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Abstract:
In offline reinforcement learning, a policy is learned using a static dataset in the
absence of costly feedback from the environment. In contrast to the online setting,
only using static datasets poses additional challenges, such as policies generating
out-of-distribution samples. Model-based offline reinforcement learning methods
try to overcome these by learning a model of the underlying dynamics of the en-
vironment and using it to guide policy search. It is beneficial but, with limited
datasets, errors in the model and the issue of value overestimation among out-of-
distribution states can worsen performance. Current model-based methods apply
some notion of conservatism to the Bellman update, often implemented using un-
certainty estimation derived from model ensembles. In this paper, we propose
Constrained Latent Action Policies (C-LAP) which learns a generative model of
the joint distribution of observations and actions. We cast policy learning as a
constrained objective to always stay within the support of the latent action dis-
tribution, and use the generative capabilities of the model to impose an implicit
constraint on the generated actions. Thereby eliminating the need to use addi-
tional uncertainty penalties on the Bellman update and significantly decreasing
the number of gradient steps required to learn a policy. We empirically evaluate
C-LAP on the D4RL and V-D4RL benchmark, and show that C-LAP is competi-
tive to state-of-the-art methods, especially outperforming on datasets with visual
observations.
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1 Introduction

Deep-learning methods are widely used in applications around computer vision and natural language
processing, related to the fact that datasets are abundant. But when used for control of physical
systems, in particular with reinforcement learning, obtaining data involves interaction with an envi-
ronment. Learning through trial-and-error and extensive exploration of an environment can be done
in simulation, but hard to achieve in real world scenarios [1, 2, 3]. Offline reinforcement learning
tries to solve this by using pre-collected datasets eliminating costly and unsafe training in real-world
environments [4, 5, 6].

Using online reinforcement learning methods in an offline setting often fails. A key issue is the
distributional shift : the state-action distribution of the offline dataset, driven by the behavior policy,
differs from the distribution generated by a learned policy. This leads to actions being inferred for
states outside the training distribution. Therefore, value-based methods are prone to overestimating
values due to evaluating policies on out-of-distribution states. This leads to poor performance and
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(a) Offline Model training (b) Policy training (c) Environment interaction

Figure 1: Overview of C-LAP. (a) The model is trained offline. It is encoding observations ot
and actions at to latent states (gray circle) and latent actions ut (green circle), and decoding them
thereafter. Furthermore it is predicting rewards r̂t. (b) The policy is learned in the latent action
space, but constrained to the support of the latent action prior, and uses the generative capabilities of
the action decoder. Gradients are computed by back-propagating estimated values V̂t and rewards r̂t
through the imagined trajectories. (c) The policy is used in the real world, again using the generative
action decoder.1

unstable training because of bootstrapping [6, 7, 8]. Offline reinforcement learning methods ad-
dress this issue with different approaches and can be categorized into model-free and model-based
methods, similar to online reinforcement learning.

Model-free offline reinforcement learning usually follows one of the following paradigms: constrain
the learned policy to the behavior policy [9, 10, 11, 7]; or introduce some kind of conservatism to
the Bellman update [12, 13, 14, 8]. Model-based reinforcement learning methods transform the
offline to an online learning setting: They approximate the system dynamics and try to resolve the
evaluation of out-of-distribution states by using the generalization capabilities of the model and gen-
erating additional samples. But as the training distribution is fixed, the estimation capabilities of the
model are limited. Therefore, these model-based methods also rely on a conservative modification
to the Bellman update as a measure to counteract value overestimation which is mostly achieved
through uncertainty penalties [15, 16, 17, 18, 19, 20, 21]. Apart from the typical approach of using
an auto-regressive model to estimate the dynamics, other model-based methods treat the objective
as trajectory modeling [22, 23, 24]. These methods aim to combine decision making and dynamics
modeling into one objective. Instead of learning a policy, they sample from the learned trajectory
model for planning. We will refer to the first kind of methods, which learn a dynamics model to
train a policy, as model-based reinforcement learning.

We aim to solve the problem of value overestimation in model-based reinforcement learning by
jointly modeling action and state distributions, without the need for uncertainty penalties or changes
to the Bellman update. Instead of learning a conditional dynamics model p(s | a), we estimate the
joint state-action distribution p(s, a). This is similar to methods that frame offline reinforcement
learning as trajectory modeling, but we use an auto-regressive model and still learn a policy. By
formulating the objective as a generative model of the joint distribution of states and actions, we
create an implicit constraint on the generated actions, similar to [10, 25]. The goal of this approach
is to address the shift in the entire distribution, rather than looking at out-of-distribution actions and
states separately. We achieve this using a recurrent state-space model with a latent action space,
which we call the recurrent latent action state-space model. Using a latent action space allows us to
learn a policy that uses the latent action prior as an inductive bias. This approach keeps the policy
close to the original data while allowing it to change when needed, which makes learning the policy
much faster. To achieve this, we treat policy optimization as a constrained optimization problem,

1Emoji graphics used in Figure 1 are licensed under CC-BY 4.0 by Twemoji.
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similar to enforcing a support constraint [9]. We provide a high level overview of our method in
Figure 1.

