

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024

SIGLIP-HD BY FINE-TO-COARSE SUPERVISION

003 **Anonymous authors**

004 Paper under double-blind review

ABSTRACT

010 High-quality visual representation is a long-standing pursuit in computer vision.
011 In the context of multimodal LLMs (MLLMs), feeding higher-resolution images
012 can produce more fine-grained visual tokens. However, it introduces additional
013 computational and design complexity, due to multiple forward passes and post-
014 processing of increased tokens. Before simply adopting a higher resolution, have
015 we truly unlocked the model’s full perception capability at a *standard* resolution?
016 Therefore, we study an interesting problem: how to achieve *fine* visual perception
017 under lower cost *without larger images*. We present SIGLIP-HD in this work.
018 The core is a highly simple fine-to-coarse supervision design. We enforce the
019 coarse feature of a mid-resolution image to mimic the fine-grained feature of its
020 high-resolution version. We build this framework on the advanced SigLIP 2 model.
021 Our final model produces better visual tokens at exactly the same inference budget.
022 It is validated on extensive MLLM benchmarks and consistently delivers stronger
023 results than our baseline model, especially on OCR-related tasks.

1 INTRODUCTION

027 From supervised pre-training (Deng et al., 2009), to vision-centric self-supervised learning (Wu
028 et al., 2018; He et al., 2022), to vision-language contrastive learning (Radford et al., 2021), further to
029 hybrid training paradigms (Maninis et al., 2025), the computer vision community keeps pursuing
030 more transferable visual representations. High-quality image embeddings (Tschannen et al., 2025;
031 Siméoni et al., 2025) have fundamentally advanced the development of a wide range of perception
032 and generation tasks (Lin et al., 2014; Yu et al., 2025). In recent years, witnessing the power of
033 LLMs (Achiam et al., 2023), finding better visual tokens for multimodal LLMs (MLLMs) (Liu et al.,
034 2023) is receiving growing attention (Tong et al., 2024b;a). The quality of these tokens is critical for
035 MLLMs to accurately perceive and reason over visual signals.

036 There are three mainstream approaches to improving the visual representations in MLLMs. The first
037 is to directly pre-train a better vision encoder from scratch with better algorithms (Oquab et al., 2024;
038 Tschannen et al., 2025), more data (Fan et al., 2025; Bolya et al., 2025), or larger models (Siméoni
039 et al., 2025). This line of work requires tremendous resources (e.g., million GPU hours, billion data),
040 which are unaffordable for most researchers. The second approach is leveraging multiple well-trained
041 encoders (Tong et al., 2024b;a; Shi et al., 2025b). Different encoders have their own strengths.
042 CLIPs (Radford et al., 2021) are good at modeling vision-language correspondence, while vision-only
043 models (Oquab et al., 2024) excel at capturing detailed visual correlations. Incorporating them
044 may amplify their distinct advantages while suppressing their drawbacks. Despite being intuitively
045 promising, the actual gain is limited or even negative (Tong et al., 2024a).

046 The last approach is simply to forward higher-resolution input (Liu et al., 2024a;b; Li et al., 2024).
047 Higher-resolution images can yield more fine-grained visual tokens, making MLLMs see more
048 clearly. This principle is gradually strengthened by state-of-the-art MLLMs (Liu et al., 2024d; Wu
049 et al., 2024b; Deitke et al., 2025), from resizing to a fixed larger size (Liu et al., 2024a), to fully
050 preserving the native resolution (Li et al., 2025a; Bai et al., 2025), steadily contributing to better OCR
051 capability. Our work is inspired by this observation, but with fundamentally different roadmaps. We
052 highlight that, although increased image size improves visual perception, it brings significant extra
053 complexity in both compute and design. The image has to be sliced into small tiles (Liu et al., 2024b;
054 Li et al., 2025a) to match the pre-trained vision resolution. This not only requires time-consuming
055 multiple forward passes, but also incurs more visual tokens. To alleviate the LLM’s burden, further

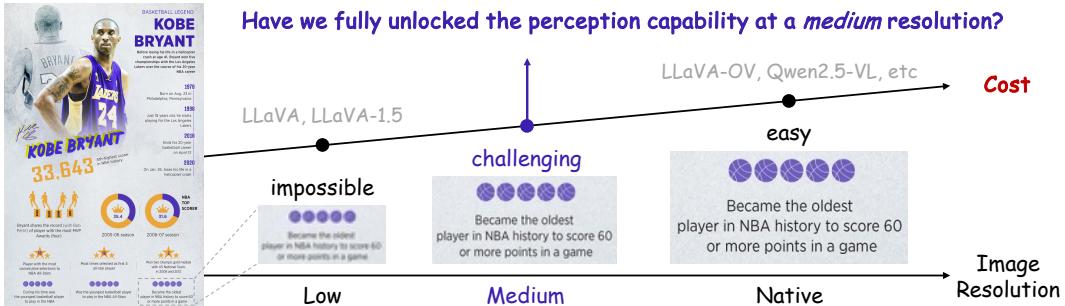


Figure 1: Early MLLMs (Liu et al., 2023; 2024a) resize images to a fixed low resolution (e.g., 336^2 px), while recent works (Li et al., 2025a; Bai et al., 2025; Liu et al., 2024d) operate on native resolution with huge costs. But indeed, at a *medium* resolution (e.g., 512px), humans can already understand the content. How to make AI systems achieve this?

post-processing, *e.g.*, resampler (Alayrac et al., 2022) and pixel unshuffle (Chen et al., 2024c), is necessary for token compression, making the framework even more complicated.

We reflect on the scaling trend. Before increasing the input resolution, have we fully unlocked the model’s perception capability at a *standard (medium)* resolution (e.g., 512^2 px)? Can we achieve *fine-grained* visual perception under lower cost *without larger images*?

At least our human visual system can. As shown in Figure 1, when downsampling the image from its native resolution (1722px in height) to a medium size (512px), although the characters are blurred, we can still accurately understand the content. Therefore, if an AI visual system is developed capable enough to match human performance, it should be able to perceive at such a medium resolution, without requiring a larger image. It will avoid unnecessary computation at high resolutions, reducing token redundancy and improving system efficiency.

So the remaining problem is, how to make vision models acquire such promising perception capability. Our solution is highly simple yet effective. We design a fine-to-coarse supervision mechanism to transfer high-quality visual representation at a high resolution to coarse visual tokens at a standard resolution. Concretely, given a pre-trained vision encoder (Tschannen et al., 2025), we further fine-tune it at a standard resolution by enforcing its output features to mimic the fine-grained features of the corresponding high-resolution images. Through this mechanism, the encoder gradually bootstraps its representations from coarse level to fine level. Our method does not rely on any human or synthetic labels for fine-grained perception (Chen et al., 2024a; Choi et al., 2025; Shi et al., 2025a), purely exploring cheap raw images for self-improvement. Without using any auxiliary upsamplers (Fu et al., 2024; Huang et al., 2025), our final model inherits the same structure and IO as our pre-trained model, making it very easy and efficient to deploy in complex systems. Users only need to modify the checkpoint path to ours, then enjoy better perception capability.

