
Policy Optimization in Adversarial MDPs:
Improved Exploration via Dilated Bonuses

Haipeng Luo∗ Chen-Yu Wei∗ Chung-Wei Lee
{haipengl,chenyu.wei,leechung}@usc.edu

University of Southern California

Abstract

Policy optimization is a widely-used method in reinforcement learning. Due to
its local-search nature, however, theoretical guarantees on global optimality often
rely on extra assumptions on the Markov Decision Processes (MDPs) that bypass
the challenge of global exploration. To eliminate the need of such assumptions, in
this work, we develop a general solution that adds dilated bonuses to the policy
update to facilitate global exploration. To showcase the power and generality of
this technique, we apply it to several episodic MDP settings with adversarial losses
and bandit feedback, improving and generalizing the state-of-the-art. Specifically,
in the tabular case, we obtain Õ(

√
T) regret where T is the number of episodes,

improving the Õ(T 2/3) regret bound by [27]. When the number of states is infinite,
under the assumption that the state-action values are linear in some low-dimensional
features, we obtain Õ(T 2/3) regret with the help of a simulator, matching the result
of [24] while importantly removing the need of an exploratory policy that their
algorithm requires. To our knowledge, this is the first algorithm with sublinear
regret for linear function approximation with adversarial losses, bandit feedback,
and no exploratory assumptions. Finally, we also discuss how to further improve the
regret or remove the need of a simulator using dilated bonuses, when an exploratory
policy is available.1

1 Introduction

Policy optimization methods are among the most widely-used methods in reinforcement learning.
Its empirical success has been demonstrated in various domains such as computer games [26]
and robotics [21]. However, due to its local-search nature, global optimality guarantees of policy
optimization often rely on unrealistic assumptions to ensure global exploration (see e.g., [1, 3, 24, 30]),
making it theoretically less appealing compared to other methods.

Motivated by this issue, a line of recent works [7, 27, 2, 35] equip policy optimization with global
exploration by adding exploration bonuses to the update, and prove favorable guarantees even without
making extra exploratory assumptions. Moreover, they all demonstrate some robustness aspect of
policy optimization (such as being able to handle adversarial losses or a certain degree of model mis-
specification). Despite these important progresses, however, many limitations still exist, including
worse regret rates comparing to the best value-based or model-based approaches [27, 2, 35], or
requiring full-information feedback on the entire loss function (as opposed to the more realistic bandit
feedback) [7].

∗Equal contribution.
1In an improved version of this paper, we show that under the linear MDP assumption, an exploratory policy

is not even needed. See https://arxiv.org/abs/2107.08346.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://arxiv.org/abs/2107.08346

To address these issues, in this work, we propose a new type of exploration bonuses called dilated
bonuses, which satisfies a certain dilated Bellman equation and provably leads to improved exploration
compared to existing works (Section 3). We apply this general idea to advance the state-of-the-art of
policy optimization for learning finite-horizon episodic MDPs with adversarial losses and bandit
feedback. More specifically, our main results are:

• First, in the tabular setting, addressing the main open question left in [27], we improve their Õ(T 2/3)

regret to the optimal Õ(
√
T) regret. This shows that policy optimization, which performs local

optimization, is as capable as other occupancy-measure-based global optimization algorithms [15,
20] in terms of global exploration. Moreover, our algorithm is computationally more efficient
than those global methods since they require solving some convex optimization in each episode.
(Section 4)

• Second, to further deal with large-scale problems, we consider a linear function approximation
setting where the state-action values are linear in some known low-dimensional features and
also a simulator is available, the same setting considered by [24]. We obtain the same Õ(T 2/3)
regret while importantly removing the need of an exploratory policy that their algorithm requires.
Unlike the tabular setting (where we improve existing regret rates of policy optimization), note
that researchers have not been able to show any sublinear regret for policy optimization without
exploratory assumptions for this problem, which shows the critical role of our proposed dilated
bonuses. In fact, there are simply no existing algorithms with sublinear regret at all for this setting,
be it policy-optimization-type or not. This shows the advantage of policy optimization over other
approaches, when combined with our dilated bonuses. (Section 5)

• Finally, while the main focus of our work is to show how dilated bonuses are able to provide global
exploration, we also discuss their roles in improving the regret rate to Õ(

√
T) in the linear setting

above or removing the need of a simulator for the special case of linear MDPs (with Õ(T 6/7)
regret), when an exploratory policy is available. (Section 6)

Related work. In the tabular setting, except for [27], most algorithms apply the occupancy-
measure-based framework to handle adversarial losses (e.g., [25, 15, 9, 8]), which as mentioned is
computationally expensive. For stochastic losses, there are many more different approaches such as
model-based ones [13, 10, 5, 12, 34] and value-based ones [14, 11].

Theoretical studies for linear function approximation have gained increasing interest recently [32, 33,
16]. Most of them study stochastic/stationary losses, with the exception of [24, 7]. Our algorithm
for the linear MDP setting bears some similarity to those of [2, 35] which consider stationary losses.
However, our algorithm and analysis are arguably simpler than theirs. Specifically, they divide the
state space into a known part and an unknown part, with different exploration principle and bonus
design for different parts. In contrast, we enjoy a unified bonus design for all states. Besides, in each
episode, their algorithms first execute an exploratory policy (from a policy cover), and then switch
to the policy suggested by the policy optimization algorithm, which inevitably leads to linear regret
when facing adversarial losses.

