
Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

Joint-Local Grounded Action Transformation for
Sim-to-Real Transfer in Multi-Agent Traffic Control

Anonymous authors
Paper under double-blind review

Keywords: Traffic Signal Control, Multi-Agent Reinforcement Learning, Sim-to-Real Transfer

Summary
Traffic Signal Control (TSC) is essential for managing urban traffic flow and reducing con-

gestion. Reinforcement Learning (RL) offers an adaptive method for TSC by responding to
dynamic traffic patterns, with Multi-agent RL (MARL) gaining traction as intersections natu-
rally function as coordinated agents. However, due to shifts in environmental dynamics, imple-
menting MARL-based TSC policies in the real world often leads to a significant performance
drop, known as the sim-to-real gap. Grounded Action Transformation (GAT) has successfully
mitigated this gap in single-agent RL for TSC, but real-world traffic networks, which involve
numerous interacting intersections, are better suited to a MARL framework. In this work,
we introduce JL-GAT, an application of GAT to MARL-based TSC that balances scalability
with enhanced grounding capability by incorporating information from neighboring agents.
JL-GAT adopts a decentralized approach to GAT, allowing for the scalability often required in
real-world traffic networks while still capturing key interactions between agents. Comprehen-
sive experiments on various road networks and ablation studies demonstrate the effectiveness
of JL-GAT.

Contribution(s)
1. We introduce Joint-Local Grounded Action Transformation (JL-GAT), a scalable frame-

work for bridging the sim-to-real gap in MARL-based traffic signal control that incorporates
state and action information from neighboring agents into Grounded Action Transformation
(GAT) models using a sensing radius.
Context: None

2. To the best of our knowledge, we are the first to apply Grounded Action Transformation
(GAT) to the multi-agent setting, introducing two natural applications of GAT alongside
our proposed method, JL-GAT.
Context: None

3. We introduce the cascading invalidation effect, a novel challenge in JL-GAT that arises
when integrating state and action information from nearby agents, and propose both a direct
solution and an alternative approach that effectively mitigates the issue.
Context: None

4. We conduct thorough empirical evaluations of JL-GAT in the domain of multi-agent traffic
signal control, demonstrating its effectiveness in reducing the sim-to-real gap.
Context: None

Joint-Local Grounded Action Transformation

Joint-Local Grounded Action Transformation for
Sim-to-Real Transfer in Multi-Agent Traffic Control

Anonymous authors
Paper under double-blind review

Abstract

Traffic Signal Control (TSC) is essential for managing urban traffic flow and reducing1
congestion. Reinforcement Learning (RL) offers an adaptive method for TSC by re-2
sponding to dynamic traffic patterns, with Multi-agent RL (MARL) gaining traction as3
intersections naturally function as coordinated agents. However, due to shifts in envi-4
ronmental dynamics, implementing MARL-based TSC policies in the real world often5
leads to a significant performance drop, known as the sim-to-real gap. Grounded Action6
Transformation (GAT) has successfully mitigated this gap in single-agent RL for TSC,7
but real-world traffic networks, which involve numerous interacting intersections, are8
better suited to a MARL framework. In this work, we introduce JL-GAT, an applica-9
tion of GAT to MARL-based TSC that balances scalability with enhanced grounding10
capability by incorporating information from neighboring agents. JL-GAT adopts a de-11
centralized approach to GAT, allowing for the scalability often required in real-world12
traffic networks while still capturing key interactions between agents. Comprehensive13
experiments on various road networks and ablation studies demonstrate the effective-14
ness of JL-GAT.15

1 Introduction16

Among multiple Machine Learning methods, Reinforcement Learning (RL) is a well-suited one for17
sequential decision-making problems because it enables an agent to discover effective policies by18
interacting with its environment (Roijers et al., 2013b). This data-driven design, together with the19
ability to adaptively refine policies, makes RL a powerful approach to complex real-world problems.20
Traffic Signal Control (TSC) is an effective way to reduce congestion, minimize travel times, and21
improve urban mobility (Wei et al., 2018). By modeling TSC as a sequential decision-making22
problem, where each traffic signal chooses timing and phases based on evolving traffic conditions,23
RL can deliver flexible, efficient control strategies. Thus, RL-driven TSC appears as a dynamic and24
robust alternative to static or rule-based methods in transportation research (Wei et al., 2019b).25

In addition to treating an intersection-coupled traffic signal as a single agent, multi-agent rein-26
forcement learning (MARL) is essential for scaling up traffic signal control to complex urban net-27
works (Jiang et al., 2024). By deploying a network of agents, each one controlling individual in-28
tersections, MARL facilitates decentralized decision-making while maintaining coordinated control29
across the entire traffic system (Chen et al., 2020). It allows each agent to learn local policies that are30
responsive to immediate traffic conditions yet also adapt through communication and cooperation31
with neighboring agents to optimize overall traffic flow, which is more suitable for managing large-32
scale, dynamic transportation environments such as those found in real-world applications (Balmer33
et al., 2004).34

In order to learn the traffic signal control policies, a direct way is to leverage the existing traffic sim-35
ulators (e.g., SUMO (Behrisch et al., 2011), CityFlow (Zhang et al., 2019; Da et al., 2024a)) as an36

1

Under review for RLC 2025, to be published in RLJ 2025

interactive environment and explore control policies. While simulators offer a controlled environ-37
ment to train and evaluate RL-based TSC policies, transitioning these models from simulation to the38
real world introduces a challenging gap known as the sim-to-real issue (Da et al., 2023a). Discrep-39
ancies between the simulated and real environments, such as unmodeled traffic dynamics (Da et al.,40
2023b), sensor noise (Qadri et al., 2020), and unpredictable driver behaviors (Lee & Moura, 2015),41
can lead to significant deviations in performance. Therefore, robust sim-to-real techniques are es-42
sential to bridge this gap and ensure the performance observed in simulation translates to real-world43
urban settings.44

The preliminary research from (Da et al., 2023a) has identified the severity of the sim-to-real issue45
in RL-based TSC. There are several proposed solutions to mitigate the sim-to-real gap, either by46
calibrating the simulator’s realism (Müller et al., 2021) or by using transfer learning in the RL47
training paradigm, such as grounded action transformation (GAT) (Da et al., 2024b).48

JL-GAT enhances GAT by integrating neighboring agents’ information to capture local interactions,49
improving transition dynamics modeling. This strengthens policy training, boosts real-world per-50
formance, and minimizes the sim-to-real gap, ultimately enhancing urban mobility and reducing51
congestion.52

2 Related Work53

2.1 Reinforcement Learning for MultiAgent Traffic Signal Control54

Reinforcement Learning for MultiAgent Traffic Signal Control has emerged as a promising approach55
to alleviate urban traffic congestion by enabling intersections to operate as cooperative agents (Choy56
et al., 2003). Under this framework, each traffic signal controller is treated as an agent that learns57
optimal control policies through local interactions with the environment and limited communication58
with neighboring intersections (Balaji & Srinivasan, 2010). Unlike traditional rule-based methods59
that rely on pre-defined heuristics (Dion & Hellinga, 2002), RL-based approaches dynamically adapt60
to real-time traffic conditions, yielding significant improvements in vehicle travel time and delay re-61
duction (Zheng et al., 2019). Multi-agent reinforcement learning (MARL) introduces both additional62
complexities and opportunities compared to single-agent settings (Roijers et al., 2013a). Coordina-63
tion among multiple agents can enhance overall network performance by balancing local decisions64
with global objectives, yet challenges such as environmental non-stationarity and the need for scal-65
able communication strategies persist (Chen et al., 2020). Recent advances in MARL have explored66
solutions like centralized training with decentralized execution and cooperative learning schemes to67
overcome these challenges (Huang et al., 2021). Moreover, while many existing RL-based traffic68
signal control methods focus on optimizing performance within simulated environments (Mei et al.,69
2024), the sim-to-real gap remains a critical hurdle (Da et al., 2023a). Some recent studies have70
attempted to narrow this gap but only focus on the single-agent settings (Da et al., 2023b; 2024b),71
whereas our approach applies the work to more complex multi-agent settings, which hold great po-72
tential for more scalable traffic signal control systems capable of effectively responding to dynamic73
traffic patterns.74