Our main contributions are summarized below:

- We reflect on the scaling trend of image resolution in MLLMs. Beyond using high-resolution images for high-quality visual tokens, we study an intriguing problem: how to achieve fine-grained perception for MLLMs under lower cost *without larger images*.
- We present a highly simple fine-to-coarse supervision mechanism to strengthen perception capability at a standard resolution by imitating “teacher” tokens of high-resolution images.
- We build our method on the competitive SigLIP 2 encoder (Tschannen et al., 2025). With exactly the same inference cost, our SigLIP-HD delivers better results across diverse MLLM benchmarks under various protocols, especially for scenarios preferring fine-grained perception (Mathew et al., 2021; Wang et al., 2025).

We want to highlight that, while knowledge distillation or teacher-student training is well-established techniques, **what to distill** is critical for effective learning. Our key insight lies in presenting a multi-resolution to standard-resolution distillation framework that enhances representation quality without increasing inference cost. This is orthogonal to existing distillation works that focus on multi-teacher

108 Table 1: Comparison between CLIP (Radford et al., 2021) and SigLIP 2 (Tschanen et al., 2025) on
 109 MLLM benchmarks following the training protocol of LLaVA-1.5-7B (Liu et al., 2024a). We evaluate
 110 their top-performed versions. *We do not include OCR tokens into prompts, following (Zhang et al.,
 111 2025). We divide the MME^P score by 20 before averaging.

Vision encoder	OCR & Chart					General							Knowledge		Avg
	DocVQA	ChartQA	TextVQA [*]	InfoVQA	TextCaps	HRBench	RWQA	GQA	MME ^P	POPE	MMBench	SQA ¹	AID2D		
CLIP-L/14-336px	22.4	17.5	46.8	20.8	69.0	36.9	56.0	63.0	1520.9	86.9	66.2	70.2	55.9	52.9	
SigLIP 2-L/16-384px	25.1	16.4	55.1	21.5	70.6	39.3	56.0	63.9	1538.7	87.2	67.5	69.1	58.7	54.4	
SigLIP 2-400m/14-384px	29.5	19.0	59.7	22.9	71.5	42.2	57.4	64.8	1538.4	87.8	67.8	70.8	58.2	56.0	
SigLIP 2-400m/16-512px	32.2	19.3	61.0	22.1	71.1	41.3	57.5	62.8	1529.2	87.8	67.7	69.9	56.0	55.8	
SigLIP 2-G/16-384px	26.7	18.5	58.2	21.4	71.3	42.7	59.9	64.6	1559.4	87.0	68.6	71.1	59.9	56.0	

122
 123 Table 2: Comparison among different image scales to obtain final features based on SigLIP 2-512px.
 124 Here, we interpolate high-resolution features to base scale and average multi-scale features (if any) to
 125 ensure the same number of visual tokens across all settings.

Image scale	OCR & Chart					General							Knowledge		Avg
	DocVQA	ChartQA	TextVQA	InfoVQA	TextCaps	HRBench	RWQA	GQA	MME ^P	POPE	MMBench	SQA ¹	AID2D		
512 ²	32.2	19.3	61.0	22.1	71.1	41.3	57.5	62.8	1529.2	87.8	67.7	69.9	56.0	55.8	
512 ² +1024 ²	37.0	21.2	64.2	23.8	71.0	47.9	59.6	64.9	1560.1	88.0	67.4	71.0	56.2	57.7	
512 ² +1024 ² +1536 ²	36.1	19.2	64.4	23.1	71.0	48.4	59.4	64.8	1565.1	88.7	67.2	71.4	56.2	57.6	
512 ² +1024 ² +1536 ² +2048 ²	35.5	20.9	64.3	23.4	71.6	46.8	59.5	65.5	1560.0	88.0	67.0	69.8	56.1	57.4	
1024 ²	35.4	19.4	60.5	23.6	70.4	46.0	57.7	64.4	1500.8	88.4	66.7	69.3	55.7	56.3	
1536 ²	34.4	17.7	59.1	23.4	69.5	49.3	59.1	64.6	1502.7	88.3	65.8	69.0	54.9	56.2	

139 architectures (e.g., AM-RADIO (Ranzinger et al., 2024), RADIOv2.5 (Heinrich et al., 2025)). We
 140 demonstrate that multi-resolution distillation can serve as an effective, lightweight post-training stage
 141 for enhancing vision encoders’ fine-grained understanding without architectural changes or inference
 142 overhead. It can be a practical solution for resource-constrained deployment scenarios.

143 Following the philosophy of our fine-to-coarse supervision, in Section 2, we first investigate *what*
 144 good fine-grained representation to learn. Then in Section 3, we present our framework on *how* to
 145 learn from the fine-grained representation.

2 WHAT IS GOOD REPRESENTATION TO LEARN?

147 In this work, we build our fine-to-coarse supervision methodology on the SigLIP 2 encoder (Tschanen et al., 2025), or more specifically, its So400m/16-512px version. This model of 429M parameters
 148 takes a 512²px image as its input, and produces 32² visual tokens under patch size 16. As compared
 149 in Table 1, its So400m/16-512px version is much better than other counterparts in important OCR
 150 scenarios (Mathew et al., 2021; Singh et al., 2019), due to its larger resolution. So we mainly use this
 151 version for validation. Furthermore, to be more convincing, we also provide our results built on the
 152 legacy model OpenAI-CLIP (Radford et al., 2021) (Table 11).

153 Prior to fine-to-coarse supervision, a primary step is to find out what optimal fine-grained features to
 154 learn. Therefore, this section presents necessary pilot investigations.

155 **Which image scales should be used to obtain fine-grained features?** Common practices (Liu et al.,
 156 2024b; Chen et al., 2024c) suggest that it is beneficial to incorporate fine-grained but local features
 157 from high-resolution images with coarse but global features from base-scale images (*i.e.*, thumbnails).
 158 We feed pre-trained SigLIP 2-512px with a single-scale image or multi-scale images: 1) 512² scale,

Table 3: Comparison among different inference strategies for high-resolution images (1024^2). PE interpolation: interpolate the pre-trained positional embeddings to the targeted resolution.

Infer high-res image	OCR & Chart					General					Knowledge		Avg	
	DocVQA	ChartQA	TextVQA	InfoVQA	TextCaps	HRBench	RWQA	GQA	MME ^P	POPE	MMBench	SQA ^I	AI2D	
Sliding (w/o overlap)	37.0	21.2	64.2	23.8	71.0	47.9	59.6	64.9	1560.1	88.0	67.4	71.0	56.2	57.7
Sliding (w/ half overlap)	34.8	21.4	63.2	23.3	71.3	43.9	56.2	65.0	1535.3	88.2	68.4	70.3	56.4	56.9
Entire (PE interpolation)	33.5	21.2	63.2	22.7	71.8	41.5	58.6	64.6	1548.2	87.9	67.2	69.8	57.3	56.7

Table 4: Comparison among different fusion strategies for multi-scale features from 512^2+1024^2 scales. We first employ interpolation or pixel unshuffling (Shi et al., 2016) to downsample high-resolution features, and then average or concatenate (channel-wise) them with base-scale features.

