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ABSTRACT

Dataset curation has become a basis for strong large language model (LLM)
performance. While various rule-based filtering heuristics exist for English and
multilingual datasets, model-based filtering techniques have primarily focused on
English. To address the disparity stemming from limited research on non-English
languages, we propose a model-based filtering framework for multilingual datasets
that aims to identify a diverse set of structured and knowledge-rich samples. Our ap-
proach emphasizes transparency, simplicity, and efficiency, leveraging Transformer-
and FastText-based classifiers to ensure the broad accessibility of our technique
and data. We conduct comprehensive ablation studies on the FineWeb-2 web
crawl dataset across diverse language families, scripts, and resource availability to
demonstrate the effectiveness of our method. Using a 1B-parameter Llama model
trained on 70B and 119B tokens, our approach can match the baseline MMLU
score with as little as 15% of the training tokens, while also improving across other
benchmarks. These findings provide strong evidence for the generalizability of our
approach to other languages. As a result, we extend our framework to 20 languages
for which we will release the refined pretraining datasets.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated impressive performance improvements when
trained on increasingly larger datasets and model sizes (Brown et al., 2020). While Brown et al.
(2020) already observed the importance of using a cleaned version of Common Crawl for improved
performance, the high cost of LLM training has further motivated research into better pretraining
quality filters.

Deduplication and heuristic-based dataset cleaning have become standard practices in data cura-
tion (Rae et al., 2021; Raffel et al., 2020; De Gibert et al., 2024). These quality filters are often comple-
mented by additional filters, such as the removal of personally identifiable information (PII) (Penedo
et al., 2024a) or model-based toxicity filtering (Soldaini et al., 2024). Recently, model-based filtering
has also emerged as a promising method for quality filtering. The release of FineWeb-Edu (Penedo
et al., 2024a) demonstrated that pretraining on just 10% of the tokens (38B) from an English dataset
filtered using a model-based approach can achieve performance comparable to models trained on
350B tokens of unfiltered data. Moreover, when trained on equivalent amounts of data, this model
largely outperforms the baseline. Concurrently, the release of DCLM (Li et al., 2024b) showed that
competitive performance can be achieved using a simple and efficient model-based approach, namely
a FastText (Joulin et al., 2017) classifier trained on a carefully selected training dataset.

However, these recent advances have primarily focused on English data. This emphasis risks further
widening the disparity in LLM performance between languages, as less than half of internet content
is written in English1. To address this concern, we aim to extend model-based filtering frameworks to
multilingual datasets. While model perplexity-based filtering is commonly applied to multilingual
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datasets (Wenzek et al., 2019; Laurençon et al., 2022; Nguyen et al., 2023), the current state-of-the-
art, FineWeb-2 (Penedo et al., 2024c), primarily relies on heuristic-based filters. In this work, we
focus on model-based filtering with a quality definition that emphasizes: 1) structured data and 2)
knowledge-rich data samples, to enhance multilingual pretraining datasets.

To achieve this, we leverage embedding-based classification models. Firstly, we adopt the FastText
quality filtering approach from DCLM to develop a unified framework for multilingual datasets
that span diverse language families, scripts, and resource availability, focusing on Chinese, German,
French, Arabic, and Danish as representative languages for our experiments. Additionally, we extend
this embedding-based approach by incorporating Transformer (Vaswani et al., 2023) embeddings,
specifically XLM-RoBERTa (Conneau et al., 2020), for filtering.

In summary, our contributions are as follows:

• We propose a transparent, simple, and unified framework for multilingual model-based
filtering at web scale, enabling data curation across diverse language families, scripts and
resource availability.

• We present comprehensive per-language ablation studies of embedding-based multilingual
quality filtering on top of the FineWeb-2 dataset (Penedo et al., 2024c), achieving perfor-
mance comparable to the baseline while using as little as 15% of the tokens. We additionally
analyze the impact of dataset contamination and multilingual LLM training.

• We evaluate the impact of different training datasets for data selection classifiers on the
downstream performance of LLMs.

• We release the codebase2 and the refined pretraining dataset covering 20 languages3, filtered
using our proposed framework, to advance multilingual language modeling.

2 RELATED WORK

Data Curation. In order to pretrain LLMs on a large amount of diverse texts, Common Crawl4

is often used as the base dataset. However, early works already observed that performing quality
filtering on Common Crawl is crucial for model performance (Brown et al., 2020). There exist
various data curation approaches, such as deduplication (Lee et al., 2022), PII removal (Subramani
et al., 2023), or toxicity filtering (Arnett et al., 2024). Another important aspect is quality filtering
of the documents. For this, the definition of quality is an important aspect. A common approach is
to use heuristics to remove documents outside of the target distribution, such as filtering based on
average word length, existence of punctuation, or document length (Rae et al., 2021; Raffel et al.,
2020). Another approach is to define model-based filters, where research has focused on perplexity
measure of the text (Wenzek et al., 2019; Marion et al., 2023; Ankner et al., 2024), distributional
similarity measures (Brown et al., 2020; Xie et al., 2023; Li et al., 2024b) and LLM-based quality
assessment (Gunasekar et al., 2023; Wettig et al., 2024; Sachdeva et al., 2024; Penedo et al., 2024a).

In this work, we build upon previous curated datasets based on heuristic filtering, specifically
FineWeb-2 (Penedo et al., 2024c), and focus on model-based distributional similarity filtering for
structured and knowledge-rich documents relying on textual embedding representation.

Curated English datasets. One of the early curated datasets was C4 (Raffel et al., 2020), followed
by MassiveText (Rae et al., 2021). RefinedWeb (Penedo et al., 2023) was an important step forward,
demonstrating that filtered web data can outperform selected high-quality data sources. While these
datasets have not been made fully publicly available, their filtering techniques have been expanded
upon in recent fully public datasets, such as Dolma (Soldaini et al., 2024), FineWeb, and FineWeb-
Edu (Penedo et al., 2024a). While FineWeb primarily relies on filter heuristics for data quality, Dolma
adopts model perplexity filtering. FineWeb-Edu takes model-based filtering a step further and relies
on LLM-based quality assessment. Similarly, a concurrent work, DCLM, has achieved competitive
performance using FastText (Joulin et al., 2017) classifier trained on a carefully selected training
dataset. In this work we adapt and extend this approach to the multilingual context.

2github.com/epfml/fineweb2-hq
3huggingface.co/datasets/epfml/FineWeb2-HQ
4commoncrawl.org
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Curated Multilingual Datasets. Analogously to the English datasets, there have been efforts in
the multilingual space. An influential work has been CCNet (Wenzek et al., 2019), whose lan-
guage identification and model perplexity filter for data quality has been re-used in later datasets.
Again, while CCNet was not published directly, but rather provided the tools for data cleaning,
RedPajama (Together Computer, 2023) is a prominent multilingual dataset relying on these filtering
techniques. While RedPajama offers data in 5 European languages, other datasets, such as OS-
CAR (Ortiz Suárez et al., 2019; Abadji et al., 2021; Abadji et al., 2022), mC4 (Xue et al., 2021),
ROOTS (Laurençon et al., 2022), MADLAD-400 (Kudugunta et al., 2023), CulturaX (Nguyen et al.,
2023), and HPLT (de Gibert et al., 2024), focus on expanding beyond, spanning a variety of language
families and scripts. While they offer refined datasets for hundreds of languages, FineWeb-2 (Penedo
et al., 2024c) pushes the limit to thousands of languages and further improves the performance. Our
work also focuses on filtering quality samples across various language families and scripts. However,
we limit our scope to 20 languages, as the number of documents drops quickly and there is trade-off
between retaining a sufficient number of pretraining tokens and ensuring data quality (Muennighoff
et al., 2023; Held et al., 2025). In our results, we observe the greatest benefits using stricter data
filtering.