2.2 Sim-to-Real Methods for RL75

The sim-to-real transfer literature in reinforcement learning can be broadly classified into three76
primary categories (Zhao et al., 2020). The first category, domain randomization (Tobin, 2019;77
Andrychowicz et al., 2020; Wei et al., 2022), focuses on training policies that are robust to envi-78
ronmental variations by relying heavily on simulated data, which is particularly advantageous when79
facing uncertain or evolving target domains. The second category, domain adaptation (Tzeng et al.,80
2019; Han et al., 2019), addresses the challenge of distribution shifts between the source and target81
environments by aligning feature representations. Although many techniques in this category are82
aimed at bridging gaps in robotic perception (Tzeng et al., 2015; Fang et al., 2018; Bousmalis et al.,83
2018; James et al., 2019), in the traffic signal control domain the discrepancy is mainly due to differ-84

2

Joint-Local Grounded Action Transformation

ences in dynamics, since most methods use vectorized observations such as lane-level vehicle counts85
or delays. The third category involves grounding methods, which aim to reduce simulator bias and86
improve alignment with real-world dynamics. In contrast to system identification approaches (Cut-87
ler et al., 2014; Cully et al., 2015) that seek to learn exact physical parameters, Grounded Action88
Transformation (GAT) (Hanna & Stone, 2017) modifies the simulator dynamics via grounded ac-89
tions, showing promising results for sim-to-real transfer in robotics. Recent work (Desai et al.,90
2020b; Karnan et al., 2020; Desai et al., 2020a) has further advanced grounding methods by incor-91
porating stochastic modeling, reinforcement learning, and imitation-from-observation techniques.92
Our approach, JL-GAT, builds on the GAT framework, introducing novel multi-agent designs and93
proposing local-joint solutions.94

3 Preliminaries95

This section introduces the necessary background for understanding our proposed method, includ-96
ing the formulation of the multi-agent reinforcement learning (MARL) traffic signal control (TSC)97
problem and an overview of Grounded Action Transformation (GAT) 1.98

3.1 Multi-agent Traffic Signal Control99

The traffic signal control (TSC) problem is modeled as a multi-agent reinforcement learning100
(MARL) task, where each traffic signal operates as an independent agent in a shared environment.101
The MARL problem is typically formulated as a Decentralized Partially Observable Markov Deci-102
sion Process (Dec-POMDP), defined by the tuple ⟨N ,S, {Ai}i∈N , P,R,Ωi, O, γ⟩, where: N is the103
set of agents (intersections), S is the global state space, representing traffic conditions (e.g., vehicle104
queues, speeds). Ai is the action space for agent i, which includes actions such as switching traffic105
signal phases. P : S×A → ∆(S) is the transition function, where A =

∏
i∈N Ai is the joint action106

space, and ∆(S) denotes the set of probability distributions over S. R : S × A → R is the reward107
function, which evaluates traffic metrics (e.g., queue length, delay). Ωi is the observation space for108
agent i, with Ω =

∏
i∈N Ωi being the joint observation space. O is the observation probability109

function O(s′, a, o) = P (o | s′, a) and defines the probability of receiving a joint observation o110
given then next state s′ and joint action a. γ ∈ [0, 1) is the discount factor.111

At each time step t, agent i observes its own state oi,t ∈ Ωi, selects an action ai,t ∈ Ai, and112
receives a reward ri,t. Agent actions are taken simultaneously and comprise a global action at,113
which transitions the environment from a global state st to a global next state st+1, where global114
states consist of observations oi,t for each agent i. Global states and actions are represented as:115
st = (o1, o2, . . . , oN), and at = (a1, a2, . . . , aN). During training, each agent learns a policy116
πi : Ωi → Ai with the goal of maximizing its expected cumulative reward: Ji = E [

∑∞
t=0 γ

tri,t].117

3.2 Agent Design118

In the agent design, we align with the most prevalent works in the TSC domain, such as119
PressLight (Wei et al., 2019a), with slight modifications, and use it consistently across all exper-120
iments. We summarize the state representation, action space, reward function, and learning method121
for our agents in Section A of the Supplementary Materials.122

3.3 Grounded Action Transformation123

Grounded Action Transformation (GAT) is a framework designed to align simulated environments124
with real-world dynamics using real trajectories Dreal = {τ1, . . . , τ I} collected by executing a125
policy πθ in the real environment Ereal. Let P ∗ denote the real-world transition dynamics and Pϕ126
denote the parameterized transition function of the simulator Esim. GAT optimizes ϕ to minimize127

1The detailed notation summary is shown in Table 6.

3

Under review for RLC 2025, to be published in RLJ 2025

the discrepancy between P ∗ and Pϕ:128

ϕ∗ = argmin
ϕ

∑
τ i∈Dreal

T−1∑
t=0

d
(
P ∗(sit+1 | sit, ait), Pϕ(s

i
t+1 | sit, ait)

)
, (1)

where d(·) is a distance measure (e.g., Kullback-Leibler divergence).129

Given a policy πθ that outputs an action at to take in a given state st, GAT employs an action130
transformation function gϕ(st, at) parameterized by ϕ to compute a grounded action ât:131

ât = gϕ(st, at) = hϕ−
(
st, fϕ+(st, at)

)
. (2)

The vanilla GAT framework consists of two models: a forward model fϕ+ and an inverse model132
hϕ− . The forward model takes as input the current state st and the action at from Esim and pre-133
dicts the next state ŝt+1 in Ereal. The inverse model, in turn, receives the current state st from Esim134
and the predicted next state ŝt+1 from the forward model, generating a grounded action ât that at-135
tempts to transition st inEsim to ŝt+1. With effective grounding, the simulator’s transition dynamics,136
Pϕ(s

i
t+1 | sit, ait), more closely approximate those of the real environment, P ∗(sit+1 | sit, ait). This137

alignment facilitates more effective policy training in Esim, as GAT reduces the discrepancy in tran-138
sition dynamics, leading to more realistic state transitions and ultimately reducing the sim-to-real139
gap. The forward and inverse models for vanilla GAT are shown: Forward model fϕ+ : Predicts140
the next state ŝt+1 in Ereal given (st, at) from Esim: ŝt+1 = fϕ+(st, at). Inverse model hϕ− :141
Outputs the grounded action ât that would attempt to transition st to ŝt+1 under Esim’s dynamics:142
ât = hϕ−(st, ŝt+1).143

By replacing at with ât in Esim, the adjusted simulator Pϕ better approximates P ∗, reducing the144
sim-to-real gap for policies trained in simulation. Note that the forward model fϕ+ is trained using145
data collected in Ereal and the inverse model hϕ− is trained using data collected in Esim.146

4 Grounded Action Transformation in Multi-Agent Settings147

Grounded Action Transformation (GAT) bridges the sim-to-real gap by aligning simulator and real-148
world dynamics using forward and inverse models. Applying GAT to multi-agent settings introduces149
challenges due to complex agent interactions and underlying assumptions. As shown in Figure 1,150
there are two natural approaches: a centralized method, using a single forward and inverse model151
to capture global interactions, and a decentralized method, where each agent has its own models,152
considering only its state and actions. The centralized approach captures inter-agent dynamics but153
struggles in large-scale environments, while the decentralized approach simplifies learning but ig-154
nores critical inter-agent interactions. This section introduces these approaches and their trade-offs,155
forming the foundation for our proposed method, Joint-Local Grounded Action Transformation (JL-156
GAT), detailed in Section 5, which integrates their strengths.157

4.1 Centralized Grounded Action Transformation158

An intuitive way to apply GAT to multi-agent settings is to adapt the models to treat the multi-agent159
environment as a single-agent setting from the perspective of GAT. This involves using a single160
forward and inverse model that considers global state and action information instead of information161
from a single agent alone. We provide an overview of centralized GAT in Figure 1. This approach162
circumvents the challenge of capturing interactions between agents by considering global state and163
action information, but with each additional agent, the learning process becomes more complex.164
Note that our objective function of GAT remains the same as in Equation (1), with the modification165
of global states and actions. Our setup of the forward and inverse models for centralized GAT closely166
follows vanilla GAT in (Da et al., 2024b), where we approximate fϕ+ and hϕ− with deep neural167
networks and optimize their respective parameters. We train both models using MSE and CCE loss168

