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ABSTRACT

As the training set size increases, diffusion models have been observed to transi-
tion from memorizing the training dataset to generalizing to the underlying data
distribution. To study this phenomenon more closely, here, we first present a
mathematically principled definition of this transition: the model is said to be in
the generalization regime if the generated distribution is closer to the sampling
distribution compared to the probability distribution associated with a Gaussian
kernel approximation to the training dataset. Then, we develop an analytically
tractable diffusion model that features this transition when the training data is
sampled from an isotropic Gaussian distribution. Our study reveals that this tran-
sition occurs when the distance between the generated and underlying sampling
distribution begins to decrease rapidly with the addition of more training samples.
This is to be contrasted with an alternative scenario, where the model’s memoriza-
tion performance degrades, but generalization performance doesn’t improve. We
also provide empirical evidence indicating that realistic diffusion models exhibit
the same alignment of scales.

1 INTRODUCTION

In recent years, generative artificial intelligence has made tremendous advancements—be it image,
audio, video, or text domains—on an unprecedented scale. Diffusion models (Sohl-Dickstein et al.,
2015; Song & Ermon, 2019; Ho et al., 2020) are among the most successful frameworks, serving
as the foundation for prominent content generation tools such as DALL-E (Ramesh et al., 2022),
Stable Diffusion (Rombach et al., 2022), Imagen (Saharia et al., 2022), Sora (OpenAI, 2024) and
numerous others. However, the factors that contribute to the strong generalization capabilities of
diffusion models, as well as the conditions under which they perform optimally, remain open.

In this paper, we will focus on a particular generalization behavior that diffusion models exhibit. Em-
pirical observations show that for small number of training samples, diffusion models memorize the
training data (Somepalli et al., 2022; Carlini et al., 2023). As the training dataset size increases, they
transition from memorizing data to a regime where it can generate new samples from the underlying
distribution (Kadkhodaie et al., 2023). This has been termed the memorization-to-generalization
transition. What is the nature of this transition?

In this paper, we take steps towards better understanding of this phenomenon. Specifically, we
provide a mathematically precise definition of the memorization-to-generalization transition in terms
of distances between the training and generated distribution, denoted as ETG, and the distance
between the original underlying distribution and generated distribution, denoted as EOG. We say
that the diffusion model is starting to generalize if the probability of ∆ = ETG − EOG > 0 is
very close to unity implying that the generated distribution exhibits greater proximity to the original
underlying distribution relative to the training dataset.

On the onset of memorization to generalization transition individually ETG, EOG might show very
different behaviours as shown in Fig. 1. For example the scenario (a) indicates that the model
is failing to memorize because of faster increase in ETG compared to EOG with the increase of
train dataset size n. However in this case the model does not learn to generalize well because EOG

remains almost constant during the transition. The scenarios in (b) and (c) present other possibilities.
Empirically, we rule out the possibility (b) in a realistic diffusion model. In this paper we show that
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n

(a)

n

(b)

n

(c)

Figure 1: Hypothetical relationships between the training dataset size, denoted as n, and two key
distributional distances is graphically represented. The distance between the training and generated
probability distributions, ETG, is depicted in red, while the distance between the original and gener-
ated probability distributions, EOG, is illustrated in blue. Three hypothetical scenarios, labeled (a),
(b), and (c), are proposed to elucidate the potential transition from memorization to generalization.
The present study aims to determine which of these scenarios most accurately reflects the behavior
of a realistic diffusion model.

for a diffusion model scenario (c) is the appropriate description, i.e., memorization to generalization
transition happens on the onset of rapid decrease in EOG.

1.1 OUR CONTRIBUTIONS

Our main contributions in this paper are as follows:

1. Given a finite number of samples from a probability distribution, the true distribution can
be approximated by a L2-distance optimal Gaussian kernel. We observe that in the context
of higher dimensional statistics, the variance of the kernel coincides with that mixing time
for the samples under Ornstein-Uhlenbeck forward diffusion process (Biroli et al., 2024).

