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Abstract
Diffusion models (DMs) have recently been introduced in image deblurring and
exhibited promising performance, particularly in terms of details reconstruction.
However, the diffusion model requires a large number of inference iterations
to recover the clean image from pure Gaussian noise, which consumes massive
computational resources. Moreover, the distribution synthesized by the diffusion
model is often misaligned with the target results, leading to restrictions in distortion-
based metrics. To address the above issues, we propose the Hierarchical Integration
Diffusion Model (HI-Diff), for realistic image deblurring. Specifically, we perform
the DM in a highly compacted latent space to generate the prior feature for the
deblurring process. The deblurring process is implemented by a regression-based
method to obtain better distortion accuracy. Meanwhile, the highly compact latent
space ensures the efficiency of the DM. Furthermore, we design the hierarchical
integration module to fuse the prior into the regression-based model from multiple
scales, enabling better generalization in complex blurry scenarios. Comprehensive
experiments on synthetic and real-world blur datasets demonstrate that our HI-
Diff outperforms state-of-the-art methods. Code and trained models are available
at https://github.com/zhengchen1999/HI-Diff.

1 Introduction
Image deblurring is a long-standing computer vision task, aiming to recover a sharp image from a
blurred observation. Blurred artifacts can arise from various factors, e.g., camera shake and fast-
moving objects. To address this challenge, traditional methods typically formulate the task as an
optimization problem and incorporate natural priors [12, 38, 24, 29] to regularize the solution space.
However, since blur in real scenarios is complex and non-uniform, which is hard to be modeled by
the specific priors, these algorithms suffer from poor generalization in complex situations.

With the development of deep learning, convolutional neural networks (CNNs) have been applied
in image deblurring [37, 43, 13, 55, 1, 11]. Among them, the regression-based methods have
shown remarkable success, especially in terms of distortion-based metrics (e.g., PSNR). Moreover,
Transformer-based approaches [48, 53, 44, 21], which can capture long-distance dependencies, are
introduced as an alternative to CNNs. These methods further boost the deblurring performance.
However, regression-based methods are prone to recovering images with fewer details, since the
regression losses are conservative with high-frequency details [36].

Apart from regression-based methods, deep generative models, like generative adversarial networks
(GANs) [14] and normalizing flows [8], provide other solutions for generating complex details.
Recently, Diffusion Models (DMs) [40, 15] have exhibited impressive performance in image syn-
thesis [41, 35] and restoration tasks (including image deblurring) [50, 33, 36, 51]. DMs generate
high-fidelity images through a stochastic iterative denoising process from a pure white Gaussian
noise. Compared to other generative models, such as GANs, DMs generate a more accurate target
distribution without encountering optimization instability or mode collapse.
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Nonetheless, DM-based methods face several challenges. First, DMs are limited by the high
computational cost of generating samples. It requires a high number of inference steps. Some
methods reduce the number of iterations by predicting the residual distribution [50] or applying
advanced sampling strategies [41, 3]. However, the overall computational complexity is still high,
especially for high-resolution images. Furthermore, although some methods perform DMs on latent
space [35], the compression ratio is small (e.g., 8 times), due to limitations in generation quality.
Second, generative models, including DMs, tend to produce undesired artifacts not present in the
original clean image. Besides, the generated details may also be misaligned with real targets. These
lead to the poor performance of DM regarding some distortion-based metrics (e.g., PSNR).

The aforementioned issues promote us to apply DMs from another perspective. The motivation for
our work is threefold. First, due to the high computational overhead in the image space, we also
consider applying DMs on the low-dimensional latent space. Meanwhile, we increase the compression
ratio of latent to effectively reduce the computational complexity. Second, since the advantages of
regression-based methods in distortion accuracy, we integrate DMs and regression-based methods to
improve the performance of DMs regarding distortion. Third, considering the non-uniform blur in
real scenarios, we apply a hierarchical approach to enhance the generalization of the method.

Specifically, we apply DMs to generate priors in latent space, inspired by the application of priors
in traditional deblurring algorithms. The priors are integrated into the regression-based model in a
hierarchical manner to improve the details of restored images. The design contains three benefits: (1)
The dimension of latent space can be very low, since the regression-based model restores most of
the distribution. (2) The issue of distortion caused by misaligned details generated by DMs can be
avoided. (3) The hierarchical integration enables better generalization in complex blurry scenarios.