Fuse multi-scale features	OCR & Chart					General					Knowledge		Avg	
	DocVQA	ChartQA	TextVQA	InfoVQA	TextICaps	HRBench	RWQA	GQA	MME ^P	POPE	MMBench	SQ4 ¹	AID	
Interpolate + average	37.0	21.2	64.2	23.8	71.0	47.9	59.6	64.9	1560.1	88.0	67.4	71.0	56.2	57.7
Interpolate + concat	34.8	21.2	63.2	22.9	71.3	44.3	57.1	64.5	1555.5	88.2	68.3	70.9	57.3	57.1
Pixel unshuffle + concat	35.9	20.4	63.8	22.9	70.9	42.1	59.5	64.5	1542.4	88.1	66.5	69.9	56.4	56.8

2) 512^2+1024^2 scales, 3) $512^2+1024^2+1536^2$ scales, 4) $512^2+1024^2+1536^2+2048^2$ scales, 5) 1024^2 scale, and 6) 1536^2 scale. By default, for high-resolution images, we split them into non-overlapping base-scale images for inference. Then, we interpolate the re-assembled high-resolution features to the same shape as base-scale features (32^2 tokens). Finally, we average multi-scale features (if any) to ensure the same number of visual tokens across all settings.

As shown in Table 2, even with the same number of tokens, introducing high-resolution images (e.g., $512^2 \rightarrow 512^2 + 1024^2$) facilitates most benchmarks (10 out of 12), especially for OCR and chart tasks. But such improvement saturates or disappears when further adding the $4 \times (2048^2)$ scale, showcasing it is suboptimal to blindly scale up the resolution. The single high-resolution view is generally inferior to multi-scale views, highlighting the necessity of maintaining a global view. Lastly, we can observe some benchmarks, e.g., MMBench (Liu et al., 2024c), even do not prefer fine-grained features.

How to infer a model on high-resolution images? To apply a model trained on base scale (e.g., 512px) to higher-resolution input, existing works (Liu et al., 2024b; Chen et al., 2024c) typically slide a base-scale window across the entire image with a non-overlapping stride. However, alternative strategies exist. For example, following practices in dense prediction tasks (Cordts et al., 2016), using overlapping sliding windows can enhance local feature coherence and reduce boundary artifacts. Besides, we can directly interpolate the pre-trained positional embeddings to match the high-resolution input (Bai et al., 2023), though this may introduce distortion in fine-grained spatial relationships.

We compare these inference approaches in Table 3. As expected, interpolating positional embeddings underperforms the basic sliding window strategy. Surprisingly, overlapping windows also degrade performance, contrary to lessons from dense prediction tasks. While the exact cause remains unclear, we hypothesize two potential factors: 1) inconsistent token distributions: overlapping regions receive ensemble treatment while others do not, or 2) positional embedding conflicts for tokens appearing in multiple windows. Finally, the best practice is still using non-overlapping sliding window.

How to fuse features from multiple resolutions? For multi-scale features, some works (Shi et al., 2024; Liu et al., 2024d) first interpolate high-resolution features to the same scale as base-resolution features and then concatenate them along the channel dimension. Other than concatenation, we can simply average them. Besides, pixel unshuffle (Shi et al., 2016) is another choice (Chen et al., 2024b) to downsample features.

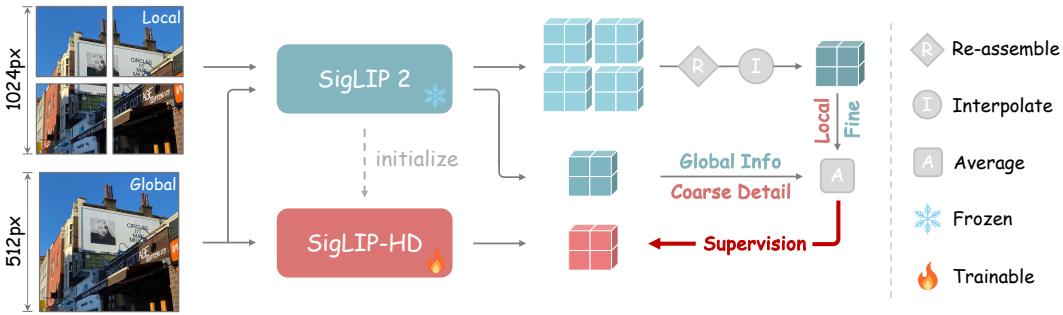


Figure 2: Overview of our fine-to-coarse supervision framework for training our SigLIP-HD. The frozen pre-trained SigLIP 2 encoder is inferred on multi-scale images to produce high-quality fine-grained features. Our SigLIP-HD is trained to mimic the features at a standard resolution (512^2).

As compared in Table 4, the simplest “interpolate + average” practice stands out as the best. Beyond delivering better performance, this strategy produces ensembled features with the same dimension as base-scale features, eliminating the need for a projection head (Ranzinger et al., 2024) in later learning. Indeed, there are more sophisticated fusion options, *e.g.*, using weighted average instead of a simple mean. We leave these investigations to our final main experiments (Table 10).

Summary. Our pilot studies demonstrate that the optimal multi-scale configuration is two or three scales (512^2+1024^2 or $512^2+1024^2+1536^2$). For high-resolution inference, non-overlapping sliding window yields the best results. Finally, high-resolution features should be interpolated and then averaged with the base-scale features to produce the final features. Based on these findings, we will next present our fine-to-coarse supervision mechanism.

3 SIGLIP-HD

Our core methodology is fine-to-coarse supervision. As illustrated in Figure 2, our framework is very simple. It comprises two branches, one inference branch to produce high-quality visual features, and one trainable branch to learn towards the better features.

Inference branch. As studied in our pilot experiments (Table 2), multi-scale input is better than single-scale input. It can harvest both advantages of high-resolution images (fine-grained details) and base-resolution images (global information), while suppressing their weaknesses (local information and coarse details). Therefore, we feed our pre-trained SigLIP 2-So400m/16-512px encoder with two scales: base scale (512^2) and $2 \times$ scale (1024^2). We do not introduce more scales for inference, because we empirically find that more scales fail to consistently yield stronger results (see Table 9). In addition, too many scales significantly increase the computational burden, *e.g.*, requiring nine more feedforward passes if adding a $3 \times$ scale.

The pre-trained SigLIP 2 model is frozen and it is inferred on the multi-scale input images by non-overlapping sliding window if needed (supported by Table 3). We obtain a base-resolution feature $F^b \in \mathbb{R}^{C \times H \times W}$ and a high-resolution feature $F^h \in \mathbb{R}^{C \times 2H \times 2W}$ from the two scales, respectively. To fuse the feature maps of different scales, we first downsample F^h to the same size as F^b via bilinear interpolation. We then produce the final high-quality feature F^t by directly averaging F^b and the downsampled F^h . This simple strategy is more effective than other counterparts, such as pixel unshuffle and concatenation, as validated in Table 4.

Trainable branch. Our SigLIP-HD in the trainable branch is initialized with the pre-trained SigLIP 2 parameters. It shares exactly the same architecture and input/output as the pre-trained model, without adding any projection modules (Ranzinger et al., 2024). It takes a base-scale image of 512^2 pixels as input and produces 32^2 tokens. We denote its feature map as F^s . The optimization target of this branch is enforcing F^s to align with the better feature F^t at the patch level.

There are various options in the loss function for feature alignment, such as cosine similarity loss (Fang et al., 2023), or a combination of smooth L1 and cosine similarity loss (Ranzinger et al., 2024). In practice, we observe the strictest and simplest L1 loss performs the best, as compared in Table 8.

