for Computational Linguistics ACL 2024. pp. 3326–3342 (2024)

[40] Li, N., Li, Y., Liu, Y., Shi, L., Wang, K., Wang, H.: Drowzee: Metamorphic testing for fact-conflicting
hallucination detection in large language models. Proceedings of the ACM on Programming Languages
8(OOPSLA2), 1843–1872 (2024)

[41] Liang, P., Bommasani, R., Lee, T., Tsipras, D., Soylu, D., Yasunaga, M., Zhang, Y., Narayanan, D., Wu, Y.,
Kumar, A., et al.: Holistic evaluation of language models. arXiv preprint arXiv:2211.09110 (2022)

12

https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://www.testpapersfree.com/junior-college/alevel/
https://www.testpapersfree.com/junior-college/alevel/

[42] Lin, S., Hilton, J., Evans, O.: Truthfulqa: Measuring how models mimic human falsehoods. In: Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). pp.
3214–3252 (2022)

[43] Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan, C., et al.:
Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437 (2024)

[44] Liu, J., Xia, C.S., Wang, Y., Zhang, L.: Is your code generated by chatgpt really correct? rigorous
evaluation of large language models for code generation. Advances in Neural Information Processing
Systems 36, 21558–21572 (2023)

[45] Liu, Y., Yao, Y., Ton, J.F., Zhang, X., Guo, R., Cheng, H., Klochkov, Y., Taufiq, M.F., Li, H.: Trust-
worthy llms: a survey and guideline for evaluating large language models’ alignment. arXiv preprint
arXiv:2308.05374 (2023)

[46] Luo, Z., Xie, Q., Ananiadou, S.: Chatgpt as a factual inconsistency evaluator for text summarization. arXiv
preprint arXiv:2303.15621 (2023)

[47] Manakul, P., Liusie, A., Gales, M.: Selfcheckgpt: Zero-resource black-box hallucination detection for
generative large language models. In: Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing. pp. 9004–9017 (2023)

[48] Narodytska, N., Kasiviswanathan, S.P., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying properties of binarized
deep neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence. pp. 6615–6624
(2018)

[49] Payne, K.: An ai chatbot pushed a teen to kill himself, a lawsuit against its creator alleges. https:
//apnews.com/article/chatbot-ai-lawsuit-suicide-teen-artificial-intelligence-9
d48adc572100822fdbc3c90d1456bd0 (2024)

[50] Pnueli, A.: The temporal logic of programs. In: 18th annual symposium on foundations of computer
science (sfcs 1977). pp. 46–57. ieee (1977)

[51] Rapid transit systems regulations (revised edition). https://sso.agc.gov.sg/SL/RTSA1995-RG1
(1997)

[52] Russell, S.J., Norvig, P.: Artificial intelligence: a modern approach. pearson (2016)

[53] Shoenfield, J.R.: Mathematical logic. AK Peters/CRC Press (2018)

[54] Srivastava, A., Rastogi, A., Rao, A., Shoeb, A.A.M., Abid, A., Fisch, A., Brown, A.R., Santoro, A., Gupta,
A., Garriga-Alonso, A., et al.: Beyond the imitation game: Quantifying and extrapolating the capabilities
of language models. arXiv preprint arXiv:2206.04615 (2022)

[55] Thirunavukarasu, A.J., Ting, D.S.J., Elangovan, K., Gutierrez, L., Tan, T.F., Ting, D.S.W.: Large language
models in medicine. Nature medicine 29(8), 1930–1940 (2023)

[56] Tu, H., Cui, C., Wang, Z., Zhou, Y., Zhao, B., Han, J., Zhou, W., Yao, H., Xie, C.: How many unicorns are
in this image? a safety evaluation benchmark for vision llms. arXiv preprint arXiv:2311.16101 (2023)

[57] Wang, B., Chen, W., Pei, H., Xie, C., Kang, M., Zhang, C., Xu, C., Xiong, Z., Dutta, R., Schaeffer, R.,
et al.: Decodingtrust: A comprehensive assessment of trustworthiness in gpt models. In: NeurIPS (2023)

[58] Wang, H., Zhang, A., Duy Tai, N., Sun, J., Chua, T.S., et al.: Ali-agent: Assessing llms’ alignment
with human values via agent-based evaluation. Advances in Neural Information Processing Systems 37,
99040–99088 (2024)

[59] Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.J., Kolter, J.Z.: Beta-crown: Efficient bound
propagation with per-neuron split constraints for neural network robustness verification. Advances in
Neural Information Processing Systems 34 (2021)