Based on the above analysis, we propose a novel approach called the Hierarchical Integration
Diffusion Model (HI-Diff) for realistic image deblurring. Following previous practice [10, 35,
51], we perform a two-stage training to realize latent compression and the training of the DM,
respectively. Without loss of generality, for the regression-based methods, we choose the encoder-
decoder Transformer architecture. In the first stage, we compress the ground-truth image into a
highly compact latent representation as the prior feature through a latent encoder (LE). We propose the
hierarchical integration module (HIM) that can fuse the prior and intermediate features of Transformer
at multiple levels. We jointly train the LE and Transformer to effectively construct the prior. In the
second stage, we train a latent diffusion model to generate the prior feature in the latent space from
the Gaussian noise and guide Transformer through the HIM. Similar to the first stage, we jointly train
the DM and Transformer. In summary, our main contributions are three-fold as follows:

• We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image
deblurring. The HI-Diff leverages the power of diffusion models to generate informative
priors, that are integrated into the deblurring process hierarchically for better results.

• We apply the diffusion model in highly compact latent space to generate the prior. Mean-
while, we propose the hierarchical integration module to fuse the prior into the regression-
based model from multiple scales, enabling the generalization in complex blurry scenarios.

• Extensive experiments conducted on synthetic and real-world blur datasets demonstrate the
superior performance of the HI-Diff in comparison to state-of-the-art deblurring methods.

2 Related Work
2.1 Image Deblurring
Traditional Methods. Traditional deblurring methods generally formulate the problem as an opti-
mization problem [12, 38, 24, 6, 29]. They utilize various natural image priors for sharp images and
blur kernels. Common methods include local smoothness prior [38], sparse image prior [24], L0-norm
gradient prior [52], and dark channel prior [29]. However, these methods rely on manually crafted
priors, which results in poor generalization ability and limited performance in complex situations.

Deep CNN-based Methods. With the rapid development of deep learning, significant progress has
been made in image deblurring using CNN-based methods [37, 28, 43, 55, 1, 16]. For instance,
MSCNN [28] designs a multi-scale CNN to restore sharp images. SRN [43] proposes a coarse-to-fine
scale-recurrent network for more efficient multi-scale image deblurring. DMPHN [55] devises a deep
multi-patch hierarchical deblurring network to exploit the deblurring information at different scales.
XYDeblur [16], on the other hand, divides the original deblurring problem into two sub-problems.
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Figure 1: The overall framework of our HI-Diff. (a) Transformer, adopts hierarchical encoder-decoder
architecture, equipped with HIM, for the deblurring process. (b) Diffusion Model, is performed
in a highly compact latent space for computational efficiency. (c) The multi-scale prior feature
{z1, z2, z3} is obtained by downsampling the prior feature multiple times. In stage one, z1=z; in
stage two, z1=ẑ. (d) The hierarchical integration module (HIM), calculates cross-attention between
the intermediate feature of Transformer and the multi-scale prior feature. (e) The latent encoder (LE),
where the size of the input feature (in) is H×W×6 for LE, and H×W×3 for LEDM.

Transformer-based Methods. Recently, Transformer [46, 9] proposed in natural language processing
(NLP), which utilizes the self-attention (SA) mechanism to model long-range dependence, has shown
remarkable performance in image deblurring [48, 53, 44]. For example, Restormer [53] utilizes
“transposed” attention, which calculates the SA across channel dimension instead of spatial dimension,
to model global information and keep computational efficiency to large images. Stripformer [44]
constructs horizontal and vertical strip tokens to catch region-specific blurred patterns with different
orientations in dynamic scenes. These methods further improved the deblurring performance com-
pared with CNN-based Methods. However, they are limited in recovering image details, since the
regression-based methods are conservative with high-frequency details [36].

2.2 Diffusion Models
Diffusion Models (DMs) [40, 15] are probabilistic generative models that enable the construction
of desired data samples from the Gaussian noise via a stochastic iterative denoising process. DMs
have demonstrated excellent performance in various image restoration tasks [18, 17, 47, 7], such
as super-resolution [36, 25], inpainting [35], and deblurring [50]. A survey [26] summarizes more
diffusion-based restoration methods. For example, DiffIR [51] utilizes the diffusion model to generate
a prior representation for image restoration, and applies a two-stage training approach. DvSR [50]
introduces conditional DMs into image deblurring with a residual model, showing more realistic
results than regression-based methods. InDI [7] directly produces high-quality results by restoring
low-quality images. However, one of the restrictions of DMs is the large number of iteration steps
required in inference. Some methods attempt to mitigate this limitation by applying well-designed
noise schedules [3] and sampling strategies [41] or performing DM on the latent space [35]. Despite
these efforts, the overall complexity remains high, especially for high-resolution images common in
image deblurring. Additionally, these methods are susceptible to misaligned details distribution and
undesired artifacts, resulting in poor performance in distortion-based metrics, e.g., PSNR.