270 Table 5: Comparison between our SigLIP-HD and the most capable SigLIP 2-So400m/16-512px
 271 encoder (Tschanne et al., 2025). We follow the two-stage training pipeline of LLaVA (Liu et al.,
 272 2024a) with Vicuna-1.5-7B (Zheng et al., 2023). We try to freeze (✓) or unfreeze (✗) the vision
 273 encoder to provide better insights into our advantages.

274 275 276 277 278	SFT data	Freeze	Encoder	OCR & Chart					General					Knowledge		Avg	
				279 280 281 282 283 284 285	DocVQA	ChartQA	TextVQA	InfoVQA	TextCaps	HRBench	RWQA	GQA	MME ^P	POPE	MMBench	SQA ^I	AI2D
286 287 288 289	LLaVA-1.5	✓	SigLIP 2	32.2	19.3	61.0	22.1	71.1	41.3	57.5	62.8	1529.2	87.8	67.7	69.9	56.0	55.8
			SigLIP-HD	34.7	20.2	63.1	23.0	71.6	46.2	59.5	64.3	1554.0	88.1	67.7	71.5	58.0	57.4
290 291 292 293 294	LLaVA-1.5	✗	SigLIP 2	32.8	20.8	62.3	22.1	71.9	42.9	56.5	63.4	1479.0	88.3	67.6	70.6	56.3	56.1
			SigLIP-HD	35.2	21.8	63.9	23.2	72.0	43.9	58.8	64.1	1550.1	88.8	67.0	70.4	57.3	57.2
295 296 297 298 299	LLaVA-NeXT	✓	SigLIP 2	54.2	58.2	64.7	23.5	67.2	43.3	58.0	63.4	1490.8	87.8	68.2	70.2	68.3	61.7
			SigLIP-HD	55.2	60.9	64.9	25.4	67.6	46.2	59.8	64.4	1536.7	88.1	68.6	72.6	68.7	63.0
300 301 302 303 304 305 306 307 308 309 310 311	LLaVA-NeXT	✗	SigLIP 2	56.0	61.6	65.8	23.2	67.5	43.5	60.8	63.8	1532.1	88.1	68.4	71.8	69.2	62.8
			SigLIP-HD	59.6	65.2	65.7	25.5	68.1	48.3	59.2	64.4	1558.3	88.6	70.3	74.4	70.5	64.4

287 Table 6: Evaluation under the **AnyRes** (Li et al., 2025a) strategy (*i.e.*, operating on native resolution).
 288 Here we use LLaVA-NeXT data for visual instruction tuning and unfreeze the vision encoder.

Encoder	DocVQA	ChartQA	TextVQA	InfoVQA	TextCaps	GQA	MME ^P	POPE	SQA ^I	AI2D	Avg
SigLIP 2	67.6	63.9	66.9	27.2	65.6	61.1	1431.6	87.4	70.7	65.8	64.8
SigLIP-HD	69.7	67.4	68.4	27.7	65.8	61.9	1452.6	87.9	72.3	69.3	66.3

295 **Application scope.** Although our method can polish the visual representation at a standard resolution,
 296 we do not anticipate it will entirely bypass the native-resolution practice in MLLMs. Some visual
 297 details may be completely lost after down-sampling. Fortunately, our method is fully compatible
 298 with existing practices, regardless of using down-sampled resolution (Table 5) or operating on native
 299 resolution (Table 6), as they both rely on a pre-trained vision encoder.

4 EXPERIMENT

303 **Implementation details.** We train our fine-to-coarse supervision framework on the 4.5M raw
 304 images from the Cambrian-1 collected data (Tong et al., 2024a), since they cover diverse scenarios,
 305 including natural images, scene text images, documents, *etc*. We train our SigLIP-HD with an AdamW
 306 optimizer (Loshchilov & Hutter, 2019), with an initial learning rate of 5e-5 and weight decay of 0.04.
 307 The model is trained for 90K iterations with a total batch size of 512. We use the cosine learning
 308 rate scheduler with a warm-up period of 4K iterations. We exactly follow the image pre-processing
 309 pipeline of SigLIP 2 (Tschanne et al., 2025), except when producing the high-resolution image (size
 310 changed from 512 to 1024). Finally, as aforementioned, we adopt the strict L1 loss to optimize our
 311 features. It takes only 34 hours on 32 A100 GPUs with BF16 training.

312 We evaluate on diverse MLLM datasets (Zhang et al., 2024): including DocVQA (Mathew et al.,
 313 2021), ChartQA (Masry et al., 2022), TextVQA (Singh et al., 2019), InfoVQA (Mathew et al.,
 314 2022), TextCaps (Sidorov et al., 2020), HRBench (Wang et al., 2025), RealWorldQA (x.ai, 2024),
 315 GQA (Hudson & Manning, 2019), MME Perception (Fu et al., 2023), POPE (Li et al., 2023),
 316 MMBench (Liu et al., 2024c), ScienceQA-IMG (Lu et al., 2022), and AI2D (Kembhavi et al., 2016).

4.1 COMPARISON WITH SIGLIP 2

320 Our framework is built on the highly capable SigLIP 2 model. Through our fine-to-coarse supervision,
 321 we aim to further enhance its perception capability in MLLMs. Therefore, we systematically compare
 322 our SigLIP-HD encoder with the original SigLIP 2-So400m/16-512px encoder. By default, we adopt
 323 the two-stage training pipeline of LLaVA (Liu et al., 2024a). The input image is resized to 512²
 pixels and encoded into 32² visual tokens to be sent into the LLM.

324 Table 7: Comparison between our SigLIP-HD and SigLIP 2 under **more LLMs**. Here we use the
 325 LLaVA-NeXT data for visual instruction tuning and freeze the vision encoder.

326 LLM	327 Encoder	328 DocVQA	329 ChartQA	330 TextVQA	331 InfoVQA	332 TextCaps	333 GQA	334 POPE	335 SQA ¹	336 Avg
328 Llama-3.2-3B	SigLIP 2	47.3	45.2	59.2	22.2	66.1	59.2	88.3	70.4	57.2
	SigLIP-HD	49.9	49.8	60.8	23.9	66.3	60.2	88.5	71.4	58.9
330 Qwen2.5-7B	SigLIP 2	62.5	66.1	66.1	30.6	68.4	64.0	88.3	79.6	65.7
	SigLIP-HD	64.2	66.8	66.3	30.8	68.7	64.2	88.6	79.9	66.2

332 Table 8: Ablation study on the type of feature alignment loss. We adopt L1 loss for its better results.

334 Feature alignment loss	335	336 DocVQA	337 ChartQA	338 TextVQA	339 InfoVQA	340 TextCaps	341 GQA	342 POPE	343 SQA ¹	344 Avg
Cosine similarity (Fang et al., 2023)		33.8	20.2	62.5	23.8	71.3	64.4	88.0	70.1	54.3
Cosine sim + smooth L1 (Ranzinger et al., 2024)		34.1	20.9	62.9	23.2	70.6	63.8	87.8	70.5	54.2
L1		34.7	20.2	63.1	23.0	71.6	64.3	88.1	71.5	54.6

339 Table 9: Ablation study on the image scale used to supervise our SigLIP-HD encoder. This is different
 340 from the experiment in Table 2, as we here study the scales directly under our training framework.