Multilingual Embedding Models. Early word embedding models like Word2Vec (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014) lacked contextual understanding. FastText (Bojanowski
et al., 2017) built upon them and improved performance by incorporating subword information.
Transformer (Vaswani et al., 2023) models like BERT (Devlin et al., 2019) and GPT (Radford et al.,
2018) then revolutionized the field with context-aware embeddings. Multilingual models like mBERT,
XLM (Lample & Conneau, 2019), and XLM-RoBERTa (Conneau et al., 2020) further advanced
cross-lingual understanding, with recent open-source LLMs pushing performance even higher (Llama
Team, 2024; Mistral AI, 2025). Using such models, documents as well as representative samples
can be mapped into a shared embedding space to estimate their similarity. Focusing on transparency,
simplicity and efficiency in our work, we use FastText and XLM-RoBERTa for our filtering, and
analyze the trade-off between computational complexity and filtering performance.

Multilingual Evaluation. Evaluating LLMs requires diverse benchmarks testing linguistic and cog-
nitive abilities like reading comprehension, reasoning, and knowledge. While English benchmarks
like MMLU (Hendrycks et al., 2020) and ARC (Clark et al., 2018) exist, other languages often
use translations from English, e.g., XNLI (Conneau et al., 2018) and machine-translated version
of MMLU (Lai et al., 2023). However, translations can be problematic, failing to capture cultural
nuances or introducing ”translationese” (Romanou et al., 2024). Recent work by Romanou et al.
(2024); Singh et al. (2024a) emphasizes the need for culturally sensitive, natively collected bench-
marks. Task difficulty and task formulation also impact model performance when trained for shorter
durations (Kydlı́ček et al., 2024). In our work, we follow the recent evaluation tasks selection and
methodology by Kydlı́ček et al. (2024) to assess our model-based filtering approaches across multiple
languages.

3 METHODS

In this work, we present our model-based filtering approaches. Our methodology is structured into
two key components: 1) we select suitable training datasets, aiming to identifying a diverse set of
structured and knowledge-rich samples and 2) we describe the different models, namely FastText and
Transformer embedding-based filters, used to capture and leverage these characteristics.

3.1 CLASSIFIER TRAINING DATASET

Representative Sample Selection. Our goal is to identify a diverse set of structured and knowledge-
rich samples, especially within a multilingual context. We define two criteria for our training datasets:
1) the samples must be informative and well-structured and 2) the datasets must be available in
multiple languages. While some multilingual benchmark datasets meet these criteria precisely, it is
important to note that we do not train the LLM directly on this data. Instead, we train a proxy model
to assess pretraining data quality. Nevertheless, we must remain cautious about potentially increased
pretraining data contamination stemming from this approach, as discussed in Section 4.2.6.

Based on our criteria, we selected the following datasets as representative examples.
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• Aya Collection. A prompt completion dataset comprising ∼514M samples covering a wide
variety of tasks, generated using instruction-style templates in 101 languages (Singh et al.,
2024b).

• Aya Dataset. Human-annotated instruction fine-tuning dataset consisting of ∼202K prompt-
completion pairs in 65 languages (Singh et al., 2024b).

• MMLU. Originally for English language, the dataset contains ∼14K multiple-choice knowl-
edge questions in diverse subjects and areas (Hendrycks et al., 2020). Multilingual version
was translated into 14 languages by professional translators (OpenAI, 2024).

• OpenAssistant-2. The dataset contains ∼14K user-assistant conversations with multiple
messages in 28 languages (Fischer et al., 2024).

• Include-Base-44. Multiple-choice questions focused on general and regional knowledge, as
well as reasoning, extracted from academic and professional exams. Spanning 44 languages,
it includes a total of ∼23K samples (Romanou et al., 2024).

Representative Sample Collection. MMLU and Include-Base-44 are highly curated benchmark
datasets, containing structured, knowledge-rich samples. The Aya Dataset is human-curated, while
OpenAssistant-2 is partially human-curated and partially generated by large language models (LLMs).
In contrast, the Aya Collection consists of various AI-generated samples without quality guarantee,
though it represents the largest and most multilingual of the five.

To address this quality difference, we create two Multilingual Knowledge Collection (MKC) configu-
rations:

• MKC: Includes Include-Base-44, OpenAssistant-2, MMLU, and the Aya Dataset

• MKC+: Includes MKC and the Aya Collection

This allows us to evaluate the trade-off between data quality and scale.

Dataset Creation. For our model-based filtering approaches, our goal is to identify documents from
the pretraining dataset that are most similar to our representative samples, with the notion of similarity
determined by the specific classifier used. We can measure the similarity to our training dataset
directly, for example, by computing the cosine similarity to our training samples in the embedding
space. Alternatively, following the approach of Li et al. (2024b), the task can be framed as a binary
classification problem, with the representative samples as the positive class. For the negative class,
we can simply subsample documents from our pretraining dataset, under the assumption that the
majority of these documents are neither well-structured nor knowledge-rich. We use both approaches
for our classifiers.

To create the binary classification training dataset, we selected 80K random examples from the
training set (MKC or MKC+) as positive samples and 80K random examples from FineWeb-2 as
negative samples. For smaller datasets, such as Include-Base-44, the entire dataset was used. The
same training dataset was utilized across all model-based filtering approaches, disregarding negative
samples when unnecessary. Additionally, we created a training dataset for each language individually,
to avoid leaking language-specific biases to data of other languages.

Sample Pre-processing. We applied no pre-processing to the FineWeb-2 (negative) samples but
performed minimal pre-processing on the representative (positive) samples. For instance, in datasets
like MMLU or OpenAssistant-2, we concatenated various sample components. For the Aya Collection,
we resolved encoding issues in non-Latin languages and removed samples containing <unk> tokens,
which were particularly prevalent in Arabic data (37.1%).

3.2 FASTTEXT-BASED FILTERING (FT)

To efficiently process datasets with over 100 million documents (Penedo et al., 2024c), similar to
DCLM (Li et al., 2024b), we used a binary FastText classifier (Joulin et al., 2017). This classifier
runs on CPU and can be easily deployed across multiple cores, for example using DataTrove (Penedo
et al., 2024b).

We trained our FastText classifier on the processed training set using a 2-gram setting (4-gram
for Chinese). Additional details about the training process are provided in Appendix A.1. These
classifiers were then used to assign scores to all documents in the pretraining dataset. To filter the
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dataset, we applied a score threshold based on the desired retention percentage of documents. This
approach balances dataset size and the predicted quality of the samples.

3.3 TRANSFORMER EMBEDDING-BASED FILTERING

To leverage rich semantic information based on contextual relationships, we utilized the Transformer
model embeddings. Specifically, we selected a pretrained XLM-RoBERTa base model (Conneau
et al., 2020) due to its support of 100 languages, a relatively small size of approximately 279M
parameters, and its transparent training procedure. This choice enabled us to process web-scale data
efficiently without being restricted to a single language and to align with our commitment to open
science.

To retain general embeddings that can be reused across methods, we opted against fine-tuning the
model. For each document from our datasets, we computed the 768-dimensional embedding by mean
pooling the embeddings of the output sequence. Since the model has a fixed maximum sequence
length of 512 tokens, we considered only the first 512 tokens of each document, assuming they are
representative of the entire document.

After computing the embeddings of our corpora, we experimented with two methods: 1) classification
of embeddings using a multi-layer perceptron and 2) cosine similarity between the embeddings. As
in the FastText approach, we scored each document and applied a threshold to retain the desired
percentage of the highest-scoring documents.

Multi-Layer Perceptron (MLP). We trained a single-hidden-layer neural network with a hidden
dimension of 256, the ReLU activation function, a dropout rate of 20%, and the sigmoid function on
the output. The network was trained for 6 epochs using the AdamW optimizer (Loshchilov & Hutter,
2019) with a constant learning rate 0.0003 and binary cross-entropy loss. We computed document
scores using the output layer of the MLP model, which used XLM-RoBERTa document embeddings
as input.

Cosine Similarity (CS). We computed the document scores as the maximum cosine similarity
between its embeddings and a set of K randomly sampled positive sample embeddings. We experi-
mented with varying values of K, including 1024, 2048, 4096, 8192, and 16384. However, we did
not observe a significant differences in the documents with high scores across these variations when
manually inspecting the data. To strike a balance between the diversity of the positive samples and
computational efficiency, we chose K = 8192 for our experiments.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Technical Details. We evaluate 1B-parameter Llama models (Llama Team, 2024) to demonstrate the
effectiveness of our model-based filtering approaches. The models are trained on either 70B or 119B
tokens, balancing token quality and diversity. The smaller dataset (70B tokens) exposes the model to
each token at most once (with a few exceptions where some tokens appear twice). The larger dataset
(119B tokens) simulates longer training, resulting in increased token repetition. Training utilizes the
HuggingFace Nanotron library (Hugging Face, 2024a) with the AdamW optimizer (Loshchilov &
Hutter, 2019) and a WSD learning rate schedule (Hägele et al., 2024).