3 Method
Our goal is to integrate the diffusion model (DM) and the regression-based model, thus overcoming
the shortcomings of the DM and realizing better deblurring. We propose the Hierarchical Integration
Diffusion Model (HI-Diff). The HI-Diff performs the DM to generate the prior feature that is
integrated hierarchically into Transformer (the regression-based model).
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The overall framework of the proposed HI-Diff is depicted in Fig. 1. The HI-Diff consists of two parts:
Transformer and the latent diffusion model. We adopt Restormer [53], a hierarchical encoder-decoder
Transformer architecture, in our method. Compared with other Transformer networks designed
specifically for image deblurring, Restormer is a general restoration model. Applying this model in
our method can better illustrate the effectiveness of our proposed method. Meanwhile, following
previous practice [10, 35, 51], we train our HI-Diff with a two-stage training strategy, to realize latent
compression and the training of the DM. In this section, we first elaborate on the two-stage training
framework and then illustrate the whole deblurring inference process.

3.1 Stage One: Latent Compression
In stage one, our purpose is to compress the ground truth image into the highly compact latent space,
and utilize it to guide Transformer in the deblurring process. As shown in Fig. 1(a, b), we compress
the ground truth images through a latent encoder (LE) to obtain a compact representation as the prior
feature. Then we integrate the prior feature into Transformer through the hierarchical integration
module (HIM). The prior feature can provide explicit guidance for Transformer, thus increasing the
details of the reconstructed image. Next, we describe these parts in detail.

Latent Encoder. As shown in Fig. 1(b), given the blurry input image IBlur∈RH×W×3 and its
corresponding ground truth counterpart IGT∈RH×W×3, we first concatenate them along the channel
dimension and feed them into the latent encoder (LE) to generate the prior feature z∈RN×C′

. Here
H and W represent the image height and width, while N and C ′ are the token number and channel
dimensions of z. Importantly, the token number N is a constant much smaller than H×W . The
compression ratio (H×W

N ) is much higher than that applied in previous latent diffusion [35] (e.g., 8
times). Therefore, the computational burden of the subsequent latent diffusion model is effectively
reduced. The details of the latent encoder are depicted in Fig. 1(e), which contains L residual blocks.

Hierarchical Integration Module. To effectively integrate the prior feature and intermediate feature
of Transformer, we propose the hierarchical integration module (HIM). As illustrated in Fig. 1(a),
the HIM is placed in front of each encoder and decoder. For each HIM, cross-attention is computed
between the prior and intermediate features for feature fusion. This module allows the information in
the prior feature to be aggregated into features of Transformer.

Specifically, as shown in Fig. 1(d), given the intermediate feature Xin∈RĤ×Ŵ×Ĉ , we reshaped it as
tokens Xr∈RĤŴ×Ĉ ; where Ĥ×Ŵ is spatial resolution, and Ĉ denotes channel dimension. Then
we linearly project Xr into Q∈RĤŴ×Ĉ (query). Similarly, we project the prior feature zi∈RN̂×C′

as K∈RN̂×Ĉ (key) and V∈RN̂×Ĉ (value). The cross-attention is formulated as:
Q = WQXr,K = WKzi,V = WV zi,

Attention(Q,K,V) = SoftMax(QKT /
√

Ĉ) ·V,
(1)

where WQ∈RĈ×Ĉ , WK∈RC′×Ĉ , and WV ∈RC′×Ĉ represent learnable parameters of linear pro-
jections without bias. As vanilla multi-head self-attention [46, 9], we separate channels into multiple
“heads” and calculate the attention operations. Note that Fig. 1(d) depicts the situation with a sin-
gle head and omits some details for simplification. Finally, we reshape and project the output of
cross-attention, and add it with Xin to derive the output feature Xout∈RĤ×Ŵ×Ĉ .