2 Problem Setting

We consider an MDP specified by a state space X (possibly infinite), a finite action space A, and a
transition function P with P (·|x, a) specifying the distribution of the next state after taking action
a in state x. In particular, we focus on the finite-horizon episodic setting in which X admits a
layer structure and can be partitioned into X0, X1, . . . , XH for some fixed parameter H , where X0

contains only the initial state x0, XH contains only the terminal state xH , and for any x ∈ Xh,
h = 0, . . . ,H − 1, P (·|x, a) is supported on Xh+1 for all a ∈ A (that is, transition is only possible
from Xh to Xh+1). An episode refers to a trajectory that starts from x0 and ends at xH following
some series of actions and the transition dynamic. The MDP may be assigned with a loss function
` : X ×A→ [0, 1] so that `(x, a) specifies the loss suffered when selecting action a in state x.

A policy π for the MDP is a mapping X → ∆(A), where ∆(A) denotes the set of distributions
over A and π(a|x) is the probability of choosing action a in state x. Given a loss function `

2

and a policy π, the expected total loss of π is given by V π(x0; `) = E
[∑H−1

h=0 `(xh, ah)
∣∣ ah ∼

πt(·|xh), xh+1 ∼ P (·|xh, ah)
]
. It can also be defined via the Bellman equation involving the state

value function V π(x; `) and the state-action value function Qπ(x, a; `) (a.k.a. Q-function) defined
as below: V (xH ; `) = 0,

Qπ(x, a; `) = `(x, a) + Ex′∼P (·|x,a) [V π(x′; `)] , and V π(x; `) = Ea∼π(·|x) [Qπ(x, a; `)] .

We study online learning in such a finite-horizon MDP with unknown transition, bandit feedback, and
adversarial losses. The learning proceeds through T episodes. Ahead of time, an adversary arbitrarily
decides T loss functions `1, . . . , `T , without revealing them to the learner. Then in each episode t,
the learner decides a policy πt based on all information received prior to this episode, executes πt
starting from the initial state x0, generates and observes a trajectory {(xt,h, at,h, `t(xt,h, at,h))}H−1

h=0 .
Importantly, the learner does not observe any other information about `t (a.k.a. bandit feedback).2
The goal of the learner is to minimize the regret, defined as

Reg =

T∑
t=1

V πtt (x0)−min
π

T∑
t=1

V πt (x0),

where we use V πt (x) as a shorthand for V π(x; `t) (and similarly Qπt (x, a) as a shorthand for
Qπ(x, a; `t)). Without further structures, the best existing regret bound is Õ(H|X|

√
|A|T) [15],

with an extra
√
X factor compared to the best existing lower bound [14].

Occupancy measures. For a policy π and a state x, we define qπ(x) to be the probability (or
probability measure when |X| is infinite) of visiting state x within an episode when following π.
When it is necessary to highlight the dependence on the transition, we write it as qP,π(x). Further
define qπ(x, a) = qπ(x)π(a|x) and qt(x, a) = qπt(x, a). Finally, we use q? as a shorthand for qπ

?

where π? ∈ argminπ
∑T
t=1 V

π
t (x0) is one of the optimal policies.

Note that by definition, we have V π(x0; `) =
∑
x,a q

π(x, a)`(x, a). In fact, we will overload the
notation and let V π(x0; b) =

∑
x,a q

π(x, a)b(x, a) for any function b : X ×A→ R (even though it
might not correspond to a real loss function).

Other notations. We denote by Et[·] and Vart[·] the expectation and variance conditioned on
everything prior to episode t. For a matrix Σ and a vector z (of appropriate dimension), ‖z‖Σ denotes
the quadratic norm

√
z>Σz. The notation Õ(·) hides all logarithmic factors.

3 Dilated Exploration Bonuses

In this section, we start with a general discussion on designing exploration bonuses (not specific
to policy optimization), and then introduce our new dilated bonuses for policy optimization. For
simplicity, the exposition in this section assumes a finite state space, but the idea generalizes to an
infinite state space.

When analyzing the regret of an algorithm, very often we run into the following form:

Reg =

T∑
t=1

V πtt (x0)−
T∑
t=1

V π
?

t (x0) ≤ o(T) +

T∑
t=1

∑
x,a

q?(x, a)bt(x, a) = o(T) +

T∑
t=1

V π
?

(x0; bt),

(1)

for some function bt(x, a) usually related to some estimation error or variance that can be prohibitively
large. For example, in policy optimization, the algorithm performs local search in each state essentially
using a multi-armed bandit algorithm and treating Qπt(x, a) as the loss of action a in state x. Since
Qπt(x, a) is unknown, however, the algorithm has to use some estimator of Qπt(x, a) instead, whose
bias and variance both contribute to the bt function. Usually, bt(x, a) is large for a rarely-visited
state-action pair (x, a) and is inversely related to qt(x, a), which is exactly why most analysis relies

2Full-information feedback, on the other hand, refers to the easier setting where the entire loss function `t is
revealed to the learner at the end of episode t.

3

on the assumption that some distribution mismatch coefficient related to q?(x,a)/qt(x,a) is bounded
(see e.g., [3, 31]).