To minimize the need for costly hyperparameter tuning, we maintain a consistent setup across all
experiments. Specifically, we adopt the DeepSeek scaling law (DeepSeek-AI et al., 2024) with a
batch size of 1.6M tokens, learning rate of 0.0008, and 2000 warmup steps. We provide our Nanotron
config in Appendix A.2.

As base dataset, we use FineWeb-2 (Penedo et al., 2024c), which has been shown to provide a strong
baseline across a variety of languages. Since FineWeb-2 is globally deduplicated, we rehydrate both
filtered and unfiltered data using the hyperparameters recommended by Penedo et al. (2024c).

To validate our method on English, we use three datasets: FineWeb (Penedo et al., 2024a) as the
baseline, along with FineWeb-Edu (Penedo et al., 2024a) and DCLM (Li et al., 2024b), both of which
represent the current state-of-the-art. Tokenization is performed using the multilingual Mistral v3
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(Tekken) tokenizer (Mistral AI, 2024). All experiments are conducted using 80 NVIDIA GH200
chips.

Evaluation. Our evaluation prioritizes a diverse range of tasks to ensure the models retain well-
rounded capabilities, rather than focusing exclusively on knowledge-based tasks. Specifically, we
include tasks covering reading comprehension, general knowledge, natural language understanding,
common-sense reasoning, and generative tasks in the target language. To evaluate our approach, we
use the HuggingFace LightEval library (Fourrier et al., 2023).

For French, Chinese, and Arabic, we utilize the FineTasks (Kydlı́ček et al., 2024) multilingual
evaluation suite, which is designed to provide meaningful signals even for models trained in the order
of 100B tokens. We select analogous tasks for German and Danish. For English, we rely on the
SmolLM tasks suite (Hugging Face, 2024b). A complete list of tasks and their evaluation metrics for
each language is provided in Appendix C.

Model Selection. We follow the approach used in FineTasks for filter selection, computing a global
rank score across individual metrics and languages to determine the optimal approach.

4.2 EXPERIMENTAL RESULTS & DISCUSSION

4.2.1 MODEL SELECTION

In Section 3, we introduced several model-based filtering approaches. But which of these performs
the best? We evaluate which combination of our defined classifier training datasets (MKC or MKC+)
and filtering methods (FT, MLP or CS) achieve the highest performance. Table 1 presents the overall
ranking across our representative language selection (Chinese, German, French, Arabic, Danish)
and training runs of 70B and 119B tokens. Analogous to the DCLM filtering recipe (Li et al.,
2024b), the results are based on a dataset that retains 10% of the documents for the high-resource
datasets (Chinese, German, French) and keeps 56% and 65% of the documents for the lower-resource
languages (Arabic and Danish, respectively). These percentages maintain approximately 70B tokens,
under the assumption of uniform token distribution across documents. We also exclude approaches
that use MKC for training on Danish, as it lacks sufficient training data. For detailed, per-language
results, please refer to Appendix B.1.

Table 1 demonstrates that MLP MKC+ approach outperforms all other approaches. Interestingly, the
high- and low-scored samples presented in Appendix D align with the observed rankings. Figure 1
further highlights the strong performance of MLP MKC+, particularly for high-resource languages,
where it largely outperforms the baseline. For lower-resource languages—where less data was
filtered—the performance gains are less pronounced. Notably, FT filtering is also competitive. Given
the computational expense of XLM-RoBERTa embeddings, FastText can be a promising alternative
in resource-constrained setups.

Table 1: Benchmark performance comparison (average rank) between the baseline (FineWeb-2) and
our proposed filtering methods (FT, MLP, and CS) trained on MKC+ or MKC, retaining top 10% of
the documents for Chinese, German, and French, 56% for Arabic, and 65% for Danish. The average
rank is computed across FineTasks performance of 1B-parameter models evaluated after 70B and
119B tokens were consumed.

Approach Average Rank

MLP MKC+ 4.35
MLP MKC 6.11
FT MKC+ 7.17
FT MKC 8.04
CS MKC 8.10
Baseline 8.72
CS MKC+ 8.79

4.2.2 THRESHOLD SELECTION

In Section 4.2.1, we base our model selection on experiments that retain top 10% of the data for high-
resource languages. But is this the optimal threshold? Following the methodology of Li et al. (2024b),
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Figure 1: Benchmark performance comparison (accuracy) during training between the baseline
methods (FineWeb, DCLM, FineWeb-Edu, and FineWeb-2) and our proposed filtering methods (FT,
MLP, and CS), trained on MKC+. When using our approaches, the data retention rates are set to 10%
for English, Chinese, German, and French, 56% for Arabic, and 65% for Danish.

we analyze the impact of varying filter strengths on performance for Chinese, German, and French,
using our MLP and FT filtering methods. The results are summarized in Table 2, with a comprehensive
analysis, including results for CS, provided in Appendix B.2 (Table 14). Consistent with their findings,
we observe that retaining top 10% of the data is a competitive threshold, particularly for approaches
using the MKC+ dataset. Interestingly, approaches using MKC perform better with higher retention.
Motivated by the observed bias in certain approaches favoring the selection of shorter documents, we
examine how this bias interacts with performance when retaining more documents. As demonstrated
in Figure 2 for German, Appendix B.2 for other languages, and the retained token counts in Table 15,
the MLP MKC approach shows a tendency to retain shorter documents, while achieving higher
performance with an increased number of retained documents. In contrast, the CS and FT filtering
methods present mixed results, suggesting that the optimal threshold selection may be influenced by
additional factors.

Table 2: Benchmark performance comparison (average rank) between the baseline (FineWeb-2) and
our proposed filtering methods (FT, MLP) trained on MKC+ or MKC, retaining top 10%, 15% or
20% of the documents. The average rank is computed across FineTasks performance of 1B-parameter
models evaluated for Chinese, German and French after 70B and 119B tokens were consumed.

Approach Threshold Average Rank

MLP MKC+ 10% 8.85
MLP MKC+ 15% 9.44
MLP MKC 20% 11.37
MLP MKC 15% 11.70
MLP MKC 10% 11.95
MLP MKC+ 20% 11.97
FT MKC+ 10% 13.92
FT MKC 15% 14.62
FT MKC 10% 14.74
FT MKC 20% 15.62
FT MKC+ 15% 16.27
FT MKC+ 20% 16.51
Baseline – 18.55

4.2.3 TRAINING DATA ANALYSIS

The experiments in Sections 4.2.1 and 4.2.2 are based on the training datasets MKC and MKC+. But
is the diversity introduced by combining various base datasets truly necessary? We evaluate the
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Figure 2: Comparison of average document length and standard deviation in FineWeb-2 before and
after filtering using one of our approaches retaining top 10% of the documents. The average document
length of FineWeb-2 is represented as a red horizontal line, while the medians are shown as red dots.
Document length is measured based on number of space-separated tokens.

impact of each base dataset individually and compare it to the combined MKC+ dataset. For this
ablation study, we use our best filtering method (MLP with a top 10% retention) and train the models
on 30B tokens. This token count is chosen to match the size of the smallest filtered dataset, ensuring
consistency across comparisons. The results, presented in Table 3, show that despite the absence of a
quality guarantee for all samples in the Aya Collection, this dataset yields strong performance, making
our approach applicable for various languages. Overall, we observe that the diversity resulting from
combining all individual training datasets gives the best results.

Interestingly, models trained exclusively on Include-Base-44 and OpenAssistant-2 perform worse
overall than the baseline. This may be due to the nature of these datasets. For instance, Include-Base-
44 is relatively small and domain-specific, e.g., consisting primarily of driving license exam questions
in its German subset. Similarly, OpenAssistant-2 includes a limited number of samples, with fewer
than 2K positive samples per training set, which likely negatively impacts classifier performance.
Again, we relate model performance to the average document length bias in Appendix B.3 and
confirm the findings from Section 4.2.2, suggesting that factors beyond the retained document length
bias may influence performance.