341 Image scale	342	343 DocVQA	344 ChartQA	345 TextVQA	346 InfoVQA	347 TextCaps	348 GQA	349 POPE	350 SQA ¹	351 Avg
1 scale (1024 ²)		27.8	18.6	51.7	21.4	68.9	62.2	88.0	67.3	50.7
2 scales (512 ² +1024 ²)		34.7	20.2	63.1	23.0	71.6	64.3	88.1	71.5	54.6
3 scales (512 ² +1024 ² +1536 ²)		33.4	19.4	62.7	22.9	70.8	64.0	88.2	70.6	54.0

347 As compared in Table 5, with Vicuna-1.5-7B (Zheng et al., 2023) as the LLM, we try different
 348 supervised fine-tuning (SFT) data, including LLaVA-1.5 (Liu et al., 2024a) and LLaVA-NeXT (Liu
 349 et al., 2024b) that contains more OCR-related data. We also attempt different training configurations,
 350 including freezing or unfreezing the vision encoder during the fine-tuning stage. Across all settings,
 351 our SigLIP-HD consistently outperforms our SigLIP 2 baseline. Notably, on OCR-related benchmarks,
 352 such as DocVQA and ChartQA, we improve SigLIP 2 from 56.0 → 59.6 (+3.6) and from 61.6 →
 353 65.2 (+3.6), respectively. On general VQA benchmarks that require fine-grained perception, *e.g.*,
 354 HRBench, our SigLIP-HD outperforms its baseline by +4.8 (43.5 → 48.3). Qualitative comparisons
 355 are provided in Figure 3. Our SigLIP-HD exhibits better capability in perceiving fine-grained content.

356 **Using AnyRes.** Although we primarily focus on unleashing the perception capability at a standard
 357 (medium) resolution, our encoder is indeed compatible with the AnyRes (Li et al., 2025a) strategy
 358 (*i.e.*, operating on native resolution). We report the results in Table 6. We choose the closest resolution
 359 from $512 \times \{\{1 \times 1\}, \dots, \{3 \times 3\}\}$. The max tokens are set as $32^2 \times 4$. While the baseline method
 360 has been significantly enhanced by such an AnyRes strategy, our SigLIP-HD can further outperform
 361 it by an even larger margin on OCR tasks, *e.g.*, improving ChartQA from 63.9 to 67.4 (+3.5).

362 **More LLMs.** In addition to the widely used Vicuna-1.5 (Zheng et al., 2023), which is fine-tuned
 363 from Llama 2 (Touvron et al., 2023), we further extend our vision encoder to other LLMs. As
 364 shown in Table 7, with a smaller Llama-3.2-3B LLM (Grattafiori et al., 2024), our SigLIP-HD still
 365 showcases clear advantages. It surpasses SigLIP 2 by +4.6 (45.2 → 49.8) on ChartQA, +2.6 (47.3 →
 366 49.9) on DocVQA, and +1.6 (59.2 → 60.8) on TextVQA. Beyond the Llama series, with the latest
 367 Qwen2.5-7B (Yang et al., 2024) as the LLM, our SigLIP-HD is also consistently superior to our
 368 baseline encoder, *e.g.*, boosting it from 62.5 → 64.2 (+1.7) on DocVQA.

369 4.2 ABLATION STUDY

370 We use the LLaVA-1.5 data (Liu et al., 2024a) for instruction tuning and freeze the vision encoder.

371 **Feature alignment loss.** Existing works have provided several candidate choices on the loss function
 372 used for feature alignment, such as the cosine similarity loss adopted by EVA (Fang et al., 2023) and
 373 the cosine similarity + smooth L1 loss adopted by AM-RADIO (Ranzinger et al., 2024). In Table 8,
 374 we compare these losses, as well as the plain L1 loss. These three losses deliver very close results
 375 on average, all surpassing our SigLIP 2 baseline. Nevertheless, the simplest and strictest L1 loss is
 376 slightly better than the other two losses. So we choose it as our final feature alignment loss.

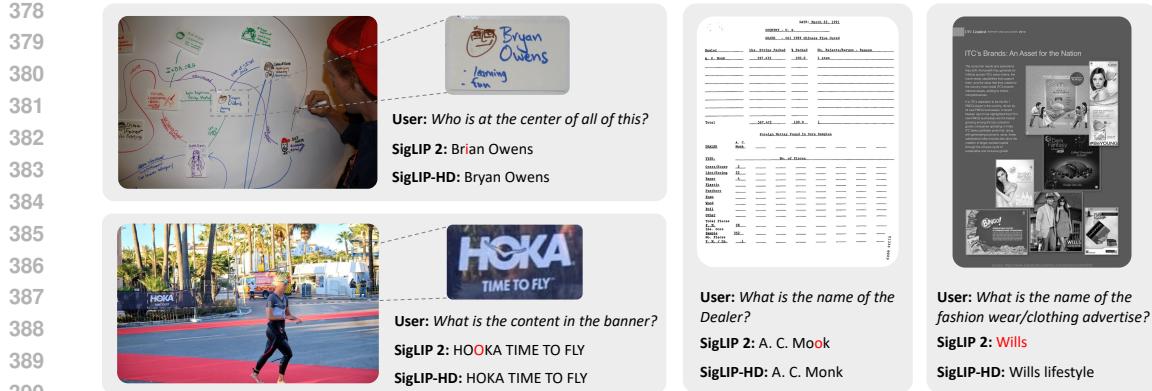


Figure 3: Qualitative comparison between our SigLIP-HD and SigLIP 2 when applied in MLLMs.

Table 10: Ablation study on the fusion weight for averaging base-scale and high-resolution features.

Base:high	DocVQA	ChartQA	TextVQA	InfoVQA	TextCaps	RWQA	GQA	MME ^P	POPE	SQA ^I	Avg
1:1	34.7	20.2	63.1	23.0	71.6	59.5	64.3	1554.0	88.1	71.5	57.4
1:2	32.6	19.8	61.5	22.0	71.3	57.1	62.7	1513.4	88.0	68.8	55.9
2:1	33.6	19.5	61.3	23.5	70.9	57.5	63.9	1544.0	87.9	69.2	56.5

Table 11: Shifting our baseline model from SigLIP 2 (Tschannen et al., 2025) to OpenAI-CLIP (Radford et al., 2021). For fair comparison, we feed CLIP with multi-scale inputs and keep the same number of visual tokens as our CLIP-HD.

Encoder	Resolution	Tokens	DocVQA	ChartQA	TextVQA	InfoVQA	TextCaps	GQA	MME ^P	POPE	SQA ^I	Avg
CLIP	336 ²	24 ²	22.4	17.5	46.8	20.8	69.0	63.0	1520.9	86.9	70.2	52.5
CLIP	336 ² +672 ²	37 ²	31.1	18.1	52.0	22.3	69.5	63.0	1510.7	87.3	70.0	54.3
CLIP-HD	518 ²	37 ²	33.2	20.4	53.0	21.5	70.2	63.3	1519.6	87.8	70.8	55.1

Image scale. From our pilot studies (Table 2), we can conclude that feeding multi-scale images of two scales or three scales to the MLLM performs the best. Here, we further examine the final performance of our SigLIP-HD encoder when trained under different configurations of multiple scales. As shown in Table 9, similar to our observations in pilot studies, the two-scale configuration (one base-scale 512²px image + one high-resolution 1024²px image) achieves the best results, providing the most suitable features for our SigLIP-HD to learn. We believe there may be more sophisticated and better configurations, *e.g.*, searching for the optimal fusion weight for the three-scale or even four-scale features, but they are out of the scope of this paper. We aim to provide a neat, universal, and efficient training framework without too many hand-crafted hyper-parameters.

