
Reinforcement Learning Journal 2025
∣∣ Cover Page

Joint-Local Grounded Action Transformation for
Sim-to-Real Transfer in Multi-Agent Traffic Control

Justin Turnau, Longchao Da, Khoa Vo, Ferdous Al Rafi, Shreyas
Bachiraju, Tiejin Chen, Hua Wei

Keywords: Traffic Signal Control, Multi-Agent Reinforcement Learning, Sim-to-Real Transfer

Summary
Traffic Signal Control (TSC) is essential for managing urban traffic flow and reducing con-

gestion. Reinforcement Learning (RL) offers an adaptive method for TSC by responding to
dynamic traffic patterns, with multi-agent RL (MARL) gaining traction as intersections natu-
rally function as coordinated agents. However, due to shifts in environmental dynamics, imple-
menting MARL-based TSC policies in the real world often leads to a significant performance
drop, known as the sim-to-real gap. Grounded Action Transformation (GAT) has successfully
mitigated this gap in single-agent RL for TSC, but real-world traffic networks, which involve
numerous interacting intersections, are better suited to a MARL framework. In this work,
we introduce JL-GAT, an application of GAT to MARL-based TSC that balances scalability
with enhanced grounding capability by incorporating information from neighboring agents.
JL-GAT adopts a decentralized approach to GAT, allowing for the scalability often required in
real-world traffic networks while still capturing key interactions between agents. Comprehen-
sive experiments on various road networks and ablation studies demonstrate the effectiveness
of JL-GAT.

Contribution(s)
1. We introduce Joint-Local Grounded Action Transformation (JL-GAT), a scalable frame-

work for bridging the sim-to-real gap in MARL-based traffic signal control that incorporates
state and action information from neighboring agents into Grounded Action Transformation
(GAT) models using a sensing radius.
Context: None

2. To the best of our knowledge, we are the first to apply Grounded Action Transformation
(GAT) to the multi-agent setting, introducing two natural applications of GAT alongside
our proposed method, JL-GAT.
Context: None

3. We introduce the cascading invalidation effect, a novel challenge in JL-GAT that arises
when integrating state and action information from nearby agents, and propose both a direct
solution and an alternative approach that effectively mitigates the issue.
Context: None

4. We conduct thorough empirical evaluations of JL-GAT in the domain of multi-agent traffic
signal control, demonstrating its effectiveness in reducing the sim-to-real gap.
Context: None

Joint-Local Grounded Action Transformation

Joint-Local Grounded Action Transformation for
Sim-to-Real Transfer in Multi-Agent Traffic Control

Justin Turnau, Longchao Da, Khoa Vo, Ferdous Al Rafi, Shreyas Bachiraju,
Tiejin Chen, Hua Wei
{jturnau,longchao,ngocbach,sbachira,tchen169,hua.wei}@asu.edu,
rafirafi155@gmail.com

Arizona State University

Abstract

Traffic Signal Control (TSC) is essential for managing urban traffic flow and reduc-
ing congestion. Reinforcement Learning (RL) offers an adaptive method for TSC by
responding to dynamic traffic patterns, with multi-agent RL (MARL) gaining traction
as intersections naturally function as coordinated agents. However, due to shifts in
environmental dynamics, implementing MARL-based TSC policies in the real world
often leads to a significant performance drop, known as the sim-to-real gap. Grounded
Action Transformation (GAT) has successfully mitigated this gap in single-agent RL
for TSC, but real-world traffic networks, which involve numerous interacting intersec-
tions, are better suited to a MARL framework. In this work, we introduce JL-GAT,
an application of GAT to MARL-based TSC that balances scalability with enhanced
grounding capability by incorporating information from neighboring agents. JL-GAT
adopts a decentralized approach to GAT, allowing for the scalability often required in
real-world traffic networks while still capturing key interactions between agents. Com-
prehensive experiments on various road networks and ablation studies demonstrate the
effectiveness of JL-GAT. The code is publicly available at https://github.com/DaRL-
LibSignal/JL-GAT/.

1 Introduction

Reinforcement Learning (RL) is well-suited for sequential decision-making, enabling agents to learn
effective policies through interaction with the environment (Roijers et al., 2013b). This data-driven
design, together with the ability to adaptively refine policies, makes RL a powerful approach to
complex real-world problems. Traffic Signal Control (TSC) is an effective way to reduce congestion,
minimize travel times, and improve urban mobility (Wei et al., 2018). By modeling TSC as a
sequential decision-making problem, where each traffic signal chooses timing and phases based on
evolving traffic conditions, RL can deliver flexible, efficient control strategies. Thus, RL-driven
TSC appears as a dynamic and robust alternative to static or rule-based methods in transportation
research (Wei et al., 2019b).

In addition to treating an intersection-coupled traffic signal as a single agent, multi-agent rein-
forcement learning (MARL) is essential for scaling up traffic signal control to complex urban net-
works (Jiang et al., 2024). By deploying a network of agents, each controlling an individual inter-
section, MARL facilitates decentralized decision-making while maintaining coordinated across the
entire system (Chen et al., 2020). It allows each agent to learn local policies that are responsive to
immediate traffic conditions yet also adapt through communication and cooperation with neighbor-
ing agents to optimize overall traffic flow, which is more suitable for managing large-scale, dynamic
transportation environments such as those found in real-world applications (Balmer et al., 2004).

https://github.com/DaRL-LibSignal/JL-GAT/
https://github.com/DaRL-LibSignal/JL-GAT/

Reinforcement Learning Journal 2025

In order to learn the traffic signal control policies, a direct way is to leverage the existing traffic sim-
ulators (e.g., SUMO (Behrisch et al., 2011), CityFlow (Zhang et al., 2019; Da et al., 2024a)) as an
interactive environment and explore control policies. While simulators offer a controlled environ-
ment to train and evaluate RL-based TSC policies, transitioning these models from simulation to the
real world introduces a challenging gap known as the sim-to-real issue (Da et al., 2023a). Discrep-
ancies between the simulated and real environments, such as unmodeled traffic dynamics (Da et al.,
2023b), sensor noise (Qadri et al., 2020), and unpredictable driver behaviors (Lee & Moura, 2015),
can lead to significant deviations in performance. Therefore, robust sim-to-real techniques are es-
sential to bridge this gap and ensure the performance observed in simulation translates to real-world
urban settings.

The preliminary research from (Da et al., 2023a) has identified the severity of the sim-to-real is-
sue in RL-based TSC. There are several proposed solutions to mitigate the sim-to-real gap, either
by calibrating the simulator’s realism (Müller et al., 2021) or by using transfer learning in the RL
training paradigm, such as grounded action transformation (GAT) (Da et al., 2024b). JL-GAT en-
hances GAT by integrating neighboring agents’ information to capture local interactions, improving
transition dynamics modeling. This strengthens policy training, boosts real-world performance, and
minimizes the sim-to-real gap, ultimately enhancing urban mobility and reducing congestion.

2 Related Work

2.1 Reinforcement Learning for Multi-Agent Traffic Signal Control

Reinforcement Learning for multi-agent traffic signal control has emerged as a promising approach
to alleviate urban traffic congestion by enabling intersections to operate as cooperative agents (Choy
et al., 2003). Under this framework, each traffic signal controller is treated as an agent that learns
optimal control policies through local interactions with the environment and limited communication
with neighboring intersections (Balaji & Srinivasan, 2010). Unlike traditional rule-based meth-
ods that rely on pre-defined heuristics (Dion & Hellinga, 2002), RL-based approaches dynamically
adapt to real-time traffic conditions, yielding significant improvements in vehicle travel time and
delay reduction (Zheng et al., 2019). Multi-agent reinforcement learning (MARL) introduces both
additional complexities and opportunities compared to single-agent settings (Roijers et al., 2013a).
Coordination among multiple agents can enhance overall network performance by balancing local
decisions with global objectives, yet challenges such as environmental non-stationarity and the need
for scalable communication strategies persist (Chen et al., 2020). Recent advances in MARL have
explored solutions like centralized training with decentralized execution and cooperative learning
schemes to overcome these challenges (Huang et al., 2021). Moreover, while many existing RL-
based TSC methods focus on optimizing performance within simulated environments (Mei et al.,
2024), the sim-to-real gap remains a critical hurdle (Da et al., 2023a). Some recent studies have
attempted to narrow this gap but only focus on the single-agent settings (Da et al., 2023b; 2024b),
whereas our approach applies the work to more complex multi-agent settings, which hold great po-
tential for more scalable traffic signal control systems capable of effectively responding to dynamic
traffic patterns.