Table 3: Benchmark performance comparison
(average rank) between the baseline (FineWeb-2)
and the MLP filtering method trained on either
MKC+ as a whole or its individual dataset compo-
nents, retaining top 10% of the documents for Chi-
nese, German, and French, 56% for Arabic, and
65% for Danish. The average rank is computed
across FineTasks performance of 1B-parameter
models trained on each language with 30B tokens.

Dataset Average Rank

MKC+ 2.52
Aya Collection 2.91
Aya Dataset 3.17
MMLU 3.57
Baseline 4.09
OpenAssistant-2 4.53
Include-Base-44 5.42

Table 4: Benchmark performance comparison
(average rank) of our MLP MKC+ and FT MKC+

approaches, retaining top 10% of the documents
while mixing in 0%, 5% or 10% of the FineWeb-
2 dataset. The average rank is computed across
FineTasks performance of 1B-parameter models
evaluated for Chinese, German, or French, after
consuming 70B and 119B tokens.

Approach Mixture Rate Average Rank

MLP MKC+ 5% 5.09
MLP MKC+ 0% 5.16
MLP MKC+ 10% 5.40
FT MKC+ 10% 7.17
FT MKC+ 0% 7.51
FT MKC+ 5% 8.66

4.2.4 DATASET MIXING

But does our model-based filtering retain data diversity? We explore whether incorporating a small
percentage of raw data can help improve performance. We do this for our best FastText (FT MKC+)
and Transformer approaches (MLP MKC+). Table 4 presents the results of experiments where 5%
and 10% unfiltered data were mixed into the training dataset, alongside results from training without
any data mixing. Both FT MKC+ and MLP MKC+ approaches show mixed signal, although MLP
MKC+ approach demonstrates little difference between mixing 5% unfiltered data and no mixing,
indicating that it retains enough diversity.
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4.2.5 APPROACH VALIDATION ON ENGLISH

Previous experiments have shown strong performance of our MLP MKC+ approach. But do these
results translate to English? Table 5 presents the performance of MLP MKC+ with 10% retention
applied to the English FineWeb dataset Penedo et al. (2024a). Our method is compared against
FineWeb and baselines using model-based filtered datasets, including DCLM Li et al. (2024b) and
FineWeb-Edu (Penedo et al., 2024a). To save computational resources, we use the 6 most recent
FineWeb and FineWeb-Edu dumps and the first partition of DCLM5 (Penedo et al., 2024a), which we
denote with ∗. Each of these subsets contains more than 119B tokens, with FineWeb retaining this
size even after applying our filtering retaining top 10% of the documents.

While each approach demonstrates strengths in different benchmarks, as seen from Table 5 and
Figure 1, the overall average rank results indicate that our method outperforms all other baselines.

Table 5: Benchmark performance comparison for English of our MLP MKC+ approach (retaining top
10% of the documents) against baseline datasets: FineWeb, DCLM, and FineWeb-Edu. The average
rank is computed across SmolLM task performance for 1B-parameter models trained on 119B tokens.

Dataset Ours DCLM∗ FW-Edu∗ FW∗

Average Rank 1.8333 2.3889 2.4444 3.3333
ARC (Challenge) 0.3550 0.3530 0.3850 0.3010
ARC (Easy) 0.6670 0.6470 0.6970 0.5880
CommonsenseQA 0.3870 0.4100 0.3770 0.3850
HellaSwag 0.6040 0.5960 0.5700 0.5930
MMLU 0.3400 0.3160 0.3470 0.3030
OpenBookQA 0.3860 0.3840 0.4180 0.3560
PIQA 0.7510 0.7510 0.7410 0.7620
WinoGrande 0.5720 0.5610 0.5660 0.5550
TriviaQA 0.0820 0.1240 0.0320 0.0370

4.2.6 DATA CONTAMINATION ANALYSIS

Our LLMs are never trained on benchmark datasets. But is the strong performance observed in the
previous sections primarily due to an increased ratio of data contamination? To ensure the validity
of our approach, we conduct decontamination experiments, as web crawl data may include evaluation
benchmark tasks. While Li et al. (2024b) addressed similar concerns, our approach follows the
methodology of Brown et al. (2020). Specifically, we perform 13-gram decontamination of the LLM
training data separately for English and French evaluation benchmarks. However, unlike the original
approach, we remove the entire document if it is flagged as contaminated, using the implementation
provided in DataTrove (Penedo et al., 2024b).

Tables 6 and 7 present the results of decontamination experiments for English and French, respectively.
We used the following experimental setup (removed document contamination rates): baseline FineWeb
English (0.16%), MLP MKC+ English with 10% retention (0.19%), baseline FineWeb-2 French
(0.14%), and MLP MKC+ French with 10% retention (0.14%). As in our previous experiments, we
train the models on 119B tokens. Additionally, we compare the results against equivalent training
runs without decontamination to further analyze its impact. For an example of a contaminated sample,
see Appendix E.

For English models, decontamination slightly reduces performance both for our approach and baseline
FineWeb data. However, even when decontaminated, our approach still outperforms training on
non-decontaminated baseline data. For French models, performance of our approach is comparable
between decontaminated and non-decontaminated datasets, with both continuing to outperform
baseline FineWeb-2 data. Interestingly, decontaminated baseline data yields better results than its
non-decontaminated counterpart.

4.2.7 IMPACT ON MULTILINGUAL MODEL TRAINING

Although not the primary focus of our work, we believe that refined datasets can contribute to
advancing the performance of multilingual models. To investigate this, we conducted an ablation

5huggingface.co/datasets/mlfoundations/dclm-baseline-1.0-parquet
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Table 6: Benchmark performance comparison in
English for our MLP MKC+ approach (retaining
top 10% of the documents), both decontaminated
(D) and non-decontaminated, against the baseline
FineWeb datasets, also in decontaminated and
non-decontaminated variants. The average rank is
computed across SmolLM task performance for
1B-parameter models trained on 119B tokens.

Dataset Ours OursD FW∗ FW∗
D

Average Rank 1.5000 2.1111 3.0556 3.3333
ARC (Challenge) 0.3550 0.3440 0.3010 0.2880
ARC (Easy) 0.6670 0.6520 0.5880 0.5700
CommonsenseQA 0.3870 0.4000 0.3850 0.3820
HellaSwag 0.6040 0.6040 0.5930 0.5890
MMLU 0.3400 0.3220 0.3030 0.3050
OpenBookQA 0.3860 0.3840 0.3560 0.3740
PIQA 0.7510 0.7590 0.7620 0.7600
WinoGrande 0.5720 0.5550 0.5550 0.5570
TriviaQA 0.0820 0.0380 0.0370 0.0250

Table 7: Benchmark performance comparison in
French for our MLP MKC+ approach (retaining
top 10% of the documents), both decontaminated
(D) and non-decontaminated, against the baseline
FineWeb-2 datasets, also in decontaminated and
non-decontaminated variants. The average rank
is computed across FineTasks performance for
1B-parameter models trained on 119B tokens.

Dataset Ours OursD FW-2D FW-2

Average Rank 2.0556 2.0556 2.7222 3.1667
Belebele 0.3533 0.3400 0.3778 0.3444
HellaSwag 0.5380 0.5350 0.5180 0.5180
X-CSQA 0.2740 0.2810 0.2730 0.2870
XNLI 2.0 0.7400 0.7400 0.7070 0.7180
FQuAD 0.2803 0.2620 0.2890 0.2401
MMLU 0.2895 0.2875 0.2711 0.2706
Mintaka 0.0438 0.0797 0.0658 0.0712
X-CODAH 0.2667 0.2900 0.2800 0.2633
ARC (Challenge) 0.3180 0.3110 0.2880 0.2850

study by training a 1B-parameter model on 595B tokens (5×119B), covering all five languages:
Chinese, German, French, Arabic and Danish. We trained two models—the first one using our filtered
FineWeb-2 dataset and the second one using unfiltered FineWeb-2 data. We then compared these
results for each language against their monolingual counterparts trained on 119B tokens.