2. Using the observation above, we formulate a new, mathematically rigorous metric, namely
probability of ∆ > 0, for characterizing the memorization to generalization transition.

3. We present an analytically tractable diffusion model that features a transition from memo-
rization to generalization, as measured by the aforementioned metric.

4. We show that as the size of the training dataset increases, the memorization to generaliza-
tion transition in the model introduced above occurs at the same scale as the onset of a rapid
fall phase in the generalization error EOG.

5. We hypothesize that the alignment of memorization-to-generalization transition and onset
of rapid convergence is a generic property of diffusion models. We test this hypothesis on
a realistic U-Net based non-linear diffusion model.

Overall, our study shows that memorization-to-generalization transition in diffusion models occurs
on onset of fast convergence of the generated distribution to the sampling distribution of the training
data.

1.2 RELATED WORKS

The idea of diffusion based generative models originated in the pioneering work of Sohl-Dickstein
et al. (2015). Subsequently, diffusion models are made scalable for real world image generation
(Song & Ermon, 2019; Ho et al., 2020; Kadkhodaie & Simoncelli, 2020; Song et al., 2021a). The
quality of the generated distribution was further enhanced through guided diffusion at the cost of
reduced diversity (Dhariwal & Nichol, 2021; Ho & Salimans, 2022; Wu et al., 2024; Bradley &
Nakkiran, 2024; Chidambaram et al., 2024).

In a compelling study, Kadkhodaie et al. (2023) has demonstrated that as the train dataset size
increases diffusion models make a transition from memorizing the train dataset of facial images to
a generalization regime where two diffusion models of identical architecture can produce similar
looking new faces even when trained on disjoint sampling sets. Yoon et al. (2023) has given a
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precise definition of memorization capacity of a diffusion model. However when the model is not
memorizing, to what extent it is actually generalizing and sampling from the underlying distribution
is an open question that we study in this paper.

Recent advancements toward achieving that objective have been made in (Shah et al., 2023; Cui
et al., 2024; Biroli et al., 2024; Wang et al., 2024). Biroli et al. (2024) has studied the evolution of
Gaussian mixture model in forward diffusion process from the point of view of the random energy
model and analytically established various important time scales in asymptotically large dimensions
d with exponentially large number of samples n = O(ed). On the other hand, Cui et al. (2024) has
studied the reverse diffusion process of finite number of samples n = O(d0). In this limit it is shown
that the mean of the underlying distribution can be recovered with a trained two-layer denoiser with
one hidden neuron and a skip connection up to square error that scales as d/n. Similar upper bound
on the square error is noted previously by Shah et al. (2023). Very recently Wang et al. (2024)
has provided a probabilistic upper bound of order d/(1 −

√
d/n)2 on the square Frobenius error

in recovering the variance of the underlying distribution of a diffusion model with strong inductive
bias for sufficiently large train dataset n = O(d). It is not known how tight the upper bound is in
the regime of memorization/generalization or when the bound is saturated.

2 FOUNDATIONS OF DIFFUSION-DRIVEN GENERATIVE MODELS

2.1 REVIEW OF SCORE BASED GENERATIVE PROCESS

In this section, we review basic notions of diffusion based generative models. In particular, we
examine an exactly solvable stochastic differential equation (SDE), emphasizing various analytically
known data size scales that will be of relevance in subsequent discussions.

The Itô SDE under consideration is known as the Ornstein-Uhlenbeck Langevin dynamics, and is
expressed by:

dXF
t = −XF

t dt+
√
2dWt, XF

t ∼ ρ(t). (1)

The score function associated with the stochastic process will be denoted as (see Appendix A for
details of notation and conventions)

s(t, x) = ∇x log ρ(t, x) =
1

ρ(t, x)
∇xρ(t, x) (2)

The probability density ρ satisfies the transport equation (see (27) in Appendix A)

∂tρ(t, x) = ∇ · ((x+ s(t, x))ρ(t, x))

= ∇2ρ(t, x) + x.∇ρ(t, x) + dρ(t, x).
(3)