Multi-scale fusion weight. We find the simplest “interpolate + average” practice delivers better results than pixel unshuffle and channel-wise concatenation in our pilot studies (Table 4). Here we further validate whether mean average is better than weighted average. As compared in Table 10, we attempt to increase the weight of high-resolution features or the weight of base-scale features. As a result, neither of them outperforms the default mean average strategy. Slightly to our surprise, even on benchmarks that require fine-grained details, *e.g.*, DocVQA, increasing the weight of high-resolution features still deteriorates the final result. This further proves the indispensable role of base-scale images in capturing the global content.

4.3 COMPARISON WITH LEGACY MODEL OPENAI-CLIP

Until now, we have provided comprehensive results to demonstrate the superiority of our SigLIP-HD over SigLIP 2. To be more convincing, we here further validate our fine-to-coarse supervision methodology on the legacy model OpenAI-CLIP-L/14-336px (Radford et al., 2021). However, as illustrated in Figure 1, it is impossible even for humans to recognize detailed image content under the 336px low resolution. Therefore, our model is trained at 518² pixels (37² visual tokens) by

432 interpolating the pre-trained positional embeddings. The high-quality features used for learning are
 433 produced under three image scales ($336^2+672^2+1008^2$). We interpolate the three-scale features to the
 434 same shape (37^2) and then average them to supervise our CLIP-HD.

435 To ensure a fair comparison due to our larger resolution and more visual tokens, when using the
 436 pre-trained CLIP in MLLMs, we feed a multi-scale input (336^2+672^2) following LLaVA-NeXT (Liu
 437 et al., 2024b). The obtained two-scale features are both interpolated to the same size as ours and then
 438 averaged to be sent into LLM. As compared in Table 11, although multi-scale inputs and increased
 439 visual tokens have significantly boosted the results on OCR-related benchmarks, our CLIP-HD can
 440 further enhance the performance at the same cost, e.g., $22.4 \rightarrow 31.1 \rightarrow 33.2$ on DocVQA. Our
 441 superior results based on the legacy model CLIP and the latest SOTA model SigLIP 2 demonstrate
 442 the universality of our proposed fine-to-coarse supervision mechanism.

444 5 RELATED WORK

445 **Visual representation learning.** Learning robust visual representation has been a fundamental goal in
 446 computer vision for decades. The rise of deep learning revolutionized the field (Lowe, 2004), starting
 447 with supervised learning (Krizhevsky et al., 2012). But human labels are inherently biased (Yun et al.,
 448 2021), not enough to produce transferable features. Therefore, CLIPs (Radford et al., 2021) leverage
 449 web captions to learn more informative representations. However, such alt-text data is often noisy,
 450 prompting continued interest in vision-centric self-supervised learning (Caron et al., 2021). This line
 451 of work, popularized by contrastive learning (Chen et al., 2020) and masked image modeling (He
 452 et al., 2022), remains highly active. Thanks to large-scale curated data (Xu et al., 2024) and hybrid
 453 supervision signals (Oquab et al., 2024), latest works (Tschannen et al., 2025; Bolya et al., 2025)
 454 demonstrate the potential of a universal representation for diverse downstream tasks.

455 This work does not aim to propose a new pre-training strategy, but to further enhance the capability
 456 of a pre-trained encoder. In this sense, FeatUp (Fu et al., 2024) and LoftUp (Huang et al., 2025) share
 457 similar motivations. But they rely on auxiliary modules or priors (Kirillov et al., 2023), while our
 458 method is simpler and more efficient by fully mining the inherent pre-trained knowledge.

459 **Multi-modality large language model (MLLM).** There are two mainstream roadmaps to deal with
 460 visual inputs: encoder-based and encoder-free. Encoder-based MLLMs (Liu et al., 2024a; Chen et al.,
 461 2024c; Li et al., 2025b) use a pre-trained vision encoder (Radford et al., 2021; Zhai et al., 2023)
 462 to extract visual tokens for LLMs. They can leverage rich pre-trained visual knowledge. But they
 463 are not unified, and the visual inputs are constrained by the pre-trained resolution. To bypass these
 464 limitations, encoder-free MLLMs (Bavishi et al., 2023; Diao et al., 2024; 2025; Lei et al., 2025) are
 465 attracting growing research interest. Unfortunately, until now, they require more training budget and
 466 still lag behind encoder-based models. Therefore, our work on seeking better visual representations
 467 for MLLMs is still of high value.

468 **Visual representation in MLLMs.** There are broadly three approaches to enhancing visual repre-
 469 sentation in MLLMs. The first involves directly pre-training more powerful vision encoders (Fan
 470 et al., 2025; Bolya et al., 2025). Despite the success, their high training costs remain prohibitive for
 471 most researchers. The second approach combines multiple pre-trained encoders (Tong et al., 2024b),
 472 aiming for mutual gains. In practice, unfortunately, they rarely yield substantial gains over a single
 473 well-optimized encoder (Shi et al., 2025b). The third and most prevalent strategy is scaling up image
 474 resolution (Chen et al., 2024b; Bai et al., 2025). Early works resize images to a fixed larger size (Liu
 475 et al., 2024a), but recent techniques preserve native resolutions (Bai et al., 2025). Beyond global
 476 resizing, local zoom-in methods (Zhang et al., 2025; Qian et al., 2025) can also amplify details.

477 In contrast to this scaling trend, our work takes a step back, demonstrating that even at a standard
 478 resolution, fine-grained perception can be achieved effectively.

479 **Knowledge distillation.** Our work shares core spirit with knowledge distillation (Hinton et al.,
 480 2015), in that we both learn from better “teacher” tokens. However, we do not rely on any external
 481 knowledge of an auxiliary model. Instead, we unleash the inherent potential of the current model.
 482 We eliminate the need to align multiple models into a shared space (Ranzinger et al., 2024; Heinrich
 483 et al., 2025). CLIPSelf (Wu et al., 2024a) similarly refines CLIP features. But it uses region-level
 484 coarse supervision and targets at the open-vocabulary dense prediction, while we adopt patch-wise
 485 fine-grained supervision and address the key challenge of MLLMs. Lastly, our work is slightly

486 related to a recent work (He et al., 2025). But we address fundamentally different problems (MLLM
487 fine-grained perception *vs.* depth estimation) and operate on different spaces (feature *vs.* label).
488

489 **6 CONCLUSION**

490 In this work, we reflect on the scaling trend of image resolution in MLLMs. Motivated by the amazing
491 capability of the human visual system, we investigate how to enhance the perception capability of
492 AI systems at a standard (medium) resolution, without using larger images. We present a highly
493 simple yet effective fine-to-coarse supervision mechanism to address this. Features of the base-scale
494 image are enforced to mimic the high-quality ensembled features of multi-scale images. Built on the
495 latest SigLIP 2 encoder, our fine-tuned SigLIP-HD encoder delivers stronger results across extensive
496 MLLM benchmarks under various training protocols, especially for OCR-related tasks.
497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REFERENCES
541