The results for French are presented in Table 8. We observe that the multilingual LLM outperforms
its monolingual counterpart on our filtered datasets, whereas the monolingual model achieves better
performance than the multilingual model on the FineWeb-2 dataset. This trend is consistent across all
languages except Chinese. Detailed results for the other languages are provided in Appendix B.4.

Table 8: Benchmark performance comparison for French of multilingual LLMs (M ) trained on
FineWeb-2 or the refined dataset using our MLP MKC+ approach (retaining top 10% of the documents
for Chinese, German, and French, 56% for Arabic, and 65% for Danish) trained on 595B tokens,
against their monolingual counterparts trained on 119B tokens. The average rank is computed across
FineTasks performance for 1B-parameter models trained on 119B tokens.

Dataset OursM Ours FW-2 FW-2M

Average Rank 1.8333 2.0556 3.0000 3.1111
Belebele 0.3667 0.3533 0.3444 0.3511
HellaSwag 0.5270 0.5380 0.5180 0.4970
X-CSQA 0.2740 0.2740 0.2870 0.2750
XNLI 2.0 0.7660 0.7400 0.7180 0.7330
FQuAD 0.3212 0.2803 0.2401 0.2459
MMLU 0.2841 0.2895 0.2706 0.2735
Mintaka 0.0456 0.0438 0.0712 0.0579
X-CODAH 0.2900 0.2667 0.2633 0.2567
ARC (Challenge) 0.2970 0.3180 0.2850 0.2670

5 CONCLUSION

In this work, we introduced a novel framework for model-based filtering of web-scale multilingual
pretraining datasets, demonstrating consistent improvements on LLM benchmarks across a wide
range of languages. Our Transformer embedding-based classifier, MLP MKC+, outperforms state-of-
the-art methods on both English and multilingual datasets, even when decontaminating the datasets
or using them for training multilingual LLMs. This demonstrates that simple classifiers can achieve
competitive results. While our FastText-based filtering approach performed well and shows promise
in resource-constrained setups, MLP MKC+ consistently outperformed all other methods and can
be easily scaled to other languages. These results motivate us to expand our framework to 20
languages and release the corresponding refined pretraining datasets and our code, contributing to the
advancement of multilingual language modeling.
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et al. The bigscience roots corpus: A 1.6 tb composite multilingual dataset. Advances in Neural
Information Processing Systems, 35:31809–31826, 2022.

Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-
Burch, and Nicholas Carlini. Deduplicating training data makes language models better. In
Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 8424–8445,
Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
acl-long.577. URL https://aclanthology.org/2022.acl-long.577/.
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A ADDITIONAL EXPERIMENTAL DETAILS

A.1 FASTTEXT TRAINING DETAILS

The FastText classifier was trained on the processed training set using 2-grams, a minCount of 1,
and the softmax loss function. All other parameters were automatically tuned using the FastText
library. For Chinese, fixed parameters were used: 30 training epochs and a learning rate of 0.1 to
ensure training stability. Additionally, 4-grams and a minCount of 0 were selected based on
manual evaluation of the results.

Prior to training the FastText models, we pre-processed the training data by removing newlines.

A.2 NANOTRON CONFIGURATION

To facilitate the reproducibility of our model training, we provide the Nanotron (Hugging Face,
2024a) configuration used in our experiments.

1 checkpoints:
2 checkpoint_interval: 1000
3 checkpoints_path: checkpoints/
4 checkpoints_path_is_shared_file_system: false
5 resume_checkpoint_path: null
6 save_initial_state: false
7 data_stages:
8 - data:
9 dataset:

10 dataset_folder: template
11 num_loading_workers: 1
12 seed: 42
13 name: General purpose training (Single dataset)
14 start_training_step: 1
15 general:
16 benchmark_csv_path: null
17 consumed_train_samples: null
18 ignore_sanity_checks: true
19 project: template
20 run: template
21 seed: 42
22 step: null
23 lighteval: null
24 logging:
25 iteration_step_info_interval: 1
26 log_level: info
27 log_level_replica: info
28 model:
29 ddp_bucket_cap_mb: 25
30 dtype: bfloat16
31 init_method:
32 std: 0.025
33 make_vocab_size_divisible_by: 1
34 model_config:
35 bos_token_id: 1
36 eos_token_id: 2
37 hidden_act: silu
38 hidden_size: 1536
39 initializer_range: 0.02
40 intermediate_size: 6144
41 is_llama_config: true
42 max_position_embeddings: 1024
43 num_hidden_layers: 24
44 num_attention_heads: 16
45 num_key_value_heads: 16
46 pad_token_id: null
47 pretraining_tp: 1
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48 rms_norm_eps: 1.0e-06
49 rope_scaling: null
50 tie_word_embeddings: true
51 use_cache: true
52 vocab_size: 131072
53 optimizer:
54 optimizer_factory:
55 adam_beta1: 0.9
56 adam_beta2: 0.95
57 adam_eps: 1.0e-08
58 name: adamW
59 torch_adam_is_fused: true
60 learning_rate_scheduler:
61 learning_rate: 0.0008
62 lr_decay_starting_step: 61001 # for 119B tokens (36001 for 70B

tokens, 15001 for 30B tokens)
63 lr_decay_steps: 12000 # for 119B tokens (7000 for 70B tokens, 4000

for 30B tokens)
64 lr_decay_style: 1-sqrt
65 lr_warmup_steps: 2000
66 lr_warmup_style: linear
67 min_decay_lr: 0.00
68 zero_stage: 0
69 clip_grad: 1.0
70 weight_decay: 0.1
71 accumulate_grad_in_fp32: true
72 parallelism:
73 dp: 80
74 expert_parallel_size: 1
75 pp: 1
76 pp_engine: 1f1b
77 tp: 1
78 tp_linear_async_communication: true
79 tp_mode: REDUCE_SCATTER
80 profiler: null
81 tokenizer:
82 tokenizer_max_length: null
83 tokenizer_name_or_path: mistralai/Mistral-Nemo-Base-2407
84 tokenizer_revision: null
85 tokens:
86 batch_accumulation_per_replica: 1
87 limit_test_batches: 0
88 limit_val_batches: 0
89 micro_batch_size: 20
90 sequence_length: 1024
91 train_steps: 73000 # for 119B tokens (43000 for 70B tokens, 19000 for

30B tokens)
92 val_check_interval: -1

B ADDITIONAL RESULTS

B.1 MODEL SELECTION - PER LANGUAGE RESULTS

For completeness, we present the individual benchmark results of the 1B-parameter model trained
on 119B tokens for each language in the following tables: Table 9 for Chinese, Table 10 for French,
Table 11 for German, Table 12 for Arabic, and Table 13 for Danish.
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Table 9: Benchmark performance comparison in Chinese between the baseline (FineWeb-2) and
our proposed filtering methods (FT, MLP, and CS) trained on MKC+ or MKC, retaining 10% of the
documents. The average rank is computed across FineTasks performance of 1B-parameter models
evaluated after 119B tokens were consumed.

Approach MLP MKC+ MLP MKC CS MKC FT MKC FT MKC+ Baseline CS MKC+

Average Rank 1.7333 2.4333 4.0667 4.0667 4.4667 5.2333 6.0000
AGIEval 0.2995 0.2948 0.2897 0.2919 0.2817 0.2853 0.2773
Belebele 0.3300 0.3233 0.3178 0.3133 0.3133 0.3056 0.3022
C3 0.4550 0.4480 0.4400 0.4500 0.4400 0.4400 0.4370
C-Eval 0.3095 0.3060 0.2760 0.2903 0.2906 0.2878 0.2805
CMMLU 0.3312 0.3259 0.3041 0.3043 0.3060 0.3009 0.2995
CMRC 2018 0.2224 0.2125 0.1614 0.2251 0.2164 0.1949 0.1866
HellaSwag 0.3790 0.3800 0.3530 0.3680 0.3660 0.3510 0.3370
M3Exam 0.3319 0.3245 0.3084 0.3201 0.3245 0.3216 0.3245
X-CODAH 0.3033 0.3000 0.3233 0.3100 0.2900 0.2967 0.3067
X-CSQA 0.2740 0.2680 0.2690 0.2610 0.2520 0.2510 0.2650
XCOPA 0.6200 0.6400 0.6180 0.5740 0.5740 0.6000 0.5620
OCNLI 0.5470 0.5470 0.5340 0.5250 0.5600 0.5420 0.5060
Chinese-SQuAD 0.0929 0.1097 0.0865 0.0889 0.0850 0.0777 0.0585
XStoryCloze 0.5800 0.5630 0.5710 0.5560 0.5610 0.5580 0.5570
XWINO 0.6429 0.6528 0.6587 0.6131 0.5992 0.6429 0.6111

Table 10: Benchmark performance comparison in French between the baseline (FineWeb-2) and
our proposed filtering methods (FT, MLP, and CS) trained on MKC+ or MKC, retaining 10% of the
documents. The average rank is computed across FineTasks performance of 1B-parameter models
evaluated after 119B tokens were consumed.