On the other hand, an important observation is that while V π
?

(x0; bt) can be prohibitively large, its
counterpart with respect to the learner’s policy V πt(x0; bt) is usually nicely bounded. For example,
if bt(x, a) is inversely related to qt(x, a) as mentioned, then V πt(x0; bt) =

∑
x,a qt(x, a)bt(x, a) is

small no matter how small qt(x, a) could be for some (x, a). This observation, together with the
linearity property V π(x0; `t − bt) = V π(x0; `t)− V π(x0; bt), suggests that we treat `t − bt as the
loss function of the problem, or in other words, add a (negative) bonus to each state-action pair, which
intuitively encourages exploration due to underestimation. Indeed, assuming for a moment that Eq.
(1) still roughly holds even if we treat `t − bt as the loss function:

T∑
t=1

V πt(x0; `t − bt)−
T∑
t=1

V π
?

(x0; `t − bt) . o(T) +

T∑
t=1

V π
?

(x0; bt). (2)

Then by linearity and rearranging, we have

Reg =

T∑
t=1

V πtt (x0)−
T∑
t=1

V π
?

t (x0) . o(T) +

T∑
t=1

V πt(x0; bt). (3)

Due to the switch from π? to πt in the last term compared to Eq. (1), this is usually enough to prove
a desirable regret bound without making extra assumptions.

The caveat of this discussion is the assumption of Eq. (2). Indeed, after adding the bonuses, which
itself contributes some more bias and variance, one should expect that bt on the right-hand side of Eq.
(2) becomes something larger, breaking the desired cancellation effect to achieve Eq. (3). Indeed, the
definition of bt essentially becomes circular in this sense.

Dilated Bonuses for Policy Optimization To address this issue, we take a closer look at the policy
optimization algorithm specifically. As mentioned, policy optimization decomposes the problem into
individual multi-armed bandit problems in each state and then performs local optimization. This is
based on the well-known performance difference lemma [17]:

Reg =
∑
x

q?(x)

T∑
t=1

∑
a

(
πt(a|x)− π?(a|x)

)
Qπtt (x, a),

showing that in each state x, the learner is facing a bandit problem with Qπtt (x, a) being the loss for
action a. Correspondingly, incorporating the bonuses bt for policy optimization means subtracting
the bonus Qπt(x, a; bt) from Qπtt (x, a) for each action a in each state x. Recall that Qπt(x, a; bt)
satisfies the Bellman equation Qπt(x, a; bt) = bt(x, a) + Ex′∼P (·|x,a)Ea′∼πt(·|x′) [Bt(x

′, a′)]. To
resolve the issue mentioned earlier, we propose to replace this bonus function Qπt(x, a; bt) with its
dilated version Bt(s, a) satisfying the following dilated Bellman equation:

Bt(x, a) = bt(x, a) +

(
1 +

1

H

)
Ex′∼P (·|x,a)Ea′∼πt(·|x′) [Bt(x

′, a′)] (4)

(with Bt(xH , a) = 0 for all a). The only difference compared to the standard Bellman equation is
the extra (1 + 1

H) factor, which slightly increases the weight for deeper layers and thus intuitively
induces more exploration for those layers. Due to the extra bonus compared to Qπt(x, a; bt), the
regret bound also increases accordingly. In all our applications, this extra amount of regret turns out
to be of the form 1

H

∑T
t=1

∑
x,a q

?(x)πt(a|x)Bt(x, a), leading to

∑
x

q?(x)

T∑
t=1

∑
a

(
πt(a|x)− π?(a|x)

)(
Qπtt (x, a)−Bt(x, a)

)
≤ o(T) +

T∑
t=1

V π
?

(x0; bt) +
1

H

T∑
t=1

∑
x,a

q?(x)πt(a|x)Bt(x, a). (5)

With some direct calculation, one can show that this is enough to show a regret bound that is only a
constant factor larger than the desired bound in Eq. (3)! This is summarized in the following lemma.

4

Lemma 3.1. If Eq. (5) holds with Bt defined in Eq. (4), then Reg ≤ o(T) + 3
∑T
t=1 V

πt(x0; bt).

The high-level idea of the proof is to show that the bonuses added to a layer h is enough to cancel the
large bias/variance term (including those coming from the bonus itself) from layer h+ 1. Therefore,
cancellation happens in a layer-by-layer manner except for layer 0, where the total amount of bonus
can be shown to be at most (1 + 1

H)H
∑T
t=1 V

πt(x0; bt) ≤ 3
∑T
t=1 V

πt(x0; bt).

Recalling again that V πt(x0; bt) is usually nicely bounded, we thus arrive at a favorable regret
guarantee without making extra assumptions. Of course, since the transition is unknown, we cannot
compute Bt exactly. However, Lemma 3.1 is robust enough to handle either a good approximate
version of Bt (see Lemma B.1) or a version where Eq. (4) and Eq. (5) only hold in expectation (see
Lemma B.2), which is enough for us to handle unknown transition. In the next three sections, we
apply this general idea to different settings, showing what bt and Bt are concretely in each case.

4 The Tabular Case

In this section, we study the tabular case where the number of states is finite. We propose a policy
optimization algorithm with Õ(

√
T) regret, improving the Õ(T 2/3) regret of [27]. See Algorithm 1

for the complete pseudocode.