542 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
543 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
544 *arXiv:2303.08774*, 2023. 1

545 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
546 Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
547 model for few-shot learning. In *NeurIPS*, 2022. 2

548 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
549 and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,
550 text reading, and beyond. *arXiv:2308.12966*, 2023. 4

551 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
552 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv:2502.13923*, 2025. 1, 2, 9

553 Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, and
554 Sağnak Taşırlar. Introducing our multimodal models, 2023. URL [https://www.adept.ai/
555 blog/fuyu-8b](https://www.adept.ai/blog/fuyu-8b). 9

556 Daniel Bolya, Po-Yao Huang, Peize Sun, Jang Hyun Cho, Andrea Madotto, Chen Wei, Tengyu Ma,
557 Jiale Zhi, Jathushan Rajasegaran, Hanoona Rasheed, Junke Wang, Marco Monteiro, Hu Xu, Shiyu
558 Dong, Nikhila Ravi, Daniel Li, Piotr Dollár, and Christoph Feichtenhofer. Perception encoder:
559 The best visual embeddings are not at the output of the network. In *NeurIPS*, 2025. 1, 9

560 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
561 Armand Joulin. Emerging properties in self-supervised vision transformers. In *ICCV*, 2021. 9

562 Hong-You Chen, Zhengfeng Lai, Haotian Zhang, Xinze Wang, Marcin Eichner, Keen You, Meng
563 Cao, Bowen Zhang, Yinfei Yang, and Zhe Gan. Contrastive localized language-image pre-training.
564 *arXiv:2410.02746*, 2024a. 2

565 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
566 contrastive learning of visual representations. In *ICML*, 2020. 9

567 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
568 Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal
569 models with model, data, and test-time scaling. *arXiv:2412.05271*, 2024b. 4, 9

570 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
571 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
572 for generic visual-linguistic tasks. In *CVPR*, 2024c. 2, 3, 4, 9

573 Hyungyu Choi, Young Kyun Jang, and Chanho Eom. Goal: Global-local object alignment learning.
574 In *CVPR*, 2025. 2

575 Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
576 Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
577 scene understanding. In *CVPR*, 2016. 4

578 Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi, Yue Yang, Jae Sung Park, Moham-
579 madreza Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, et al. Molmo and pixmo: Open
580 weights and open data for state-of-the-art vision-language models. In *CVPR*, 2025. 1

581 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
582 hierarchical image database. In *CVPR*, 2009. 1

583 Haiwen Diao, Yufeng Cui, Xiaotong Li, Yueze Wang, Huchuan Lu, and Xinlong Wang. Unveiling
584 encoder-free vision-language models. In *NeurIPS*, 2024. 9

585 Haiwen Diao, Xiaotong Li, Yufeng Cui, Yueze Wang, Haoge Deng, Ting Pan, Wenxuan Wang,
586 Huchuan Lu, and Xinlong Wang. Evev2: Improved baselines for encoder-free vision-language
587 models. *arXiv:2502.06788*, 2025. 9

594 David Fan, Shengbang Tong, Jiachen Zhu, Koustuv Sinha, Zhuang Liu, Xinlei Chen, Michael
 595 Rabbat, Nicolas Ballas, Yann LeCun, Amir Bar, and Saining Xie. Scaling language-free visual
 596 representation learning. In *ICCV*, 2025. 1, 9

597

598 Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang, Tiejun Huang, Xinlong
 599 Wang, and Yue Cao. Eva: Exploring the limits of masked visual representation learning at scale.
 600 In *CVPR*, 2023. 5, 7

601

602 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
 603 Zheng, Ke Li, Xing Sun, et al. Mme: A comprehensive evaluation benchmark for multimodal
 604 large language models, 2024. *arXiv:2306.13394*, 2023. 6

605

606 Stephanie Fu, Mark Hamilton, Laura Brandt, Axel Feldman, Zhoutong Zhang, and William T
 607 Freeman. Featup: A model-agnostic framework for features at any resolution. In *ICLR*, 2024. 2, 9

608

609 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 610 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
 611 models. *arXiv:2407.21783*, 2024. 7

612

613 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
 614 autoencoders are scalable vision learners. In *CVPR*, 2022. 1, 9

615

616 Xiankang He, Dongyan Guo, Hongji Li, Ruibo Li, Ying Cui, and Chi Zhang. Distill any depth:
 617 Distillation creates a stronger monocular depth estimator. *arXiv:2502.19204*, 2025. 10

618

619 Greg Heinrich, Mike Ranzinger, Yao Lu, Jan Kautz, Andrew Tao, Bryan Catanzaro, Pavlo Molchanov,
 620 et al. Radio amplified: Improved baselines for agglomerative vision foundation models. In *CVPR*,
 621 2025. 3, 9

622

623 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
 624 *arXiv:1503.02531*, 2015. 9

625

626 Haiwen Huang, Anpei Chen, Volodymyr Havrylov, Andreas Geiger, and Dan Zhang. Loftup:
 627 Learning a coordinate-based feature upsampler for vision foundation models. *arXiv:2504.14032*,
 628 2025. 2, 9

629

630 Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
 631 and compositional question answering. In *CVPR*, 2019. 6

632

633 Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali Farhadi.
 634 A diagram is worth a dozen images. In *ECCV*, 2016. 6

635

636 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 637 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *CVPR*,
 638 2023. 9

639

640 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
 641 neural networks. In *NeurIPS*, 2012. 9

642

643 Weixian Lei, Jiacong Wang, Haochen Wang, Xiangtai Li, Jun Hao Liew, Jiashi Feng, and Zilong
 644 Huang. The scalability of simplicity: Empirical analysis of vision-language learning with a single
 645 transformer. *arXiv:2504.10462*, 2025. 9

646

647 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
 648 Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *TMLR*, 2025a. 1, 2,
 649 6, 7

650

651 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object
 652 hallucination in large vision-language models. In *EMNLP*, 2023. 6

653

654 Zhang Li, Biao Yang, Qiang Liu, Zhiyin Ma, Shuo Zhang, Jingxu Yang, Yabo Sun, Yuliang Liu, and
 655 Xiang Bai. Monkey: Image resolution and text label are important things for large multi-modal
 656 models. In *CVPR*, 2024. 1

648 Zhiqi Li, Guo Chen, Shilong Liu, Shihao Wang, Vibashan VS, Yishen Ji, Shiyi Lan, Hao Zhang,
 649 Yilin Zhao, Subhashree Radhakrishnan, et al. Eagle 2: Building post-training data strategies from
 650 scratch for frontier vision-language models. *arXiv:2501.14818*, 2025b. 9

651

652 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 653 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *ECCV*, 2014. 1

654

655 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *NeurIPS*,
 656 2023. 1, 2

657

658 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 659 tuning. In *CVPR*, 2024a. 1, 2, 3, 6, 7, 9

660

661 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
 662 Llava-next: Improved reasoning, ocr, and world knowledge, January 2024b. URL <https:////llava-vl.github.io/blog/2024-01-30-llava-next/>. 1, 3, 4, 7, 9

663

664 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
 665 Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player?
 666 In *ECCV*, 2024c. 4, 6