Approach FT MKC+ MLP MKC+ MLP MKC FT MKC CS MKC CS MKC+ Baseline

Average Rank 3.2222 3.5000 3.5556 3.7778 4.0000 4.6667 5.2778
Belebele 0.3378 0.3533 0.3678 0.3489 0.3444 0.3344 0.3444
HellaSwag 0.5380 0.5380 0.4990 0.5150 0.5280 0.5070 0.5180
X-CSQA 0.2820 0.2740 0.2730 0.2990 0.2850 0.2900 0.2870
XNLI 2.0 0.7340 0.7400 0.7430 0.7230 0.7450 0.7330 0.7180
FQuAD 0.2597 0.2803 0.3032 0.2981 0.2411 0.2476 0.2401
MMLU 0.2896 0.2895 0.2925 0.2886 0.2806 0.2815 0.2706
Mintaka 0.0710 0.0438 0.0334 0.0670 0.0610 0.0976 0.0712
X-CODAH 0.3000 0.2667 0.2867 0.2767 0.3000 0.2800 0.2633
ARC (Challenge) 0.3120 0.3180 0.3090 0.3060 0.2950 0.2830 0.2850

Table 11: Benchmark performance comparison in German between the baseline (FineWeb-2) and
our proposed filtering methods (FT, MLP, and CS) trained on MKC+ or MKC, retaining 10% of the
documents. The average rank is computed across FineTasks performance of 1B-parameter models
evaluated after 119B tokens were consumed.

Approach MLP MKC+ FT MKC+ FT MKC CS MKC MLP MKC CS MKC+ Baseline

Average Rank 3.1250 3.1250 3.5000 3.7500 4.5000 4.7500 5.2500
MMLU 0.2940 0.2879 0.2926 0.2770 0.2905 0.2764 0.2718
ARC (Challenge) 0.2760 0.2850 0.2820 0.2880 0.2830 0.2640 0.2680
Mintaka 0.0580 0.0548 0.0735 0.0576 0.0494 0.0766 0.0498
Belebele 0.3611 0.3578 0.3544 0.3544 0.3567 0.3422 0.3544
X-CODAH 0.3367 0.3500 0.3300 0.3567 0.3400 0.3600 0.3467
X-CSQA 0.2978 0.3008 0.2877 0.2887 0.2857 0.2918 0.2787
HellaSwag 0.4640 0.4710 0.4870 0.4820 0.4540 0.4390 0.4470
XNLI 2.0 0.6620 0.6530 0.6740 0.6440 0.6610 0.6520 0.6890
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Table 12: Benchmark performance comparison in Arabic between the baseline (FineWeb-2) and
our proposed filtering methods (FT, MLP, and CS) trained on MKC+ or MKC, retaining 56% of the
documents. The average rank is computed across FineTasks performance of 1B-parameter models
evaluated after 119B tokens were consumed.

Approach MLP MKC+ MLP MKC FT MKC+ Baseline CS MKC+ CS MKC FT MKC

Average Rank 2.7812 3.2500 3.6875 3.9688 3.9688 5.0312 5.3125
EXAMS 0.3537 0.3656 0.3552 0.3582 0.3443 0.3262 0.3346
MMLU 0.4007 0.3909 0.4023 0.3894 0.3912 0.3781 0.3885
ARC (Easy) 0.4330 0.4230 0.4210 0.4120 0.4020 0.3940 0.4080
AlGhafa SciQ 0.6915 0.7005 0.6965 0.6854 0.6724 0.6683 0.6804
Belebele 0.3456 0.3356 0.3322 0.3311 0.3356 0.3567 0.3233
SOQAL 0.7333 0.6867 0.7000 0.7200 0.7267 0.6867 0.7133
MLQA 0.2386 0.2402 0.1928 0.1901 0.2189 0.2154 0.1793
TyDi QA 0.1547 0.1476 0.1230 0.1441 0.1223 0.1097 0.1182
AlGhafa RACE 0.3720 0.3740 0.3640 0.3710 0.3590 0.3660 0.3730
ARCD 0.3638 0.3505 0.3235 0.3354 0.3358 0.3432 0.3043
X-CODAH 0.2600 0.2533 0.2567 0.2633 0.2633 0.2500 0.2600
AlGhafa PIQA 0.6360 0.6320 0.6400 0.6240 0.6320 0.6320 0.6370
X-CSQA 0.2740 0.2810 0.2770 0.2900 0.2880 0.2720 0.2770
XNLI 2.0 0.6570 0.6910 0.6990 0.7010 0.6910 0.6900 0.6770
HellaSwag 0.4270 0.4220 0.4280 0.4250 0.4260 0.4320 0.4150
XStoryCloze 0.6150 0.6100 0.6100 0.6070 0.6130 0.6180 0.5930

Table 13: Benchmark performance comparison in Danish between the baseline (FineWeb-2) and
our proposed filtering methods (FT, MLP, and CS) trained on MKC+ or MKC, retaining 65% of the
documents. The average rank is computed across FineTasks performance of 1B-parameter models
evaluated after 119B tokens were consumed.

Approach CS MKC+ MLP MKC+ FT MKC+ Baseline

Average Rank 1.0000 2.5000 3.1667 3.3333
ARC (Challenge) 0.2820 0.2650 0.2730 0.2560
HellaSwag 0.4950 0.4850 0.4750 0.4750
Belebele 0.3333 0.3289 0.3189 0.3289

B.2 THRESHOLD SELECTION

To confirm that the CS filtering method is not competitive with MLP and FT, even when a higher
percentage of documents is retained, we present the complete threshold selection results, including
the CS method, in Table 14 in addition to the results shown in Section 4.2.2 (Table 2).

We provide further results on the variation in the average length of documents retained by our model-
based filtering approaches for Chinese, French, Arabic, and Danish. These results complement the
findings for German discussed in Section 4.2.2 and are shown in Figure 3. Table 15 lists the actual
dataset sizes (number of retained tokens) after tokenization for all languages.

B.3 TRAINING DATA ANALYSIS

We give details on the variation in the average length of documents retained by our model-based
filtering method MLP for Chinese, French, Arabic, and Danish with different training datasets. The
results are shown for German in Figure 4 and for all other languages in Figure 5.

B.4 IMPACT ON MULTILINGUAL MODEL TRAINING

This section presents the results of our MLP MKC+ approach on multilingual model training for
Chinese (Table 16), Arabic (Table 17), German (Table 18), and Danish (Table 19), in addition to the
results for French discussed in Section 4.2.7.
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Table 14: Benchmark performance comparison (average rank) between the baseline (FineWeb-2) and
our proposed filtering methods (FT, MLP, CS) trained on MKC+ or MKC, retaining top 10%, 15% or
20% of the documents. The average rank is computed across FineTasks performance of 1B-parameter
models evaluated for Chinese, German and French after 70B and 119B tokens were consumed.