4

Joint-Local Grounded Action Transformation

Dispatcher:
- Distribute the centralized grounded action to agents
Concatenator:
- Concat the agent-level observations

Different agents

𝑔∅(·,·): Grounding Module

: GAT Operation

…

à repeat

①

Policy 𝜋!,#

𝑜&,', 𝑎&,'

𝑜&,'()

$𝑎&,'
*

𝑓!,∅!(𝑜!,%,𝑎!,%)

ℎ!,∅"((𝑜!,%&',𝑜!,%)
(𝑜!,%&'

𝑔∅(·,·)

Decentralized GAT

𝐸+&,

…

An example:
Manhattan Map

Ag
en

t D
isp

at
ch

er
/C

on
ca

te
na

to
r

𝑜&,'()

Agent_i

$𝑎&,'
* $𝑎'

*

𝑠'()
Policy 𝜋#

𝑠', 𝑎'
𝑓∅!(𝑠%,𝑎%)

ℎ∅"(�̂�%&',𝑠%)
�̂�%&'

𝑔∅(·,·)…

② Centralized GAT

Next Next

:

Figure 1: Overview of centralized GAT and decentralized GAT in a 4x4 traffic network. decen-
tralized GAT is shown on the left, illustrating the grounding process as follows: Each agent i first
observes its own state oi,t, then selects an action ai,t to take at time step t using its policy πi,θ. This
information is passed to the forward model fi,ϕ+ of an agent i, which outputs a predicted next obser-
vation ôi, t+ 1. Finally, the predicted next observation is passed to the inverse model hi, ϕ−, which
outputs a grounded action âgi,t for agent i to take at time step t. This process occurs simultaneously
for each agent. Centralized GAT, shown on the right, follows a similar process to decentralized GAT,
but the individual agent observations oi,t are concatenated to form the global state st or next state
st+1. The global state st and action at are input to the centralized forward model fϕ+ , which outputs
a global predicted next state ŝt+ 1. This global predicted next state is comprised of the predicted
next state ôi, t for each agent i in the traffic network. The global predicted next state ŝt+ 1 is then
input to the centralized inverse model hϕ−, which outputs a global grounded action âgt , consisting
of grounded actions âgi,t for each agent i. The dispatcher then distributes these grounded actions âgi,t
to the agents, replacing the original actions ai,t selected by the policy πi,θ for each agent.

as in (Da et al., 2023b). However, we modify the inputs and outputs of the vanilla GAT to incorporate169
global states st and actions at, which are composed of the individual states (observations) oi,t and170
actions ai,t of all agents at time step t.171

• The centralized forward model, applied to traffic signal control, aims to predict the next global172
traffic state ŝt+1 in the real environment Ereal after agents take global actions at in the global173
traffic state st.174

• The centralized inverse model, applied to traffic signal control, considers the global traffic state175
at in Esim and predicted global next traffic state ŝt+1 in Ereal from the forward model to predict a176
global grounded action âg

t . Note the inputs to the inverse model hϕ− are global states and actions,177
but we compute CCE Loss to optimize ϕ− by extracting the individual grounded actions âg

i,t from178
the global grounded actions âg

t and averaging across all agents for each sample.179

4.2 Decentralized Grounded Action Transformation180

A second intuitive approach to applying GAT to multi-agent settings is to assign each agent its own181
forward and inverse model. In this decentralized framework, each agent’s GAT models operate inde-182
pendently, utilizing only their own information as if they were in a single-agent setting. We provide183
an overview of decentralized GAT in Figure 1. The strength of this approach lies in its scalability.184
With a decentralized approach to GAT, the forward and inverse models can focus on learning individ-185
ual agent interactions as they relate to the transition dynamics. However, decentralized GAT models186
fail to fully capture the transition dynamics because they do not consider the effects of other agent187
states and actions. For the setup of decentralized GAT, we follow the vanilla GAT setup from (Da188
et al., 2024b), modifying the input to use observations instead of states to reflect the Dec-POMDP189
formulation in Section 3.1. We also learn a forward and inverse model for each agent i, denoted190

5

Under review for RLC 2025, to be published in RLJ 2025

𝑔∅(·,·): Grounding Module

: GAT Operation

…

à repeat

Policy 𝜋!,#

𝑜&,', 𝑎&,'

𝑜&,'()

𝑓!,∅!(𝑜!,%,& 𝑎!,%,&)

ℎ!,∅"(𝑜!,%,& 𝑎',%, (𝑜!,%())
(𝑜!,%()

𝑔∅(·,·)

Ours: Joint-Local GAT

…

Agent_i
Next

…

…

…

Pattern Grounding

…

$𝑎&,'
*

Figure 2: Overview of our proposed method, JL-GAT. The pipeline proceeds as follows: Each agent
i first observes its state oi,t and selects an action ai,t using its policy πi,θ. The agent then incor-
porates neighboring agent observations and actions oj,t, aj,t within a predefined sensing radius r,
considering those within a Manhattan distance of r or less. The 3×3 grid in the top center illustrates
the neighboring information used for grounding when r = 1. Next, the forward model fi,ϕ+ of
agent i takes in its own observation and action oi,t, ai,t along with the neighboring information oj,t,
aj,t, forming the local joint observation oLi,t and local joint action aLi,t. The forward model then
predicts the next observation ôi,t+1 for agent i. This predicted observation, along with the local
joint observation oLi,t and assumed neighboring actions aj,t, is fed into the inverse model hi,ϕ− . The
inverse model outputs a grounded action âgi,t for agent i to take instead of ai,t at time step t. Finally,
we address the cascading invalidation effect, a novel challenge arising with JL-GAT, by introduc-
ing pattern grounding, illustrated in the bottom center, with the patterns we use in our 4x4 traffic
network evaluations.

fi,ϕ+ and hi,ϕ− respectively. Thus, our GAT objective is the same as Equation (1), but our goal is191
now to learn a grounded simulator transition function Pϕ for each agent separately.192

• The decentralized forward model, applied to traffic signal control, aims to predict the next state193
(observation) ôt+1 of traffic in the real environment Ereal for each agent i after the action ai,t is194
taken in the current traffic observation oi,t.195

• The decentralized inverse model, applied to traffic signal control, considers the traffic observation196
oi,t in Esim and the predicted next observation ôi,t+1 in Ereal from the forward model to predict197
the grounded action âg

i,t for each agent i.198

5 JL-GAT: Joint-Local Grounded Action Transformation199

By modifying our decentralized GAT formulation in Section 4.2 to incorporate local joint state and200
action information for each agent, we arrive at JL-GAT as shown in Figure. 5. JL-GAT strikes a201
balance between the two multi-agent applications of GAT, centralized and decentralized, introduced202
in Section 4. With this hybrid approach, JL-GAT reaps unique benefits from both approaches,203
allowing GAT to be applied in large-scale multi-agent settings while still capturing essential agent204
interactions that influence the transition dynamics of the environment.205

5.1 Overview of JL-GAT206

We introduced two natural ways to apply GAT to multi-agent environments in Section 4: a central-207
ized approach, which uses a single forward and inverse model to capture global information, and a208
decentralized approach, where each agent has its own GAT model, considering only its own state and209
actions. Although a centralized GAT approach can effectively capture global interactions between210
agents, it introduces significant challenges in large-scale environments, where the learning process211

6

Joint-Local Grounded Action Transformation

becomes more complex as the number of agents increases. In contrast, a decentralized GAT setup212
simplifies learning by focusing on individual agent dynamics but overlooks the critical inter-agent213
interactions that influence the transition dynamics of a multi-agent environment. To overcome these214
limitations, we propose JL-GAT visualized in Figure 5. The core idea behind JL-GAT is simple yet215
powerful: combine the strengths of both approaches by considering multi-agent interactions, such as216
in centralized GAT, while retaining the scalability of the decentralized approach. JL-GAT achieves217
this by incorporating state and action information from neighboring agents into decentralized GAT218
models, preserving local agent interactions while maintaining the scalability of a decentralized setup.219
This enables JL-GAT to better ground the simulation transition dynamics, making them more reflec-220
tive of real-world environments, leading to agents training on more realistic states, which ultimately221
reduces the sim-to-real gap.222