Moreover, since the non-uniform blur in real scenarios, the single-scale prior feature cannot adapt
well to complex blurry situations. Therefore, we generate the multiple-scale prior feature {z1, z2, z3}
(where z1=z), by downsampling the prior feature z, as shown in Fig. 1(c). The multiple-scale prior
feature adapts to different scale intermediate features for better fusion. The effectiveness of the
hierarchical integration with the multiple-scale prior feature is demonstrated in Sec. 4.2.

Training Strategy. To ensure the effectiveness of the latent encoder (LE) in constructing the prior
feature, we optimize it jointly with Transformer using the L1 loss function, defined as:

Ldeblur = ∥IDB − IGT ∥1, (2)
where IDB is the deblurred image, and IGT represents its corresponding ground truth.

3.2 Stage Two: Latent Diffusion Model
In stage two, a latent diffusion model (DM) is trained to learn to generate the prior feature, that
enhances the deblurring process of Transformer through HIM.
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Diffusion Model. Specifically, our latent diffusion model is based on conditional denoising diffusion
probabilistic models [15, 3, 36, 35]. The diffusion model involves a forward diffusion process and a
reverse denoising process, as illustrated in Fig. 1(b).

In the diffusion process, given a ground truth image, we first adopt the latent encoder (LE) trained in
stage one to generate the corresponding prior feature z∈RN×C′

. We take z as the starting point of
the forward Markov process, and gradually add Gaussian noise to it over T iterations as follows:

q(z1:T | z0) =
T∏

t=1

q(zt | zt−1), q(zt | zt−1) = N (zt;
√

1− βtzt−1, βtI), (3)

where t=1, . . . , T ; zt represents the noisy features at the t-th step; z0=z for unification; β1:T∈(0, 1)
are hyperparameters that control the variance of the noise; N denotes the Gaussian distribution.
Through iterative derivation with reparameterization [20], Eq. (3) can be written as:

q(zt | z0) = N (zt;
√
ᾱtz0, (1− ᾱt)I), α = 1− βt, ᾱt =

t∏
i=1

αi. (4)

In the reverse process, we aim to generate the prior feature from a pure Gaussian distribution. The
reverse process is a T -step Markov chain that runs backwards from zT to z0. Specifically, for the
reverse step from zt to zt−1, we use the posterior distribution as:

q(zt−1 | zt, z0) = N (zt−1;µt(zt, z0),
1− ᾱt−1

1− ᾱt
βtI), µt(zt, z0) =

1
√
αt

(zt −
1− αt√
1− ᾱt

ϵ), (5)

where ϵ represents the noise in zt, and is the only uncertain variable. Following previous work [15,
36, 35, 51], we adopt a neural network (denoted as denoising network, ϵθ) to estimate the noise ϵ
for each step. Since DM operates in the latent space, we utilize another latent encoder, denoted as
LEDM, with the same structure as LE. LEDM compresses the blurry image IBlur into latent space to
get the condition latent c∈RN×C′

. The denoising network predicts the noise conditioned on the zt
and c, i.e., ϵθ(zt, c, t). With the substitution of ϵθ in Eq. (5) and set the variance to (1−αt), we get:

zt−1 =
1

√
αt

(yt −
1− αt√
1− ᾱt

ϵθ(zt, c, t)) +
√
1− αtϵt, (6)

where ϵt∼N (0, I). By iteratively sampling zt using Eq. (6) T times, we can generate the predicted
prior feature ẑ∈RN×C′

, as shown in Fig. 1(b). The predicted prior feature is then used to guide
Transformer, that is, z1=ẑ in Fig. 1(c). Notably, since the distribution of the latent space (RN×C′

)
is much simpler than that of images (RH×W×C) [50, 51], the prior feature can be generated with a
small number of iterations. We further explore the iteration numbers T in Sec. 4.2.

Training Strategy. Training DM means training denoising network ϵθ. Previous works [15, 41] train
the model by optimizing the weighted variational bound. The training objective is:

∇θ∥ϵ− ϵθ(
√
ᾱtz+

√
1− ᾱtϵ, c, t)∥22, (7)

where z and c are prior feature and condition latent defined above; t∈[1, T ] is a random time-step;
ϵ∼N (0, I) denotes sampled noise. However, the objective in Eq. (7) only trains DM. Since the slight
deviation between the predicted prior feature and the actual prior z, directly combining DM with
Transformer could cause a mismatch, which restricts the deblurring performance.