Overall, we summarize our contribution as follows:

• We introduce latent action state-space models for model-based offline reinforcement learn-
ing, treating it as auto-regressive generative modeling of the joint distribution of states and
actions.

• We formulate policy optimization as a constrained optimization problem, using the latent
action space to generate actions within the support of the dataset’s action distribution and
jump-start policy learning by using the generative action decoder.

• We evaluate our approach on one benchmark with image observations (V-D4RL [20]) and
on another one with low-dimensional feature observations (D4RL [26]).

• We evaluate the effect of our approach on value overestimation.

2 Preliminaries

We consider a partial observable Markov decision process (POMDP) defined by M =
(S,A,O, T,R,Ω, γ) with S as state space, A as action space, O as observation space, s ∈ S
as state, a ∈ A as action, o ∈ O as observation, T : S × A → S as transition function, R : S → R
as reward function, Ω : S → O as emission function and γ ∈ (0, 1] as discount factor. The goal is
to find a policy π : O → A that maximizes the expected discounted sum of rewards E[

∑T
t=1 γ

trt]
[27].

In online reinforcement learning, an agent iteratively interacts with the environment M and opti-
mizes its policy π. In offline reinforcement learning, however, the agent cannot interact with the
environment and must refine the policy using a fixed dataset D = {(o1:T , a1:T , r1:T )Nn=1}. There-
fore, the agent must understand the environment using limited data to ensure the policy maximizes
the expected discounted sum of rewards when deployed [6]. Auto-regressive model-based offline
reinforcement learning tries to learn a parametric function to estimate the transition dynamics T .
The transition dynamics model is then used to generate additional trajectories which can be used
to train a policy. The majority of these approaches learn a dynamics model directly in obser-
vation space Tθ(ot | ot−1, at−1) [16, 17, 18, 19, 28], while others use a latent dynamics model
Tθ(st | st−1, at−1) [20, 21].

3 Constrained Latent Action Policies

A main issue in offline reinforcement learning is value overestimation, which we address by ensur-
ing the actions generated by the policy stay within the dataset’s action distribution. Unlike previous
model-based methods, we formulate the learning objective as a generative model of the joint distri-
bution of states and actions. We do this by combining a latent action space with a latent dynamics
model. Next, we use the generative properties of the action space to constrain the policy to the
dataset’s action distribution. A general outline of our method, Constrained Latent Action Policies
(C-LAP ), is shown in Appendix B. It starts with learning a generative model, followed by actor-
critic agent training on imagined trajectories, similar to the methods in [29, 30, 20, 21].

Generative model Model-based offline reinforcement learning requires learning a model that is
accurate in areas with low data coverage but also generalizes well. Therefore, it’s crucial to balance
staying within the dataset’s distribution and generalizing to unseen states. We propose a generative
model

p(o1:T , a1:T ) =

∫
p(o1:T , a1:T | s1:T , u1:T )p(s1:T , u1:T ) ds du. (1)
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Figure 2: Recurrent latent action state-space model. The generative process is shown by solid lines
and inference by dashed lines. Stochastic variables are denoted by circles and deterministic variables
by rectangles.

that jointly models the observation and action distribution of a static dataset D =
{(o1:T , a1:T , r1:T )Nn=1} by using latent states st along with latent actions ut. Unlike other model-
based offline reinforcement learning methods that learn a conditional model p(o1:T | a1:T ) and rely
on ensemble based uncertainty penalties on the Bellman update to generate trajectories within the
data distribution [21, 18, 16, 17], our approach uses a latent action space to impose an additional
implicit constraint. By implementing a policy in the latent action space, generated actions will stay
within the dataset’s action distribution, thus enabling generalization within the limits of the learned
model [10]. To obtain a state space model with Markovian assumptions on the latent states st we
impose the following structure:

p(o1:T , a1:T | s1:T , u1:T ) =
T∏
t=1

p(ot | st)p(at | st, ut), (2)

p(s1:T , u1:T ) =

T∏
t=1

p(ut | st)p(st | st−1, ut−1). (3)

We implement the probabilistic model modifying the design of a recurrent state-space model
[31]. Thus, the latent dynamics model p(st | st−1, ut−1) is based on the deterministic transition
f(ht−1, st−1, at−1) using the latent action decoder pθ(at−1 | st−1, ut−1) to generate actions. In
the following, we mostly omit deterministic states ht for notational brevity. The resulting recur-
rent latent action state-space model is shown in Figure 2 and consists of the following components,
specifically

latent state prior pθ(st | st−1, ut−1),

latent action prior pθ(ut | st),
observation decoder pθ(ot | st),
and action decoder pθ(at | st, ut).