5.2 Formulation of JL-GAT223

In this section, we formally define our proposed method, JL-GAT. We first continue with the decen-224
tralized GAT approach described in Section 4.2, which includes a single forward and inverse model225
for each agent, extending it to reach the formulation of JL-GAT. Then, we introduce the new objec-226
tive for JL-GAT. Lastly, we outline the forward and inverse model setup used in JL-GAT, discussing227
the intuition behind the modifications and their benefits.228

5.2.1 The JL-GAT from Decentralized GAT229

We build on the decentralized GAT formulation introduced in Section 4.2, where for each agent i, we230
incorporate neighboring state and action information. We define the local joint state oLi,t and action231
aLi,t of agent i as its own observation oi,t and action ai,t at time t combined with the observation and232
action information oj,t, aj,t of agents j within a predefined sensing radius r:233

oLi,t = {oi,t} ∪ {oj,t | d(i, j) ≤ r}, aLi,t = {ai,t} ∪ {aj,t | d(i, j) ≤ r}

where the Manhattan distance between agents i and j is defined as: d(i, j) = |xi − xj |+ |yi − yj |,234
with xi, yi and xj , yj representing the positions of agents i and j in a 2D coordinate space.235

5.2.2 Objective Function for JL-GAT236

The formulation of JL-GAT requires modifications to the objective in decentralized GAT shown237
in Equation (3). Given real-world trajectories Dreal = {τ1, . . . , τ I}, where each trajectory τk =238
(skt , a

k
t , s

k
t+1)

T−1
t=0 is collected by executing policies in the real environment Ereal, our new objective239

is to learn a grounded simulator transition function Pi,ϕ for each agent i that minimizes:240

ϕ∗ = argmin
ϕ

∑
τk∈Dreal

T−1∑
t=0

d
(
P ∗
i (o

k
i,t+1 | oL,k

i,t , a
L,k
i,t), Pi,ϕ(o

k
i,t+1 | oL,k

i,t , a
k,L
i,t)

)
, (3)

where P ∗
i represents real-world transition dynamics for an agent i and d(·) is a divergence measure241

(e.g., Kullback-Leibler divergence). We arrive at this objective by replacing the single-agent ob-242
servations and actions from the vanilla GAT objective shown in Equation (1) with local joint states243
(observations) and actions. Note that JL-GAT attempts to model the transition to the next individual244
observation oki,t+1 for a trajectory k as opposed to a local joint observation.245

5.2.3 Forward and Inverse Models in JL-GAT246

In this section, we present the forward and inverse models employed in JL-GAT. We then highlight247
the advantages of our modifications to both vanilla and decentralized GAT. Finally, we explain how248
we strike a balance between centralized and decentralized GAT, effectively combining the strengths249
of both approaches.250

7

Under review for RLC 2025, to be published in RLJ 2025

• The forward model of JL-GAT predicts the next individual state ôi,t+1 (observation) that would251
occur in the real environment Ereal for agent i if the local joint action aLi,t was taken in local joint252
state oLi,t at time t. Applied to traffic signal control, the forward model predicts the next real253
environment traffic state that would occur if the local joint action is taken in the current local joint254
traffic state:255

ôi,t+1 = fi,ϕ+(oLi,t, a
L
i,t) (4)

Our setup of the forward model builds on the forward model of the decentralized setup in Section256
4.2, where we also approximate the forward model fi,ϕ+ with a deep neural network for each agent257
i, now considering local joint information instead of only individual information, and optimize ϕ+258
by minimizing the Mean Squared Error (MSE) loss:259

L(ϕ+) = MSE(oi,t+1, ôi,t+1) = MSE(oi,t+1, fi,ϕ+(oLi,t, a
L
i,t)) (5)

where oLi,t, a
L
i,t, and oi,t+1 are sampled from trajectories collected in Ereal. Note that the forward260

model in JL-GAT predicts a single next state (observation) ôi,t+1 for each agent i as in the decen-261
tralized GAT setup. In this way, JL-GAT avoids the pitfall of attempting to predict neighboring262
agent observations, as those neighbors may be influenced by other agents at distance d beyond263
the predefined radius r for an agent i. Furthermore, by including the actions aj,t of neighbor-264
ing agents j within r, the forward model assumes that the neighboring agent actions will remain265
unchanged. This assumption has significant implications for the setup of the inverse model in266
JL-GAT, and if violated, gives way to the cascading invalidation effect described in Section 5.3267
which we discovered while applying GAT to multi-agent settings.268

• The inverse model of JL-GAT predicts a grounded action âg
i,t for agent i at time t that would269

attempt to transition the current local joint observation oLi,t to the predicted individual next ob-270
servation ôi,t+1 in the simulated environment Esim. We further deviate from previous grounded271
action transformation works by including additional action information into the inverse model to272
predict a grounded action âg

i,t for agent i. We include the actions aj,t of neighboring agents j273
within the predefined radius r shown in Section 5.2.1 as input to the inverse model for JL-GAT,274
thereby assuming their actions in Esim will remain unchanged at time t:275

âg
i,t = hi,ϕ−(oLi,t, aj,t, ôi,t+1) (6)

Including neighboring agent actions aj,t into the inverse model is invaluable for multi-agent set-276
tings, as it allows us to capture local agent interactions that affect the transition dynamics of a277
single agent i. Furthermore, we previously assumed neighboring agent actions would remain un-278
changed with our input to the forward model, thus it is a natural extension of the inverse model279
to also include this information. A key insight is that these assumptions lead to the cascading280
invalidation effect described in Section 5.3. We conduct an ablation study in Section 6.4, on this281
additional information, further reinforcing its necessity in JL-GAT. As in the forward model, we282
build on the inverse model from decentralized GAT in Section 4.2 and approximate hi,ϕ− with283
a deep neural network for each agent i and optimize ϕ− by minimizing the Categorical Cross-284
Entropy (CCE) Loss:285

L(ϕ−) = CCE(ag
i,t, â

g
i,t) = CCE(ag

i,t, hi,ϕ−(oLi,t, aj,t, ôi,t+1) (7)

where ag
i,t, o

L
i,t, and ôi,t+1 are sampled from trajectories collected in Esim.286

5.3 Cascading Invalidation Effect287

While adapting JL-GAT to include local joint information, we observe a unique challenge, namely288
the cascading invalidation effect. This problem arises from the use of state and action information289

8

Joint-Local Grounded Action Transformation

from neighboring agents to predict the next state that would occur in Ereal, as shown in Equation (4).290
When using neighboring state and action information to attempt to bring the transition dynamics of291
Esim closer to Ereal, the underlying assumption is that the actions of neighbor agents will remain292
unchanged in Esim. If the actions of an agent and one of its neighbors within the predefined ra-293
dius r are grounded simultaneously, both grounded actions become invalid and may no longer aid294
in reducing the sim-to-real gap. This is due to the fact that while grounding actions, we assume295
neighbor actions will not change. We also observe this effect cascade through a network of agents if296
grounding sequentially, as each agent grounds their action, assuming neighbor actions will remain297
unchanged. To overcome the cascading invalidation effect, we propose two different approaches:298

1. Pattern Grounding. This approach is simple yet effective: we set a pattern to ground specific299
agents during a training epoch to avoid any grounding assumption conflicts. We visualize pattern300
grounding in Figure 5. For example, in our experiments for traffic signal control, we utilize a301
1x3 traffic network and apply pattern grounding by grounding only the first and last agent for an302
epoch. Then, we ground only the agent in between them for the next epoch, alternating between303
the two set grounding patterns. This directly overcomes the cascading invalidation effect by304
avoiding grounding agents whose actions have been assumed fixed, but a rigid grounding pattern305
reduces flexibility during training. This approach can also be paired with probabilistic grounding,306
but for our evaluations, we focused solely on applying each technique separately.307