667

668 Zhijian Liu, Ligeng Zhu, Baifeng Shi, Zhuoyang Zhang, Yuming Lou, Shang Yang, Haocheng
 669 Xi, Shiyi Cao, Yuxian Gu, Dacheng Li, et al. Nvila: Efficient frontier visual language models.
 670 *arXiv:2412.04468*, 2024d. 1, 2, 4

671

672 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *ICLR*, 2019. 6

673

674 David G Lowe. Distinctive image features from scale-invariant keypoints. *IJCV*, 2004. 9

675

676 Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
 677 Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
 678 science question answering. In *NeurIPS*, 2022. 6

679

680 Kevis-Kokitsi Maninis, Kaifeng Chen, Soham Ghosh, Arjun Karpur, Koert Chen, Ye Xia, Bingyi
 681 Cao, Daniel Salz, Guangxing Han, Jan Dlabal, et al. Tips: Text-image pretraining with spatial
 682 awareness. In *ICLR*, 2025. 1

683

684 Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A benchmark
 685 for question answering about charts with visual and logical reasoning. In *ACL*, 2022. 6

686

687 Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on document
 688 images. In *WACV*, 2021. 2, 3, 6

689

690 Minesh Mathew, Viraj Bagal, Rubèn Tito, Dimosthenis Karatzas, Ernest Valveny, and CV Jawahar.
 691 Infographicvqa. In *WACV*, 2022. 6

692

693 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 694 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 695 robust visual features without supervision. *TMLR*, 2024. 1, 9

696

697 Jiaxu Qian, Chendong Wang, Yifan Yang, Chaoyun Zhang, Huiqiang Jiang, Xufang Luo, Yu Kang,
 698 Qingwei Lin, Anlan Zhang, Shiqi Jiang, et al. Zoomer: Enhancing mllm performance with adaptive
 699 image focus optimization. *arXiv:2505.00742*, 2025. 9

700

701 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 702 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 703 models from natural language supervision. In *ICML*, 2021. 1, 3, 8, 9

704

705 Mike Ranzinger, Greg Heinrich, Jan Kautz, and Pavlo Molchanov. Am-radio: Agglomerative vision
 706 foundation model reduce all domains into one. In *CVPR*, 2024. 3, 5, 7, 9

707

708 Baifeng Shi, Ziyang Wu, Maolin Mao, Xin Wang, and Trevor Darrell. When do we not need larger
 709 vision models? In *ECCV*, 2024. 4

702 Baifeng Shi, Boyi Li, Han Cai, Yao Lu, Sifei Liu, Marco Pavone, Jan Kautz, Song Han, Trevor
 703 Darrell, Pavlo Molchanov, et al. Scaling vision pre-training to 4k resolution. *arXiv:2503.19903*,
 704 2025a. 2

705 Min Shi, Fuxiao Liu, Shihao Wang, Shijia Liao, Subhashree Radhakrishnan, De-An Huang, Hongxu
 706 Yin, Karan Sapra, Yaser Yacoob, Humphrey Shi, et al. Eagle: Exploring the design space for
 707 multimodal llms with mixture of encoders. In *ICLR*, 2025b. 1, 9

708 Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob Bishop, Daniel
 709 Rueckert, and Zehan Wang. Real-time single image and video super-resolution using an efficient
 710 sub-pixel convolutional neural network. In *CVPR*, 2016. 4

711 Oleksii Sidorov, Ronghang Hu, Marcus Rohrbach, and Amanpreet Singh. Textcaps: a dataset for
 712 image captioning with reading comprehension. In *ECCV*, 2020. 6

713 Oriane Siméoni, Huy V Vo, Maximilian Seitzer, Federico Baldassarre, and Maxime Oquab.
 714 Cijo jose, vasil khalidov, marc szafraniec, seungeun yi, michaël ramamonjisoa, et al. dinov3.
 715 *arXiv:2508.10104*, 2025. 1

716 Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
 717 and Marcus Rohrbach. Towards vqa models that can read. In *CVPR*, 2019. 3, 6

718 Peter Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Adithya Jairam Vedagiri IYER, Sai Charitha
 719 Akula, Shusheng Yang, Jihan Yang, Manoj Middepogu, Ziteng Wang, et al. Cambrian-1: A fully
 720 open, vision-centric exploration of multimodal llms. In *NeurIPS*, 2024a. 1, 6

721 Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide
 722 shut? exploring the visual shortcomings of multimodal llms. In *CVPR*, 2024b. 1, 9

723 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 724 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 725 and fine-tuned chat models. *arXiv:2307.09288*, 2023. 7

726 Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdul-
 727 mohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, et al. Siglip 2:
 728 Multilingual vision-language encoders with improved semantic understanding, localization, and
 729 dense features. *arXiv:2502.14786*, 2025. 1, 2, 3, 6, 8, 9

730 Wenbin Wang, Liang Ding, Minyan Zeng, Xiabin Zhou, Li Shen, Yong Luo, Wei Yu, and Dacheng
 731 Tao. Divide, conquer and combine: A training-free framework for high-resolution image perception
 732 in multimodal large language models. In *AAAI*, 2025. 2, 6

733 Size Wu, Wenwei Zhang, Lumin Xu, Sheng Jin, Xiangtai Li, Wentao Liu, and Chen Change Loy.
 734 Clipself: Vision transformer distills itself for open-vocabulary dense prediction. In *ICLR*, 2024a. 9

735 Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via
 736 non-parametric instance discrimination. In *CVPR*, 2018. 1

737 Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang
 738 Ma, Chengyue Wu, Bingxuan Wang, et al. Deepseek-vl2: Mixture-of-experts vision-language
 739 models for advanced multimodal understanding. *arXiv:2412.10302*, 2024b. 1

740 x.ai. Grok-1.5 vision preview, April 2024. URL <https://x.ai/news/grok-1.5v>. 6

741 Hu Xu, Saining Xie, Xiaoqing Ellen Tan, Po-Yao Huang, Russell Howes, Vasu Sharma, Shang-Wen
 742 Li, Gargi Ghosh, Luke Zettlemoyer, and Christoph Feichtenhofer. Demystifying clip data. In
 743 *ICLR*, 2024. 9

744 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 745 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. *arXiv:2412.15115*, 2024.
 746 7

747 Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and
 748 Saining Xie. Representation alignment for generation: Training diffusion transformers is easier
 749 than you think. In *ICLR*, 2025. 1

756 Sangdoo Yun, Seong Joon Oh, Byeongho Heo, Dongyo Han, Junsuk Choe, and Sanghyuk Chun.
757 Re-labeling imagenet: from single to multi-labels, from global to localized labels. In *CVPR*, 2021.
758 9
759
760 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
761 image pre-training. In *ICCV*, 2023. 9
762
763 Jiarui Zhang, Mahyar Khayatkhoei, Prateek Chhikara, and Filip Ilievski. Mllms know where to look:
764 Training-free perception of small visual details with multimodal llms. In *ICLR*, 2025. 3, 9
765
766 Kaichen Zhang, Bo Li, Peiyuan Zhang, Fanyi Pu, Joshua Adrian Cahyono, Kairui Hu, Shuai Liu,
767 Yuanhan Zhang, Jingkang Yang, Chunyuan Li, et al. Lmms-eval: Reality check on the evaluation
768 of large multimodal models. *arXiv:2407.12772*, 2024. 6
769
770 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
771 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
772 chatbot arena. In *NeurIPS*, 2023. 6, 7
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809