The latent state prior predicts the next latent state st given the previous latent state st−1 and action
ut−1 using the deterministic transition and the action decoder. The latent action prior predicts latent
actions ut given latent state st. Latent states as well and as latent actions are decoded using their
respective decoder. Similar to [25, 10] actions are reconstructed given latent state and latent action.

Directly maximizing the marginal likelihood is intractable, hence we maximize the evidence lower
bound (ELBO) on the log-likelihood log p(o1:T , a1:T ) instead. To approximate the true posterior,
we introduce

latent state posterior qϕ(st | st−1, at−1, ot)

and latent action posterior qϕ(ut | st, at)
as inference models. The latent state posterior encodes observations ot to latent states st by using
the deterministic transition. The latent action posterior encodes actions at to latent actions ut condi-
tioned on latent states st. All parameters of the generative model are indicated by θ and parameters
of the inference model by ϕ.
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We derive the ELBO

log p(o1:T , a1:T ) ≥
T∑
t=1

[
Est,ut∼qϕ [ log pθ(ot | st)︸ ︷︷ ︸

observation reconstruction

+ log pθ(at | st, ut)︸ ︷︷ ︸
action reconstruction

]

− KL(qϕ(st | st−1, at−1, ot) || pθ(st | st−1, ut−1))︸ ︷︷ ︸
observation consistency

− KL(qϕ(ut | st, at) || pθ(ut | st, ))︸ ︷︷ ︸
action consistency

]
=: −LELBO(o1:T , a1:T ),

(4)

which can be organized into individual terms for reconstruction and consistency of actions and
observations. The derivation can be found in Appendix A.

Maximizing the objective enables us to learn a model which can generate trajectories close to the
data distribution D by sampling from both priors. As we want to use the model to learn a policy
via latent imagination, we add a reward pθ(rt | st) and termination pθ(tt | st) model. Hence, the
complete model training objective is

L(o1:T , a1:T ) = LELBO(o1:T , a1:T )−
T∑
t=1

Est,ut∼qϕ [log(pθ(rt | st)) + log(pθ(tt | st))]. (5)

Figure 3: Policy constraint through explicit parametrization by using a linear transformation g of the
latent action prior pθ(ut | st) and the bounded policy πψ(ut | st) ∈ [−1, 1]. The generated actions
at ∼ p(at | st, g(πψ(ut | st), pθ(ut | st)) are implicitly constrained to the data distribution.

Constrained latent action policy We use the sequence model to generate imagined trajectories
and use an actor-critic approach to train the policy. To predict state values we learn a value model
vξ(st) alongside the policy. Therefore we use the n-step return of a state

V kN (st) = Est∼pθ,ut∼πψ

[
h−1∑
n=τ

λn−τrn + λh−τvξ(sh)

]
with h = min(τ + k, t+H) (6)

as regression target for vξ(st) [27, 29]. Polices trained on trajectories generated by a model are
prone to end up with degrading performance if the model only has access to a limited data distri-
bution, as in the case of offline reinforcement learning. Compounding modeling errors and value
overestimation of edge-of-reach states [19] are reasons for the decline. Since we train a generative
action model, generated actions are implicitly constrained to the datasets action distribution by sam-
pling from the action decoder at ∼ pθ(at | st, ut). Hence, states outside the datasets observation
distribution are hard to reach and our approach is resilient to value overestimation of edge-of-reach
states. Compounding modeling errors are still a source of diminishing performance, but can be
counteracted by increasing the representation power of the model or generating only short trajecto-
ries. To leverage the generative action model, we learn a policy πψ(ut | st) in the latent action space
similar to [10, 25]. But, as both, the latent action prior pθ(ut | st) and the policy πψ(ut | st) are
flexible, it is not ensured that they share the same support. Thus, we formulate policy optimization
as a constrained optimization problem

max
ψ

Est∼pθ,ût∼πψ

[
t+H∑
τ=t

V kN (sτ )

]
s.t. Est∼pθ,ût∼πψ [pθ(ût | st)] ≥ ϵ

(7)
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similar to a support constraint [9]. We implement the constraint explicitly through parametrization to
stay within the support, but do not impose any restrictions inside the supported limits (Figure 3). This
is different to using a divergence measure which on one hand does not strictly ensure support limits
and on the other hand is more restrictive as it also imposes a constraint on the shape of a distribution.
Here and in the following ût stands for a latent action sampled from the policy πψ(ut | st).