The dimension of the data is defined to be given by d = dim(x). The time evolution of the proba-
bility distribution is exactly solvable and given by

ρ(t,XF
t ) =

∫
dXF

0 ρ(0, XF
0 ) N (XF

t |XF
0 e−t, 1− e−2t). (4)

Suppose we know the probability density ρ(0, x) exactly. One way to sample from it would be to
use the knowledge of the exact score function s(t, x) in the reverse diffusion process (see (34) in
Appendix A), i.e,

dXB
t = (−XB

t − 2s(t,XB
t ))dt−

√
2 dW1−t (5)

starting from a late time distribution ρ(T, x) (it is assumed that we know how to sample from
ρ(T, x)).

In the domain of generative AI, we don’t know the exact functional form of ρ(0, x). However we
have access to finite number of samples from it and the goal of a diffusion model is to generate
more data points from the unknown probability density ρ(0, x). Traditional likelihood maximiza-
tion technique would assume a trial density function ρθ and try to adjust θ so that likelihood for
obtaining known samples is maximized. In this process determination of the normalization of ρθ is
computationally expensive as it requires multi-dimensional integration (typically it is required for
each step of the optimization procedure for θ). Score based stochastic method mentioned above is

3
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an alternative (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020). This requires
estimating the score function s from known samples - it can be obtained by minimizing Fisher di-
vergence (Hyvärinen, 2005) (see (32) in Appendix A for more details) using techniques such as the
kernel method (Sriperumbudur et al., 2017) or denoising score matching (Vincent, 2011).

2.2 MIXING TIME-SCALE IS OPTIMAL

In this subsection, we present our first contribution: given n samples from a distribution ρ(x), the
mixing time—defined as the minimum diffusion time after which two points exert significant mutual
influence—corresponds to the optimal variance of a non-parametric Gaussian density estimator. We
now proceed to explain this point in detail.

Our goal is to compare the training probability distribution ρT (x)
1 inferred based on n samples from

ρ(x) ≡ ρ(0, x), original distribution ρO(x) inferred from N ≫ n samples from the same and the
generated distribution ρG obtained from a diffusion based generative model (see later sections for
more detailed discussion). Before we give precise definition of ρT (x) etc. we note certain basic
facts about the diffusion process based on finite number of samples. Given n samples ρ(x) can be
approximated by the Dirac delta distribution

ρ̂(0, x) ≡ 1

n

n∑
k=1

δ(x− xk) (6)

However the expression of ρ̂(0, x) in terms of Dirac delta function above is singular, rendering
traditional metrics of probability divergence, such as Kullback-Leibler divergence, inapplicable.
One way to de-singularize it would be to consider ρ̂(tM , x) where tM is the lowest time when the
contribution from various data points starts getting mixed. The time evolution of the probability
distribution under Ornstein-Uhlenbeck diffusion process can be obtained by plugging (6) into (4)

ρ̂(t, x) =
1

n

n∑
k=1

N (x|xke
−t, 1− e−2t) (7)

To formalize the definition of tM we consider x = x1e
−t +

√
δtZ for some Z ∼ N (0, Id) and

decompose ρT (t, x) into parts as follows

ρ̂(t, x) = Z1+Z1c , Z1 =
1

n
N (x|x1e

−t, 1−e−2t), Z1c =
1

n

n∑
k=2

N (x|xke
−t, 1−e−2t). (8)

It can be shown that in the limit n → ∞ with α = log n/d fixed, Z1 = O(e−d/2/n) and Z1c is an
increasing function of t such that for t < tM , Z1c < Z1 and at t = tM , Z1c = e−d/2/n. When
ρ(0, x) = N (x|µ, σ2Id), one can explicitly calculate tM using ideas from random energy model
(Gross & Mezard, 1984) to be given by (Biroli et al., 2024)

tM (σ, d, n) =
1

2
log

(
1 +

σ2

n
2
d − 1

)
=

1

2

(
σ2

n
2
d

)
+O

(
σ4

n
4
d

)
(9)