2.2 Sim-to-Real Methods for RL

Sim-to-real transfer methods in RL broadly fall into three main categories (Zhao et al., 2020; Da
et al., 2025). The first category, domain randomization (Tobin, 2019; Andrychowicz et al., 2020;
Wei et al., 2022), focuses on training policies that are robust to environmental variations by relying
heavily on simulated data, which is particularly advantageous when facing uncertain or evolving
target domains. The second category, domain adaptation (Tzeng et al., 2019; Han et al., 2019),
addresses the challenge of distribution shifts between the source and target environments by align-
ing feature representations. Although many techniques in this category are aimed at bridging gaps
in robotic perception (Tzeng et al., 2015; Fang et al., 2018; Bousmalis et al., 2018; James et al.,

Joint-Local Grounded Action Transformation

2019), in the traffic signal control domain the discrepancy is mainly due to differences in dynam-
ics, since most methods use vectorized observations such as lane-level vehicle counts or delays.
The third category involves grounding methods, which aim to reduce simulator bias and improve
alignment with real-world dynamics. In contrast to system identification approaches (Cutler et al.,
2014; Cully et al., 2015) that seek to learn exact physical parameters, Grounded Action Transforma-
tion (GAT) (Hanna & Stone, 2017) modifies the simulator dynamics via grounded actions, showing
promising results for sim-to-real transfer in robotics (Zhang et al., 2025). Recent work (Desai et al.,
2020b; Karnan et al., 2020; Desai et al., 2020a) has further advanced grounding methods by incor-
porating stochastic modeling, reinforcement learning, and imitation-from-observation techniques.
Our approach, JL-GAT, builds on the GAT framework, introducing novel multi-agent designs and
proposing local-joint solutions.

3 Preliminaries

This section introduces the necessary background for understanding our proposed method, includ-
ing the formulation of the multi-agent reinforcement learning (MARL) traffic signal control (TSC)
problem and an overview of Grounded Action Transformation (GAT) 1.

3.1 Multi-Agent Traffic Signal Control

We formulate TSC as a Decentralized Partially Observable Markov Decision Process (Dec-
POMDP), where each intersection acts as an agent observing partial traffic states and optimizing
local control policies to maximize cumulative reward. See Section 8 in the Supplementary Materials
for full notation.

3.2 Agent Design

For our agent design, we align with the most prevalent works in the TSC domain, such as
PressLight (Wei et al., 2019a), with slight modifications, and use it consistently across all exper-
iments. We summarize the state representation, action space, reward function, and learning method
for our agents in Section 9 of the Supplementary Materials.

3.3 Grounded Action Transformation

Grounded Action Transformation (GAT) is a framework designed to align simulated environments
with real-world dynamics using real trajectories Dreal = {τ1, . . . , τ I} collected by executing a
policy πθ in the real environment Ereal. Let P ∗ denote the real-world transition dynamics and Pϕ

denote the parameterized transition function of the simulator Esim. GAT optimizes ϕ to minimize
the discrepancy between P ∗ and Pϕ:

ϕ∗ = argmin
ϕ

∑
τ i∈Dreal

T−1∑
t=0

d
(
P ∗(sit+1 | sit, ait), Pϕ(s

i
t+1 | sit, ait)

)
, (1)

where d(·) is a distance measure (e.g., Kullback-Leibler divergence).

Given a policy πθ that outputs an action at to take in a given state st, GAT employs an action
transformation function gϕ(st, at) parameterized by ϕ to compute a grounded action ât:

ât = gϕ(st, at) = hϕ−
(
st, fϕ+(st, at)

)
. (2)

The vanilla GAT framework consists of two models: a forward model fϕ+ and an inverse model
hϕ− . The forward model takes as input the current state st and the action at from Esim and predicts

1The detailed notation summary is shown in Table 6.

Reinforcement Learning Journal 2025

Dispatcher:
- Distribute the centralized grounded action to agents
Concatenator:
- Concat the agent-level observations

Different agents

𝑔∅(·,·): Grounding Module

: GAT Operation

…

à repeat

①

Policy 𝜋!,#

𝑜&,', 𝑎&,'

𝑜&,'()

$𝑎&,'
*

𝑓!,∅!(𝑜!,%,𝑎!,%)

ℎ!,∅"((𝑜!,%&',𝑜!,%)
(𝑜!,%&'

𝑔∅(·,·)

Decentralized GAT

𝐸+&,

…

An example:
Manhattan Map

Ag
en

t D
isp

at
ch

er
/C

on
ca

te
na

to
r

𝑜&,'()

Agent_i

$𝑎&,'
* $𝑎'

*

𝑠'()
Policy 𝜋#

𝑠', 𝑎'
𝑓∅!(𝑠%,𝑎%)

ℎ∅"(𝑠̂%&',𝑠%)
𝑠̂%&'

𝑔∅(·,·)…

② Centralized GAT

Next Next

:

Figure 1: Overview of centralized and decentralized GAT in a 4×4 traffic network. Left: In decen-
tralized GAT, each agent i observes its state oi,t and selects an action ai,t via policy πi,θ. This action
is passed through a forward model fi,ϕ+ to predict the next observation ôi,t+1, which is then input
to the inverse model hi,ϕ− to produce the grounded action âgi,t. This process runs independently for
all agents. Right: Centralized GAT follows the same logic, but observations oi,t are concatenated
into a global state st, and input to a shared forward model fϕ+ to produce ŝt+1 (a composition of all
ôi,t+1). This is then passed to a centralized inverse model hϕ− to yield the global grounded actions
âgt , which are dispatched to agents to replace their original actions.

the next state ŝt+1 in Ereal: ŝt+1 = fϕ+(st, at). The inverse model, in turn, receives the current
state st from Esim and the predicted next state ŝt+1 from the forward model, generating a grounded
action ât that attempts to transition st to ŝt+1 in Esim: ât = hϕ−(st, ŝt+1). With effective ground-
ing, the simulator’s transition dynamics, Pϕ, better approximate those of the real environment, P ∗.
This alignment facilitates more effective policy training in Esim, as GAT reduces the discrepancy in
transition dynamics, leading to more realistic state transitions and ultimately reducing the sim-to-
real gap. Note that the forward model fϕ+ is trained using data collected in Ereal and the inverse
model hϕ− is trained using data collected in Esim.

4 Grounded Action Transformation in Multi-Agent Settings

Grounded Action Transformation (GAT) bridges the sim-to-real gap using forward and inverse mod-
els to align simulator and real-world dynamics. In multi-agent settings, this alignment is challenged
by inter-agent interactions. As shown in Figure 1, GAT can be centralized, capturing global dy-
namics at the cost of scalability, or decentralized, scaling well but ignoring multi-agent interactions.
This section presents both approaches as a foundation for our proposed hybrid method, Joint-Local
GAT (JL-GAT) in Section 5.

4.1 Centralized Grounded Action Transformation

A natural approach to multi-agent GAT is to treat the environment as a single-agent system by using
global state and action inputs to a shared forward and inverse model. We provide an overview
of centralized GAT in Figure 1. This enables the modeling of inter-agent dynamics but increases
learning complexity as the number of agents grows. We retain the GAT objective from Equation (1),
modifying it to use global states and actions. Following (Da et al., 2024b), we model fϕ+ and hϕ−

as neural networks trained via MSE and CCE losses. Unlike vanilla GAT, our inputs and outputs are
global state-action tuples st, at, composed of all agent observations oi,t and actions ai,t.

• The centralized forward model, applied to traffic signal control, aims to predict the next global
traffic state ŝt+1 in the real environment Ereal after agents take global actions at in the global
traffic state st.

Joint-Local Grounded Action Transformation

• The centralized inverse model, applied to traffic signal control, considers the global traffic state
st in Esim and predicted global next traffic state ŝt+1 in Ereal from the forward model to predict
global grounded actions âg

t . Note the inputs to the inverse model hϕ− are global states and actions,
but we compute CCE Loss to optimize ϕ− by extracting the individual grounded actions âg

i,t from
the global grounded actions âg

t and averaging across all agents for each sample.