The policy is trained to maximize the n-step return V kN (sτ ) while staying in support of the latent
action prior. Since the latent action prior pθ(ut | st) is normally distributed as N (µθ(st), σθ(st)),
we can express the constraint as

pθ(ût | st) ≥ ϵ = pθ(µθ + ϵ̃σθ | st) (8)

with ϵ̃ as a parameter setting support as multiples of σθ centered around µθ. From the properties of
a normal distributed variable follows that

µθ + ϵ̃σθ ≥ ût ≥ µθ − ϵ̃σθ. (9)

We implement the constraint explicitly by parameterizing the policy as a linear function g dependent
on πψ(ut | st) and pθ(ut | st):

µθ + ϵ̃σθ ≥ g(πψ(ut | st), pθ(ut | st)) ≥ µθ − ϵ̃σθ. (10)

The support of the policy distribution is chosen to be bounded

ût ∼ πψ(ut | st), ût ∈ [−1, 1] (11)

and g(πψ(ut | st), pθ(ut | st)) as a linear combination of the latent action predicted by the policy
ût and the distribution parameters σθ and µθ of the latent action prior:

g(ût, µθ, σθ) = µθ + ût · ϵ̃ · σθ. (12)

4 Experiments

We limit our benchmark evaluation to the most relevant state-of-the-art offline reinforcement learn-
ing methods to answer the following questions: 1) How do latent action state-space models compare
to state-space models? 2) How comparable are model-free methods focusing on latent action spaces
to latent action state-space models? 3) Does C-LAP suffer from value overestimation? 4) How does
the support constraint affect the performance? 5) How does the performance differ between visual
observations and observations with low-dimensional features? To focus on the latter, we separately
evaluate the performance on low-dimensional feature observations using the D4RL benchmark [26],
and on image observations using the V-D4RL benchmark [20]. We additionally provide the final
performances in two tables in Appendix E. Furthermore, we analyse how different design choices
affect value overestimation in Appendix F and how the support constraint parameter influences the
performance in Appendix G.

4.1 Benchmark results

D4RL Since most offline model-based reinforcement learning methods are designed for obser-
vations with low-dimensional feature observations, there exist many options for comparison. We
make a selection to include the most relevant methods focusing on latent actions and auto-regressive
model-based reinforcement learning. Therefore, we include the following methods: PLAS, which
is a model-free method using a latent action space [10]. MOPO, a probabilistic ensemble-based
offline model-based reinforcement learning method using a modification to the Bellman update to
penalize high variance in next state predictions [16]. And MOBILE, which is similar to MOPO, but
penalizes high variance in value estimates instead [18]. A comprehensive review of related work
can be found in Appendix H. We compare the algorithms on three different environments, namely
halfcheetah, walker2d and hopper, with four datasets (medium-replay, medium, medium-expert, ex-
pert) each. The results, shown in Figure 4, display the mean and standard deviation of normalized
returns over four seeds during the phase of policy training, with steps denoting gradient steps. The
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Figure 4: Evaluation on low-dimensional feature observations using D4RL benchmark datasets. We
plot mean and standard deviation of normalized returns over 4 seeds.

dashed lines indicate the asymptotic performance for MOPO and MOBILE. A detailed summary of
all implementation details is provided in the Appendix D.

When comparing C-LAP to PLAS, we find that learning a joint generative model of actions and
observations outperforms a generative model of only actions when used with actor-critic reinforce-
ment learning. Both methods can use the generative nature of the model to speed up policy learning,
which becomes especially clear in the results on all expert and medium-expert datasets. Compared
to MOPO and MOBILE, C-LAP shows a superior or comparable performance on all datasets except
halfcheetah-medium-replay-v2, halfcheetah-medium-v2 and hopper-medium-v2. The asymptotic
performance of MOBILE sometimes exceeds the results of C-LAP, but needs three times as many
gradient steps. Overall the results indicate that latent action state-space models with constrained la-
tent action polices not only match the state-of-the-art on observations with low-dimensional features
as observations, but also jump-start policy learning by using the action decoder to sample actions
that lead to high rewards already after the first gradient steps.

V-D4RL There are currently few auto-regressive model-based reinforcement learning methods
that specifically target visual observations, with none emphasizing latent actions. In our evaluation,
we include LOMPO [21] and Offline DV2 [20]. Both methods use a latent state space model and
an uncertainty penalized reward. However the specifics of the penalty calculations are different:
while LOMPO uses standard deviation of log probabilities as penalty, Offline DV2 uses mean dis-
agreement. Additionaly, LOMPO trains an agent on a mix of real and imagined trajectories with
an off-policy actor-critic approach, whereas Offline DV2 exclusively trains on imagined trajecto-
ries and back-propagates gradients through the dynamics model. Further implementation details are
included in Appendix D.

C-LAP demonstrates superior performance across all datasets, especially significant on cheetah-run-
medium expert, walker-walk-medium expert and walker-walk expert. Datasets with a large diver-
sity of actions, such as medium-replay datasets, exhibit a weaker inductive bias for a generative
action model. Hence, they require more additional policy steps, as can be seen for both the D4RL
and V-D4RL benchmarks.
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Figure 5: Evaluation on visual observations using V-D4RL benchmark datasets. We plot mean and
standard deviation of normalized returns over 4 seeds.