In the second equality, we have further expanded the expression above in the limit of large α ≫
log(σ) and kept only the leading order term. With these ideas in mind we define the train distribution
to be given by

ρT (x) ≡
1

n

n∑
k=1

N (x|xk, ϵ
2) ≈ ρ̂(tM , x), ϵ2 = 2tM (σ, d, n) ≪ 1 (10)

On a separate line of work, Rosenblatt (1956); Epanechnikov (1969); Bickel & Rosenblatt (1973)
has minimized the expectation value of

∫
dx(ρ(x)− ρT (x))

2 over ϵ when ρT is given by ρT (x) =
(1/n)

∑n
k=1 N (x|xk, ϵ

2) for large n at fixed d to obtain the following formula for the optimal ϵ

ϵ =

(
4

d+ 2

) 1
d+4 σ

n
1

d+4

=
σ

n
1
d

+O
(
log d

d
,
log n

d2

)
(11)

1Not to be confused with ρ(T, x) ̸= ρT (x).
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(b)

Figure 2: The plot is based on the expression of error for the linear diffusion model in (18). The
data set is drawn from a Gaussian distribution of mean µ = 10 and diagonal standard deviation
σ = 1 of dimension d = 16 (left), 100 (right). We have fixed T = 2, λ = e−4. We see that the fast
convergence begins at around n ∼ d as opposed to n ∼ ed.

To go to the second equality we have taken d large. Due to the order of limits, this calculation is
valid only for large α that does not scale with n, d.

We observe that the first term in (11) matches precisely with the expression of
√
2tM as calculated

above in (9). This shows that the region when both the analytical formula for mixing time of dif-
fusion process tM and that of the optimal standard deviation of the Gaussian kernel ϵ is valid, they
coincide with each other making the mixing time L2-distance optimal.

To summarize, given a finite number of samples for the underlying distribution we will use it to
define the train distribution as in (10) and similar definition applies for the original distribution
ρO(x).

2.3 LATE TIME DISTRIBUTION IS GAUSSIAN

We turn to argue that, at sufficiently late times in the forward diffusion process, it is reasonable
to approximate ρ̂ given in (7) by a Gaussian distribution. Specifically, at these late times—when
|xe−t| ≪ 1—it becomes convenient to expand the expression of ρ̂ as follows

log ρ̂(t, x) = −d

2
log 2πδt +

1

δt
xe−t.⟨y⟩πt −

1

2δt
xe−t.Σtxe

−t +O((xe−t)3), (12)

where the expectations are taken with respect to the density function

πt(y) = ρ(0, y)e−
y2e−2t

2δt , δt = 1− e−2t (13)

and the quadratic variance matrix is given by

(Σt)ij = e2tδij − (⟨yiyj⟩πt
− ⟨yi⟩πt

⟨yj⟩πt
) (14)

As t → ∞ all the eigenvalues of Σt are positive. This continues to be the case as long as t > tR,
where tR is a dynamical property of the distribution ρ (Biroli et al., 2024). We will interpret this
as follows: for t > tR, we can reliably approximate ρ̂ by a suitable Gaussian distribution. In next
section we use this idea to propose a linear diffusion model.

3 LINEAR DIFFUSION MODEL

In this section we define and study a linear denoiser diffusion model. First, we sample Yk, k =
1, 2, .., n from the underlying distribution ρ(x) and add noise Zk ∼ N (0, Id) to it to obtain noisy
samples Xk = e−TYk +

√
∆TZk,∆T = λδT . Here T ≫ tR is a large enough time scale and λ

5
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is a free hyperparameter that controls the amount of noise added 2. For simplicity we add the entire
noise in one step in contrast to multi-step process of realistic diffusion models.