4.2 Decentralized Grounded Action Transformation

A second intuitive approach to applying GAT to multi-agent settings is to assign each agent its own
forward and inverse model. In this decentralized framework, each agent’s GAT models operate
independently, utilizing only their own information as if they were in a single-agent setting. We
provide an overview of decentralized GAT in Figure 1. This improves scalability, allowing models
to focus on local dynamics per agent. However, they ignore the influence of other agents, limiting
their ability to model global dynamics. We follow (Da et al., 2024b), modifying inputs to use
local observations in line with the Dec-POMDP formulation described in Section 3.1. Each agent
i learns its own fi,ϕ+ and hi,ϕ− to model a local grounded transition function Pϕ, still optimizing
Equation (1) to minimize the discrepancy between P ∗ and Pϕ.

• The decentralized forward model, applied to traffic signal control, aims to predict the next state
(observation) ôt+1 of traffic in the real environment Ereal for each agent i after the action ai,t is
taken in the current traffic observation oi,t.

• The decentralized inverse model, applied to traffic signal control, considers the traffic observation
oi,t in Esim and the predicted next observation ôi,t+1 in Ereal from the forward model to predict
the grounded action âg

i,t for each agent i.

5 JL-GAT: Joint-Local Grounded Action Transformation

By modifying our decentralized GAT formulation in Section 4.2 to incorporate local joint state and
action information for each agent, we arrive at JL-GAT as shown in Figure 2. JL-GAT strikes a
balance between the two multi-agent applications of GAT, centralized and decentralized, introduced
in Section 4. With this hybrid approach, JL-GAT reaps unique benefits from both approaches,
allowing GAT to be applied in large-scale multi-agent settings while still capturing essential agent
interactions that influence the transition dynamics of the environment.

5.1 Overview of JL-GAT

We introduced two natural ways to apply GAT to multi-agent environments in Section 4: a central-
ized approach, which uses a single forward and inverse model to capture global information, and a
decentralized approach, where each agent has its own GAT model, considering only its own state
and actions. Although centralized GAT captures global interactions, it struggles to scale as the agent
count grows. In contrast, decentralized GAT simplifies learning but ignores inter-agent dynamics
that are critical to transition modeling. To overcome these limitations, we propose JL-GAT, visu-
alized in Figure 2. The core idea behind JL-GAT is simple yet powerful: combine the strengths of
both approaches by considering multi-agent interactions, such as in centralized GAT, while retain-
ing the scalability of the decentralized approach. JL-GAT achieves this by incorporating state and
action information from neighboring agents into decentralized GAT models, preserving local agent
interactions while maintaining the scalability of a decentralized setup. This results in more realistic
simulated transitions, narrowing the sim-to-real gap.

5.2 Formulation of JL-GAT

In this section, we formally define our proposed method, JL-GAT. We first continue with the decen-
tralized GAT approach described in Section 4.2, which includes a single forward and inverse model

Reinforcement Learning Journal 2025

𝑔∅(·,·): Grounding Module

: GAT Operation

…

à repeat

Policy 𝜋!,#

𝑜&,', 𝑎&,'

𝑜&,'()

𝑓!,∅!(𝑜!,%,& 𝑎!,%,&)

ℎ!,∅"(𝑜!,%,& 𝑎',%, (𝑜!,%())
(𝑜!,%()

𝑔∅(·,·)

Ours: Joint-Local GAT

…

Agent_i
Next

…

…

…

Pattern Grounding

…

$𝑎&,'
*

Figure 2: Overview of JL-GAT. The pipeline follows these steps: Each agent i first observes its state
oi,t and selects an action ai,t using its policy πi,θ. The agent then incorporates neighboring agent
observations and actions oj,t, aj,t within a predefined sensing radius r, considering those within a
Manhattan distance of r or less. The 3×3 grid in the top center illustrates the neighboring information
used for grounding when r = 1. The forward model fi,ϕ+ takes in oi,t, ai,t and neighboring oj,t,
aj,t, forming the local joint observation oLi,t and local joint action aLi,t. The forward model fi,ϕ+

then predicts the next observation ôi,t+1 for agent i. This predicted observation, along with the local
joint observation oLi,t and assumed neighboring actions aj,t, is fed into the inverse model hi,ϕ− . The
inverse model hi,ϕ− outputs a grounded action âgi,t for agent i to take instead of ai,t. Finally, we
address the cascading invalidation effect, a novel challenge arising with JL-GAT, by introducing
pattern grounding, illustrated in the bottom center.

for each agent, extending it to reach the formulation of JL-GAT. Then, we introduce the new objec-
tive for JL-GAT. Lastly, we outline the forward and inverse model setup used in JL-GAT, discussing
the intuition behind the modifications and their benefits.

5.2.1 JL-GAT from Decentralized GAT

We build on the decentralized GAT formulation introduced in Section 4.2, where for each agent i, we
incorporate neighboring state and action information. We define the local joint state oLi,t and action
aLi,t of agent i as its own observation oi,t and action ai,t at time t combined with the observation and
action information oj,t, aj,t of agents j within a predefined sensing radius r:

oLi,t = {oi,t} ∪ {oj,t | d(i, j) ≤ r}, aLi,t = {ai,t} ∪ {aj,t | d(i, j) ≤ r}

where the Manhattan distance between agents i and j is defined as: d(i, j) = |xi − xj |+ |yi − yj |,
with xi, yi and xj , yj representing the positions of agents i and j in a 2D coordinate space.

5.2.2 Objective Function for JL-GAT

The formulation of JL-GAT requires modifications to the objective in decentralized GAT shown
in Equation (3). Given real-world trajectories Dreal = {τ1, . . . , τ I}, where each trajectory τk =
(skt , a

k
t , s

k
t+1)

T−1
t=0 is collected by executing policies in the real environment Ereal, our new objective

is to learn a grounded simulator transition function Pi,ϕ for each agent i that minimizes:

ϕ∗ = argmin
ϕ

∑
τk∈Dreal

T−1∑
t=0

d
(
P ∗
i (o

k
i,t+1 | oL,k

i,t , a
L,k
i,t), Pi,ϕ(o

k
i,t+1 | oL,k

i,t , a
k,L
i,t)

)
, (3)

Joint-Local Grounded Action Transformation

where P ∗
i represents real-world transition dynamics for an agent i and d(·) is a divergence measure

(e.g., Kullback-Leibler divergence). We arrive at this objective by replacing the single-agent ob-
servations and actions from the vanilla GAT objective shown in Equation (1) with local joint states
(observations) and actions. Note that JL-GAT attempts to model the transition to the next individual
observation oki,t+1 for a trajectory k as opposed to a local joint observation.

5.2.3 Forward and Inverse Models in JL-GAT

In this section, we present the forward and inverse models employed in JL-GAT. We then highlight
the advantages of our modifications to both vanilla and decentralized GAT. Finally, we explain how
we strike a balance between centralized and decentralized GAT, effectively combining the strengths
of both approaches.

• The forward model of JL-GAT predicts the next individual state ôi,t+1 (observation) that would
occur in the real environmentEreal for agent i if the local joint action aLi,t was taken in local joint state
oLi,t at time t. Applied to traffic signal control, the forward model predicts the next real environment
traffic state that would occur if the local joint action is taken in the current local joint traffic state:

ôi,t+1 = fi,ϕ+(oLi,t, a
L
i,t) (4)

Our setup of the forward model builds on the forward model of the decentralized setup in Section
4.2, where we also approximate the forward model fi,ϕ+ with a deep neural network for each agent
i, now considering local joint information instead of only individual information, and optimize ϕ+

by minimizing the Mean Squared Error (MSE) loss:

L(ϕ+) = MSE(oi,t+1, ôi,t+1) = MSE(oi,t+1, fi,ϕ+(oLi,t, a
L
i,t)) (5)

where oLi,t, a
L
i,t, and oi,t+1 are sampled from trajectories collected in Ereal. Note that the forward

model in JL-GAT predicts a single next state (observation) ôi,t+1 for each agent i as in the decen-
tralized GAT setup. In this way, JL-GAT avoids the pitfall of attempting to predict neighboring
agent observations, as those neighbors may be influenced by other agents at distance d beyond the
predefined radius r. Furthermore, by including the actions aj,t of neighboring agents j within r, the
forward model assumes that the neighboring agent actions will remain fixed. This assumption has
significant implications for the setup of the inverse model in JL-GAT, and if violated, gives way to
the cascading invalidation effect described in Section 5.3.