5 Conclusion

We present C-LAP, a model-based offline reinforcement learning method. To tackle the issue of
value overestimation, we first propose an auto-regressive latent-action state space model to learn a
generative model of the joint distribution of observations and actions. Second, we propose a method
for policy training to stay within the dataset’s action distribution. We explicitly parameterize the
policy depending on the latent action prior and formulate policy learning as constrained objective
similar to a support constraint. We find that C-LAP significantly speeds-up policy learning, is com-
petitive on the D4RL benchmark and especially outperforms on the V-D4RL benchmark, raising the
best average score across all dataset’s from previously 31.5 to 58.8.

Limitations Depending on the dataset and environment the effectiveness of C-LAP differs:
Datasets which only contain random actions are challenging for learning a generative action model,
thus we do not include them in our evaluation. The effect of jump-starting policy learning with the
latent action decoder to already achieve high rewards in the beginning of policy training is promi-
nent in narrow datasets, but less effective for diverse datasets. While training the model of C-LAP
does not require additional gradient steps, it still takes more time compared to LOMPO [21] and Of-
fline DV2 [20] as the latent action state-space model is more complex than a usual latent state-space
model.
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A ELBO derivation

We start with Equation (1) to jointly model the dataset’s observation and action distribution

log p(o1:T , a1:T ) = log

∫
p(o1:T , a1:T | s1:T , u1:T )p(s1:T , u1:T ) ds du, (13)

and the defintions in Equation (3), namely:

p(o1:T , a1:T | s1:T , u1:T ) =
T∏
t=1

p(ot | st)p(at | st, ut), (14)

p(s1:T , u1:T ) =

T∏
t=1

p(ut | st)p(st | st−1, ut−1). (15)

We introduce the inference model

q(st, ut | st−1, at−1, at, ot) = q(st | st−1, at−1, ot)q(ut | st, at) (16)

and by replacing p(o1:T , a1:T | s1:T , u1:T ) and p(s1:T , u1:T ) in Equation (13) we get:

log p(o1:T , a1:T ) = log

∫ T∏
t=1

p(ot | st)p(at | st, ut)p(ut | st)p(st | st−1, ut−1) ds du. (17)

We include the inference model and resolve using Jensen’s Inequality:

log p(o1:T , a1:T ) = log

∫ T∏
t=1

p(ot | st)p(at | st, ut)p(ut | st)p(st | st−1, ut−1)
q(st, ut | st−1, at−1, at, ot)

q(st, ut | st−1, at−1, at, ot)
ds du

(18)

= logEq[
T∏
t=1

p(ot | st)p(at | st, ut)p(ut | st)p(st | st−1, ut−1)

q(st, ut | st−1, at−1, at, ot)
] (19)

= logEq[
T∏
t=1

p(ot | st)p(at | st, ut)
p(st | st−1, ut−1)

q(st | st−1, at−1, ot)

p(ut | st)
q(ut | st, at)

] (20)

≥ Eq[
T∑
t=1

log p(ot | st)p(at | st, ut) + log
p(st | st−1, ut−1)

q(st | st−1, at−1, ot)
+ log

p(ut | st)
q(ut | st, at)

]

(21)

=

T∑
t=1

[
Eq[log p(ot | st)p(at | st, ut)] (22)

− KL(q(st | st−1, at−1, ot) || p(st | st−1, ut−1) (23)
− KL(q(ut | st, at) || pθ(ut | st)]

]
(24)

=: −LELBO(o1:T , a1:T ). (25)
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B Algorithm

We provide the general algorithm of C-LAP.

Algorithm 1: C-LAP
Given: Dataset D, learning rates αθ, αϕ, αψ , αξ, sequence length K, dream rollout length H
// Model Training

Initialize model parameters θ and ϕ
for epoch in model training epochs do

for update step t = 1..T do
Sample batch of trajectories {(ot, at, rt, tt)}k+Kt=k ∼ D
Compute model training objective L(o1:T , a1:T ) via Equation (5)
Update model parameters θ ← θ + αθ∇θL(o1:T , a1:T ), ϕ← ϕ+ αϕ∇ϕL(o1:T , a1:T )

end for
end for
// Agent Training

Initialize policy and critic parameters ψ and ξ
for epoch in agent training epochs do

for update step t = 1..T do
Sample batch of trajectories {(ot, at, rt, tt)}k+Lt=k ∼ D
Compute latent states st ∼ qϕ(st | st−1, at−1, ot)
Sample random starting state sinit from each trajectory
Create dream rollouts {(sτ , uτ , aτ )}t+Hτ=t from sinit using pθ(st | st−1, ut−1) and
at ∼ p(at | st, g(πψ(ut | st), pθ(ut | st))

Predict rewards rτ ∼ pθ(rτ | sτ ), termination tτ ∼ pθ(tτ | sτ ) and values
vξ ∼ vψ(uτ | sτ )

Compute value estimates V kN (sτ ) via Equation (6)
Update policy parameters ψ ← ψ + αψ∇ψ

∑t+H
τ=t V

k
N (sτ )

Update critic parameters ξ ← ξ + αξ∇θ
∑t+H
τ=t

1
2∥vξ(sτ )− V

k
N (sτ )∥

end for
end for

C Computational Resources

We use a different hardware setup for experiments with visual observations and experiments with
low-dimensional features as observations. We run all experiments on a shared local cluster. C-LAP
experiments with visual observations take around 10 hours on a RTX8000 GPU and experiments
with low-dimension feature observations around 11 hours on a A100 GPU. We aim to execute most
of our code on GPU and parallelize our implementation. Environment evaluations represent a bottle-
neck as they require execution on CPU. Overall, it takes around 70 combined GPU days to reproduce
the benchmark results of all methods. This does not include the compute required for the evaluation
of preliminary implementations or hyper-parameter settings.