The diffusion model/denoiser, trained on the data above, as input takes a noisy sample X and gen-
erates a clean sample Y . In this paper, we consider a linear model

Y = θ̂0 + θ̂1X

as prototype denoiser for analytical tractability. The parameters θ̂0, θ̂1 are solution to the standard
linear regression problem of predicting {Yk} given {Xk} and given by

θ̂T1 = (xTx)−1xT y, θ̂0 = Ŷ − θ1X̂ X̂ =
1

n

n∑
k=1

Xk, Ŷ =
1

n

n∑
k=1

Yk (15)

Here x, y are n× d dimensional matrices whose k-th row is (Xk − X̂)T , (Yk − Ŷ )T respectively.

To generate samples from the trained diffusion model we first draw X from N (µX , σ2
XId), moti-

vated by the fact that late time distribution can be reliably approximated by a Gaussian distribution,
with

µX = e−T Ŷ , σ2
X = e−2T 1

nd

n∑
k=1

||Yk − Ŷ ||2 +∆T , Ŷ =
1

n

n∑
k=1

Yk (16)

and then use the diffusion model to predict corresponding Y = θ̂0+ θ̂1X . The generated probability
distribution for a given set {(Xk, Yk), k = 1, 2, .., n} is

ρG(Y |{(Xk, Yk), k = 1, 2, .., n}) = N (Y |θ̂0 + θ̂1µX , σ2
X θ̂T1 θ̂1) (17)

The generated probability distribution ρG as defined above is a random variable conditioned on
{(Xk, Yk), k = 1, 2, .., n} which itself is a random variable. We consider its expectation value
by further sampling Yk ∼ ρ and Xk = e−TYk +

√
∆TZk as mentioned above. The sampling

procedure mentioned here is different from the discussion of standard linear regression. In fact the
unconditioned distribution ρG(Y ) obtained after taking into account the sampling of {(Xk, Yk), k =
1, 2, .., n} is a complicated one.

3.1 CONVERGENCE OF THE GENERATED PROBABILITY DISTRIBUTION

The convergence of the generated distribution to the original distribution is measured by the
Hellinger distance

H2(ρ||ρG|{(Xk, Yk), k = 1, 2, .., n})

=
1

2

∫
dx (

√
ρ(x)−

√
ρG(x))

2 =

∫
dx (1−

√
ρ(x)ρG(x))

=1−
(2d

√
det(2πσ2

X θ̂T1 θ̂1) det(2πσ
2Id)

det
(
2π(σ2

X θ̂T1 θ̂1 + σ2Id)
) ) 1

2

e−
1
4 (θ̂0+θ̂1µX−µ)T (θ̂T

1 θ̂1+σ2Id)
−1

(θ̂0+θ̂1µX−µ)

(18)

The smaller the value of H2 the closer the generated distribution is to the original one.

For simplicity we sample Yk from an isotropic Gaussian distribution Yk ∼ N (µ, σ2Id). We have
plotted the expectation value of H2 in Fig. 2. We notice that with the increase of the train data
size, there is a domain of fast convergence marked by a sharp decay of H2 with higher slope be-
yond a critical value. The occurrence of fast convergent region is conceptually similar to the sharp
improvement of the performance of a trained denoiser on a test dataset as the size of the training set
increases above a certain threshold emprically observed in (Kadkhodaie et al., 2023).

2This corresponds to scaling the noise term in (1) by a factor of
√
λ.
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3.2 MEMORIZATION TO GENERALIZATION TRANSITION

In this subsection we define and analyze a rigorous metric for memorization to generalization tran-
sition. For this purpose consider the pairwise distance between probability distributions ρO, ρT , ρG

ETG =

∫
dx (ρT (x)− ρG(x))

2,

EOG =

∫
dx (ρO(x)− ρG(x))

2.