• The inverse model of JL-GAT predicts a grounded action âg
i,t for agent i at time t that would attempt

to transition the current local joint observation oLi,t to the predicted individual next observation ôi,t+1

in the simulated environmentEsim. We further deviate from previous grounded action transformation
works by including additional action information into the inverse model to predict a grounded action
âg
i,t for agent i. We use aLi,t, which incorporates the actions aj,t of neighboring agents j within a

predefined radius r (as described in Section 5.2.1), as input to the inverse model for JL-GAT. This
implicitly assumes that their actions in Esim remain unchanged at time t:

âg
i,t = hi,ϕ−(oLi,t, a

L
i,t, ôi,t+1) (6)

Including neighboring agent actions aj,t into the inverse model is invaluable for multi-agent settings,
as it allows us to capture local agent interactions that affect the transition dynamics of a single agent
i. Furthermore, we previously assumed neighboring agent actions would remain unchanged with
our input to the forward model, thus it is a natural extension of the inverse model to also include
this information. A key insight is that these assumptions lead to the cascading invalidation effect
described in Section 5.3. We conduct an ablation study in Section 6.4, on this additional information,
further reinforcing its necessity in JL-GAT. As in the forward model, we build on the inverse model

Reinforcement Learning Journal 2025

from decentralized GAT in Section 4.2 and approximate hi,ϕ− with a deep neural network for each
agent i and optimize ϕ− by minimizing the Categorical Cross-Entropy (CCE) Loss:

L(ϕ−) = CCE(ag
i,t, â

g
i,t) = CCE(ag

i,t, hi,ϕ−(oLi,t, a
L
i,t, ôi,t+1)) (7)

where ag
i,t, o

L
i,t, and ôi,t+1 are sampled from trajectories collected in Esim.

5.3 Cascading Invalidation Effect

While adapting JL-GAT to include local joint information, we observe a unique challenge, namely
the cascading invalidation effect. This problem arises from the use of state and action information
from neighboring agents to predict the next state that would occur in Ereal, as shown in Equation (4).
When using neighboring state and action information to attempt to bring the transition dynamics of
Esim closer to Ereal, the underlying assumption is that the actions of neighbor agents will remain
unchanged in Esim. If the actions of an agent and one of its neighbors within the predefined ra-
dius r are grounded simultaneously, both grounded actions become invalid and may no longer aid
in reducing the sim-to-real gap. This is due to the fact that while grounding actions, we assume
neighbor actions will not change. We also observe this effect cascade through a network of agents if
grounding sequentially, as each agent grounds their action, assuming neighbor actions will remain
unchanged. To overcome the cascading invalidation effect, we propose two different approaches:

• Pattern Grounding. This approach is simple yet effective: we set a pattern to ground specific
agents during a training epoch to avoid any grounding assumption conflicts. We visualize pattern
grounding in Figure 2. For example, in our experiments for traffic signal control, we utilize a
1x3 traffic network and apply pattern grounding by grounding only the first and last agent for an
epoch. Then, we ground only the agent in between them for the next epoch, alternating between the
two set grounding patterns. This directly overcomes the cascading invalidation effect by avoiding
grounding agents whose actions have been assumed fixed, but a rigid grounding pattern reduces
flexibility during training. This approach can also be paired with probabilistic grounding, but for
our evaluations, we focused solely on applying each technique separately.

• Probabilistic Grounding. In this approach, we let P i
ground(t) represent the probability of grounding

an action ai,t for each agent i at time step t: P i
ground(t) = pground. Using probability to determine

when grounding occurs introduces flexibility by allowing different grounding patterns to emerge
naturally across epochs, as opposed to a fixed or rigid scheme. As demonstrated in Tables 1 and 2,
this approach led to strong performance for JL-GAT. Although probabilistic grounding does not
directly overcome the cascading invalidation effect as pattern grounding does, it often circumvents
this challenge by using a fixed probability to ground, which introduces some trade-offs. In particular,
this can lead to training scenarios in the simulated environment Esim that do not accurately reflect
the transition dynamics of the real environment Ereal. This is due to the less restrictive grounding
requirements in probabilistic grounding compared to pattern grounding, which enables agents to
ground their actions independently without requiring consideration of whether neighboring agents
are simultaneously utilizing their actions for grounding. Furthermore, decreasing the grounding
probability P i

ground(t) for each agent i inherently mitigates the likelihood of cascading invalidation.
However, this comes at the cost of reducing the amount of grounding during training, which may
result in a larger sim-to-real gap. We experiment with various probabilities in Section 6.5, where we
recommend 1/N as a starting point for probabilistic grounding based on empirical evaluation.

We acknowledge that there are several alternative solutions to the cascading invalidation effect that
remain to be explored, such as clustering groups for grounding, learned grounding patterns, and
algorithmic approaches to grounding. These avenues are left for future work.

Joint-Local Grounded Action Transformation

5.4 Training Algorithm

We present the training procedure for JL-GAT in Algorithm 1. The algorithm takes as input initial
policies πi,θ, forward models fi,ϕ+ , and inverse models hi,ϕ− for each agent i, as well as simulation
and real-world datasets Dsim and Dreal (collected offline or from rollouts (Da et al., 2023b)). A sens-
ing radius r is required to determine neighboring agent interactions for grounding, and an optional
grounding pattern or probability may also be specified. The output includes updated policies and
models for each agent. Training begins with M iterations of policy pre-training in Esim, followed
by multiple epochs consisting of: (1) optional policy rollouts in Esim and Ereal to populate Dsim
and Dreal; (2) updates to fi,ϕ+ and hi,ϕ− using the collected data; (3) policy training episodes using
grounded actions to align simulated dynamics with the real world; and (4) reinforcement learning-
based policy updates in Esim with improved dynamics to reduce the sim-to-real gap.

6 Experiments and Results

In this section, we introduce our experiment setup and evaluation metrics, which closely follow that
of (Da et al., 2024b), demonstrating both the existence of a performance gap between simulation
and real environments and the effectiveness of JL-GAT in reducing this gap. We also perform an
ablation study to demonstrate the necessity of all additional information to the forward and inverse
models in JL-GAT. Lastly, we perform evaluations with different probabilistic grounding settings
and explore the pairing of JL-GAT with uncertainty quantification from (Da et al., 2023b).

6.1 Environments

We built our implementation of JL-GAT on top of LibSignal (Mei et al., 2024), an open-source en-
vironment for traffic signal control with multiple simulation environments. For our experiments, we
consider CityFlow (Zhang et al., 2019) as the simulation environment Esim, and SUMO (Behrisch
et al., 2011) as the real environment Ereal. We use a sim-to-sim setup to mimic a sim-to-real de-
ployment process with the main benefit of reproducibility and avoiding the negative impact of un-
expected behaviors in the real world, as described in (Da et al., 2024b;c). Our experiments consider
two environmental conditions to showcase the sim-to-real gap: rainy and snowy, and we detail their
parameter settings in Table 5 (Supplementary Materials).

• Default settings. This represents the default settings for CityFlow and SUMO, which we consider
Esim and Ereal, respectively.

• Adverse Weather conditions. We model the effect of adverse weather conditions that are unac-
counted for when training a TSC policy in Esim by varying parameters in Ereal, such as acceler-
ation, deceleration, emergency deceleration, and startup delay shown in Table 5. We attempt to
mimic real-world adverse weather effects, such as wet and icy roads, by reducing the acceleration
and deceleration rates of vehicles and increasing their startup delay.

6.2 Evaluation Metrics

Building on common practices in traffic signal control (TSC), as described in recent literature (Wei
et al., 2021), we adopt the following standard metrics to assess policy performance. Average Travel
Time (ATT) represents the average travel time t for vehicles in a given road network, where lower
ATT values indicate better control policy performance. Queue measures the number of vehicles
waiting at a particular intersection, and we report the average queue over all intersections in a given
road network, with smaller values being preferable. Delay captures the average time t that vehicles
wait in the traffic network, where lower delay is desirable. Throughput (TP) quantifies the number of
vehicles that have completed their trip in a given road network, with higher TP values being better.
Lastly, reward represents the return associated with taking an action at in a state st in RL. We use the
same reward metric as (Wei et al., 2019a), defining the reward as negative pressure, and we report
the sum of rewards for all intersections in our experiments.