To overcome this issue, we jointly train the diffusion model and Transformer, inspired by previous
work [51]. In this approach, for each training iteration, we use the prior feature z to generate the noise
sample zT through Eq. (4). As the time-step T is small in latent space, we then run the complete T
iteration reverse processes (Eq. (6)) to generate the predicted prior feature ẑ. The ẑ is used to guide
Transformer through HIM (z1=ẑ). Finally, the training loss is given by the sum of the deblurring
loss Ldeblur and the diffusion loss Ldiffusion, where the diffusion loss Ldiffusion=∥ẑ− z∥1.

3.3 Inference

After completing the two-stage training, given a blurry input image IBlur∈RH×W×3, the HI-Diff
first compresses IBlur into a condition latent c∈RN×C′

via latent encoder LEDM. Then the predicted
prior feature ẑ∈RN×C′

is generated by the diffusion model. Specifically, the diffusion model
iteratively executes the reverse process (defined in Eq. (6)) T times starting from a randomly sampled
Gaussian Noise (ϵ∼N (0, I)). Finally, the HI-Diff reconstructs the deblurred image IDB∈RH×W×3

from the input image IBlur, using Transformer, which is enhanced by the prior feature ẑ.
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Method Prior Multi-Scale Joint-training Params (M) FLOPs (G) PSNR (dB) SSIM

Basline % % % 19.13 117.25 31.96 0.9528
Single-Guide ! % ! 21.98 125.39 32.00 0.9534
Split-Training ! ! % 23.99 125.47 30.73 0.9434
HI-Diff (ours) ! ! ! 23.99 125.47 32.24 0.9558

Table 1: Ablation study. We train and test models on the GoPro [28] dataset. Image size is
3×256×256 to calculate FLOPs. Prior: the prior feature generated by the diffusion model; Multi-
scale: the multi-scale prior feature for hierarchical integration (as opposed to single-scale); Joint-
training: the diffusion model and Transformer are trained jointly in stage two.

4 Experiments
4.1 Experimental Settings
Data and Evaluation. Following previous image deblurring methods, we evaluate our method
on synthetic datasets (GoPro [28] and HIDE [39]) and the real-world dataset (RealBlur [34] and
RWBI [56]). The GoPro dataset contains 2,103 pairs of blurry and sharp images for training and
1,111 image pairs for testing. The HIDE dataset provides testing 2,025 images. The RealBlur dataset
has two sub-set: RealBlur-J and RealBlur-R. Each sub-set consists of 3,758 training pairs and 980
testing pairs. The RWBI dataset contains 3,112 blurry images captured with different hand-held
devices. For synthetic datasets, we train HI-Diff on the GoPro training set and test it on GoPro and
HIDE. Moreover, we further test the GoPro-trained model on RealBlur and RWBI to evaluate the
generalization of our method. For real-world datasets, we train and test HI-Diff on RealBlur datasets,
following previous works [54, 44]. We adopt two common metrics: PSNR and SSIM [49].

Implementation Details. Our HI-Diff consists of two parts: Transformer and the latent diffusion
model. For Transformer, without loss of generality, we apply Restormer [53], a 4-level encoder-
decoder Transformer architecture. From level-1 to level-4, we set the number of Transformer blocks
as [3,5,5,6], the number of channels as [48,96,192,384], and the attention heads as [1,2,4,8]. Besides,
there are 4 blocks in the refinement stage. The channel expansion factor is 2.66. For the latent
diffusion model, the token number N is 16, and the channel dimension C ′ is 256. The latent encoder
contains L=6 residual blocks. We set the total time-step T as 8, and the variance hyperparameters
β1:T constants increasing linearly from β1=0.1 to βT=0.99.

Training Settings. We train our HI-Diff with Adam optimizer [19] with β1=0.9 and β2=0.99. For
stage one, the total training iterations are 300K. The initial learning rate is set as 2×10−4 and gradually
reduced to 1×10−6 with the cosine annealing [27]. Following previous work [53], we adopt progres-
sive learning. Specifically, we set the initial patch size as 128 and the patch size as 64. We progres-
sively update the patch size and batch size pairs to [(1602,40),(1922,32),(2562,16),(3202,16),(3842,8)]
at iterations [20K,40K,60K,80K,100K]. For stage two, we adopt the same training settings as in
stage one. Moreover, following previous works [53, 54], we apply random rotation and flips for data
augmentation. We use PyTorch [31] to implement our models with 4 A100 GPUs.