Algorithm design. First, to handle unknown transition, we follow the common practice (dating
back to [13]) to maintain a confidence set of the transition, which is updated whenever the visitation
count of a certain state-action pair is doubled. We call the period between two model updates an
epoch, and use Pk to denote the confidence set for epoch k, formally defined in Eq. (10).

In episode t, the policy πt is defined via the standard multiplicative weight algorithm (also connected
to Natural Policy Gradient [18, 3, 30]), but importantly with the dilated bonuses incorporated such
that πt(a|x) ∝ exp(−η

∑t−1
τ=1(Q̂τ (x, a)−Bτ (x, a))). Here, η is a step size parameter, Q̂τ (x, a) is

an importance-weighted estimator for Qπττ (x, a) defined in Eq. (7), and Bτ (x, a) is the dilated bonus
defined in Eq. (9).

More specifically, for a state x in layer h, Q̂t(x, a) is defined as Lt,h1t(x,a)
qt(x,a)+γ , where 1t(x, a) is the

indicator of whether (x, a) is visited during episode t; Lt,h is the total loss suffered by the learner
starting from layer h till the end of the episode; qt(x, a) = maxP̂∈Pk q

P̂ ,πt(x, a) is the largest
plausible value of qt(x, a) within the confidence set, which can be computed efficiently using the
COMP-UOB procedure of [15] (see also Appendix C.1); and finally γ is a parameter used to control
the maximum magnitude of Q̂t(x, a), inspired by the work of [23]. To get a sense of this estimator,
consider the special case when γ = 0 and the transition is known so that we can set Pk = {P} and
thus qt = qt. Then, since the expectation of Lt,h conditioned on (x, a) being visited is Qπtt (x, a) and
the expectation of 1t(x, a) is qt(x, a), we know that Q̂t(x, a) is an unbiased estimator for Qπtt (x, a).
The extra complication is simply due to the transition being unknown, forcing us to use qt and γ > 0

to make sure that Q̂t(x, a) is an optimistic underestimator, an idea similar to [15].

Next, we explain the design of the dilated bonus Bt. Following the discussions of Section 3, we
first figure out what the corresponding bt function is in Eq. (1), by analyzing the regret bound
without using any bonuses. The concrete form of bt turns out to be Eq. (8), whose value at (x, a)
is independent of a and thus written as bt(x) for simplicity. Note that Eq. (8) depends on the
occupancy measure lower bound q

t
(s, a) = minP̂∈Pk q

P̂ ,πt(x, a), the opposite of qt(s, a), which
can also be computed efficiently using a procedure similar to COMP-UOB (see Appendix C.1).
Once again, to get a sense of this, consider the special case with a known transition so that we
can set Pk = {P} and thus qt = q

t
= qt. Then, one see that bt(x) is simply upper bounded by

Ea∼πt(·|x) [3γH/qt(x,a)] = 3γH|A|/qt(x), which is inversely related to the probability of visiting state
x, matching the intuition we provided in Section 3 (that bt(x) is large if x is rarely visited). The extra
complication of Eq. (8) is again just due to the unknown transition.

With bt(x) ready, the final form of the dilated bonus Bt is defined following the dilated Bellman
equation of Eq. (4), except that since P is unknown, we once again apply optimism and find the

3We use y
+← z as a shorthand for the increment operation y ← y + z.

5

Algorithm 1 Policy Optimization with Dilated Bonuses (Tabular Case)
Parameters: δ ∈ (0, 1), η = min {1/24H3, 1/

√
|X||A|HT}, γ = 2ηH .

Initialization: Set epoch index k = 1 and confidence set P1 as the set of all transition functions. For
all (x, a, x′), initialize counters N0(x, a) = N1(x, a) = 0, N0(x, a, x′) = N1(x, a, x′) = 0.
for t = 1, 2, . . . , T do

Step 1: Compute and execute policy. Execute πt for one episode, where

πt(a|x) ∝ exp

(
−η

t−1∑
τ=1

(
Q̂τ (x, a)−Bτ (x, a)

))
, (6)

and obtain trajectory {(xt,h, at,h, `t(xt,h, at,h))}H−1
h=0 .

Step 2: Construct Q-function estimators. For all h ∈ {0, . . . ,H − 1} and (x, a) ∈ Xh ×A,

Q̂t(x, a) =
Lt,h

qt(x, a) + γ
1t(x, a), (7)

with Lt,h =
H−1∑
i=h

`t(xt,i, at,i), qt(x, a) = max
P̂∈Pk

qP̂ ,πt(x, a),1t(x, a) = 1{xt,h = x, at,h = a}.

Step 3: Construct bonus functions. For all (x, a) ∈ X ×A,

bt(x) = Ea∼πt(·|x)

[
3γH +H(qt(x, a)− q

t
(x, a))

qt(x, a) + γ

]
(8)

Bt(x, a) = bt(x) +

(
1 +

1

H

)
max
P̂∈Pk

Ex′∼P̂ (·|x,a)Ea′∼πt(·|x′) [Bt(x
′, a′)] (9)

where q
t
(x, a) = minP̂∈Pk q

P̂ ,πt(x, a) and Bt(xH , a) = 0 for all a.