Reinforcement Learning Journal 2025

In this work, we adopt the calculation metric for the performance gap between Esim and Ereal
from (Da et al., 2024b) and (Da et al., 2023b). Specifically, for a metric ψ, we use the follow-
ing equation to calculate the gap ∆: ψ∆ = ψreal − ψsim. Our goal is to reduce this sim-to-real gap
by bringing the transition dynamics of Esim closer to Ereal while training through GAT. We report
the ∆ values for each metric, where smaller values are better for ATT∆, Queue∆, and Delay∆, and
larger values are better for TP∆, and Reward∆ because they are negative values.

6.3 Main Results

To highlight the sim-to-real gap in multi-agent traffic signal control (TSC), we conduct experiments
in the rainy and snowy settings introduced in Section 6.1, with parameters detailed in Table 5. We
begin by evaluating the Direct Transfer approach: agents (Section 3.2) are trained from scratch in
Esim through six independent trials of 300 epochs each. After six independent trials for each net-
work size, the best-performing policies based on lowest average travel time (ATT) are tested in
Ereal. These policies then serve as initialization for various GAT-based multi-agent training config-
urations, including JL-GAT. The resulting performance metrics are visualized in Figures 4 and 5 in
the Supplementary Materials. Full numerical results, including standard deviations and sim-to-real
gap calculations, are provided in Tables 1 and 2. A clear performance drop is observed when directly
transferring policies from Esim to Ereal, illustrating the sim-to-real gap.

Table 1: Rainy environment performance using Direct Transfer as compared to centralized GAT,
decentralized GAT, and two versions of our proposed method JL-GAT. For each GAT configuration
and network size pair, we run six independent trials and identify the best epoch in each trial based
on the lowest average travel time (ATT) in Ereal. Reported metrics are averaged across these six best
epochs (one per trial). The value in () shows the metric gap ψ between Esim and Ereal and ± shows
the sample standard deviation after six trials. The ↑ indicates that a higher value represents a better
performance for a metric and the ↓ indicates that a lower value represents a better performance for
a metric. Note that Direct Transfer is reported as the policies from the best performing epoch (by
lowest ATT) in Esim being tested in Ereal after six trials of 300 epochs.

Network Method ATT (∆ ↓) Queue (∆ ↓) Delay (∆ ↓) TP (∆ ↑) Reward (∆ ↑)

1x3

Direct Transfer 309.90 (188.64) 67.66 (43.60) 0.64 (0.23) 4784 (-776) -202.85 (-141.21)
Centralized GAT 297.57(176.31)±16.12 65.59(41.53)±5.83 0.63(0.22)±0.01 4857(-702)±96.37 -189.87(-128.23)±15.64

Decentralized GAT 276.92(155.66)±16.53 59.07(35.01)±6.00 0.63(0.22)±0.01 5004(-555)±119.40 -175.30(-113.66)±16.12
JL-GAT (Pattern) 265.64(144.38)±6.72 51.96(27.90)±3.52 0.62(0.21)±0.005 5073(-487)±39.36 -156.27(-94.63)±10.10

JL-GAT (Probabilistic 1/N = 33%) 263.01(141.75)±2.59 50.63(26.57)±1.76 0.61(0.20)±0.005 5065(-494)±39.77 -152.12(-90.48)±5.08

4x4

Direct Transfer 485.63(158.38) 6.89(5.39) 0.19(0.11) 2608(-320) -90.77(-71.48)
Centralized GAT 485.63(158.38)±0.00 6.89(5.39)±0.00 0.19(0.11)±0.00 2608(-320)±0.00 -90.77(-71.48)±0.00

Decentralized GAT 476.69(149.44)±4.53 6.39(4.88)±0.37 0.18(0.10)±0.004 2620(-307)±10.30 -84.31(-65.03)±2.38
JL-GAT (Pattern) 468.81(141.56)±2.42 5.99(4.48)±0.12 0.18(0.10)±0.002 2627(-300)±5.05 -83.47(-64.18)±2.08

JL-GAT (Probabilistic 1/N = 6.25%) 467.11(139.86)±1.77 5.85(4.34)±0.17 0.18(0.10)±0.004 2625(-302)±7.06 -85.33(-66.04)±1.60

Table 2: Snowy environment performance using Direct Transfer as compared to centralized GAT,
decentralized GAT, and two versions of our proposed method JL-GAT. Refer to Table 1 for details
on the reporting methodology.

Network Method ATT (∆ ↓) Queue (∆ ↓) Delay (∆ ↓) TP (∆ ↑) Reward (∆ ↑)

1x3

Direct Transfer 473.29 (352.02) 49.11 (25.05) 0.66 (0.24) 4297 (-1263) -160.69 (-99.05)
Centralized GAT 472.67(351.41)±1.51 49.20(25.14)±0.21 0.65(0.24)±0.004 4316(-1243)±47.77 -160.46(-98.82)±0.57

Decentralized GAT 463.37(342.11)±11.84 54.27(30.21)±7.52 0.66(0.25)±0.01 4402(-1157)±96.01 -166.85(-105.21)±17.78
JL-GAT (Pattern) 459.28(338.02)±2.79 50.59(26.53)±5.12 0.65(0.24)±0.01 4414(-1145)±40.40 -157.20(-95.56)±11.17

JL-GAT (Probabilistic 1/N = 33%) 456.14(334.88)±6.09 46.39(22.33)±3.26 0.65(0.24)±0.005 4436(-1123)±27.18 -147.97(-86.33)±9.20

4x4

Direct Transfer 593.06 (265.81) 6.83 (5.33) 0.20 (0.12) 2423 (-505) -96.28 (-76.99)
Centralized GAT 593.06(265.81)±0.00 6.83(5.33)±0.00 0.20(0.12)±0.00 2423(-505)±0.00 -96.28(-76.99)±0.00

Decentralized GAT 573.07(245.82)±4.09 5.70(4.19)±0.27 0.19(0.11)±0.004 2467(-460)±4.97 -83.90(-64.61)±3.17
JL-GAT (Pattern) 567.75(240.50)±1.96 5.50(3.99)±0.08 0.19(0.11)±0.005 2471(-457)±7.85 -83.83(-64.54)±1.51

JL-GAT (Probabilistic 1/N = 6.25%) 566.22(238.97)±2.64 5.28(3.77)±0.18 0.18(0.10)±0.004 2470(-457)±3.97 -82.32(-63.03)±1.24

6.4 Ablation Study

To show how different parts in JL-GAT help sim-to-real transfer, we conduct an ablation study on the
addition of neighboring information in the forward and inverse models of JL-GAT. For this study,

Joint-Local Grounded Action Transformation

we focus on the rainy 1x3 environment while systematically varying the removal of neighboring
states and action information used in JL-GAT. We present the average performance of each metric
for the best episode of each method. These results are based on two trials over 300 epochs, as shown
in Figure 3, with full details including sim-to-real gap computation and sample standard deviation
shown in Table 7. The last two methods failed to improve the Direct Transfer models used for
initialization, indicating the necessity of all required modules for JL-GAT.

Figure 3: The ablation study on JL-GAT. We systematically vary the information used in the GAT
models of JL-GAT to demonstrate the necessity of including neighboring agent information in all
parts of GAT. The bars show the average performance of each metric over the best episodes of each
method after two trials in the 1x3 rainy environment. Each plot displays the methods in the order
they appear from left to right, as indicated in the legend. Full details including sim-to-real gap
computation and sample standard deviation are shown in Table 7.

6.5 Probabilistic Grounding Settings

We experiment with various probability grounding settings for JL-GAT to test the robustness of JL-
GAT for different probability settings. We focus on four different variations of probability ground-
ing, including 1/N , which sets the grounding probability proportional to the number of agents in the
environment. We report the best performance for each setting over 300 epochs in Table 3. The re-
sults show that using a probability of 0.2 produces the best performance across all metrics in the 1x3
rainy environment. However, we recommend 1/N as a starting place for probabilistic grounding, as
our results from Tables 1, 2, and 3 demonstrate a strong performance from the 1/N setting.