(19)

We say the model is generalizing well if the generated data distribution is closer to the original
dataset compared to the train data, more concretely it is defined by the following condition

∆ = ETG − EOG > 0. (20)

∆ is a random variable due to randomness in the training data. The diffusion model is considered to
be memorizing the training data when the probability that ∆ > 0 satisfies P (∆ > 0) ≤ 0.5. Con-
versely, the model is in the generalization regime when P (∆ > 0) > 0.5. For the linear diffusion
model, the pairwise distance between probability distributions ρO, ρT , ρG are easily calculated to be
given by

ETG({(Xk, Yk), k = 1, 2, .., n}) = 1√
det(4πθ̂T1 θ̂1σ

2
X)

− 2

n∑
k=1

e−
1
2 (θ̂0+θ̂1µX−Yk)

T (θ̂T
1 θ̂1σ

2
X+ϵ2Id)

−1
(θ̂0+θ̂1µX−Yk)

n

√
det

(
2π(θ̂T1 θ̂1σ

2
X + ϵ2Id)

)
+

n+ 2
∑n

i,j=1,i<j e
− 1

2 (Yi−Yj)
T (2ϵ2Id)

−1
(Yi−Yj)

n2
√

det (4πϵ2Id)

EOG({(Xk, Yk), k = 1, 2, .., n}) = 1√
det(4πθ̂T1 θ̂1σ

2
X)

− 2

N∑
k=1

e−
1
2 (θ̂0+θ̂1µX−Yk)

T (θ̂T
1 θ̂1σ

2
X+ϵ2Id)

−1
(θ̂0+θ̂1µX−Yk)

N

√
det

(
2π(θ̂T1 θ̂1σ

2
X + ϵ2Id)

)
+

N + 2
∑N

i,j=1,i<j e
− 1

2 (Yi−Yj)
T (2ϵ2Id)

−1
(Yi−Yj)

N2
√

det (4πϵ2Id)

(21)

For given Yk, k = 1, 2, . . . , n we calculate Xk as

Yk ∼ N (µ, σ2Id), Xk = e−TYk +
√

∆TZk Zk ∼ N (0, Id), T ≫ tR (22)

By performing several simulations over the training set {(Xk, Yk), k = 1, 2, .., n} we have plotted
the average value of the probability of ∆ > 0 in Fig. 3. The important regions for n are the
following:

• N ≫ d ≫ n: As we increase n, probability of ∆ > 0 increases sharply from zero to one.
We call this memorization to generalization transition. See Fig. 3 for more details.

• N ≫ n ∼ d: In this domain P (∆ > 0) saturates near unity at n ∼ d as shown in Fig. 3.
From Fig. 2 we see that near n ∼ d, we enter at the regime of fast convergence where the
Hellinger distance between the original and generated distribution H2 decreases rapidly.
This shows the initiation of generalization (i.e., P (∆ > 0) ∼ 1) takes place on the onset of
fast convergence.

• N ∼ n ≫ d: In this domain P (∆ > 0) decreases and eventually reaches the value 0.5. See
Fig. 3 for further details. This is because the distinction between the train and the original
dataset disappears in this limit.
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Figure 3: The plot on the left is based on the expressions for the linear diffusion model in (21).
The data distribution and the model configuration is the same as in Fig. 2. The original dataset
is composed of N = 104 samples. We de-singularized the train and the original distribution with
ϵ = σ(1/n)1/d, σ(1/N)1/d respectively - see the formula in (9). Comparing with Fig. 2 we notice
that the model learns to generalize when the convergence of the generated probability distribution
towards the original distribution becomes rapid. On right we have plotted the curve for much larger
train dataset size for d = 16. It is observed that as the size of the train dataset n approaches that
of the original dataset N = 104, P (∆ > 0) converges towards 0.5, indicating that the distinction
between the training and original datasets becomes less prominent.

4 NEURAL NETWORK BASED DIFFUSION MODEL

Following the results of the linear diffusion model, we hypothesize that memorization to generaliza-
tion transition happens in generic diffusion model on the onset of fast convergence. In this section
we test our hypothesis on more realistic models. We use the PyTorch based implementation of the
algorithm in Ho et al. (2020) as the diffusion model for the experiments in this section. The denoiser
has the structure of U-Net (Ronneberger et al., 2015) with additional residual connections consisting
of positional encoding of the image and attention layers (Dosovitskiy et al., 2021; Tu et al., 2022;
Peebles & Xie, 2023). Our code is attached as supplementary files with this draft. The generated
distribution from the non-linear diffusion model is not necessarily Gaussian and we face difficulty
in evaluating the higher dimensional integration in our measure of distance. For this purpose we use
the following simplified metric which gives advantage in terms of computational complexity