Step 4: Update model estimation. ∀h < H , Nk(xt,h, at,h)
+← 1, Nk(xt,h, at,h, xt,h+1)

+← 1.3

if ∃h, Nk(xt,h, at,h) ≥ max{1, 2Nk−1(xt,h, at,h)} then
Increment epoch index k +← 1 and copy counters: Nk ← Nk−1, Nk ← Nk−1.
Compute empirical transition P k(x′|x, a) = Nk(x,a,x′)

max{1,Nk(x,a)} and confidence set:

Pk =
{
P̂ :

∣∣∣P̂ (x′|x, a)− P k(x′|x, a)
∣∣∣ ≤ confk(x′|x, a),

∀(x, a, x′) ∈ Xh ×A×Xh+1, h = 0, 1, . . . ,H − 1
}
,

(10)

where confk(x′|x, a) = 4

√
Pk(x′|x,a) ln(T |X||A|δ)

max{1,Nk(x,a)} +
28 ln(T |X||A|δ)

3 max{1,Nk(x,a)} .

largest possible value within the confidence set (see Eq. (9)). This can again be efficiently computed;
see Appendix C.1. This concludes the complete algorithm design.

Regret analysis. The regret guarantee of Algorithm 1 is presented below:

Theorem 4.1. Algorithm 1 ensures that with probability 1−O(δ), Reg = Õ
(
H2|X|

√
AT +H4

)
.

Again, this improves the Õ(T 2/3) regret of [27]. It almost matches the best existing upper bound for
this problem, which is Õ(H|X|

√
|A|T) [15]. While it is unclear to us whether this small gap can be

closed using policy optimization, we point out that our algorithm is arguably more efficient than that
of [15], which performs global convex optimization over the set of all plausible occupancy measures
in each episode.

6

The complete proof of this theorem is deferred to Appendix C. Here, we only sketch an
outline of proving Eq. (5), which, according to the discussions in Section 3, is the most
important part of the analysis. Specifically, we decompose the left-hand side of Eq. (5),∑
x q

?(x)
∑
t 〈πt(·|x)− π?(·|x), Qt(x, ·)−Bt(x, ·)〉, as BIAS-1 + BIAS-2 + REG-TERM, where

• BIAS-1 =
∑
x q

?(x)
∑
t〈πt(·|x), Qt(x, ·)− Q̂t(x, ·)〉 measures the amount of underestimation

of Q̂t related to πt, which can be bounded by
∑
t

∑
x,a q

?(x)πt(a|x)
(

2γH+H(qt(x,a)−q
t
(x,a))

qt(x,a)+γ

)
+

Õ (H/η) with high probability (Lemma C.1);

• BIAS-2 =
∑
x q

?(x)
∑
t〈π?(·|x), Q̂t(x, ·)−Qt(x, ·)〉 measures the amount of overestimation of

Q̂t related to π?, which can be bounded by Õ (H/η) since Q̂t is an underestimator (Lemma C.2);

• REG-TERM =
∑
x q

?(x)
∑
t〈πt(·|x)− π?(·|x), Q̂t(x, ·)−Bt(x, ·)〉 is directly controlled by the

multiplicative weight update, and is bounded by
∑
t

∑
x,a q

?(x)πt(a|x)
(

γH
qt(x,a)+γ + Bt(x,a)

H

)
+

Õ (H/η) with high probability (Lemma C.3).

Combining all with the definition of bt proves the key Eq. (5) (with the o(T) term being Õ(H/η)).

5 The Linear-Q Case

In this section, we move on to the more challenging setting where the number of states might be
infinite, and function approximation is used to generalize the learner’s experience to unseen states.
We consider the most basic linear function approximation scheme where for any π, the Q-function
Qπt (x, a) is linear in some known feature vector φ(x, a), formally stated below.

Assumption 1 (Linear-Q). Let φ(x, a) ∈ Rd be a known feature vector of the state-action pair
(x, a). We assume that for any episode t, policy π, and layer h, there exists an unknown weight vector
θπt,h ∈ Rd such that for all (x, a) ∈ Xh × A, Qπt (x, a) = φ(x, a)>θπt,h. Without loss of generality,
we assume ‖φ(x, a)‖ ≤ 1 for all (x, a) and ‖θπt,h‖ ≤

√
dH for all t, h, π.

For justification on the last condition on norms, see [30, Lemma 8]. This linear-Q assumption has
been made in several recent works with stationary losses [1, 30] and also in [24] with the same
adversarial losses.4 It is weaker than the linear MDP assumption (see Section 6) as it does not pose
explicit structure requirements on the loss and transition functions. Due to this generality, however,
our algorithm also requires access to a simulator to obtain samples drawn from the transition, formally
stated below.
Assumption 2 (Simulator). The learner has access to a simulator, which takes a state-action pair
(x, a) ∈ X ×A as input, and generates a random outcome of the next state x′ ∼ P (·|x, a).

Note that this assumption is also made by [24] and more earlier works with stationary losses (see
e.g., [4, 28]).5 In this setting, we propose a new policy optimization algorithm with Õ(T 2/3) regret.
See Algorithm 2 for the pseudocode.