Table 3: Probability grounding settings for JL-GAT in 1x3 rainy environment.

Probability ATT (∆ ↓) Queue (∆ ↓) Delay (∆ ↓) TP (∆ ↑) Reward (∆ ↑)
0.2 260.77(139.51)±4.73 50.23(26.17)±2.24 0.62(0.21)±0.005 5115(-445)±36.06 -151.34(-89.69)±5.09
0.5 281.73(160.47)±29.87 56.19(32.14)±16.36 0.61(0.20)±0.01 4909(-651)±209.30 -170.52(-108.87)±39.52
0.8 297.75(176.49)±6.70 66.78(42.73)±5.97 0.63(0.22)±0.0001 4828(-732)±276.48 -187.69(-126.05)±7.32

1/N (0.3) 261.56(140.30)±1.30 50.28(26.22)±2.59 0.61(0.20)±0.01 5062(-498)±25.38 -155.33(-93.68)±4.24

6.6 JL-GAT with Uncertainty Quantification

Sim-to-real transfer can introduce uncertainty in action effectiveness due to discrepancies between
simulated and real-world dynamics. Prior work has investigated uncertainty quantification (UQ)
techniques to improve the reliability of decision-making (Abdar et al., 2021; Liu et al., 2025) such as
MC dropout (Gal & Ghahramani, 2016), Deep Ensembles (Rahaman et al., 2021), Evidential Deep
Learning (EDL) (Deng et al., 2023), and methods based on eigenvalues (Thompson et al., 2019), etc.
To explore whether UQ can enhance JL-GAT, we incorporate the dynamic grounding rate method
from (Da et al., 2023b), which adjusts the application of grounding based on model uncertainty.
Specifically, for each agent, we compute the average model uncertainty over the previous two epochs
and use it to determine whether to ground the current action. If the agent’s predicted uncertainty
exceeds a dynamic threshold, the original (non-grounded) action is used instead. We evaluate this

Reinforcement Learning Journal 2025

uncertainty-aware version of JL-GAT in both rainy and snowy environments over three trials of 300
epochs each, and display the results in Table 4. The results indicate that integrating UQ with JL-GAT
further reduces the sim-to-real gap in the 1×3 setting.

Table 4: Uncertainty quantification in JL-GAT for 1x3 traffic network.

Environment Method ATT (∆ ↓) Queue (∆ ↓) Delay (∆ ↓) TP (∆ ↑) Reward (∆ ↑)

Rainy JL-GAT (Pattern) 263.61(142.35)±4.66 49.82(25.76)±1.46 0.62(0.21)±0.004 5091(-469)±20.26 -152.20(-90.55)±5.96
JL-GAT w/ Uncertainty 261.53(140.26)±4.56 49.65(25.59)±4.19 0.62(0.21)±0.01 5092(-468)±16.07 -148.15(-86.51)±11.73

Snowy JL-GAT (Pattern) 459.46(338.20)±3.89 47.13(23.07)±4.56 0.65(0.24)±0.01 4417(-1143)±20.26 -150.40(-88.76)±12.10
JL-GAT w/ Uncertainty 456.92(335.66)±4.87 44.51(20.45)±8.23 0.64(0.23)±0.02 4444(-1116)±48.87 -141.41(-79.76)±15.80

7 Conclusion

We have identified a significant performance gap that arises when directly transferring MARL-based
TSC policies from simulation to the real world, primarily due to shifts in environment dynamics. To
address this, we proposed JL-GAT, a scalable framework that extends Grounded Action Transforma-
tion (GAT) to the MARL-based TSC setting. JL-GAT enhances the performance of a decentralized
approach to GAT, where each agent has its own GAT models, by incorporating neighboring agent in-
formation. This allows JL-GAT to model inter-agent dynamics as in a centralized approach, without
sacrificing the scalability of a decentralized approach. Extensive experiments across diverse traffic
networks and simulated adverse weather conditions confirm that the hybrid design of JL-GAT con-
sistently reduces the sim-to-real performance gap. A key challenge we identified in the multi-agent
GAT setting is the cascading invalidation effect, which arises when multiple agents simultaneously
ground their actions under the incorrect assumption that neighboring agents’ actions remain fixed.
Although we introduced two methods to mitigate this issue, a promising direction for future work
lies in dynamically selecting which agents should engage in GAT and when.

Acknowledgments

The work was partially supported by NSF awards #2421839, Amazon Research Awards, NAIRR
#240120 and used AWS through the CloudBank project, which is supported by NSF grant #1925001.
The views and conclusions in this paper are those of the authors and should not be interpreted as
representing any funding agencies.

References
Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mohammad

Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Rajendra Acharya, et al. A
review of uncertainty quantification in deep learning: Techniques, applications and challenges.
Information fusion, 76:243–297, 2021.

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
dexterous in-hand manipulation. The International Journal of Robotics Research, 39(1):3–20,
2020.

PG Balaji and Dipti Srinivasan. Multi-agent system in urban traffic signal control. IEEE Computa-
tional Intelligence Magazine, 5(4):43–51, 2010.

Michael Balmer, Kai Nagel, and Bryan Raney. Large-scale multi-agent simulations for transporta-
tion applications. In Intelligent Transportation Systems, volume 8, pp. 205–221. Taylor & Francis,
2004.

Michael Behrisch, Laura Bieker, Jakob Erdmann, and Daniel Krajzewicz. Sumo–simulation of urban
mobility: an overview. In Proceedings of SIMUL 2011, The Third International Conference on
Advances in System Simulation. ThinkMind, 2011.

Joint-Local Grounded Action Transformation

Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei Bai, Matthew Kelcey, Mrinal Kalakrish-
nan, Laura Downs, Julian Ibarz, Peter Pastor, Kurt Konolige, et al. Using simulation and domain
adaptation to improve efficiency of deep robotic grasping. In 2018 IEEE international conference
on robotics and automation (ICRA), pp. 4243–4250. IEEE, 2018.

Chacha Chen, Hua Wei, Nan Xu, Guanjie Zheng, Ming Yang, Yuanhao Xiong, Kai Xu, and Zhenhui
Li. Toward a thousand lights: Decentralized deep reinforcement learning for large-scale traffic
signal control. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp.
3414–3421, 2020.

Min Chee Choy, Dipti Srinivasan, and Ruey Long Cheu. Cooperative, hybrid agent architecture
for real-time traffic signal control. IEEE Transactions on Systems, Man, and Cybernetics-Part A:
systems and humans, 33(5):597–607, 2003.

Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. Robots that can adapt like
animals. Nature, 521(7553):503–507, may 2015. DOI: 10.1038/nature14422. URL https:
//doi.org/10.1038%2Fnature14422.

Mark Cutler, Thomas J. Walsh, and Jonathan P. How. Reinforcement learning with multi-fidelity
simulators. In 2014 IEEE International Conference on Robotics and Automation (ICRA), pp.
3888–3895, 2014. DOI: 10.1109/ICRA.2014.6907423.

Longchao Da, Hao Mei, Romir Sharma, and Hua Wei. Sim2real transfer for traffic signal control. In
2023 IEEE 19th International Conference on Automation Science and Engineering (CASE), pp.
1–2. IEEE, 2023a.

Longchao Da, Hao Mei, Romir Sharma, and Hua Wei. Uncertainty-aware grounded action transfor-
mation towards sim-to-real transfer for traffic signal control. In 2023 62nd IEEE Conference on
Decision and Control (CDC), pp. 1124–1129. IEEE, 2023b.

Longchao Da, Chen Chu, Weinan Zhang, and Hua Wei. Cityflower: An efficient and realistic traffic
simulator with embedded machine learning models. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pp. 368–373. Springer, 2024a.

Longchao Da, Minquan Gao, Hao Mei, and Hua Wei. Prompt to transfer: Sim-to-real transfer for
traffic signal control with prompt learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 82–90, 2024b.

Longchao Da, Porter Jenkins, Trevor Schwantes, Jeffrey Dotson, and Hua Wei. Probabilistic offline
policy ranking with approximate bayesian computation. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 20370–20378, 2024c.

