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ABSTRACT

Sycophantic response patterns in Large Language Models (LLMs) have been in-
creasingly claimed in the literature. We review methodological challenges in mea-
suring LLM sycophancy and identify five core operationalizations. Despite syco-
phancy being inherently human-centric, current research does not evaluate human
perception. Our analysis highlights the difficulties in distinguishing sycophantic
responses from related concepts in AI alignment and offers actionable recommen-
dations for future research.

1 ETYMOLOGY: FROM TRADING FIGS TO AI MODEL EVALUATION

Sycophancy describes an undesired form of flattery or fawning in a servile or insincere way, espe-
cially to gain favor (Lofberg, 1917). While the term has gained prominence in contemporary AI
research, its origins trace back to ancient Greece. The word derives from the Greek ‘sukophantēs’,
combining ‘sykos’ (fig) and ‘phainein’ (to show or reveal), as detailed by (D’Amico, 2018, p. 426).
This etymology reflects its origins in Athenian commerce law, specifically regulations around fig
exports, where the term evolved to describe those who leveraged false accusations for personal ad-
vantage (Harvey, 1990; Osborne, 1990). This historical conception of sycophancy as calculated
insincerity for personal gain assumes human agency and motivation, making it inherently oppor-
tunistic and human-centric.

2 THE MANY FACES OF SYCOPHANCY IN AI ALIGNMENT RESEARCH

In AI alignment research, the term sycophancy has been used to describe a specific form of undesir-
able model behavior1. More specifically, language models are considered sycophantic if they adapt
their output to please users, even when such responses are flawed or incorrect (Perez et al., 2022;
Sharma et al., 2023). Although motivated by AI safety concerns, such as creating “echo chambers by
repeating users’ preferred answers” (Perez et al., 2022), distinguishing the concept from related AI
alignment concepts like personalization is unclear (Batzner et al., 2024). Perez et al. (2022) intro-
duced sycophancy as a systematic bias resulting from reinforcement learning from human feedback
(RLHF), an alignment approach in which models learn to optimize for human approval, but not
necessarily truthful or helpful responses (Chen & Choi, 2024). This phenomenon manifests itself
in various ways. For example, models may conform to user biases or exhibit increased suscepti-
bility to deceptive prompts (Zhao et al., 2024). In retrieval contexts, systems exhibit sycophancy
by preferentially surfacing information that aligns with the perspective in the query (Chen & Choi,
2024). Some researchers have reframed this behavior and conceptualized it as (i) ‘specification
gaming’ (Denison et al., 2024), highlighting how AI systems may learn unintended behaviors that
are inadvertently rewarded during training, or as (ii) ‘agreeableness bias’ (Lim & Lee, 2024). This
conceptual ambiguity of sycophancy in AI alignment research is further evidenced by Lim & Lee
(2024)’s terminological shift from ‘sycophancy’ to ‘agreeableness bias’ between their August and
October 2024 preprint versions. While conceptualizations of sycophancy vary across the AI align-
ment literature, researchers share a common concern: alignment processes may inadvertently cause
models to prioritize user approval at the expense of factual or otherwise more balanced outputs.

1Throughout this paper, we adopt anthropomorphic terminology as it appears in the related work we refer-
ence, while acknowledging its inherent limitations.
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3 MEASURING SYCOPHANCY: CLAIMS AND REQUIREMENTS

Although sycophantic behavior is frequently reported in AI alignment research, the terminology
lacks systematic definition and classification. We review studies that quantify sycophancy in lan-
guage models (Appendix A.3), presenting their methodological approaches and evaluation frame-
works in Table 2. We identify five main measurement approaches: persona-based prompts (“I
am”/“You are”), direct questioning (“Are you sure?”), keyword/query-based manipulation, visual
misdirection, and LLM-based evaluations (Table 1). These approaches have been evaluated using
various benchmarks, including multiple choice tasks, free-form text evaluation, vision language QA,
and retrieval diversity testing (Table 1).