Algorithm design. The algorithm still follows the multiplicative weight update Eq. (11) in each
state x ∈ Xh (for some h), but now with φ(x, a)>θ̂t,h as an estimator for Qπtt (x, a) = φ(x, a)>θπtt,h,
and BONUS(t, x, a) as the dilated bonus Bt(x, a). Specifically, the construction of the weight
estimator θ̂t,h follows the idea of [24] (which itself is based on the linear bandit literature) and is
defined in Eq. (12) as Σ̂+

t,hφ(xt,h, at,h)Lt,h. Here, Σ̂+
t,h is an ε-accurate estimator of (γI + Σt,h)

−1,
where γ is a small parameter and Σt,h = Et[φ(xt,h, at,h)φ(xt,h, at,h)>] is the covariance matrix for
layer h under policy πt; Lt,h =

∑H−1
i=h `t(xt,i, at,i) is again the loss suffered by the learner starting

from layer h, whose conditional expectation is Qπtt (xt,h, at,h) = φ(xt,h, at,h)>θπtt,h. Therefore,

4The assumption in [24] is stated slightly differently (e.g., their feature vectors are independent of the action).
However, it is straightforward to verify that the two versions are equivalent.

5The simulator required by [24] is in fact slightly weaker than ours and those from earlier works — it only
needs to be able to generate a trajectory starting from x0 for any policy.

7

Algorithm 2 Policy Optimization with Dilated Bonuses (Linear-Q Case)

parameters: γ, β, η, ε, M =
⌈

24 ln(dHT)
ε2γ2

⌉
, N =

⌈
2
γ ln 1

εγ

⌉
.

for t = 1, 2, . . . , T do
Step 1: Interact with the environment. Execute πt, which is defined such that for each x ∈ Xh,

πt(a|x) ∝ exp

(
−η

t−1∑
τ=1

(
φ(x, a)>θ̂τ,h − BONUS(τ, x, a)

))
, (11)

and obtain trajectory {(xt,h, at,h, `t(xt,h, at,h))}H−1
h=0 .

Step 2: Construct covariance matrix inverse estimators.{
Σ̂+
t,h

}H−1

h=0
= GEOMETRICRESAMPLING (t,M,N, γ) . (see Algorithm 7)

Step 3: Construct Q-function weight estimators. For h = 0, . . . ,H − 1, compute

θ̂t,h = Σ̂+
t,hφ(xt,h, at,h)Lt,h, where Lt,h =

H−1∑
i=h

`t(xt,i, at,i). (12)

Algorithm 3 BONUS(t, x, a)

if BONUS(t, x, a) has been called before then
return the value of BONUS(t, x, a) calculated last time.

Let h be such that x ∈ Xh. if h = H then return 0.
Compute πt(·|x), defined in Eq. (11) (which involves recursive calls to BONUS for smaller t).
Get a sample of the next state x′ ← SIMULATOR(x, a).
Compute πt(·|x′) (again, defined in Eq. (11)), and sample an action a′ ∼ πt(·|x′).
return β‖φ(x, a)‖2

Σ̂+
t,h

+ Ej∼πt(·|x)

[
β‖φ(x, j)‖2

Σ̂+
t,h

]
+
(
1 + 1

H

)
BONUS(t, x′, a′).

when γ and ε approach 0, one see that θ̂t,h is indeed an unbiased estimator of θπtt,h. We adopt the

GEOMETRICRESAMPLING procedure (see Algorithm 7) of [24] to compute Σ̂+
t,h, which involves

calling the simulator multiple times.

Next, we explain the design of the dilated bonus. Again, following the general principle discussed
in Section 3, we identify bt(x, a) in this case as β‖φ(x, a)‖2

Σ̂+
t,h

+ Ej∼πt(·|x)

[
β‖φ(x, j)‖2

Σ̂+
t,h

]
for

some parameter β > 0. Further following the dilated Bellman equation Eq. (4), we thus de-
fine BONUS(t, x, a) recursively as the last line of Algorithm 3, where we replace the expectation
E(x′,a′)[BONUS(t, x′, a′)] with one single sample for efficient implementation.

However, even more care is needed to actually implement the algorithm. First, since the state space is
potentially infinite, one cannot actually calculate and store the value of BONUS(t, x, a) for all (x, a),
but can only calculate them on-the-fly when needed. Moreover, unlike the estimators for Qπtt (x, a),
which can be succinctly represented and stored via the weight estimator θ̂t,h, this is not possible
for BONUS(t, x, a) due to the lack of any structure. Even worse, the definition of BONUS(t, x, a)
itself depends on πt(·|x) and also πt(·|x′) for the afterstate x′, which, according to Eq. (11), further
depends on BONUS(τ, x, a) for τ < t, resulting in a complicated recursive structure. This is also why
we present it as a procedure in Algorithm 3 (instead of Bt(x, a)). In total, this leads to (TAH)O(H)

number of calls to the simulator. Whether this can be improved is left as a future direction.

Regret guarantee By showing that Eq. (5) holds in expectation for our algorithm, we obtain the
following regret guarantee. (See Appendix D for the proof.)

Theorem 5.1. Under Assumption 1 and Assumption 2, with appropriate choices of the parameters
γ, β, η, ε, Algorithm 2 ensures E[Reg] = Õ

(
H2(dT)2/3

)
(the dependence on |A| is only logarithmic).

8

This matches the Õ(T 2/3) regret of [24, Theorem 1], without the need of their assumption which
essentially says that the learner is given an exploratory policy to start with.6 To our knowledge, this
is the first no-regret algorithm for linear function approximation (with adversarial losses and bandit
feedback) when no exploratory assumptions are made.