Longchao Da, Justin Turnau, Thirulogasankar Pranav Kutralingam, Alvaro Velasquez, Paulo
Shakarian, and Hua Wei. A survey of sim-to-real methods in rl: Progress, prospects and chal-
lenges with foundation models. arXiv preprint arXiv:2502.13187, 2025.

Danruo Deng, Guangyong Chen, Yang Yu, Furui Liu, and Pheng-Ann Heng. Uncertainty estimation
by fisher information-based evidential deep learning. In International conference on machine
learning, pp. 7596–7616. PMLR, 2023.

Siddarth Desai, Ishan Durugkar, Haresh Karnan, Garrett Warnell, Josiah Hanna, and Peter Stone. An
imitation from observation approach to transfer learning with dynamics mismatch. In Proceedings
of the 34th International Conference on Neural Information Processing Systems (NeurIPS 2020),
December 2020a.

Siddharth Desai, Haresh Karnan, Josiah P. Hanna, Garrett Warnell, and Peter Stone. Stochastic
grounded action transformation for robot learning in simulation. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems(IROS 2020), October 2020b.

https://doi.org/10.1038%2Fnature14422
https://doi.org/10.1038%2Fnature14422

Reinforcement Learning Journal 2025

François Dion and Bruce Hellinga. A rule-based real-time traffic responsive signal control system
with transit priority: application to an isolated intersection. Transportation Research Part B:
Methodological, 36(4):325–343, 2002.

Kuan Fang, Yunfei Bai, Stefan Hinterstoisser, Silvio Savarese, and Mrinal Kalakrishnan. Multi-
task domain adaptation for deep learning of instance grasping from simulation. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pp. 3516–3523. IEEE, 2018.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pp. 1050–1059.
PMLR, 2016.

Te Han, Chao Liu, Wenguang Yang, and Dongxiang Jiang. Learning transferable features in deep
convolutional neural networks for diagnosing unseen machine conditions. ISA transactions, 93:
341–353, 2019.

Josiah Hanna and Peter Stone. Grounded action transformation for robot learning in simulation. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

Hao Huang, Zhiqun Hu, Zhaoming Lu, and Xiangming Wen. Network-scale traffic signal control via
multiagent reinforcement learning with deep spatiotemporal attentive network. IEEE transactions
on cybernetics, 53(1):262–274, 2021.

Stephen James, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry Kalashnikov, Alex Irpan, Julian Ibarz,
Sergey Levine, Raia Hadsell, and Konstantinos Bousmalis. Sim-to-real via sim-to-sim: Data-
efficient robotic grasping via randomized-to-canonical adaptation networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12627–12637, 2019.

Haoyuan Jiang, Ziyue Li, Hua Wei, Xuantang Xiong, Jingqing Ruan, Jiaming Lu, Hangyu Mao,
and Rui Zhao. X-light: Cross-city traffic signal control using transformer on transformer as meta
multi-agent reinforcement learner. arXiv preprint arXiv:2404.12090, 2024.

Haresh Karnan, Siddharth Desai, Josiah P. Hanna, Garrett Warnell, and Peter Stone. Reinforced
grounded action transformation for sim-to-real transfer. In IEEE/RSJ International Conference
on Intelligent Robots and Systems(IROS 2020), October 2020.

Phyllis C Lee and Antonio C de A Moura. Necessity, unpredictability and opportunity: An ex-
ploration of ecological and social drivers of behavioral innovation. In Animal creativity and
innovation, pp. 317–333. Elsevier, 2015.

Xiaoou Liu, Tiejin Chen, Longchao Da, Chacha Chen, Zhen Lin, and Hua Wei. Uncertainty
quantification and confidence calibration in large language models: A survey. arXiv preprint
arXiv:2503.15850, 2025.

Hao Mei, Xiaoliang Lei, Longchao Da, Bin Shi, and Hua Wei. Libsignal: an open library for traffic
signal control. Machine Learning, 113(8):5235–5271, 2024.

Arthur Müller, Vishal Rangras, Tobias Ferfers, Florian Hufen, Lukas Schreckenberg, Jürgen
Jasperneite, Georg Schnittker, Michael Waldmann, Maxim Friesen, and Marco Wiering. To-
wards real-world deployment of reinforcement learning for traffic signal control. In 2021 20th
IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 507–514.
IEEE, 2021.

Syed Shah Sultan Mohiuddin Qadri, Mahmut Ali Gökçe, and Erdinç Öner. State-of-art review of
traffic signal control methods: challenges and opportunities. European transport research review,
12:1–23, 2020.

Rahul Rahaman et al. Uncertainty quantification and deep ensembles. Advances in neural informa-
tion processing systems, 34:20063–20075, 2021.

Joint-Local Grounded Action Transformation

Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of multi-
objective sequential decision-making. Journal of Artificial Intelligence Research, 48:67–113,
2013a.

Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of multi-
objective sequential decision-making. Journal of Artificial Intelligence Research, 48:67–113,
2013b.

Roney L Thompson, Aashwin Ananda Mishra, Gianluca Iaccarino, Wouter Edeling, and Luiz Sam-
paio. Eigenvector perturbation methodology for uncertainty quantification of turbulence models.
Physical Review Fluids, 4(4):044603, 2019.

Joshua P Tobin. Real-World Robotic Perception and Control Using Synthetic Data. University of
California, Berkeley, 2019.

Eric Tzeng, Coline Devin, Judy Hoffman, Chelsea Finn, Xingchao Peng, Sergey Levine, Kate
Saenko, and Trevor Darrell. Towards adapting deep visuomotor representations from simulated
to real environments. arXiv preprint arXiv:1511.07111, 2(3), 2015.

Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain confusion:
Maximizing for domain invariance. arxiv 2014. arXiv preprint arXiv:1412.3474, 2019.

H. Wei, Guanjie. Zheng, H. Yao, and Z. Li. Intellilight: A reinforcement learning approach for
intelligent traffic light control. Proceedings of the 24th ACM SIGKDD international conference
on knowledge discovery & data mining, 2018.

Hua Wei, Chacha Chen, Guanjie Zheng, Kan Wu, Vikash Gayah, Kai Xu, and Zhenhui Li.
Presslight: Learning max pressure control to coordinate traffic signals in arterial network. In
Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data
mining, pp. 1290–1298, 2019a.

Hua Wei, Guanjie Zheng, Vikash Gayah, and Zhenhui Li. A survey on traffic signal control methods.
arXiv preprint arXiv:1904.08117, 2019b.

Hua Wei, Guanjie Zheng, Vikash Gayah, and Zhenhui Li. Recent advances in reinforcement learn-
ing for traffic signal control: A survey of models and evaluation. ACM SIGKDD explorations
newsletter, 22(2):12–18, 2021.

Hua Wei, Jingxiao Chen, Xiyang Ji, Hongyang Qin, Minwen Deng, Siqin Li, Liang Wang, Weinan
Zhang, Yong Yu, Liu Linc, et al. Honor of kings arena: an environment for generalization in
competitive reinforcement learning. Advances in Neural Information Processing Systems, 35:
11881–11892, 2022.

Huichu Zhang, Siyuan Feng, Chang Liu, Yaoyao Ding, Yichen Zhu, Zihan Zhou, Weinan Zhang,
Yong Yu, Haiming Jin, and Zhenhui Li. Cityflow: A multi-agent reinforcement learning envi-
ronment for large scale city traffic scenario. In The world wide web conference, pp. 3620–3624,
2019.

Yiran Zhang, Khoa Vo, Longchao Da, Tiejin Chen, Xiaoou Liu, and Hua Wei. Reproducible and
low-cost sim-to-real environment for traffic signal control. In Proceedings of the ACM/IEEE 16th
International Conference on Cyber-Physical Systems (with CPS-IoT Week 2025), pp. 1–2, 2025.

Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. Sim-to-real transfer in deep rein-
forcement learning for robotics: a survey. In 2020 IEEE symposium series on computational
intelligence (SSCI), pp. 737–744. IEEE, 2020.

Guanjie Zheng, Xinshi Zang, Nan Xu, Hua Wei, Zhengyao Yu, Vikash Gayah, Kai Xu, and Zhenhui
Li. Diagnosing reinforcement learning for traffic signal control. arXiv preprint arXiv:1905.04716,
2019.

Reinforcement Learning Journal 2025

Supplementary Materials
The following content was not necessarily subject to peer review.