While sycophancy implies behavior intended to gain human approval, current research methods
largely evaluate this phenomenon without direct human involvement in the assessment process (Ta-
ble 2). The reviewed papers use persona-based and non-persona-based evaluation approaches. The
persona-based approach (Perez et al., 2022; Wei et al., 2023; Denison et al., 2024) uses role de-
scriptions (e.g., “I am a 38 year old PhD candidate in computer science at MIT”; Perez et al. (2022,
p. 2)) to evaluate model responses. In contrast, non-persona-based approaches employ techniques
such as direct questioning (“Are you sure?”; Sharma et al. (2023); Chen et al. (2024)) or prompt-
based misleading approaches (e.g., Zhao et al. (2024); RRV et al. (2024); Ranaldi & Pucci (2024);
Lim & Lee (2024)) to assess sycophantic tendencies. Although Williams (2024) is the only work in
our sample that incorporates human evaluation through crowdworkers, their assessment focused on
overall model performance rather than on specifically measuring human perception of sycophantic
behavior.

Synthesizing the previous insights reveals a critical methodological gap between the claims made
about sycophancy in language models and current evaluation approaches. This disconnect raises
fundamental questions about the validity of existing research designs and their different approaches
in how they conceptualize sycophancy in the context of AI alignment research. Although automated
evaluations allow for scalable assessment frameworks, three limitations emerge: First, they may not
be able to comprehensively capture the ways in which language models adapt their responses to
seek human approval. This is primarily due to the lack of a direct assessment of human perception.
Second, they may not be able to disambiguate and precisely infer the factors that shape model
behavior and their influence. Third, they rely on different conceptualizations of sycophancy, thus
inherently limiting cross-study comparability.

4 CONCLUSION AND RECOMMENDATIONS

Our analysis reveals a fundamental disconnect in sycophancy research: while the term describes
behavior intended to gain human approval, current measurement approaches lack a coherent un-
derstanding of ‘AI sycophancy’ as well as a direct assessment of human perception. Despite the
proliferation of automated metrics, benchmarks, and evaluation frameworks (Table 1), none of those
we reviewed explicitly measures how humans perceive sycophantic language model behavior. This
methodological gap raises critical questions about the validity and comparability of current syco-
phancy evaluation research designs. Future research should prioritize the following:

✓ Terminology: Development of a coherent understanding of ‘AI sycophancy’ to enable
consistent measurement and cross-study comparability.

✓ Human-Centricity: To claim sycophancy, develop methodological frameworks for mea-
suring human perceptions, consistent with the human-centric assumptions underlying the
concept of sycophancy.

✓ Specificity: When evaluating model responses without human perception, use terminology
like “agreeableness bias” or “response alignment” that better reflects the concept being
measured.

Addressing these definitional and methodological challenges is crucial to establish coherent metrics
of AI sycophancy and to distinguish it meaningfully from related concepts such as personalization.
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A APPENDIX

A.1 COMPARISON OF COMMON SYCOPHANCY MEASUREMENT APPROACHES

Measurement
Approach

Core Mechanism Opportunties Challenges Sample
References

Persona
Prompts

Inject a synthetic or real-
world persona (e.g., “I
am a 38-year-old PhD
candidate”), then observe
whether the model adjusts
its answers to align with
that persona.

(i) Control for isolated
persona attributes; (ii)
Enables counterfactual
experiments; (iii) Re-
flect Role Playing via
system prompts.

(i) Representativeness and
ecological validity of those
personae; (ii) May conflate
personalization with syco-
phancy; (iii) Selection bi-
ases in persona design.

Perez et al.
(2022)
Wei et al.
(2023)
Denison et al.
(2024)

Direct
Questioning

Use queries like “Are you
sure about that?” to see if
the model changes correct
answers to incorrect ones to
please the user.

(i) Minimal prompt
engineering setup; (ii)
Simple evaluation; (iii)
Simulates real-world
user interaction.

(i) Persona context is miss-
ing; (ii) Binary notion of
agreement might oversim-
plify; (iii) No distinction to
common robustness evalua-
tions.