6 Improvements with an Exploratory Policy

Previous sections have demonstrated the role of dilated bonuses in providing global exploration. In
this section, we further discuss what dilated bonuses can achieve when an exploratory policy π0 is
given in linear function approximation settings. Formally, let Σh = E[φ(xh, ah)φ(xh, ah)>] denote
the covariance matrix for features in layer h following π0 (that is, the expectation is taken over a
trajectory {(xh, ah)}H−1

h=0 with ah ∼ π0(·|xh)), then we assume the following.

Assumption 3 (An exploratory policy). An exploratory policy π0 is given to the learner ahead of
time, and guarantees that for any h, the eigenvalues of Σh are at least λmin > 0.

The same assumption is made by [24] (where they simply let π0 be the uniform exploration policy).
As mentioned, under this assumption they achieve Õ(T 2/3) regret. By slightly modifying our
Algorithm 2 (specifically, executing π0 with a small probability in each episode and setting the
parameters differently), we achieve the following improved result.

Theorem 6.1. Under Assumptions 1, 2, and 3, Algorithm 8 ensures E[Reg] = Õ
(√

H4T
λmin

+
√
H5dT

)
.

Removing the simulator One drawback of our algorithm is that it requires exponential in H
number of calls to the simulator. To address this issue, and in fact, to also completely remove the need
of a simulator, we further consider a special case where the transition function also has a low-rank
structure, known as the linear MDP setting.

Assumption 4 (Linear MDP). The MDP satisfies Assumption 1 and that for any h and x′ ∈ Xh+1,
there exists a weight vector νx

′

h ∈ Rd such that P (x′|x, a) = φ(x, a)>νx
′

h for all (x, a) ∈ Xh ×A.

There is a surge of works studying this setting, with [7] being the closest to us. They achieve Õ(
√
T)

regret but require full-information feedback of the loss functions, and there are no existing results for
the bandit feedback setting without a simulator. We propose the first algorithm with sublinear regret
for this problem, shown in Algorithm 10 of Appendix F due to space limit.

The structure of Algorithm 10 is very similar to that of Algorithm 2, with the same definition of
bt(x, a). However, due to the low-rank transition structure, we are now able to efficiently construct
estimators of Bt(x, a) even for unseen state-action pairs using function approximation, bypassing
the requirement of a simulator. Specifically, observe that according to Eq. (4), for each x ∈
Xh, under Assumption 4 Bt(x, a) can be written as bt(x, a) + φ(x, a)>Λπtt,h, where Λπtt,h = (1 +
1
H)
∫
x′∈Xh+1

Ea′∼πt(·|x′)[Bt(x′, a′)]νx
′

h dx′ is a vector independent of (x, a). Thus, by the same idea
of estimating θπtt,h, we can estimate Λπtt,h as well, thus succinctly representing Bt(x, a) for all (x, a).

Recall that estimating θπtt,h (and thus also Λπtt,h) requires constructing the covariance matrix inverse

estimate Σ̂+
t,h. Due to the lack of a simulator, another important change in the algorithm is to construct

Σ̂+
t,h using online samples. To do so, we divide the entire horizon into epochs with equal length, and

only update the policy optimization algorithm at the beginning of an epoch. Within an epoch, we
keep executing the same policy and collect several trajectories, which are then used to construct Σ̂+

t,h.
With these changes, we successfully remove the need of a simulator, and prove the guarantee below.

Theorem 6.2. Under Assumption 3 and Assumption 4, Algorithm 10 ensures E[Reg] = Õ
(
T 6/7

)
(see Appendix F for dependence on other parameters).

One potential direction to further improve our algorithm is to reuse data across different epochs,
an idea adopted by several recent works [35, 19] for different problems. We also conjecture that

6Under an even strong assumption that every policy is exploratory, they also improve the regret to Õ(
√
T);

see [24, Theorem 2].

9

Assumption 3 can be removed, but we meet some technical difficulty in proving so. We leave these
for future investigation.

Acknowledgments and Disclosure of Funding

We thank Gergely Neu and Julia Olkhovskaya for discussions on the technical details of their
GEOMETRICRESAMPLING procedure. This work is supported by NSF Award IIS-1943607 and a
Google Faculty Research Award.

References
[1] Yasin Abbasi-Yadkori, Peter Bartlett, Kush Bhatia, Nevena Lazic, Csaba Szepesvari, and Gellért

Weisz. Politex: Regret bounds for policy iteration using expert prediction. In International
Conference on Machine Learning, pages 3692–3702, 2019.

[2] Alekh Agarwal, Mikael Henaff, Sham Kakade, and Wen Sun. Pc-pg: Policy cover directed
exploration for provable policy gradient learning. In Advances in Neural Information Processing
Systems, 2020.

[3] Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. Optimality and approxi-
mation with policy gradient methods in markov decision processes. In Conference on Learning
Theory, pages 64–66, 2020.

[4] Mohammad Gheshlaghi Azar, Rémi Munos, and Bert Kappen. On the sample complexity
of reinforcement learning with a generative model. In International Conference on Machine
Learning, 2012.

[5] Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for
reinforcement learning. In International Conference on Machine Learning, pages 263–272,
2017.