2. Probabilistic Grounding. In this approach, we let P i
ground(t) represent the probability of ground-308

ing an action ai,t for each agent i at time step t: P i
ground(t) = pground309

Using probability to determine when grounding occurs introduces flexibility by allowing different310
grounding patterns to emerge naturally across epochs, as opposed to a fixed or rigid scheme. As311
demonstrated in Tables 1 and 2, this approach led to strong performance for JL-GAT. Although312
probabilistic grounding does not directly overcome the cascading invalidation effect as pattern313
grounding does, it often circumvents this challenge by using a fixed probability to ground, which314
introduces some trade-offs. In particular, this can lead to training scenarios in the simulated315
environment Esim that do not accurately reflect the transition dynamics of the real environment316
Ereal. This is due to the less restrictive grounding requirements in probabilistic grounding com-317
pared to pattern grounding, which enables agents to ground their actions independently without318
requiring consideration of whether neighboring agents are simultaneously utilizing their actions319
for grounding. Furthermore, decreasing the grounding probability P i

ground(t) for each agent i in-320
herently mitigates the likelihood of cascading invalidation. However, this comes at the cost of321
reducing the amount of grounding during training, which may result in a larger sim-to-real gap.322
We experiment with various grounding probabilities in Section 6.5, where we recommend 1/N323
as a starting point for probabilistic grounding based on empirical evaluation.324

We acknowledge that there are several alternative solutions to the cascading invalidation effect that325
remain to be explored, such as clustering groups for grounding, learned grounding patterns, and326
algorithmic approaches to grounding. These avenues are left for future work.327

5.4 Training Algorithm328

In this section, we detail the training algorithm for JL-GAT shown in Algorithm 1. JL-GAT requires329
initial policies πi,θ, forward models fi,ϕ+ , and inverse models hi,ϕ− for each agent i as input. JL-330
GAT also requires a simulation dataset Dsim and a real-world dataset Dreal, both of which can come331
from offline data or can be collected from real-world rollouts as in (Da et al., 2023b). Lastly, JL-332
GAT requires a sensing radius r as input to determine which neighboring agent information to use333
for grounding and optionally may include a grounding pattern or probability. The output of JL-334
GAT includes the policies πi,θ, forward models fi,ϕ+ , inverse models hi,ϕ− for each agent i. Our335
training algorithm then begins with the pre-training of policies πi,θ for each agent i for a total of336
M iterations in Esim. We then run a predetermined number of epochs that contain the following337
steps: policy rollouts, GAT model updates, policy training episodes, and policy updates. Our policy338
rollouts are optional and are used to collect trajectories from Esim and Ereal that get stored in Dsim339

9

Under review for RLC 2025, to be published in RLJ 2025

and Dreal respectively. We then update the forward fi,ϕ+ and inverse hi,ϕ− GAT models for each340
agent i using the collected datasets. We continue by running a set number of policy training episodes341
where we utilize the GAT models to ground actions with the goal of bringing the transition dynamics342
of Esim closer to that of Ereal. The policy updates in our final step allow us to reduce the sim-to-real343
gap by updating the policies πi,θ for each agent i using reinforcement learning, where agents are344
now being trained in a simulated environment Esim with more realistic transition dynamics.345

6 Experiments and Results346

In this section, we introduce our experiment setup and evaluation metrics, which closely follow that347
of (Da et al., 2024b), demonstrating both the existence of a performance gap between simulation348
and real environments and the effectiveness of JL-GAT in reducing this gap. We also perform an349
ablation study to demonstrate the necessity of all additional information to the forward and inverse350
models in JL-GAT. Lastly, we perform evaluations with different probabilistic grounding settings351
and explore the pairing of JL-GAT with uncertainty quantification from (Da et al., 2023b).352

6.1 Environments353

We built our implementation of JL-GAT on top of LibSignal (Mei et al., 2024), an open-source en-354
vironment for traffic signal control with multiple simulation environments. For our experiments, we355
consider CityFlow (Zhang et al., 2019) as the simulation environment Esim, and SUMO (Behrisch356
et al., 2011) as the real environment Ereal. We use a sim-to-sim setup to mimic a sim-to-real deploy-357
ment process with the main benefit of reproducibility, as described in (Da et al., 2024b). Our ex-358
periments consider two environmental conditions to showcase the sim-to-real gap: rainy and snowy,359
and we detail their parameter settings in Table 5 as shown in Supplementary.360

• Default settings. This represents the default settings for CityFlow and SUMO, which we consider361
Esim and Ereal, respectively.362

• Adverse Weather conditions. We model the effect of adverse weather conditions that are unac-363
counted for when training a TSC policy in Esim by varying parameters in Ereal, such as acceler-364
ation, deceleration, emergency deceleration, and startup delay shown in Table 5. We attempt to365
mimic real-world adverse weather effects, such as wet and icy roads, by reducing the acceleration366
and deceleration rates of vehicles and increasing their startup delay.367

6.2 Evaluation Metrics368

Building on common practices in traffic signal control (TSC), as described in recent literature (Wei369
et al., 2021), we adopt the following standard metrics to assess policy performance. Average Travel370
Time (ATT) represents the average travel time t for vehicles in a given road network, where lower371
ATT values indicate better control policy performance. Queue measures the number of vehicles372
waiting at a particular intersection, and we report the average queue over all intersections in a given373
road network, with smaller values being preferable. Delay captures the average time t that vehicles374
wait in the traffic network, where lower delay is desirable. Throughput (TP) quantifies the number of375
vehicles that have completed their trip in a given road network, with higher TP values being better.376
Lastly, reward represents the return associated with taking an action at in a state st in RL. We use the377
same reward metric as (Wei et al., 2019a), defining the reward as negative pressure, and we report378
the sum of rewards for all intersections in our experiments.379

In this work, we adopt the calculation metric for the performance gap between Esim and Ereal380
from (Da et al., 2024b) and (Da et al., 2023b). Specifically, for a metric ψ, we use the follow-381
ing equation to calculate the gap ∆: ψ∆ = ψreal − ψsim. Our goal is to reduce this sim-to-real gap382
by bringing the transition dynamics of Esim closer to Ereal while training through GAT. We report383
the ∆ values for each metric, where smaller values are better for ATT∆, Queue∆, and Delay∆, and384
larger values are better for TP∆, and Reward∆ because they are negative values.385

10

Joint-Local Grounded Action Transformation

6.3 Main Results386

To demonstrate the existence of the sim-to-real gap in multi-agent TSC settings, we perform ex-387
periments in the rainy and snowy environments described in Section 6.1 with parameters shown in388
Table 5. We first evaluate the performance of direct transfer by training in Esim for 300 epochs389
using agents described in Section 3.2, collecting the policies with the lowest ATT, and testing them390
in Ereal. We then use these policies to initialize GAT training with various multi-agent GAT setups,391
including JL-GAT, shown in Tables 1 and 2. A significant performance gap emerges when directly392
transferring multi-agent policies trained in Esim to Ereal.393

Table 1: Rainy environment performance using Direct Transfer as compared to Centralized GAT,
Decentralized GAT, and two versions of our proposed method JL-GAT. We present the average
performance of each metric for the best episode of each method. The value in () shows the metric
gap ψ between Esim and Ereal and ± shows the sample standard deviation after 3 trials. The ↑
indicates that a higher value represents a better performance for a metric and the ↓ indicates that a
lower value represents a better performance for a metric.