Approach Threshold Average Rank

MLP MKC+ 10% 11.73
MLP MKC+ 15% 12.13
MLP MKC 20% 15.07
MLP MKC 15% 15.09
MLP MKC+ 20% 15.40
MLP MKC 10% 16.09
FT MKC+ 10% 18.61
CS MKC 15% 19.02
CS MKC 20% 19.24
FT MKC 15% 19.84
FT MKC 10% 20.02
CS MKC 10% 20.67
FT MKC 20% 20.80
FT MKC+ 15% 22.05
FT MKC+ 20% 22.52
CS MKC+ 15% 24.66
CS MKC+ 20% 25.08
Baseline – 25.54
CS MKC+ 10% 26.94

0

100

200

300

Do
cu

m
en

t L
en

gt
h

Chinese

0

1000

2000

Do
cu

m
en

t L
en

gt
h

French

FT 
MKC

+

FT 
MKC

MLP 
MKC

+

MLP 
MKC

CS M
KC

+

CS M
KC

Fin
eW

eb
-2

0

500

1000

1500

2000

Do
cu

m
en

t L
en

gt
h

Arabic

FT 
MKC

+

FT 
MKC

MLP 
MKC

+

MLP 
MKC

CS M
KC

+

CS M
KC

Fin
eW

eb
-2

0

500

1000

1500

2000

Do
cu

m
en

t L
en

gt
h

Danish

Figure 3: Comparison of average document length and standard deviation in FineWeb-2 before and
after filtering using one of our approaches retaining top 10% of the documents for Chinese and French,
56% for Arabic and 65% for Danish. The average document length of FineWeb-2 is represented as a
red horizontal line, while the medians are shown as red dots. Document length is measured based on
number of space-separated tokens.
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Table 15: Comparison of retained tokens in FineWeb-2 before and after filtering using one of our
proposed approaches retaining top 10% of the documents for Chinese, French and German, 56%
for Arabic and 65% for Danish. The token counts correspond to the size of the tokenized datasets,
processed with the multilingual Mistral v3 (Tekken) tokenizer (Mistral AI, 2024).

Approach Chinese French German Arabic Danish

MLP MKC+ 150B (9%) 89B (12%) 119B (12%) 78B (61%) 71B (66%)
MLP MKC 105B (7%) 72B (10%) 87B (9%) 75B (59%) –

FT MKC+ 221B (14%) 70B (10%) 63B (6% ) 77B (61%) 70B (65%)
FT MKC 190B (12%) 43B (6%) 65B (7%) 80B (63%) –

CS MKC+ 170B (11%) 126B (17%) 166B (17%) 82B (65%) 77B (71%)
CS MKC 161B (10%) 132B (18%) 172B (18%) 83B (65%) –

Baseline 1597B 730B 973B 127B 108B
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Figure 4: Comparison of average document length and standard deviation in FineWeb-2 before and
after filtering using MLP filtering method retaining top 10% of the documents with different training
datasets. The average document length of FineWeb-2 is represented as a red horizontal line, while the
medians are shown as red dots. Document length is measured based on number of space-separated
tokens.
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Figure 5: Comparison of average document length and standard deviation in FineWeb-2 before and
after filtering using MLP filtering method retaining top 10% of the documents for Chinese and French,
56% for Arabic and 65% for Danish with different training datasets. The average document length of
FineWeb-2 is represented as a red horizontal line, while the medians are shown as red dots. Document
length is measured based on number of space-separated tokens.
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Table 16: Benchmark performance comparison for Chinese of multilingual LLMs (M ) trained on
FineWeb-2 or the refined dataset using our MLP MKC+ approach (retaining top 10% of the documents
for Chinese, German, and French, 56% for Arabic, and 65% for Danish) trained on 595B tokens,
against their monolingual counterparts trained on 119B tokens. The average rank is computed across
FineTasks performance for 1B-parameter models trained on 119B tokens.

Dataset Ours OursM FW-2M FW-2

Average Rank 1.5667 2.1667 2.9000 3.3667
AGIEval 0.2995 0.2863 0.2894 0.2853
Belebele 0.3300 0.3456 0.3189 0.3056
C3 0.4550 0.4520 0.4480 0.4400
C-Eval 0.3095 0.2848 0.2683 0.2878
CMMLU 0.3312 0.3064 0.2967 0.3009
CMRC 2018 0.2224 0.2689 0.2090 0.1949
HellaSwag 0.3790 0.3740 0.3740 0.3510
M3Exam 0.3319 0.3040 0.3304 0.3216
X-CODAH 0.3033 0.3067 0.2800 0.2967
X-CSQA 0.2740 0.2810 0.2780 0.2510
XCOPA 0.6200 0.6020 0.5860 0.6000
OCNLI 0.5470 0.5320 0.4910 0.5420
Chinese-SQuAD 0.0929 0.1304 0.1017 0.0777
XStoryCloze 0.5800 0.5760 0.5650 0.5580
XWINO 0.6429 0.6409 0.6468 0.6429

Table 17: Benchmark performance comparison for Arabic of multilingual LLMs (M ) trained on
FineWeb-2 or the refined dataset using our MLP MKC+ approach (retaining top 10% of the documents
for Chinese, German, and French, 56% for Arabic, and 65% for Danish) trained on 595B tokens,
against their monolingual counterparts trained on 119B tokens. The average rank is computed across
FineTasks performance for 1B-parameter models trained on 119B tokens.

Dataset OursM Ours FW-2 FW-2M

Average Rank 1.9688 2.0000 2.7500 3.2812
EXAMS 0.3336 0.3537 0.3582 0.3076
MMLU 0.3828 0.4007 0.3894 0.3599
ARC (Easy) 0.4190 0.4330 0.4120 0.3760
AlGhafa SciQ 0.6764 0.6915 0.6854 0.6563
Belebele 0.3511 0.3456 0.3311 0.3344
SOQAL 0.7000 0.7333 0.7200 0.6533
MLQA 0.2208 0.2386 0.1901 0.2085
TyDi QA 0.1634 0.1547 0.1441 0.1429
AlGhafa RACE 0.3830 0.3720 0.3710 0.3770
ARCD 0.3377 0.3638 0.3354 0.2970
X-CODAH 0.2767 0.2600 0.2633 0.2767
AlGhafa PIQA 0.6170 0.6360 0.6240 0.6160
X-CSQA 0.2860 0.2740 0.2900 0.2660
XNLI 2.0 0.7080 0.6570 0.7010 0.7340
HellaSwag 0.4390 0.4270 0.4250 0.4240
XStoryCloze 0.6370 0.6150 0.6070 0.6160
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Table 18: Benchmark performance comparison for German of multilingual LLMs (M ) trained on
FineWeb-2 or the refined dataset using our MLP MKC+ approach (retaining top 10% of the documents
for Chinese, German, and French, 56% for Arabic, and 65% for Danish) trained on 595B tokens,
against their monolingual counterparts trained on 119B tokens. The average rank is computed across
FineTasks performance for 1B-parameter models trained on 119B tokens.

Dataset OursM Ours FW-2 FW-2M

Average Rank 1.5000 2.1250 2.9375 3.4375
MMLU 0.2918 0.2940 0.2718 0.2691
ARC (Challenge) 0.2740 0.2760 0.2680 0.2640
Mintaka 0.0821 0.0580 0.0498 0.0660
Belebele 0.3956 0.3611 0.3544 0.3633
X-CODAH 0.3500 0.3367 0.3467 0.3167
X-CSQA 0.3048 0.2978 0.2787 0.2787
HellaSwag 0.4690 0.4640 0.4470 0.4430
XNLI 2.0 0.6420 0.6620 0.6890 0.6340

Table 19: Benchmark performance comparison for Danish of multilingual LLMs (M ) trained on
FineWeb-2 or the refined dataset using our MLP MKC+ approach (retaining top 10% of the documents
for Chinese, German, and French, 56% for Arabic, and 65% for Danish) trained on 595B tokens,
against their monolingual counterparts trained on 119B tokens. The average rank is computed across
FineTasks performance for 1B-parameter models trained on 119B tokens.

