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ABSTRACT

Data condensation (DC) technologies are widely used in buffer-constrained sce-
narios to reduce the memory demands of training samples while maintaining
the training performance of deep neural networks. However, due to the storage
constraints of deployment devices and the high energy costs associated with the
condensation process, synthetic datasets generated by DC often suffer from inferior
performance in terms of training efficiency and scalability, which significantly
limits their practical application across various edge devices. This issue arises
from two main factors: (i) existing state-of-the-art (SoTA) data condensation ap-
proaches update synthetic datasets by intuitively matching intermediate training
outputs (e.g., gradients, features, and distributions) between real and synthetic
datasets, without enhancing their representational information capabilities from
the perspective of the useful information contained; (ii) DC methods do not ad-
equately consider the heterogeneity of storage constraints across different edge
devices, leading to excessive training overheads (i.e., increased consumption or
storage requirements). To address these challenges, we propose a novel method
named Mixture-of-Information Bottleneck Dataset Condensation (MIBDC), which
employs information bottlenecks from synthetic datasets with varying Images Per
Class (IPC) to enhance overall DC generalization and scalability. In particular,
this paper identifies the following two phenomena: (i) the quality of synthetic
datasets improves with an increase in synthetic dataset quantity, and (ii) the smaller
the synthetic dataset, the earlier it reaches the convergence peak. Based on these
findings, this paper proposes that (i) larger synthetic datasets can guide the more ef-
fective convergence of smaller ones, and (ii) the information contained in synthetic
datasets with different IPC numbers can collaboratively enhance dataset conden-
sation generalization. Comprehensive experimental results on three well-known
datasets demonstrate that, compared with SoTA dataset condensation methods,
MIBDC not only improves the generalization performance of trained models but
also decreases training times for various edge devices (training once).

1 INTRODUCTION

Along with the development of artificial intelligence, data-driven Deep Neural Networks (DNNs)
have been widely used in storage resource-limited scenarios such as autonomous driving (Wen
et al.), industrial control, robotics and smart healthcare. However, since DNN training requires
sufficient resources, the performance of DNNs will be severely limited if the quality and quantity of
training samples cannot be guaranteed. For example, the CLIP or Large Language Model consumes
significant storage resources for its training samples and requires hundreds of GPU hours to achieve
an acceptable performance. To address such increasing storage requirements of training datasets and
to accommodate the limited memory capabilities of various Internet of Things (IoT) devices, Dataset
Condensation (DC) technology has been proposed to ensure that effective information contained in
large training datasets can be condensed into a small synthetic dataset. In DC, the key problem is
how to effectively explore and condense proper information from real datasets into corresponding
synthetic datasets without degrading their representation information capabilities.

To solve this problem, many works are proposed, which can be mainly divided into two classes,
i.e., parameter matching methods and distribution matching methods, as shown in Figure 1. The
former is proposed to find superior parameters to align during the DNN training procedure, thus
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Figure 1: (Left) General framework of previous SoTA DC methods: matching intermediate products
extracted by networks from real and synthetic datasets; (Right) the framework of MIBDC: maximizing
the mutual information based on various datasets (including real dataset and label).

optimizing the representation information capability of the synthetic dataset. For example, Zhao
et al. (2021) used gradient matching between the same batch from synthetic datasets and real datasets
with the same DNN. Moreover, Wang et al. (2022) optimized the feature map between the real
datasets. Liu et al. (2023) used the combination to optimize the distance, and Shang et al. (2024)
used mutual information to calculate the distances between synthetic datasets and real datasets.
However, since parameters occupy a very large amount of storage, this requires a huge amount of
memory space during the training procedure. The latter is proposed to enhance the representation
capability of synthetic datasets by the intermediate outputs (i.e., dataset distribution) of DNNs. The
above two kinds of methods can partially improve the representation capability of synthetic datasets,
which inevitably yields the problem of a trade-off between representation capability and limited
storage. This dilemma arises because the information representation capabilities of synthetic datasets
are inherently bottlenecked, which greatly limits the training capabilities of datasets with low IPC
numbers. Therefore, how to squeeze effective information into multi-smaller scales synthetic datasets
and preserve as much useful information as possible from the perspective of information contained
with superior scalability is becoming one of the most urgent challenges in the development of DC.