ETG =

d∑
i=1

∫
dx (ρT,i(x)− ρG,i(x))

2 (23)

Where we have defined element-wise probability density function

ρT,i(x) ≡
1

n

n∑
k=1

N (x|xi
k, ϵ

2), ϵ =
σ

n
, i = 1, 2, . . . , d (24)

Similar definition applies to ρO,i, ρG,i and EOG. The convergence and generalization metric for an
isotropic Gaussian dataset is plotted in Fig. 4. We see that memorization to generalization transition
takes places exactly on the onset of rapid convergence of the generalization error EOG.

5 CONCLUSION

In this paper we have defined a mathematically precise metric for memorization to generalization
transition. We have further constructed a linear diffusion model which shows the memorization to
generalization transition, based on the aforementioned metric, aligns with the on-set of fast conver-
gence of generalization error. Finally we have shown that this alignment phenomena is generic and
occurs in realistic non-linear diffusion models.
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Figure 4: The plot is based on the neural network based diffusion model with 12.9 million trainable
parameters. Each pixel is a Gaussian with centers at µ = 0.5 and standard deviation σ = 0.1 of
dimension d = 256. The number of samples in the original dataset is 105. The train probability den-
sity is calculated with ϵ = σ/n, similarly for generated and original distribution we use appropriate
scale. To calculate ∆ we have generated 10 images and compared against train and original dataset
of size 10, 100 (randomly selected) in each simulation. The numerical integral is performed by sum-
ming over |S| = 24 equidistant points in (0, 1) for each pixel. Training is done for 20 epoch with
batch size 128 and diffusion step number is kept fixed at 10. ÊOG is the scaled value of EOG by its
value at n = 10 measuring the convergence of the generated distribution to the original one. We see
that the value of ÊOG decreases rapidly (on left in blue) during sharp increase of P (∆ > 0) marking
memorization to generalization transition (on right). The scaled value of ÊTG is also plotted in red
on left.

Our work generates the possibility of further analytical study on diffusion models. For instance,
instead of a linear diffusion model, a (stack of) wide neural network in the kernel approximation
regime (Jacot et al., 2018; Lee et al., 2019; Bordelon et al., 2021; Canatar et al., 2021; Atanasov
et al., 2023) or in mean field regime (Mei et al., 2018; Yang & Hu, 2021; Bordelon & Pehlevan,
2022; 2024) is an alternate viable candidate. Furthermore, the proposed metric for memorization
to generalization transition might be employed to systematically select optimal hyperparameters for
model training. Specifically, for a given training set, one can plot the curve of P (∆ > 0) versus
n across various hyperparameter configurations. The model that transitions to generalization at a
smaller dataset size may be regarded as the more efficient one. We leave a thorough investigation of
these questions to future work.
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A CONNECTION BETWEEN ODE AND SDE BASED GENERATIVE MODELS

In this Appendix we review the connection between stochastic interpolant (Albergo et al., 2023) and
stochastic differential equation (Song et al., 2021b) based generative models. Given two probability
density functions ρ0, ρ1, one can construct a stochastic interpolant between ρ0 and ρ1 as follows

x(t) = X(t, x0, x1) + λ0(t)z, t ∈ [0, 1] (25)

where the function X,λ0 satisfies

X(0, x0, x1) = x0, X(1, x0, x1) = x1, ||∂tX(t, x0, x1)|| ≤ C||x0 − x1||
λ0(0) = 0, λ0(1) = 0, λ0(t) ≥ 0

(26)
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for some positive constant C. Here x0, x1, z are drawn independently from a probability measure
ρ0, ρ1 and standard normal distribution N (0, I). The probability distribution ρ(t, x) of the process
x(t) satisfies the transport equation3