Dataset OursM Ours FW-2M FW-2

Average Rank 1.6667 2.1667 3.0000 3.1667
ARC (Challenge) 0.2920 0.2650 0.2600 0.2560
HellaSwag 0.4710 0.4850 0.4560 0.4750
Belebele 0.3700 0.3289 0.3311 0.3289
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C LIST OF EVALUATION BENCHMARKS AND METRICS

We provide a detailed overview of the evaluation benchmarks used to assess our models’ performance,
along with their respective evaluation metrics in Table 20. For non-English tasks and English MMLU,
we use the cloze multiple-choice prompt, which allows the model to directly predict each option
instead of using the standard prompt format with A/B/C/D letter prefixes as targets. This approach
was chosen because it has been shown to serve as a more reliable performance indicator earlier in
training (Kydlı́ček et al., 2024). We evaluate the models in a 0-shot setting.

Table 20: List of evaluation benchmarks and metrics used in our setup for Chinese, French, German,
Arabic, Danish, and English.

Benchmark Chinese French German Arabic Danish English Evaluation metric
AGIEval (Zhong et al., 2023) ✓ Normalized accuracy
AlGhafa ARC (Almazrouei et al., 2023) ✓ Normalized accuracy
AlGhafa PIQA (Almazrouei et al., 2023) ✓ Normalized accuracy
AlGhafa RACE (Almazrouei et al., 2023) ✓ Normalized accuracy
AlGhafa SciQ (Almazrouei et al., 2023) ✓ Normalized accuracy
ArabicMMLU (Koto et al., 2024) ✓ Normalized accuracy
ARC (Clark et al., 2018) ✓ Normalized accuracy
ARCD (Mozannar et al., 2019) ✓ F1 score
Belebele (Bandarkar et al., 2024) ✓ ✓ ✓ ✓ ✓ Normalized accuracy
C3 (Sun et al., 2020) ✓ Normalized accuracy
C-Eval (Huang et al., 2023) ✓ Normalized accuracy
Chinese-SQuAD (Pluto-Junzeng, 2019) ✓ F1 score
CMMLU (Li et al., 2024a) ✓ Normalized accuracy
CMRC 2018 (Cui et al., 2019) ✓ F1 score
CommonsenseQA (Talmor et al., 2019) ✓ Normalized accuracy
EXAMS (Hardalov et al., 2020) ✓ Normalized accuracy
FQuAD (d’Hoffschmidt et al., 2020) ✓ F1 score
HellaSwag (Zellers et al., 2019) ✓ Normalized accuracy
M3Exam (Zhang et al., 2023) ✓ Normalized accuracy
Meta MMLU (Llama Team, 2024) ✓ ✓ Normalized accuracy
Mintaka (Sen et al., 2022) ✓ ✓ F1 score
MLMM ARC (Lai et al., 2023) ✓ ✓ ✓ Normalized accuracy
MLMM HellaSwag (Lai et al., 2023) ✓ ✓ ✓ ✓ ✓ Normalized accuracy
MLQA (Lewis et al., 2020) ✓ F1 score
MMLU (Hendrycks et al., 2020) ✓ Normalized accuracy
OCNLI (Hu et al., 2020) ✓ Normalized accuracy
OpenBookQA (Mihaylov et al., 2018) ✓ Normalized accuracy
PIQA (Bisk et al., 2019) ✓ Normalized accuracy
SOQAL (Mozannar et al., 2019) ✓ Normalized accuracy
TriviaQA (Joshi et al., 2017) ✓ Quasi-exact match
TyDi QA (Clark et al., 2020) ✓ F1 score
WinoGrande (Sakaguchi et al., 2019) ✓ Normalized accuracy
X-CODAH (Lin et al., 2021a) ✓ ✓ ✓ ✓ Normalized accuracy
XCOPA (Ponti et al., 2020) ✓ Normalized accuracy
X-CSQA (Lin et al., 2021a) ✓ ✓ ✓ ✓ Normalized accuracy
XNLI 2.0 (Upadhyay & Upadhya, 2023) ✓ ✓ ✓ Normalized accuracy
XStoryCloze (Lin et al., 2021b) ✓ ✓ Normalized accuracy
XWINO (Tikhonov & Ryabinin, 2021) ✓ Normalized accuracy
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D FINEWEB DOCUMENTS IN DIFFERENT SCORING APPROACHES

To illustrate the types of documents each classifier scores highly or poorly, we present the highest-
and lowest-scoring FineWeb examples for each of our classifier approaches (FT MKC+, MLP MKC+,
CS MKC+). These examples were selected from the randomly chosen FineWeb test dataset (10K)
used to validate the training of our model-based classifiers.

D.1 FASTTEXT CLASSIFIER (FT)

Highest score:

hi. i couldn’t solve my problem because it has two conditional logical propositions. the
problem is:can anyone help me about this, thanks =)we’re expected to know that: . is
equivalent tofind a logically equivalent proposition for:by first writing its contrapositive, and
then applying demorgan’s lawand the equality forthey were trying to be helpful by outlining
the steps we should follow,. . but i think they made it more confusing.i don’t see the purpose
of using the contrapositive here.. . i wouldn’t have done it that way.besides, the statement is
a tautology . . .which gives us: .and this is a tautology: ”a thing implies itself” ... which is
always true.i don’t know of any ”logically equivalent proposition” we can write . . .

Lowest score:

|starts||23 sep 2016 (fri) (one day only)|want to travel soon but dont wish to fork out a
fortune for flights? check out todays promotion from jetstar featuring promo fares fr
$35 all−in valid for travel period commencing 12 october 2016dont miss out! all−in
frenzy fares to hong kong, penang and more from $35.sale ends 23 sep, 11pm!|
travelling||price||travel period||find flight||penang||$35ˆ|| [...]

D.2 MULTI-LAYER PERCEPTRON (MLP)

Highest score:

Naqhadeh County is a county in West Azerbaijan Province in Iran. The capital of the county
is Naqadeh. At the 2006 census, the county’s population was 117,831, in 27,937 families.
The county is subdivided into two districts: the Central District and Mohammadyar District.
The county has two cities: Naqadeh and Mohammadyar.

Lowest score:

Custom Wedding Gifts
Personalized photo frames, albums & keepsakes. Heirloom quality!
Custom Engraved Journals
Handmade in Florence Italy. Dozens of sizes and paper styles!
Awesome Leather Journals
Personalized, Customizable, Artisan made in Santa Fe, NM.
Ink Rendering from Photos
100% Hand painted with unique style by pro artists. From $49.
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D.3 COSINE SIMILARITY (CS)

Highest score:

When you are renting a 5, 10, 15, 20, 30 or 40 yard dumpster, you want a company you can
trust with prices that make you smile. Give us a call today and see the difference we can
make in your next construction or clean out project.
Simply give us a call and we will help you figure out your dumpster rental needs.
Our dumpsters usually go out same-day or next-day depending on when you call.
We provide top-notch service, while going easy on your bottom line. What more could you
ask for?
Our trained operators are here to give you a fast and hassle-free experience from start to
finish.[...]

Lowest score:

Cooperative flat 206/J
- Cooperative flat 201/J - Sold
2(1)+kitchenette, 50,1 m2Cooperative flat 202/J - Sold
2(1)+kitchenette, 44,9 m2Cooperative flat 203/J - Sold
2(1)+kitchenette, 50,6 m2Cooperative flat 204/J - Sold
1+kitchenette, 27,1 m2Cooperative flat 205/J - Sold
2(1)+kitchenette, 50,1 m2Cooperative flat 206/J - On sale
3+kitchenette 86,7 m2[...]

E EXAMPLE OF A CONTAMINATED DOCUMENT

We present an example of a FineWeb document that was removed during our decontamination
pipeline.

MMLU contaminated document (matched 13-gram in bold):

Here is our diagram of the Preamble to the Constitution of the United States. It is based on
our understanding of the use of ”in order to” as a subordinating conjunction that introduces a
series of infinitival clauses (without subjects) that, in turn, modify the compound verbs ”do
ordain” and ”establish.”
See A Grammar of Contemporary English by Randolph Quirk, Sidney Greenbaum, Geoffrey
Leech, and Jan Svartvik. Longman Group: London. 1978. p. 753.
We the People of the United States, in Order to form a more perfect Union, establish
Justice, insure domestic Tranquility, provide for the common defence, promote the general
Welfare, and secure the Blessings of Liberty to ourselves and our Posterity, do ordain and
establish this Constitution for the United States of America.
If you have alternative rendering for this sentence, we would be happy to hear of it. Use the
e-mail icon to the left.
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