To solve the above issues, we find that different numbers of synthetic datasets can be treated as variants
containing different effective information in terms of DNN training performance, where the more
information contained, the better DNN obtained. Based on these findings, inspired by the method
of Information Bottleneck (IB), we introduce this metric in synthetic datasets, which can not only
optimize and explain how to extract and transfer effective information in dataset condensation but also
naturally capture the non-linear statistical dependence between real datasets and synthetic datasets.
Inspired by the information contained in the synthetic dataset, we propose a novel method called
mixture-of-information bottleneck guidance in DC. Specifically, we define the knowledge distillation
problem as a bidirectional optimization problem, involving maximizing the mutual information
between real data sets and synthetic data sets and minimizing the mutual information between
synthetic data sets and labels. Then, we derive a mixture-of-information bottlenecked method for
the dataset condensation task using various synthetic datasets in the MI bi-directional optimization
problem of DC. Finally, we design a highly effective optimization strategy in a collaborative manner
for the DC task using the proposed Mixture-of-Information Bottleneck (MIB) methods for Mutual
Information (MI) maximization. In this way, the mixture-information bottleneck using a collaborative
paradigm can not only lead to MI maximization but also minimize the MI from the label. To the best
of our knowledge, it is the first work aiming at optimising the information bottleneck of synthetic
datasets during the DC within a collaborative learning paradigm.

Overall, the contributions of this paper are three aspects. i) To condense the effective information from
a large real dataset to a smaller synthetic dataset under an efficient-reasonable validation metric, we
formulate the DC as an MI bi-directional optimization within multi-information bottleneck constraints
(i.e., real data, other IPC synthetic data and its corresponding labels). To the best of our knowledge,
this is the first work to introduce IB into the DC domain. ii) To optimize the defined problem in
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Figure 2: Motivation of our mixture-of-information bottleneck guidance method.

DC, we derive a highly effective mixture-information bottleneck-guided method. In this way, invalid
information irrelevant to labels will be omitted during optimization, while key information relevant to
labels will be retained in the synthetic dataset. iii) Comprehensive experiments on four well-known
datasets show that our method outperforms existing SoTA methods in the DC domain.

2 MOTIVATION

In the motivation for this paper, as depicted in Figure 2, we observed that during the training procedure,
synthetic datasets with a smaller IPC intend to converge more quickly, whereas those with a larger IPC
converge more slowly. Specifically, the synthetic dataset with an IPC of 1 reaches convergence in the
early stages, while the dataset with an IPC of 50 converges much later. This observation means that
datasets with a smaller IPC can learn features that are simpler with low-density information and more
directly related to the label, whereas datasets with a larger IPC tend to learn features with high-density
information that are indirectly related to the label. Therefore, we assume that there are two classes of
features in the synthetic datasets (i.e., Basic-Coarse-Grained features and Advanced-Fine-Grained
features) after the dataset condensation procedure. The former features represent basic features
of the real datasets that provide an overview but miss more dataset details. Thus, during DC, the
smaller IPC in a synthetic dataset can quickly obtain these features that are easier to obtain but
may miss some fine and intricate details. On the contrary, the latter feature is more challenging to
acquire but contains richer, more dense information that can be helpful in DNN learning. So, the
larger IPC dataset can not only learn the above basic information but also capture detailed, in-depth
features that offer a comprehensive understanding of the real dataset. Thus, we think that during
the dataset condensation procedure, there should be an information-based transformation between
Basic-Coarse-Grained (BCG) features and Advanced-Fine-Grained (AFG) features. For synthetic
datasets with higher IPC, the contained AFG features tend to overlap with BCG features, preventing
the model from effectively learning this high-level information. We assume that this occurs because
BCG features are more closely associated with the label in the method of information bottleneck.
Consequently, during supervised learning, once the model learns the BCG features, it does not learn
the AFG features, leading to insufficient accuracy in synthetic datasets with lower IPC.