D Implementation Details

We implement all methods in JAX [32] using Equinox [33]. We provide the hyper-parameters
of C-LAP in Table 2 and the constraint values used for the D4RL benchmark in Table 3 and for
the V-D4RL benchmark in Table 4. In general we consider constraint values in the range ϵ̃ ∈
{0.5, 1.0, 2.0, 3.0}.

We implement MOPO and MOBILE following [18] and use the respective hyper-parameters pro-
vided in the publication. For MOPO, we select the max-aleatoric version. As no hyper-parameters
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are provided for the expert datasets of the D4RL benchmark we sweep through the range specified
in Table 1 and use the one selected in the table.

We implement PLAS following [10] and use the default hyper-parameters for the expert datasets.

We implement LOMPO and Offline DV2 using the continuous state implementation from Dreamer
[29], which is different from the original implementation using discrete states. This change keeps
the model closer to C-LAP , which is also using continuous states. For LOMPO and Offline DV2,
we take hyper-parameters from [20].

As all our implementations might differ from the original one, we include the original scores from
the paper alongside our results in Table 5 and Table 6.

MOPO MOBILE

Hyper-parameter range
penalty coefficient ∈ {0.5, 2.5, 5.0, 10.0}
rollout steps: ∈ {1, 5}
dataset ratio: ∈ {0.05, 0.5, 0.8}

penalty coefficient ∈ {1.5, 2.5, 3.5}
rollout steps: ∈ {1, 5}
dataset ratio: ∈ {0.05, 0.5, 0.8}

halfcheetah-expert-v2
penalty coefficient: 1.0
rollout steps: 5
dataset ratio: 0.5

penalty coefficient: 2.5
rollout steps: 5
dataset ratio: 0.5

walker2d-expert-v2
penalty coefficient: 10.0
rollout steps: 1
dataset ratio: 0.8

penalty coefficient: 2.5
rollout steps: 1
dataset ratio: 0.5

hopper-expert-v2
penalty coefficient: 5.0
rollout steps: 5
dataset ratio: 0.05

penalty coefficient: 3.5
rollout steps: 5
dataset ratio: 0.5

Table 1: MOPO and MOBILE hyper-parameters for the expert datasets in the D4RL benchmark.

Environment Dataset Constraint ϵ̃

Halfcheetah

medium-replay 3.0
medium 3.0
medium-expert 2.0
expert 2.0

Walker2d

medium-replay 3.0
medium 1.0
medium-expert 3.0
expert 2.0

Hopper

medium-replay 2.0
medium 3.0
medium-expert 2.0
expert 0.5

Table 3: C-LAP constraint values for the D4RL
benchmark

Environment Dataset Constraint ϵ̃

Cheetah-run

medium-replay 3.0
medium 3.0
medium-expert 3.0
expert 3.0

Walker-walk

medium-replay 3.0
medium 3.0
medium-expert 0.5
expert 0.5

Table 4: C-LAP constraint values for the V-D4RL
benchmark
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Model
Stochastic latent state size 30

Deterministic latent state size 200 (low-dimensional features)
512 (visual)

Observation embedding size 30 (low-dimensional features)
1024 (visual)

Latent action size 12

Hidden units 200

Hidden activation selu

State encoder

MLP
units: 128
layers: 2

CNN
channels: [32, 64, 128, 256]
kernels: [4, 4, 4, 4]
stride: 2

State decoder

MLP
units: 128
layers: 2
distribution: Gaussian

CNN
channels: [128, 64, 32, 3]
kernels: [5, 5, 6, 6]
stride: 2
distribution: Gaussian

Latent action encoder
units: 512
layers: 2
distribution: Gaussian

Latent action decoder
units: 512
layers: 2
distribution: Beta

Latent action prior
units: 256
layers: 2
distribution: Gaussian

Learning rate 3e−4
Batch size 64

Window length 50
Agent

Hidden activation selu

Policy
units: 256
layers: 3
distribution: TanhGaussian

Value
units: 256
layers: 3
number of networks: 2

Learning rate 8e−5
Logprob/entropy regulariser scaling 0.01

Dream rollout length 5

Table 2: C-LAP hyper-parameters
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E D4RL and V-D4RL benchmark results

We provide the benchmark results in the usual offline reinforcement learning table format. As our
implementations might differ from the original one, we include the original scores from the paper
alongside our results in tables. We also include the average over all datasets except the expert
datasets to make it comparable to the average scores provided in the respective publication.