Sharma et al.
(2023)
Chen et al.
(2024)

Keyword/Query
Misdirection

Deliberately insert mis-
leading terms into queries
to test whether the model
changes its response.

(i) Isolate specific
triggers or keywords;
(ii) Minimal implemen-
tation; (iii) Quantifies
robustness.

(i) Poor ecological validity;
(ii) No adaptation to user
persona; (iii) No distinction
to common robustness eval-
uations.

RRV et al.
(2024)
Ranaldi &
Pucci (2024)

Visual
Misdirection
(Multimodal)

Show an image and a
text prompt together with
contradictory or misleading
statements to check if the
model agrees.

(i) Can test multimodal
tasks; (ii) Ecological
validity of false user
input; (iii) Evaluate
model’s ability to cor-
rect.

(i) Requires advanced mul-
timodal LLMs; (ii) Con-
founds with multiple phe-
nomena; (iii) Resource-
intensive.

Lim & Lee
(2024)
Zhao et al.
(2024)

LLM-based
Evaluation

Use a (second) language
model to label sycophancy,
evaluate model outputs or
provide a baseline.

(i) Highly scalable; (ii)
Continuous evaluation
possible; (iii) simple
implementation via
API calls.

(i) Biases of LLM-based
judge; (ii) Poor experi-
ment control over LLM-
based judge; (iii) Poor eco-
logical validity.

Williams
(2024)
Chen & Choi
(2024)

Table 1: Comparison of common sycophancy measurement approaches in LLMs. Each of these
approaches operationalizes the concept of sycophancy differently. This table subsumes five core
mechanisms and summarizes their opportunities and challenges.
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A.2 LITERATURE REVIEW

Paper Measurement Approach Main Benchmark

Perez et al. (2022) Persona prompts (“I am”) LM-generated Sycophancy QA datasets

Wei et al. (2023) Persona prompts (”I am”) LM-generated Sycophancy QA (Perez et al., 2022)

Sharma et al. (2023) Questioning (“Are you sure?”) SycophancyEval (MMLU, MATH, AQuA, TruthfulQA,
TriviaQA); Helpful-Harmless hh-rlhf (Bai et al., 2022)

Chen et al. (2024) Questioning (“Are you sure?”) SycophancyEval (Sharma et al., 2023)

Zhao et al. (2024) Keyword-based misdirection Multimodal QA datasets
(POPE, AMBER, RealwordQA, ScienceQA)

Lim & Lee (2024) Visual misdirection vMMLU & vSocialIQa (Visual MMLU & Social IQa)

Denison et al. (2024) Persona prompts (“I am”) LM-generated Sycophancy QA (Perez et al., 2022)

Williams (2024) LLM-based evaluation Helpful-Harmless hh-rlhf (Bai et al., 2022)

Chen & Choi (2024) Query Manipulation Benchmark for Retrieval Diversity for Subjective ques-
tions (BERDS)

RRV et al. (2024) Keyword manipulation Gemini-based fact checking;
LLM-expanded misleading keywords dataset

Gallego (2024) Persona prompts (“You are”) SycophancyEval (Sharma et al., 2023)

Ranaldi & Pucci
(2024)

Misleading Prompts LM-generated Sycophancy QA (Perez et al., 2022)

Min et al. (2025) Influence Functions
and LLM baseline

Helpful-Harmless hh-rlhf (Bai et al., 2022)

Table 2: Overview of sycophancy measurement approaches and evaluation benchmarks.

A.3 PAPER INCLUSION CRITERIA

Papers included in our targeted, non-systematic review of the relevant literature needed to meet the
following criteria: (1) Measure sycophantic model responses empirically; (2) Evaluate pre-trained
language model(s); (3) Are available as preprint or conference proceeding; (4) Must contribute a new
measurement methodology or adaptation of existing methods; (5) Sycophancy must be explicitly
addressed, not only related concepts; (6) Must be written in English.
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