Based on the above assumptions, to better optimize the above objectives, we introduce a multi-
synthetic dataset engaged in a collaborative learning framework in DC, named mixture-of-information
bottleneck guided dataset condensation, which is based on IB of various multi-sized synthetic datasets.
Based on the information bottleneck method, the mixture-of-information bottleneck is similar to the
knowledge distillation method, whose main principle is to select a suitable teacher for learning tasks
to expand the contained information of the synthetic dataset in AFG features.
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3 METHOD

In this section, we introduce the methodology of Mixture-of-Information Bottleneck guidance
for Dataset Condensation (MIBDC). First, this paper introduces the existing SoTA DC method
and then introduces the background and effect of the information bottleneck. Later, this paper
formalizes the DC problem as an information compression problem. Then, we transform the current
data compression target into a learnable target optimization problem and introduce our mixture-of-
information bottleneck loss to solve this problem. Finally, we discuss the feasibility and theoretical
proof of the method and give a corresponding discussion.

3.1 PRELIMINARIES

3.1.1 DATASET CONDENSATION

The goal of dataset condensation is to generate a small synthetic dataset D∗
syn = {Xsyn,Ysyn}, where

the same architecture model can be trained obtaining a comparable performance relative to the real
dataset. In this way, the training time of neural networks will be greatly reduced based on such small
synthetic datasets. Based on this method, some representative DD methods generally recommend
that similar intermediate outputs be enforced when training models on real and synthetic datasets.
Existing methods can be formalized as the following optimization problem:

D∗
syn = argmin

Dsyn
EXsyn∼DsynEXr∼Dreal [Dist (f(Xreal; θ

∗), f(Xsyn;Ysyn)] . (3.1)

Here, θ are the learned weights of networks trained on the real dataset Dreal and the synthetic datasets.
The distance function Dist can be used to calculate the distance between the real and synthetic datasets
for obtaining synthetics datasets. By aligning the two extracted intermediate results, one can optimize
the synthetic data to achieve comparable performance to the real data set. Note that how to design the
distance function alignment of networks trained on different datasets to optimize synthetic datasets is
the key in previous DD methods, such as Lee et al. (2022); Wang et al. (2018); Zhao et al. (2021).
Although these distance metrics of DC design bring relatively satisfactory results, since the data set
compression itself is a data compression problem, how to better increase the effective information of
the compressed data set and reduce the useless information of the compression into a synthetic data
set has never been considered.

3.1.2 INFORMATION BOTTLENECK

As a promising method in information extraction, Information Bottleneck (IB) is proposed to extract
relevant information about a target variable Y from an input variable X . This method compresses X
into a more efficient variable T , maximizing the relevant information about Y retained. It balances
the compression and retention of information by minimizing I(T ;X)(the complexity of compression)
and maximizing I(T ;Y )(i.e., the information about Y preserved.) The trade-off is regulated by the
parameter β, a Lagrange multiplier in the optimization formula:

max
P(t|x)

{I(X;T )− βI(T ;Y )}. (3.2)

Here, P(t|x) is the conditional probability distribution of T given X , optimized to finely balance
between compressing X and retaining essential information about Y . Mutual Information (MI),
denoted as I(X,Y ), quantifies the information gained about one random variable by comparing
another. It is measured in bits and reflects the reduction in uncertainty about one variable when the
other is known. High mutual information indicates a significant reduction in uncertainty, and vice
versa. Strictly, for two discrete variables X and Y , their MI can be defined as:

I(X,Y ) =
∑
x,y

PXY (x, y) log

(
PXY (x, y)

PX(x)PY (y)

)
, (3.3)

where PXY (x, y) is the joint distribution, PX(x) =
∑

y PXY (x, y) and PY (y) =
∑

x PXY (x, y)
are the marginals of X and Y , respectively. Under this constraint, the dataset condensation problem’s
target is to save effective information from real datasets and, like the data compression problem,
under the constraints in information bottleneck.
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3.2 INFORMATION BOTTLENECK ESTIMATION