Network Method ATT (∆ ↓) Queue (∆ ↓) Delay (∆ ↓) TP (∆ ↑) Reward (∆ ↑)

1x3

Direct Transfer 309.90 (188.64) 67.66 (43.60) 0.64 (0.23) 4784 (-776) -202.85 (-141.21)
Centralized GAT 296.13(174.87)±23.86 63.64(39.58)±6.98 0.63(0.22)±0.01 4857(-703)±126.44 -191.03(-129.39)±20.48

Decentralized GAT 283.47(162.21)±23.08 60.71(36.65)±8.23 0.62(0.21)±0.02 4928(-632)±129.56 -177.86(-116.22)±23.83
JL-GAT (Pattern) 263.61(142.35)±4.66 49.82(25.76)±1.46 0.62(0.21)±0.004 5091(-469)±20.26 -152.20(-90.55)±5.96

JL-GAT (Probabilistic 1/N = 33%) 261.56(140.30)±1.30 50.28(26.22)±2.59 0.61(0.20)±0.01 5062(-498)±25.38 -155.33(-93.68)±4.24

4x4

Direct Transfer 485.63(158.38) 6.89(5.39) 0.19(0.11) 2608(-320) -90.77(-71.48)
Centralized GAT 485.63(158.38)±0.00 6.89(5.39)±0.00 0.19(0.11)±0.00 2608(-320)±0.00 -90.77(-71.48)±0.00

Decentralized GAT 477.36(150.11)±4.24 6.45(4.94)±0.17 0.19(0.11)±0.003 2626(-302)±8.50 -83.65(-64.36)±2.26
JL-GAT (Pattern) 470.25(143.01)±2.18 6.06(4.55)±0.13 0.18(0.10)±0.003 2629(-299)±7.00 -83.90(-64.61)±0.63

JL-GAT (Probabilistic 1/N = 6.25%) 468.08(140.83)±1.66 5.87(4.37)±0.19 0.18(0.10)±0.004 2628(-300)±2.65 -84.87(-65.58)±0.87

Table 2: Snowy environment performance using Direct Transfer as compared to Centralized GAT,
Decentralized GAT, and two versions of our proposed method JL-GAT.

Network Method ATT (∆ ↓) Queue (∆ ↓) Delay (∆ ↓) TP (∆ ↑) Reward (∆ ↑)

1x3

Direct Transfer 473.29 (352.02) 49.11 (25.05) 0.66 (0.24) 4297 (-1263) -160.69 (-99.05)
Centralized GAT 473.29(352.02)±0.00 49.11(25.05)±0.00 0.66(0.24)±0.00 4297(-1263)±0.00 -160.69(-99.05)±0.00

Decentralized GAT 462.98(341.72)±17.85 47.97(23.91)±1.99 0.65(0.24)±0.004 4372(-1188)±131.06 -153.30(-91.66)±12.80
JL-GAT (Pattern) 459.46(338.20)±3.89 47.13(23.07)±4.56 0.65(0.24)±0.01 4417(-1143)±20.26 -150.40(-88.76)±12.10

JL-GAT (Probabilistic 1/N = 33%) 459.29(338.03)±2.33 46.04(21.98)±3.46 0.65(0.24)±0.01 4427(-1133)±38.97 -148.44(-86.80)±8.84

4x4

Direct Transfer 593.06 (265.81) 6.83 (5.33) 0.20 (0.12) 2423 (-505) -96.28 (-76.99)
Centralized GAT 593.06(265.81)±0.00 6.83(5.33)±0.00 0.20(0.12)±0.00 2423(-505)±0.00 -96.28(-76.99)±0.00

Decentralized GAT 575.33(248.08)±4.42 5.70(4.20)±0.42 0.19(0.11)±0.003 2467(-461)±7.00 -85.43(-66.14)±4.19
JL-GAT (Pattern) 566.46(239.21)±1.88 5.49(3.98)±0.13 0.19(0.11)±0.004 2470(-458)±6.24 -84.00(-64.71)±1.92

JL-GAT (Probabilistic 1/N = 6.25%) 564.84(237.59)±2.54 5.19(3.69)±0.22 0.18(0.10)±0.002 2471(-457)±4.04 -82.67(-63.38)±1.47

6.4 Ablation Study394

To show how different parts in JL-GAT help sim-to-real transfer, we conduct an ablation study on the395
addition of neighboring information in the forward and inverse models of JL-GAT. For this study,396
we focus on the rainy 1x3 environment while systematically varying the removal of neighboring397
states and action information used in JL-GAT. We present the average performance of each metric398
for the best episode of each method. These results are based on two trials over 300 epochs, as shown399
in Figure 3. The last two methods failed to improve the direct transfer models used for initialization,400
indicating the necessity of all required modules for JL-GAT.401

6.5 Probabilistic Grounding Settings402

We experiment with various probability grounding settings for JL-GAT to test the robustness of JL-403
GAT for different probability settings. We focus on four different variations of probability ground-404
ing, including 1/N , which sets the grounding probability proportional to the number of agents in the405
environment. We report the best performance for each setting over 300 epochs in Table 3. The result406
shows that though using a probability of 0.2 shows a better result, the performances for different407
probabilities are similar, indicating the robustness of JL-GAT. Our results from Tables 1, 2, and 3408
suggest that 1/N is a good starting place for setting the grounding probability.409

11

Under review for RLC 2025, to be published in RLJ 2025

Figure 3: The ablation study on the proposed method. Method 1: JL-GAT (Pattern), Method 2:
Forward Model w/o Neigh, States; Method 3: Forward Model w/ Neigh, Actions; Method 4: Inverse
Model w/o Neigh, States; Method 5: Inverse Model w/ Neigh, Actions. Details are shown in Table 7.

Table 3: Probability grounding settings for JL-GAT in 1x3 rainy environment.

Probability ATT (∆ ↓) Queue (∆ ↓) Delay (∆ ↓) TP (∆ ↑) Reward (∆ ↑)
0.2 260.77(139.51)±4.73 50.23(26.17)±2.24 0.62(0.21)±0.005 5115(-445)±36.06 -151.34(-89.69)±5.09
0.5 281.73(160.47)±29.87 56.19(32.14)±16.36 0.61(0.20)±0.01 4909(-651)±209.30 -170.52(-108.87)±39.52
0.8 297.75(176.49)±6.70 66.78(42.73)±5.97 0.63(0.22)±0.0001 4828(-732)±276.48 -187.69(-126.05)±7.32

1/N (0.3) 261.56(140.30)±1.30 50.28(26.22)±2.59 0.61(0.20)±0.01 5062(-498)±25.38 -155.33(-93.68)±4.24

6.6 JL-GAT with Uncertainty Quantification410

One potential disadvantage brought by sim-to-real transfer is the larger uncertainty of actions. To411
test whether JL-GAT could help relieve this disadvantage, we explore the addition of uncertainty412
quantification from (Da et al., 2023b) in JL-GAT and conduct evaluations in both rainy and snowy413
environments. We report the performance in each environment for 3 trials of 300 epochs in Table414
4. The results show that pairing uncertainty with JL-GAT further reduces the sim-to-real gap in the415
1x3 setting across both environments.416

Table 4: Uncertainty quantification in JL-GAT for 1x3 traffic network.

Environment Method ATT (∆ ↓) Queue (∆ ↓) Delay (∆ ↓) TP (∆ ↑) Reward (∆ ↑)

Rainy JL-GAT (Pattern) 263.61(142.35)±4.66 49.82(25.76)±1.46 0.62(0.21)±0.004 5091(-469)±20.26 -152.20(-90.55)±5.96
JL-GAT w/ Uncertainty 261.53(140.26)±4.56 49.65(25.59)±4.19 0.62(0.21)±0.01 5092(-468)±16.07 -148.15(-86.51)±11.73

Snowy JL-GAT (Pattern) 459.46(338.20)±3.89 47.13(23.07)±4.56 0.65(0.24)±0.01 4417(-1143)±20.26 -150.40(-88.76)±12.10
JL-GAT w/ Uncertainty 456.92(335.66)±4.87 44.51(20.45)±8.23 0.64(0.23)±0.02 4444(-1116)±48.87 -141.41(-79.76)±15.80

7 Conclusion417

We demonstrate a significant performance gap emerges when directly transferring MARL-based418
TSC policies to the real world due to a shift in environment transition dynamics. Therefore, we pro-419
pose JL-GAT as a framework to mitigate the performance gap in MARL-based TSC when deployed420
in the real world. JL-GAT reduces this gap by applying grounded action transformation (GAT),421
which has successfully reduced the performance gap in single-agent RL settings for TSC to the422
MARL-based TSC setting. JL-GAT builds upon an alternative application of GAT for MARL-based423
TSC, decentralized GAT, where each agent has their own GAT models. JL-GAT further bolsters de-424
centralized GAT by introducing neighboring agent information to capture local agent interactions.425
This allows for the scalability of a decentralized approach while retaining the enhanced modeling426
of inter-agent interactions found in a centralized approach with GAT models capturing global in-427
teractions. Our experiments verify that JL-GAT effectively reduces the sim-to-real gap across all428
environment settings and traffic networks.429