4.2 Ablation Study

In this section, we study the effects of different designs of our proposed method. We conduct all
experiments on the dataset GoPro [28]. The iterations for stages one and two are 100K, respectively.
The image patch size and batch size are set as 192×192 and 32. When we calculate the FLOPs, the
image size is 3×256×256. The results are reported in Tab. 1 and Figs. 2 and 3.

Effects of Diffusion Prior. We construct a baseline model without prior generated from diffusion in
the first row of Tab. 1, denoted as Baseline, which is actually the vanilla Restormer [53] architecture.
For fair comparisons, Baseline adopts the same implementation and training settings as HI-Diff (ours,
listed in the fourth row). Comparing Baseline and HI-Diff, we can discover that using the prior
feature generated by the latent diffusion model (DM) yields a 0.28 dB improvement. It demonstrates
the effectiveness of our proposed method. In addition, the HI-Diff, integrated with diffusion, only
adds 4.86M Params and 8.22G FLOPs over Baseline. It reveals that performing the diffusion model
in highly compact latent space is very efficient. Furthermore, we show the visual comparisons of the
Baseline (without the prior feature) and HI-Diff in Fig. 2 (first row). Our HI-Diff, generates sharper
textures and complete structures, compared with Baseline.
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GT Baseline HI-Diff
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Figure 2: Deblurred samples for different models in Tab. 1.
The first row shows effects of diffusion prior, while the
second row exhibits effects of hierarchical integration.
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Figure 3: Ablation study of the num-
ber of iterations T in diffusion model,
T : {1, 2, 4, 8, 16, 32}.

Effects of Hierarchical Integration. We conduct an ablation experiment on the hierarchical inte-
gration with the multi-scale prior feature (illustrated in Fig. 1(c). We apply the single-scale prior
feature on Transformer, which means we set z1=z2=z3=z (or ẑ). We denote the new model as
Single-Guide, and its result is shown in the second row. We find that the PSNR of Single-Guide drops
by 0.24dB compared with HI-Diff, which adopts the multi-scale prior feature. It indicates that the
single-scale prior feature cannot adapt well to complex blurry situations. The visual comparison in
Fig. 2 (second row) reveals that applying the hierarchical integration restores better-deblurred images.

Effects of Joint Training Strategy. We explore the impact of the joint training strategy in stage two.
We train a model only optimized diffusion model in stage two, denoted as Split-Training. Specifically,
for Split-Training, we first generate the prior feature z from the ground truth and then apply the
training objective defined in Eq. (7) to train the diffusion model alone. Then the diffusion model is
directly combined with Transformer for evaluation after training is complete. For fair comparisons,
Split-Training applies the same pre-trained (stage one) model as HI-Diff in stage two training, and
the iterations are 100K. Comparing Split-Training and HI-Diff, HI-Diff is significantly better than
Split-Training by 1.51 dB on PSNR value. These results are consistent with the analysis in Sec. 3.2
and demonstrate the importance of the joint training strategy.

Effects of Iterations Number. We further conduct an ablation study to investigate the influence of
iteration numbers in the diffusion model. We set six different iterations T : {1, 2, 4, 8, 16, 32} for the
diffusion model. Meanwhile, the variance hyperparameters β1:T are always linearly interpolated from
β1=0.1 to βT=0.99 for different T . We plot the PSNR of different iterations T in Fig. 3. We find
that only one iteration inference cannot generate the reasonable prior feature, limiting the deblurring
performance. Besides, when the number of iterations reaches 8, the curve basically converges. It
indicates that only a small number of iterations is needed to generate the suitable prior feature, since
the simple distribution of the highly compact latent space (only contains N=16 tokens).

4.3 Evaluation on Synthetic Datasets
We compare our HI-Diff with 16 state-of-the-art methods: DeblurGAN [22], DeepDeblur [28],
DeblurGAN-v2 [23], SRN [43], DBGAN [56], MT-RNN [30], DMPHN [55], SAPHN [42],
SPAIR [32], MIMO-UNet+ [5], TTFA [4], MPRNet [54], HINet [2], Restormer [53], and Strip-
former [44]. We show quantitative results in Tab. 2 and visual results in Fig. 4.

Quantitative Results. We train our method on GoPro [28], and test it on GoPro and HIDE [39].
Moreover, we further test the GoPro-trained model on the real-world dataset: RealBlur [34] (RealBlur-
R and RealBlur-J). The PSNR/SSIM results on four benchmark datasets are reported in Tab. 2. Our
method outperforms all compared state-of-the-art methods on all datasets.