Environment Dataset PLAS
(paper) [10] PLAS MOPO

(paper) [18] MOPO MOBILE
(paper) [18] MOBILE C-LAP

Halfcheetah

medium 39.4 41.8± 0.7 72.4 66.3± 5.3 74.6± 1.2 63.7± 6.2 55.5± 4.5
medium-replay 43.9 44.8± 0.5 72.1 57.5± 39.4 71.7± 1.2 77.3± 2.0 56.2± 4.8
medium-expert 96.6 82.5± 5.5 83.6 104.4± 2.7 108.2± 2.5 103.2± 0.7 96.8± 0.3
expert - 94.8± 1.5 - 94.0± 25.7 - 103.0± 1.0 97.1± 0.6

Walker2d

medium 44.6 67.7± 14.9 84.1 54.6± 20.5 87.7± 1.1 85.4± 10.6 86.0± 20.1
medium-replay 30.2 79.4± 1.8 85.2 78.0± 22.5 89.9± 1.5 81.0± 0.5 82.5± 4.4
medium-expert 89.6 109.4± 1.0 105.3 105.6± 7.1 115.2± 0.7 113.5± 4.0 111.8± 1.0
expert - 109.1± 0.4 - 113.4± 0.5 - 15.0± 17.3 111.7± 0.3

Hopper

medium 32.9 49.1± 15.1 62.8 87.0± 36.2 106.6± 0.6 96.1± 18.2 78.6± 29.9
medium-replay 27.9 57.0± 4.3 92.8 76.8± 41.3 103.9± 1.0 106.2± 0.2 80.3± 18.6
medium-expert 111.0 55.7± 6.4 74.9 43.5± 28.2 112.6± 0.2 111.8± 1.8 105.0± 7.7
expert - 97.1± 16.3 - 26.2± 5.1 - 78.6± 38.4 110.5± 3.4

Average without expert 57.3 65.3 81.5 74.9 96.7 93.1 83.6

Average - 74.0 - 75.6 - 92.7 89.3

Table 5: Results on the D4RL benchmark. Showing normalized returns and standard deviations at
the end of policy training.

Environment Dataset Offline DV2
(paper) [20] Offline DV2 LOMPO

(paper) [20] LOMPO C-LAP

Cheetah-run

medium-replay 61.6± 1.0 54.6± 6.5 36.3± 13.6 42.2± 3.5 52.5± 1.3
medium 17.2± 3.5 16.8± 8.7 16.4± 8.3 52.3± 3.8 57.4± 0.9
medium-expert 10.4± 3.5 9.4± 6.3 11.9± 1.9 14.9± 5.9 73.2± 8.5
expert 10.9± 3.2 5.3± 1.4 14.0± 3.8 8.4± 5.3 36.6± 11.3

Walker-walk

medium-replay 56.6± 18.1 42.5± 14.2 34.7± 19.7 11.4± 5.8 34.5± 5.5
medium 34.1± 19.7 40.6± 10.8 43.4± 11.1 39.0± 5.7 54.8± 1.2
medium-expert 43.9± 34.4 41.0± 20.0 39.2± 19.5 58.0± 5.3 93.2± 2.2
expert 4.8± 0.6 6.1± 5.6 5.3± 7.7 25.6± 17.6 68.1± 14.0

Average 29.9 27.0 25.2 31.5 58.8

Table 6: Results on the V-D4RL benchmark. Showing normalized returns and standard deviations
at the end of policy training.

F Value overestimation

Limiting value overestimation plays a central role in offline reinforcement learning. To evaluate
the effectiveness of C-LAP, we report value estimates alongside normalized returns on all walker2d
datasets. To further analyze the influence of different action space design choices, we include the
following ablations: a variant no constraint, which does not formulate policy optimization as con-
strained objective, but uses a Gaussian policy distribution to potentially cover the whole Gaussian
latent action space; and a variant no latent action, which does not emphasize latent actions, but uses
a regular state-space model as in Dreamer [29]. Besides that, we added dashed lines to indicate the
dataset’s average return and average maximum value estimate. The no latent action variant fails
to learn an effective policy: normalized returns are almost zero and the dataset’s reference returns
remain unattained; value estimates are significantly exceeding the dataset’s reference values, indi-
cating value overestimation. The no constraint variant can use the generative action decoder to limit
generated actions to the dataset’s action distribution, but the Gaussian policy is free to move to re-
gions which are unlikely under the action prior. Thus, nullifying the implicit constraint imposed by
the action decoder, resulting in collapsing returns and value overestimation. Only C-LAP achieves
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Figure 6: Ablation study, comparing C-LAP to the following variants: no constraint, C-LAP without
enforcing the policy constraint dependent on the action prior; no latent action, C-LAP without a
latent action space similar to Dreamer [29]. We plot mean and standard deviation of normalized
returns and value estimates over 3 seeds. Moreover we add the dataset’s average return and average
maximum value estimate indicated by dashed lines.

a high return and generates value estimates which are close to the dataset’s reference. The value
estimates on walker2d-medium-replay-v2 are higher than the dataset’s reference, as the agent’s per-
formance is also exceeding the reference performance. The results confirm the importance of limit-
ing value overestimation in offline reinforcement learning, and demonstrate that constraining latent
action policies can be an effective measure for achieving this.