References430

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,431
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning432

12

Joint-Local Grounded Action Transformation

dexterous in-hand manipulation. The International Journal of Robotics Research, 39(1):3–20,433
2020.434

PG Balaji and Dipti Srinivasan. Multi-agent system in urban traffic signal control. IEEE Computa-435
tional Intelligence Magazine, 5(4):43–51, 2010.436

Michael Balmer, Kai Nagel, and Bryan Raney. Large-scale multi-agent simulations for transporta-437
tion applications. In Intelligent Transportation Systems, volume 8, pp. 205–221. Taylor & Francis,438
2004.439

Michael Behrisch, Laura Bieker, Jakob Erdmann, and Daniel Krajzewicz. Sumo–simulation of urban440
mobility: an overview. In Proceedings of SIMUL 2011, The Third International Conference on441
Advances in System Simulation. ThinkMind, 2011.442

Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei Bai, Matthew Kelcey, Mrinal Kalakrish-443
nan, Laura Downs, Julian Ibarz, Peter Pastor, Kurt Konolige, et al. Using simulation and domain444
adaptation to improve efficiency of deep robotic grasping. In 2018 IEEE international conference445
on robotics and automation (ICRA), pp. 4243–4250. IEEE, 2018.446

Chacha Chen, Hua Wei, Nan Xu, Guanjie Zheng, Ming Yang, Yuanhao Xiong, Kai Xu, and Zhenhui447
Li. Toward a thousand lights: Decentralized deep reinforcement learning for large-scale traffic448
signal control. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp.449
3414–3421, 2020.450

Min Chee Choy, Dipti Srinivasan, and Ruey Long Cheu. Cooperative, hybrid agent architecture451
for real-time traffic signal control. IEEE Transactions on Systems, Man, and Cybernetics-Part A:452
systems and humans, 33(5):597–607, 2003.453

Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. Robots that can adapt like454
animals. Nature, 521(7553):503–507, may 2015. DOI: 10.1038/nature14422. URL https:455
//doi.org/10.1038%2Fnature14422.456

Mark Cutler, Thomas J. Walsh, and Jonathan P. How. Reinforcement learning with multi-fidelity457
simulators. In 2014 IEEE International Conference on Robotics and Automation (ICRA), pp.458
3888–3895, 2014. DOI: 10.1109/ICRA.2014.6907423.459

Longchao Da, Hao Mei, Romir Sharma, and Hua Wei. Sim2real transfer for traffic signal control. In460
2023 IEEE 19th International Conference on Automation Science and Engineering (CASE), pp.461
1–2. IEEE, 2023a.462

Longchao Da, Hao Mei, Romir Sharma, and Hua Wei. Uncertainty-aware grounded action transfor-463
mation towards sim-to-real transfer for traffic signal control. In 2023 62nd IEEE Conference on464
Decision and Control (CDC), pp. 1124–1129. IEEE, 2023b.465

Longchao Da, Chen Chu, Weinan Zhang, and Hua Wei. Cityflower: An efficient and realistic traffic466
simulator with embedded machine learning models. In Joint European Conference on Machine467
Learning and Knowledge Discovery in Databases, pp. 368–373. Springer, 2024a.468

Longchao Da, Minquan Gao, Hao Mei, and Hua Wei. Prompt to transfer: Sim-to-real transfer for469
traffic signal control with prompt learning. In Proceedings of the AAAI Conference on Artificial470
Intelligence, volume 38, pp. 82–90, 2024b.471

Siddarth Desai, Ishan Durugkar, Haresh Karnan, Garrett Warnell, Josiah Hanna, and Peter Stone. An472
imitation from observation approach to transfer learning with dynamics mismatch. In Proceedings473
of the 34th International Conference on Neural Information Processing Systems (NeurIPS 2020),474
December 2020a.475

Siddharth Desai, Haresh Karnan, Josiah P. Hanna, Garrett Warnell, and Peter Stone. Stochastic476
grounded action transformation for robot learning in simulation. In IEEE/RSJ International Con-477
ference on Intelligent Robots and Systems(IROS 2020), October 2020b.478

13

https://doi.org/10.1038%2Fnature14422
https://doi.org/10.1038%2Fnature14422
https://doi.org/10.1038%2Fnature14422

Under review for RLC 2025, to be published in RLJ 2025

François Dion and Bruce Hellinga. A rule-based real-time traffic responsive signal control system479
with transit priority: application to an isolated intersection. Transportation Research Part B:480
Methodological, 36(4):325–343, 2002.481

Kuan Fang, Yunfei Bai, Stefan Hinterstoisser, Silvio Savarese, and Mrinal Kalakrishnan. Multi-482
task domain adaptation for deep learning of instance grasping from simulation. In 2018 IEEE483
International Conference on Robotics and Automation (ICRA), pp. 3516–3523. IEEE, 2018.484

Te Han, Chao Liu, Wenguang Yang, and Dongxiang Jiang. Learning transferable features in deep485
convolutional neural networks for diagnosing unseen machine conditions. ISA transactions, 93:486
341–353, 2019.487

Josiah Hanna and Peter Stone. Grounded action transformation for robot learning in simulation. In488
Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.489

Hao Huang, Zhiqun Hu, Zhaoming Lu, and Xiangming Wen. Network-scale traffic signal control via490
multiagent reinforcement learning with deep spatiotemporal attentive network. IEEE transactions491
on cybernetics, 53(1):262–274, 2021.492

Stephen James, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry Kalashnikov, Alex Irpan, Julian Ibarz,493
Sergey Levine, Raia Hadsell, and Konstantinos Bousmalis. Sim-to-real via sim-to-sim: Data-494
efficient robotic grasping via randomized-to-canonical adaptation networks. In Proceedings of495
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12627–12637, 2019.496

Haoyuan Jiang, Ziyue Li, Hua Wei, Xuantang Xiong, Jingqing Ruan, Jiaming Lu, Hangyu Mao,497
and Rui Zhao. X-light: Cross-city traffic signal control using transformer on transformer as meta498
multi-agent reinforcement learner. arXiv preprint arXiv:2404.12090, 2024.499

Haresh Karnan, Siddharth Desai, Josiah P. Hanna, Garrett Warnell, and Peter Stone. Reinforced500
grounded action transformation for sim-to-real transfer. In IEEE/RSJ International Conference501
on Intelligent Robots and Systems(IROS 2020), October 2020.502

Phyllis C Lee and Antonio C de A Moura. Necessity, unpredictability and opportunity: An ex-503
ploration of ecological and social drivers of behavioral innovation. In Animal creativity and504
innovation, pp. 317–333. Elsevier, 2015.505

Hao Mei, Xiaoliang Lei, Longchao Da, Bin Shi, and Hua Wei. Libsignal: an open library for traffic506
signal control. Machine Learning, 113(8):5235–5271, 2024.507

Arthur Müller, Vishal Rangras, Tobias Ferfers, Florian Hufen, Lukas Schreckenberg, Jürgen508
Jasperneite, Georg Schnittker, Michael Waldmann, Maxim Friesen, and Marco Wiering. To-509
wards real-world deployment of reinforcement learning for traffic signal control. In 2021 20th510
IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 507–514.511
IEEE, 2021.512

Syed Shah Sultan Mohiuddin Qadri, Mahmut Ali Gökçe, and Erdinç Öner. State-of-art review of513
traffic signal control methods: challenges and opportunities. European transport research review,514
12:1–23, 2020.515

Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of multi-516
objective sequential decision-making. Journal of Artificial Intelligence Research, 48:67–113,517
2013a.518

Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of multi-519
objective sequential decision-making. Journal of Artificial Intelligence Research, 48:67–113,520
2013b.521

Joshua P Tobin. Real-World Robotic Perception and Control Using Synthetic Data. University of522
California, Berkeley, 2019.523