∂tρ+∇ · (bρ) = 0, ρ(0, x) = ρ0(x), ρ(1, x) = ρ1(x), (27)
where we defined the velocity4

b(t, x) = E[ẋ(t)|x(t) = x] = E[∂tX(t, x0, x1) + λ̇0(t)z|x(t) = x]. (28)
One can estimate the velocity field by minimizing

Lb[b̂] =

∫ 1

0

E
(
1

2
||b̂(t, x(t))||2 −

(
∂tX(t, x0, x1) + λ̇0(t)z

)
· b̂(t, x(t))

)
dt (29)

It’s useful to introduce the score function s(t, x) for the probability distribution for making the
connection to the stochastic differential equation

s(t, x) = ∇ log ρ(t, x) = −λ−1
0 (t)E(z|x(t) = x) (30)

It can be estimated by minimizing

Ls[ŝ] =

∫ 1

0

E
(
1

2
||ŝ(t, x(t))||2 + λ−1

0 (t)z · ŝ(t, x(t))
)
dt (31)

The score function also can be obtained by minimizing the following alternative objective function
known as the Fisher divergence

LF [ŝ] =
1
2

∫ 1

0

E
(
||ŝ(t, x(t))−∇ log ρ(t, x)||2

)
dt

=

∫ 1

0

E
(
1

2
||ŝ(t, x(t))||2 +∇ · ŝ(t, x(t)) + 1

2
||∇ log ρ(t, x))||2

)
dt

(32)

To obtain the second line we have ignored the boundary term. Note that for the purpose of mini-
mization the last term is a constant and hence it plays no role and hence Fisher divergence can be
minimized from a set of samples drawn from ρ easily even if the explicit form of ρ is not known
(Hyvärinen, 2005). However the estimation of ∇ · ŝ(t, x(t)) is computationally expensive and in
practice one uses denoising score matching for estimating the score function (Vincent, 2011).

It is easy to put eq. (27) into Fokker-Planck-Kolmogorov form
∂tρ+∇ · (bF ρ) = +λ(t)∆ρ, bF (t, x) = b(t, x) + λ(t)s(t, x)

∂tρ+∇ · (bBρ) = −λ(t)∆ρ, bB(t, x) = b(t, x)− λ(t)s(t, x)
(33)

For an arbitrary function λ(t) ≥ 0. From this we can read off the Itô SDE as follows5

dXF
t = bF (t,X

F
t )dt+

√
2λ(t) dWt

dXB
t = bB(t,X

B
t )dt−

√
2λ(t) dW1−t

(34)

First equation is solved forward in time from the initial data XF
t=0 ∼ ρ0 and the second one is solved

backward in time from the final data XB
t=1 ∼ ρ1. One can recover the probability distribution ρ from

the SDE using Feynman–Kac formulae6

ρ(t, x) = E
(
e
∫ 0
t
∇·bF (t,Y B

t )dtρ0(Y
B
t=0)|Y B

t = x
)

= E
(
e
∫ 1
t
∇·bB(t,Y F

t )dtρ1(Y
F
t=1)|Y F

t = x
) (36)

3Here we are using the notation ∇ = ∇x.
4The expectation is taken independently over x0 ∼ ρ0, x1 ∼ ρ1 and z ∼ N (0, I). Here N (0, I) is

normalized Gaussian distribution of appropriate dimension with vanishing mean and variance.
5Here Wt represents a standard Wiener process, i.e., Wt − tW1 = Nt is a zero-mean Gaussian stochastic

process that satisfies E[NtN
T
t ] = t(1− t)I .

6A class of exactly solvable models are given by (Ornstein-Uhlenbeck dynamics discussed in the main text
is a special case of this equation)

dXF
t = XF

t
d

dt
(log η(t))dt+

√
η(t)2

d

dt

(
σ(t)2

η(t)2

)
dWt, XF

t ∼ N (η(t)XF
0 , σ(t)2) (35)

Where η, σ are two positive functions satisfying η(0) = 1, σ(0) = 0.
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