G Support constraint parameter

To evaluate the influence of the support constraint parameter ϵ̃ on the performance of C-LAP, we
perform a sensitivity analysis across all walker2d datasets (Figure 7). Except for the more diverse
medium-replay-v2 dataset, adjusting ϵ̃ from 0.5 to 3.0 only has a minor impact on the achieved
return. However, when choosing an unreasonable large value such as ϵ̃ = 10.0 or removing the
constraint altogether (Figure 6), we observe a collapse during training. This highlights a key insight:
constraining the policy to the support of the latent action prior is essential. And in many cases, using
a smaller support region closer to the mean (small ϵ̃) proves sufficient.

Figure 7: Sensitivity analysis of the support constraint parameter ϵ̃ for the considered D4RL
walker2d datasets. We plot mean and standard deviation of normalized returns over 4 seeds.
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H Related Work

Offline reinforcement learning methods fall into two groups: model-free and model-based. Both
types aim to tackle problems like distribution shift and value overestimation. This happens because
the methods use a fixed dataset rather than learning by interacting with the environment.

Model-free Current model-free methods typically work by limiting the learned policy or by reg-
ularizing value estimates. TD3+BC [11] adds a behavior cloning regularization term to the policy
update objective to enforce actions generated by the policy to be close to the dataset’s action dis-
tribution. Similarly, SPOT [9] includes a regularization term in the policy update, derived from a
support constraint perspective. It also uses a conditional variational auto-encoder (CVAE) to esti-
mate the behavior distribution. Following a comparable intention, BEAR [8] constraints the policy
to the support of the behavior policy via maximum mean discrepancy. BCQ [7] and PLAS [10] use a
CVAE similarly but don’t use a regularization term. Instead, they constrain the policy implicitly by
making the generative model part of the policy. Beside these methods, many other approaches exist,
with CQL [12] and IQL [14] being some of the most well-known. CQL uses a conservative policy
update by setting a lower bound on value estimates to prevent overestimation, while IQL avoids
out-of-distribution values by using a modified SARSA-like objective in combination with expectile
regression to only use state-action tuples contained in the dataset.

Model-based Model-based offline reinforcement learning methods learn a dynamics model to
generate samples for policy training. This basically converts offline learning to an online learn-
ing problem. Model-based methods mainly address model errors and value overestimation by using
a probabilistic ensemble and adding an uncertainty penalty in the Bellman update. MOPO [16]
uses a probabilistic ensemble as in [34] and adds the maximum standard deviation of all ensemble
predictions as uncertainty penalty. Similar to that, MOReL [17] adheres to the same methodology,
but uses pairwise maximum difference of the ensemble predictions as penalty instead. Analogously,
MOBILE [18] estimates the values for all by the ensemble predicted states and uses the standard
deviation of value estimates as penalty. Edge of reach [19] comes to the conclusion that value esti-
mation on edge of reach states are the overarching issue compared to model errors. In the end, they
come up with a comparable solution to MOBILE, but use an ensemble of value networks alongside
the ensemble of dynamic models. COMBO [28] pursues a different approach, as they integrate the
conservatism of CQL into value function updates, removing the need for uncertainty penalties. Be-
sides that, some methods use a different class of models: instead of learning a predictive model in
observation space, they use latent state-space models to make predictions on latent states. Among
these methods is LOMPO [21], which builds up on Dreamer [29], but integrates an ensemble to
predict stochastic states and use the standard deviation of the log probability of the ensemble pre-
dictions as an uncertainty penalty similar to previous methods. The policy is trained on a mix of
imagined and real world samples, hence they use an off-policy actor-critic style approach for policy
learning. Offline DV2 [20] uses a similar model, but is based on a different penalty. Namely, they
use the difference between the individual ensemble mean predictions and mean over all ensembles as
uncertainty penalty. Furthermore, the policy is trained only on imagined trajectories with gradients
calculated by back-propagating through the dynamics model. Overall, Offline DV2 is the method
most comparable to our approach, but still different in many ways as we propose a latent action
state-space model compared to a usual state-space model, and frame policy learning as constrained
optimization. So far all discussed models operate in an auto-regressive fashion, but another class
of methods exists, which casts offline model-based reinforcement learning as trajectory modeling.
Instead of learning a policy, these kind of approaches integrate decision making and modeling of
the underlying dynamics into a single objective and use the model for planning. Among them are
Diffuser [24], which employs guided diffusion for planning; TT [22], which builds on advances in
transformers; and TAP [23], which uses a VQ-VAE with a transformer-based architecture to create
a discrete latent action space for planning.
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