14

Joint-Local Grounded Action Transformation

Eric Tzeng, Coline Devin, Judy Hoffman, Chelsea Finn, Xingchao Peng, Sergey Levine, Kate524
Saenko, and Trevor Darrell. Towards adapting deep visuomotor representations from simulated525
to real environments. arXiv preprint arXiv:1511.07111, 2(3), 2015.526

Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain confusion:527
Maximizing for domain invariance. arxiv 2014. arXiv preprint arXiv:1412.3474, 2019.528

H. Wei, Guanjie. Zheng, H. Yao, and Z. Li. Intellilight: A reinforcement learning approach for529
intelligent traffic light control. Proceedings of the 24th ACM SIGKDD international conference530
on knowledge discovery & data mining, 2018.531

Hua Wei, Chacha Chen, Guanjie Zheng, Kan Wu, Vikash Gayah, Kai Xu, and Zhenhui Li.532
Presslight: Learning max pressure control to coordinate traffic signals in arterial network. In533
Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data534
mining, pp. 1290–1298, 2019a.535

Hua Wei, Guanjie Zheng, Vikash Gayah, and Zhenhui Li. A survey on traffic signal control methods.536
arXiv preprint arXiv:1904.08117, 2019b.537

Hua Wei, Guanjie Zheng, Vikash Gayah, and Zhenhui Li. Recent advances in reinforcement learn-538
ing for traffic signal control: A survey of models and evaluation. ACM SIGKDD explorations539
newsletter, 22(2):12–18, 2021.540

Hua Wei, Jingxiao Chen, Xiyang Ji, Hongyang Qin, Minwen Deng, Siqin Li, Liang Wang, Weinan541
Zhang, Yong Yu, Liu Linc, et al. Honor of kings arena: an environment for generalization in542
competitive reinforcement learning. Advances in Neural Information Processing Systems, 35:543
11881–11892, 2022.544

Huichu Zhang, Siyuan Feng, Chang Liu, Yaoyao Ding, Yichen Zhu, Zihan Zhou, Weinan Zhang,545
Yong Yu, Haiming Jin, and Zhenhui Li. Cityflow: A multi-agent reinforcement learning envi-546
ronment for large scale city traffic scenario. In The world wide web conference, pp. 3620–3624,547
2019.548

Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. Sim-to-real transfer in deep rein-549
forcement learning for robotics: a survey. In 2020 IEEE symposium series on computational550
intelligence (SSCI), pp. 737–744. IEEE, 2020.551

Guanjie Zheng, Xinshi Zang, Nan Xu, Hua Wei, Zhengyao Yu, Vikash Gayah, Kai Xu, and Zhenhui552
Li. Diagnosing reinforcement learning for traffic signal control. arXiv preprint arXiv:1905.04716,553
2019.554

15

Under review for RLC 2025, to be published in RLJ 2025

Supplementary Materials555

The following content was not necessarily subject to peer review.556
557

Table 5: Environment settings used in all experiments.

Environment Accel (m/s2) Decel (m/s2) E. Decel (m/s2) S. Delay (s)
Default (Esim) 2.0 4.5 9.0 0.0

Rainy 0.75 3.5 4.0 0.25
Snowy 0.5 1.5 2.0 0.5

A Agent Design Details558

• State. Our state is defined for each agent (intersection) as their own observation oi,t in MARL.559
For this work, we utilize the state definition from PressLight, simplifying it to include only the560
number of vehicles in each incoming and outgoing lane without lane segmentation.561

• Action. Each agent selects an action ai,t ∈ Ai at time step t that represents the traffic signal phase562
p. In this work, we utilize the same eight phase TSC action space as in (Da et al., 2023b), and563
represent all actions as one-hot encoded vectors.564

• Reward. The reward ri,t for each agent i at time step t is defined as negative pressure in565
PressLight. The goal of each agent is to minimize pressure, which effectively balances the number566
of vehicles in the traffic network and keeps traffic flowing efficiently.567

• Learning Method. Each agent is trained using an independent Deep Q-Network (DQN) with568
experience replay, enabling efficient sampling of past experiences. This approach follows estab-569
lished methods in traffic signal control (Wei et al., 2018). The objective is to optimize the policy570
πi,t for each agent i by using its individual reward ri,t to improve decision-making over time.571

16

Joint-Local Grounded Action Transformation

Algorithm 1 Algorithm for JL-GAT

Input: Initial policies πi,θ for each agent i, forward models fi,ϕ+ for each agent i, inverse mod-
els hi,ϕ− for each agent i, simulation dataset Dsim, real-world dataset Dsim, sensing radius r,
grounding pattern or grounding probability P i

ground(t) for each agent
Output: Policies πi,θ, forward models fi,ϕ+ , inverse models hi,ϕ−

1: Pre-train policies πi,θ for each agent i for M iterations in Esim
2: for e = 1, 2, ..., I do
3: Rollout policy πi,θ for each agent i in Esim and add data to Dsim (optional)
4: Rollout policy πi,θ for each agent i in Ereal and add data to Dreal (optional)
5: # Update transformation functions for each agent
6: for i = 1, 2, ..., N do
7: Update fi,ϕ+ with data from Dreal corresponding to agent i using Equation (5)
8: Update hi,ϕ− with data from Dsim corresponding to agent i using Equation (7)
9: end for

10: # Policy training
11: for ep = 1, 2, ...,E do
12: # Action grounding step for each agent i at every time step t
13: for t = 0, 1, ...,T-1 do
14: for i = 1, 2, ..., N do
15: ai,t = πi,θ(oi,t)
16: Predict next state ôi,t+1 using Equation (4)
17: Calculate grounded action âg

i,t using Equation (6)
18: # Apply pattern or probabilistic grounding
19: if grounding is based on a pattern then
20: Ground based on a pattern, example shown in Figure 5.
21: else if grounding is probabilistic then
22: Ground with a probability using Equation in Probabilistic Grounding.
23: end if
24: end for
25: end for
26: # Policy update step
27: Improve policies πi,θ for each agent i with reinforcement learning
28: end for
29: end for

17

Under review for RLC 2025, to be published in RLJ 2025

Table 6: Key Notations and Descriptions in This Paper.

Symbol Description

N Set of agents (traffic signals)
S Global state space
Ai Action space for agent i
P Transition function
R Reward function
γ Discount factor
oi,t State (observation) of agent i at time t
ai,t Action of agent i at time t
ôi,t+1 Predicted next state (observation) for agent i
πi Policy of agent i
Ji Expected cumulative reward for agent i
Dreal Real-world trajectory dataset
Dsim Simulation trajectory dataset
P ∗ Real-world transition dynamics
Pϕ Parameterized simulator dynamics
fi,ϕ+ Forward model for agent i
hi,ϕ− Inverse model for agent i
r Sensing radius
d(i, j) Distance between agents i and j
st, at Global state and action at time t
oLi,t, a

L
i,t Local joint state (observations) and actions for agent i at time t

âg
t Global grounded action at time t
âg
i,t Grounded action for agent i at time t

Table 7: Ablation Study of JL-GAT in 1x3 Rainy Environment.

Method ATT (∆ ↓) Queue (∆ ↓) Delay (∆ ↓) TP (∆ ↑) Reward (∆ ↑)
JL-GAT (Pattern) 263.61(142.35)±4.66 49.82(25.76)±1.46 0.62(0.21)±0.004 5091(-469)±20.26 -152.20(-90.55)±5.96

Forward Model w/o Neigh. States 287.96(166.70)±31.03 61.82(37.76)±8.26 0.63(0.22)±0.01 4926(-634)±201.53 -185.76(-124.11)±24.18
Forward Model w/o Neigh. Actions 302.65(181.38)±10.26 71.41(47.36)±5.30 0.64(0.23)±0.01 4820(-740)±50.91 -202.86(-141.22)±0.01

Inverse Model w/o Neigh. States 309.90(188.64)±0.00 67.66(43.60)±0.00 0.64(0.23)±0.00 4784(-776)±0.00 -202.85(-141.21)±0.00
Inverse Model w/o Neigh. Actions 309.90(188.64)±0.00 67.66(43.60)±0.00 0.64(0.23)±0.00 4784(-776)±0.00 -202.85(-141.21)±0.00

18