[60] Winograd, T.: Procedures as a representation for data in a computer program for understanding natural
language. Tech. rep. (1971)

[61] Xu, Z., Jain, S., Kankanhalli, M.: Hallucination is inevitable: An innate limitation of large language
models. arXiv preprint arXiv:2401.11817 (2024)

[62] Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B., Li, C., Liu, D., Huang, F., Wei, H., et al.: Qwen2.
5 technical report. arXiv preprint arXiv:2412.15115 (2024)

13

https://apnews.com/article/chatbot-ai-lawsuit-suicide-teen-artificial-intelligence-9d48adc572100822fdbc3c90d1456bd0
https://apnews.com/article/chatbot-ai-lawsuit-suicide-teen-artificial-intelligence-9d48adc572100822fdbc3c90d1456bd0
https://apnews.com/article/chatbot-ai-lawsuit-suicide-teen-artificial-intelligence-9d48adc572100822fdbc3c90d1456bd0
https://sso.agc.gov.sg/SL/RTSA1995-RG1

[63] Zhang, H., Stickely, M.E.: An efficient algorithm for unit propagation. Proc. of AI-MATH 96 (1996)

[64] Zhang, Y., Emma, S.Y., En, A.L.J., Dong, J.S.: Rvllm: Llm runtime verification with domain knowledge.
arXiv preprint arXiv:2505.18585 (2025)

[65] Zhang, Y., Zhao, Z., Chen, G., Song, F., Chen, T.: BDD4BNN: A bdd-based quantitative analysis framework
for binarized neural networks. In: Proceedings of the 33rd International Conference on Computer Aided
Verification (CAV). pp. 175–200 (2021). https://doi.org/10.1007/978-3-030-81685-8_8

[66] Zhang, Y., Huang, Y., Sun, Y., Liu, C., Zhao, Z., Fang, Z., Wang, Y., Chen, H., Yang, X., Wei, X., et al.:
Multitrust: A comprehensive benchmark towards trustworthy multimodal large language models. Advances
in Neural Information Processing Systems 37, 49279–49383 (2024)

[67] Zhong, W., Cui, R., Guo, Y., Liang, Y., Lu, S., Wang, Y., Saied, A., Chen, W., Duan, N.: Agieval: A human-
centric benchmark for evaluating foundation models. In: Findings of the Association for Computational
Linguistics: NAACL 2024. pp. 2299–2314 (2024)

[68] Zhou, K., Zhu, Y., Chen, Z., Chen, W., Zhao, W.X., Chen, X., Lin, Y., Wen, J.R., Han, J.: Don’t make your
llm an evaluation benchmark cheater. arXiv preprint arXiv:2311.01964 (2023)

14

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We made the claim that: i) we introduce a novel specification language
ESL for experts to encode their domain-expertise into specification rule for checking the
LLM behavior (design details are given in Section 2), and ii) design an innovative runtime
verificaation framework RvLLM for LLMs with domain knowledge encoded in ESL (design
details are given in Section 3). The experimental results are shown in Section 4.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed in Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

15

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We do not include theoretical results in this paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We disclose the information to reproduce the main experiemental results in the
supplemental material (appendices) as a separate file.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

16

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We upload the code and data with a zip file as supplemental materials in the
submission.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Experimental settings and details are illustrated in Section 4 and the appendices
in a separate pdf.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For all main experiments, we executed RvLLM multiple times (at least twice)
to assess potential variations in the results. Given that the proposed method employs a fixed
framework with deterministic reasoning, any observed variability can only originate from
the perception agent’s outputs. Our analysis confirms that such variability is minimal in
practice, to the extent that it can be considered negligible. We include such claim in the
appendices.
Guidelines:

• The answer NA means that the paper does not include experiments.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discuss computing resources in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The potential societal impacts are discussed in appendices.

18

https://neurips.cc/public/EthicsGuidelines

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not pose such risks in this paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: For all the data used in this work, we give the citation properly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

19

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

20

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We have describe our usage of LLMs throughout the experiments part in
Section 4 as well as appendices.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

	Introduction
	ESL: a simple way of specifying domain-specific properties
	Design guidance
	Formalization

	Methodologies of RvLLM
	Interpretation abstraction
	Rule-like propositional formula transformation
	Forward chaining
	Query generation

	Experiments
	Case study 1: violation detection against Singapore Rapid Transit Systems Act
	Case study 2: numerical comparison problems
	Case study 3: inequality solving problems

	Related work
	Conclusion
	Acknowledgments