Table 5: Environment settings used in all experiments.

Environment Accel (m/s2) Decel (m/s2) E. Decel (m/s2) S. Delay (s)
Default (Esim) 2.0 4.5 9.0 0.0

Rainy 0.75 3.5 4.0 0.25
Snowy 0.5 1.5 2.0 0.5

8 Dec-POMDP for MARL-based Traffic Signal Control

The traffic signal control (TSC) problem is modeled as a multi-agent reinforcement learning
(MARL) task, where each traffic signal operates as an independent agent in a shared environment.
The MARL problem is typically formulated as a Decentralized Partially Observable Markov Deci-
sion Process (Dec-POMDP), defined by the tuple ⟨N ,S, {Ai}i∈N , P,R,Ωi, O, γ⟩, where: N is the
set of agents (intersections), S is the global state space, representing traffic conditions (e.g., vehicle
queues, speeds). Ai is the action space for agent i, which includes actions such as switching traffic
signal phases. P : S×A → ∆(S) is the transition function, where A =

∏
i∈N Ai is the joint action

space, and ∆(S) denotes the set of probability distributions over S. R : S × A → R is the reward
function, which evaluates traffic metrics (e.g., queue length, delay). Ωi is the observation space for
agent i, with Ω =

∏
i∈N Ωi being the joint observation space. O is the observation probability

function O(s′, a, o) = P (o | s′, a) and defines the probability of receiving a joint observation o
given then next state s′ and joint action a. γ ∈ [0, 1) is the discount factor.

At each time step t, agent i observes its own state oi,t ∈ Ωi, selects an action ai,t ∈ Ai, and
receives a reward ri,t. Agent actions are taken simultaneously and comprise a global action at,
which transitions the environment from a global state st to a global next state st+1, where global
states consist of observations oi,t for each agent i. Global states and actions are represented as:
st = (o1, o2, . . . , oN), and at = (a1, a2, . . . , aN). During training, each agent learns a policy
πi : Ωi → Ai with the goal of maximizing its expected cumulative reward: Ji = E [

∑∞
t=0 γ

tri,t].

9 Agent Design Details

• State. Our state is defined for each agent (intersection) as their own observation oi,t in MARL.
For this work, we utilize the state definition from PressLight, simplifying it to include only the
number of vehicles in each incoming and outgoing lane without lane segmentation.

• Action. Each agent selects an action ai,t ∈ Ai at time step t that represents the traffic signal phase
p. In this work, we utilize the same eight phase TSC action space as in (Da et al., 2023b), and
represent all actions as one-hot encoded vectors.

• Reward. The reward ri,t for each agent i at time step t is defined as negative pressure in
PressLight. The goal of each agent is to minimize pressure, which effectively balances the number
of vehicles in the traffic network and keeps traffic flowing efficiently.

• Learning Method. Each agent is trained using an independent Deep Q-Network (DQN) with
experience replay, enabling efficient sampling of past experiences. This approach follows estab-
lished methods in traffic signal control (Wei et al., 2018). The objective is to optimize the policy
πi,t for each agent i by using its individual reward ri,t to improve decision-making over time.

10 Code Availability

The code used in our experiments is publicly available at https://github.com/DaRL-LibSignal/JL-
GAT/.

https://github.com/DaRL-LibSignal/JL-GAT/
https://github.com/DaRL-LibSignal/JL-GAT/

Joint-Local Grounded Action Transformation

Algorithm 1 Algorithm for JL-GAT

Input: Initial policies πi,θ for each agent i, forward models fi,ϕ+ for each agent i, inverse mod-
els hi,ϕ− for each agent i, simulation dataset Dsim, real-world dataset Dsim, sensing radius r,
grounding pattern or grounding probability P i

ground(t) for each agent
Output: Policies πi,θ, forward models fi,ϕ+ , inverse models hi,ϕ−

1: Pre-train policies πi,θ for each agent i for M iterations in Esim
2: for e = 1, 2, ..., I do
3: Rollout policy πi,θ for each agent i in Esim and add data to Dsim (optional)
4: Rollout policy πi,θ for each agent i in Ereal and add data to Dreal (optional)
5: # Update transformation functions for each agent
6: for i = 1, 2, ..., N do
7: Update fi,ϕ+ with data from Dreal corresponding to agent i using Equation (5)
8: Update hi,ϕ− with data from Dsim corresponding to agent i using Equation (7)
9: end for

10: # Policy training
11: for ep = 1, 2, ...,E do
12: # Action grounding step for each agent i at every time step t
13: for t = 0, 1, ...,T-1 do
14: for i = 1, 2, ..., N do
15: ai,t = πi,θ(oi,t)
16: Predict next state ôi,t+1 using Equation (4)
17: Calculate grounded action âg

i,t using Equation (6)
18: # Apply pattern or probabilistic grounding
19: if grounding is based on a pattern then
20: Ground based on a pattern, example shown in Figure 2.
21: else if grounding is probabilistic then
22: Ground with a probability using Equation in Probabilistic Grounding.
23: end if
24: end for
25: end for
26: # Policy update step
27: Improve policies πi,θ for each agent i with reinforcement learning
28: end for
29: end for

Reinforcement Learning Journal 2025

Table 6: Key Notations and Descriptions in This Paper.

Symbol Description

N Set of agents (traffic signals)
S Global state space
Ai Action space for agent i
P Transition function
R Reward function
γ Discount factor
oi,t State (observation) of agent i at time t
ai,t Action of agent i at time t
ôi,t+1 Predicted next state (observation) for agent i
πi Policy of agent i
Ji Expected cumulative reward for agent i
Dreal Real-world trajectory dataset
Dsim Simulation trajectory dataset
P ∗ Real-world transition dynamics
Pϕ Parameterized simulator dynamics
fi,ϕ+ Forward model for agent i
hi,ϕ− Inverse model for agent i
r Sensing radius
d(i, j) Distance between agents i and j
st, at Global state and action at time t
oLi,t, a

L
i,t Local joint state (observations) and actions for agent i at time t

âg
t Global grounded action at time t
âg
i,t Grounded action for agent i at time t

Table 7: Ablation Study of JL-GAT in 1x3 Rainy Environment.

Method ATT (∆ ↓) Queue (∆ ↓) Delay (∆ ↓) TP (∆ ↑) Reward (∆ ↑)
JL-GAT (Pattern) 263.61(142.35)±4.66 49.82(25.76)±1.46 0.62(0.21)±0.004 5091(-469)±20.26 -152.20(-90.55)±5.96

Forward Model w/o Neigh. States 287.96(166.70)±31.03 61.82(37.76)±8.26 0.63(0.22)±0.01 4926(-634)±201.53 -185.76(-124.11)±24.18
Forward Model w/o Neigh. Actions 302.65(181.38)±10.26 71.41(47.36)±5.30 0.64(0.23)±0.01 4820(-740)±50.91 -202.86(-141.22)±0.01

Inverse Model w/o Neigh. States 309.90(188.64)±0.00 67.66(43.60)±0.00 0.64(0.23)±0.00 4784(-776)±0.00 -202.85(-141.21)±0.00
Inverse Model w/o Neigh. Actions 309.90(188.64)±0.00 67.66(43.60)±0.00 0.64(0.23)±0.00 4784(-776)±0.00 -202.85(-141.21)±0.00

Joint-Local Grounded Action Transformation

Figure 4: Average performance metrics over the best episode from each trial in the rainy environ-
ment. Top row: 1×3 traffic network. Bottom row: 4×4 traffic network. The ↑ indicates that a higher
value represents a better performance for a metric and the ↓ indicates that a lower value represents
a better performance for a metric. Each plot displays the methods in the order they appear from
left to right, as indicated in the legend. Full quantitative results, including standard deviations and
sim-to-real gap values, are presented in Table 1.

Figure 5: Average performance metrics over the best episode from each trial in the snowy environ-
ment. Top row: 1×3 traffic network. Bottom row: 4×4 traffic network. The ↑ indicates that a higher
value represents a better performance for a metric and the ↓ indicates that a lower value represents
a better performance for a metric. Each plot displays the methods in the order they appear from
left to right, as indicated in the legend. Full quantitative results, including standard deviations and
sim-to-real gap values, are presented in Table 2.