When compared on synthetic datasets: GoPro and HIDE, our HI-Diff obtains the 0.25 dB gain on
GoPro over Stripformer [44], the second best method. Meanwhile, compared with Restormer [53],
the backbone of our method, our HI-Diff yields 0.41 dB and 0.24 dB gains on GoPro and HIDE.

When compared on real-world datasets: RealBlur-R and RealBlur-J, our HI-Diff exhibit a better gen-
eralization ability than other state-of-the-art algorithms. Compared with the recent best-performing
method on GoPro, Stripformer, our method yields 0.33 dB on the RealBlur-J dataset. Besides, the
HI-Diff outperforms the backbone, Restormer [53], by 0.09 dB on RealBlur-R and 0.19 dB on
RealBlur-J. All these comparisons demonstrate the effectiveness of our HI-Diff.
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GoPro [28] HIDE [39] RealBlur-R [34] RealBlur-J [34]Method PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

DeblurGAN [22] 28.70 0.858 24.51 0.871 33.79 0.903 27.97 0.834
DeepDeblur [28] 29.08 0.914 25.73 0.874 32.51 0.841 27.87 0.827
DeblurGAN-v2 [23] 29.55 0.934 26.61 0.875 35.26 0.944 28.70 0.866
SRN [43] 30.26 0.934 28.36 0.915 35.66 0.947 28.56 0.867
DBGAN [56] 31.10 0.942 28.94 0.915 33.78 0.909 24.93 0.745
MT-RNN [30] 31.15 0.945 29.15 0.918 35.79 0.951 28.44 0.862
DMPHN [55] 31.20 0.940 29.09 0.924 35.70 0.948 28.42 0.860
SAPHN [42] 31.85 0.948 29.98 0.930 N/A N/A N/A N/A
SPAIR [32] 32.06 0.953 30.29 0.931 N/A N/A 28.81 0.875
MIMO-UNet+ [5] 32.45 0.957 29.99 0.930 35.54 0.947 27.63 0.837
TTFA [4] 32.50 0.958 30.55 0.935 N/A N/A N/A N/A
MPRNet [54] 32.66 0.959 30.96 0.939 35.99 0.952 28.70 0.873
HINet [2] 32.71 0.959 30.32 0.932 35.75 0.949 28.17 0.849
Restormer [53] 32.92 0.961 31.22 0.942 36.19 0.957 28.96 0.879
Stripformer [44] 33.08 0.962 31.03 0.940 36.08 0.954 28.82 0.876
HI-Diff (ours) 33.33 0.964 31.46 0.945 36.28 0.958 29.15 0.890

Table 2: Quantitative comparisons on the four benchmark datsets: GoPro [28], HIDE [39], and
RealBlur [34] (RealBlur-R and RealBlur-J). All models are trained only on GoPro dataset. Best and
second best results are colored with red and blue. Our HI-Diff outperforms state-of-the-art methods.

GoPro

GT Blurry DBGAN [56] MIMO-UNet+ [5]

MPRNet [54] Restormer [53] Stripformer [44] HI-Diff (ours)

HIDE

GT Blurry DBGAN [56] MIMO-UNet+ [5]

MPRNet [54] Restormer [53] Stripformer [44] HI-Diff (ours)

RealBlur-J

GT Blurry DBGAN [56] MIMO-UNet+ [5]

MPRNet [54] Restormer [53] Stripformer [44] HI-Diff (ours)

RWBI

Blurry DBGAN [56] DMPHN [55] MIMO-UNet+ [5]

MPRNet [54] Restormer [53] Stripformer [44] HI-Diff (ours)

Figure 4: Visual comparison on GoPro [28], HIDE [39], RealBlur [34], and RWBI [56] datasets.
RWBI only contains blurry images are captured with different hand-held devices. Models are trained
only on the GoPro dataset. Our HI-Diff generates images with clearer details.