[6] Alina Beygelzimer, John Langford, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual
bandit algorithms with supervised learning guarantees. In International Conference on Artificial
Intelligence and Statistics, 2011.

[7] Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy
optimization. In International Conference on Machine Learning, pages 1283–1294, 2020.

[8] Liyu Chen and Haipeng Luo. Finding the stochastic shortest path with low regret: The
adversarial cost and unknown transition case. In International Conference on Machine Learning,
2021.

[9] Liyu Chen, Haipeng Luo, and Chen-Yu Wei. Minimax regret for stochastic shortest path with
adversarial costs and known transition. In Conference On Learning Theory, 2021.

[10] Christoph Dann and Emma Brunskill. Sample complexity of episodic fixed-horizon reinforce-
ment learning. In Advances in Neural Information Processing Systems, 2015.

[11] Kefan Dong, Yuanhao Wang, Xiaoyu Chen, and Liwei Wang. Q-learning with ucb exploration is
sample efficient for infinite-horizon mdp. International Conference on Learning Representations,
2020.

[12] Ronan Fruit, Matteo Pirotta, Alessandro Lazaric, and Ronald Ortner. Efficient bias-span-
constrained exploration-exploitation in reinforcement learning. In International Conference on
Machine Learning, pages 1578–1586, 2018.

[13] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11(4), 2010.

[14] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is Q-learning provably
efficient? In Advances in neural information processing systems, pages 4863–4873, 2018.

10

[15] Chi Jin, Tiancheng Jin, Haipeng Luo, Suvrit Sra, and Tiancheng Yu. Learning adversarial
markov decision processes with bandit feedback and unknown transition. In International
Conference on Machine Learning, 2020.

[16] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pages 2137–
2143, 2020.

[17] Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning.
In In Proc. 19th International Conference on Machine Learning. Citeseer, 2002.

[18] Sham M Kakade. A natural policy gradient. Advances in neural information processing systems,
14, 2001.

[19] Nevena Lazic, Dong Yin, Yasin Abbasi-Yadkori, and Csaba Szepesvari. Improved regret bound
and experience replay in regularized policy iteration. In International Conference on Machine
Learning, 2021.

[20] Chung-Wei Lee, Haipeng Luo, Chen-Yu Wei, and Mengxiao Zhang. Bias no more: high-
probability data-dependent regret bounds for adversarial bandits and mdps. Advances in Neural
Information Processing Systems, 2020.

[21] Sergey Levine and Vladlen Koltun. Guided policy search. In International conference on
machine learning, pages 1–9, 2013.

[22] Haipeng Luo. Lecture 2, introduction to online learning, 2017. Available at https:
//haipeng-luo.net/courses/CSCI699/lecture2.pdf.

[23] Gergely Neu. Explore no more: Improved high-probability regret bounds for non-stochastic
bandits. In Advances in Neural Information Processing Systems, 2015.

[24] Gergely Neu and Julia Olkhovskaya. Online learning in mdps with linear function approximation
and bandit feedback. arXiv preprint arXiv:2007.01612, 2020.

[25] Aviv Rosenberg and Yishay Mansour. Online convex optimization in adversarial Markov
decision processes. In Proceedings of the 36th International Conference on Machine Learning,
2019.

[26] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[27] Lior Shani, Yonathan Efroni, Aviv Rosenberg, and Shie Mannor. Optimistic policy optimization
with bandit feedback. In International Conference on Machine Learning, pages 8604–8613,
2020.

[28] Aaron Sidford, Mengdi Wang, Xian Wu, Lin F Yang, and Yinyu Ye. Near-optimal time
and sample complexities for solving markov decision processes with a generative model. In
Advances in Neural Information Processing Systems, pages 5192–5202, 2018.

[29] Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of computa-
tional mathematics, 12(4):389–434, 2012.

[30] Chen-Yu Wei, Mehdi Jafarnia Jahromi, Haipeng Luo, and Rahul Jain. Learning infinite-horizon
average-reward mdps with linear function approximation. In International Conference on
Artificial Intelligence and Statistics, pages 3007–3015, 2021.

[31] Chen-Yu Wei, Mehdi Jafarnia Jahromi, Haipeng Luo, Hiteshi Sharma, and Rahul Jain. Model-
free reinforcement learning in infinite-horizon average-reward markov decision processes. In
International Conference on Machine Learning, pages 10170–10180, 2020.

[32] Lin Yang and Mengdi Wang. Reinforcement learning in feature space: Matrix bandit, kernels,
and regret bound. In International Conference on Machine Learning, pages 10746–10756,
2020.

11

https://haipeng-luo.net/courses/CSCI699/lecture2.pdf
https://haipeng-luo.net/courses/CSCI699/lecture2.pdf

[33] Andrea Zanette, David Brandfonbrener, Emma Brunskill, Matteo Pirotta, and Alessandro
Lazaric. Frequentist regret bounds for randomized least-squares value iteration. In International
Conference on Artificial Intelligence and Statistics, pages 1954–1964, 2020.

[34] Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in reinforcement
learning without domain knowledge using value function bounds. In International Conference
on Machine Learning, pages 7304–7312, 2019.

[35] Andrea Zanette, Ching-An Cheng, and Alekh Agarwal. Cautiously optimistic policy optimiza-
tion and exploration with linear function approximation. In Conference on Learning Theory,
2021.

12