Visual Results. We show visual comparisons on GoPro [28], HIDE [39], RealBlur [34], and
RWBI [56] in Fig. 4. We can observe that most compared methods suffer from artifacts or still contain
significant blur effects. In contrast, our method can reconstruct more accurate textures and sharper
edges. For example, in the HIDE sample, compared methods fail to reconstruct the white lines in
the cloth, while our method recover sharp textures. All these visual comparisons are consistent with
quantitative results and further demonstrate the superiority of our method.
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DeblurGAN-v2 SRN MIMO-UNet+ MPRNet BANet Stripformer HI-DiffDataset Method [23] [43] [5] [54] [45] [44] (ours)

RealBlur-R PSNR ↑ 36.44 38.65 N/A 39.31 39.55 39.84 41.01
[34] SSIM ↑ 0.935 0.965 N/A 0.972 0.971 0.974 0.978

RealBlur-J PSNR ↑ 29.69 31.38 31.92 31.76 32.00 32.48 33.70
[34] SSIM ↑ 0.870 0.909 0.919 0.922 0.9230 0.929 0.941

Table 3: Quantitative comparisons on RealBlur [34]. All models are trained and tested on the
corresponding datasets. Best and second best results are colored with red and blue.

DMPHN MIMO-UNet+ MPRNet HINet Restormer Stripformer HI-Diff HI-Diff-2Method [55] [5] [54] [2] [53] [44] (ours) (ours)

Params (M) 21.70 16.11 20.13 88.67 26.13 19.71 28.49 23.99
FLOPs (G) 195.44 150.68 760.02 67.51 154.88 155.03 142.62 125.47
PSNR (dB) 31.20 32.45 32.66 32.71 32.92 33.08 33.33 33.28

Table 4: Model complexity comparisons. Params, FLOPs, and PSNR on GoPro are reported. When
we calculate the FLOPs, the image size is set as 3×256×256.

RealBlur-J

GT Blurry DeblurGAN-v2 [23] SRN [43]

MIMO-UNet+ [5] MPRNet [54] Stripformer [44] HI-Diff (ours)

Figure 5: Visual comparison on the RealBlur [34] dataset. Models are trained on the RealBlur dataset.

4.4 Evaluation on Real-World Datasets

We further compare our HI-Diff with 6 state-of-the-art methods: DeblurGAN-v2 [23], SRN [43],
MIMO-UNet+ [5], MPRNet [54], BANet [45], and Stripformer [44]. We show quantitative and visual
results in Tab. 4 and Fig. 5. For fair comparisons, all previous method results are directly cited from
the original papers or generated from official pre-trained models.

Quantitative Results. Table 3 reports PSNR/SSIM comparisons on real-world datasets: Real-
Blur [34] (RealBlur-R and RealBlur-J). We train and test our HI-Diff on the RealBlur datasets,
following previous works [54, 44]. Our method significantly outperforms other compared methods on
the two datasets. Especially, compared with the recent best method, Stripformer, the HI-Diff obtains
1.17 dB and 1.22 dB gains on RealBlur-R and RealBlur-J, respectively.

Visual Results. We show visual comparisons on RealBlur in Fig. 5. Our method recovers sharper
images with more high-frequency textures. However, most compared methods fail to recover clear
images. For instance, compared methods have severe artifacts and blurring on green words, while our
HI-Diff restores correct textures that are generally faithful to the ground truth. These visual results
further demonstrate the strong ability of our HI-Diff for realistic image deblurring.

4.5 Model Size Analyses
We further show the comparison of model size (e.g., Params) and computational complexity (e.g.,
FLOPs) in Tab. 4. The FLOPs are measured when the image size is set as 3×256×256. It shows that
our HI-Diff has less FLOPs than CNN-based methods (e.g., MPRNet [54]). Meanwhile, compared
with Transformer-based methods, Restormer [53] and Stripformer [44], our HI-Diff performs better
with comparable Params and less FLOPs. It indicates that our method achieves a better trade-off
between performance and computational consumption. To further demonstrate the effectiveness of our
method, we provide another variant of HI-Diff with less Params and FLOPs and better performance
than Restormer. More details about HI-Diff-2 are provided in the supplementary material.

5 Conclusion
In this paper, we design the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image
deblurring. Specifically, HI-Diff performs the diffusion model to generate the prior feature for a
regression-based method during deblurring. The regression-based method preserves the general
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distribution, while the prior feature generated by the diffusion model enhances the details of the
deblurred image. Meanwhile, the diffusion model is performed in a highly compact latent space
with computational efficiency. Furthermore, we propose the hierarchical integration module (HIM)
to fuse the prior feature and image features of Transformer hierarchically for better generalization
ability in complex blurry scenarios. Extensive experiments on synthetic and real-world blur datasets
demonstrate that our proposed HI-Diff outperforms state-of-the-art methods.
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