In this section, we first formalize the current dataset condensation problem and propose two opti-
mization objectives: First, the mutual information between synthetic and real datasets is maximized,
and second, the mutual information between synthetic datasets and labels is minimized to enhance
the generalization in the DC procedure. Then, based on such objectives, we propose a mixture-of-
information bottleneck guidance method that utilizes synthetic datasets with various IPC numbers to
guide the DC generalization. From the perspective of information bottleneck, the real and synthesized
data with lower IPC numbers can be compressed more compactly and save more effective AFG
features by using IB guidance.

Problem Formulation: Actually, for variable Xreal representing the samples in the real dataset and
Xsyn means the one in synthetic datasets, we want to maximize the MI between Xreal and Xsyn and
minimize the MI between the Xreal and real label Y, i.e.,

Optimization Objective: X⋆
syn = argmax

Xsyn
[I(Xreal,Xsyn)− βI(Xsyn,Y)] . (3.4)

Note that in this paper, our goal is not direct dataset compression but rather the optimization of a
synthetic dataset with a small IPC number. Therefore, Xreal in the IB represents the real dataset, and
Y denotes to its corresponding label. This means that our method employs the IB theory to dataset
distillation, by reducing the BCG features in the synthetic dataset and increasing the AFG features,
thus improving the generalization performance of the synthetic dataset with a small IPC number
for efficient dataset compression. In this way, real dataset Xreal can distil the maximal effective
information into the synthetic dataset Xsyn. We define the Multi-Layer Perceptron (MLP) in the form
of a one-layer MLP as the mutual information estimator to calculate the mutual information, which
can be defined as:

f(W;x) = (W · σ · x), (3.5)
where x is the input sample and W : RdI 7→ RdO stands for the weight matrix connecting the first
and the last layer, with dI and dO representing the sizes of the input and output of the last network
layer, respectively. The σ(·) function performs element-wise activation operations on the input
feature maps. Based on those predefined notions, the mutual information estimator f(x) employs the
predictions can be obtained by:

oj
syn = f(xj

syn), j ∈ {1, . . . , N}, oj
real = f(xj

real), j ∈ {1, . . . , N}, (3.6)

where N is the number of the training samples.

Theorem 1 (In-variance of Mutual Information): Mutual information is invariant under the
reparametrization of the marginal variables. If X ′ = F (X) and Y ′ = G(Y ) are homeomorphisms
(i.e., F (·) and G(·) are smooth uniquely invertible maps), then

I(X,Y ) = I(X ′, Y ′). (3.7)

Since each information estimator W : RdI 7→ RdO can be considered as the smooth uniquely
invertible maps Theorem 1. Combining this theorem with the definition of MI in Eq 3.7, we observe
that the MI in the targeted data level is equivalent to MI in the predictions level, i.e., ,

I(Xreal,Xsyn) = I(Oreal,Osyn). (3.8)

The proof of this theorem are in Shang et al. (2024). Based on the above method, we can obtain MI
estimates between real and synthetic datasets and MI estimates between synthetic datasets and labels.
In other words, Theorem 1 helps us to better ensure that the mutual information we calculate using
intermediate results or predictions is fully theoretically guaranteed. Therefore, we can convert the
optimization objective Eq 3.9 to the following target.

Estimated Optimization Objective: argmax
Xsyn

[I(Oreal,Osyn)− βI(Osyn,Y)] . (3.9)

3.2.1 MUTUAL INFORMATION NEURAL ESTIMATOR (MINE)

Due to the the mutual information can not be directly calculated Kullback (1997), to tackle this issue,
we introduce the MLP-based MINE Belghazi et al. (2018) to estimate the mutual information between
two synthetic datasets. After obtaining the above optimization objectives, MINE is employed to
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estimate the mutual information I(X,Y) between two variables X and Y. Specifically, given the
predictions X, the target value Y, and the information estimator MLP , we calculate the variational
lower bound of the mutual information between X and Y as follows: The target value Y can be
randomly shuffled to form a new edge distribution Ỹ = random(Y). Secondly, the prediction of the
joint and marginal distributions can be defined as follows:

(x(1), y(1)), . . . , (x(b), y(b)) ∼ PXY , ỹ
(1), . . . , ỹ(b) ∼ PY , (3.10)

where b is the number of minibatch samples. Then, based on such defined joint and marginal
distributions, we use log-sum-exp techniques to evaluate the lower bound of MI between X and Y:

Iθ(X,Y)← 1

b

b∑
i=1

MLPθ(x
(i), y(i))− log

(
1

b

b∑
i=1

eMLPθ(x
(i),ỹ(i))

)
(3.11)

Since it is difficult to accurately measure or calculate the mutual information itself, the MINE method
used in this paper theoretically proves that it can be close to the true mutual information, so this paper
uses MINE to estimate the mutual information between two variables.

3.3 MIXTURE-OF-INFORMATION BOTTLENECK GUIDED FOR DC

3.3.1 MIXTURE-OF-INFORMATION CALCULATION

Assume that various synthetic datasets [D1, ..., Dn, ..., DN ] with multiple IPC numbers are trained
simultaneously. Based on this setting, as shown in Figure 3, we use Eq 3.11 to calculate the
mutual information of each synthetic dataset with different IPC numbers compared with others.

MLP

Real 
Dataset

IPC=1

IPC=n

IPC=N

…

…

MLP

MLP

MLP

Synthetic
Datasets

…

…

MINE

Mixture-Information 
Bottleneck Guided Sample Inference

Estimated MI

…

…

IPC=1

Label

Real 
Dataset

Label

Label

Label

Synthetic
Labels

…

…

IPC=m

IPC=M

Figure 3: Overview of our Mixture-of-Information Bottle-
neck Guided method.

To better introduce how to calcu-
late the mixed information bottleneck,
we select the synthetic data set with
IPC = 1 as an example. The loss func-
tion of the synthetic dataset (IPC =
1) consists of two parts (i.e., match-
ing loss and mixture-of-information
bottleneck loss). The former loss is
the matching loss function based on
the DREAM method, which means
matching the intermediate output on
the gradient and the features. We de-
fine the matching loss to minimize as:

Lmatch =

∥∥θSt − θDt
∥∥2
2∥∥θDt − θD0
∥∥2
2

+

∥∥FS
t − FD

t

∥∥2
2∥∥FD

t − FD
0

∥∥2
2

,

where θ, S, and D represent the
gradients, synthetic dataset, and real
dataset, respectively. F means the fea-
ture after the convolutional layers.

The latter is the mixed information
bottleneck loss function, which can maximise the mutual information compared with the real data set,
IPC = 10, IPC = 50 and other synthetic datasets and decreases the mutual information between labels
and itself below a threshold value. We defined the loss function of the mixture-of-information guided
loss as follows:

LIPC=n
mixture = Iθ(Xreal,Xsyn)− βIθ(Xsyn,Y) + α

N∑
i=1

Iθ(Xsyn, X̃
i
syn). (3.12)

Here, Xi
syn represents the other synthetic datasets, β and α mean the hyper-parameters in the

mixture-of-information bottleneck. The overall loss of the synthetic dataset (IPC=1) can be shown as:

Loverall = Lmatch + LIPC=n
mixture . (3.13)
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Table 1: dataset condensation methods comparisons. The settings are the same as previous SoTAs, BPTT Deng
& Russakovsky (2022), MTT Cazenavette et al. (2022), and DREAM Liu et al. (2023). Importantly, MIBDC can
work as an add-on module for SoTA methods.

MNIST CIFAR10 CIFAR100
IPC-1 IPC-10 IPC-50 IPC-1 IPC-10 IPC-50 IPC-1 IPC-10

Full Set 99.6 ± 0.0 84.8 ± 0.1 56.2 ± 0.3

DD Wang et al. (2018) - 79.5 ± 8.1 - - 36.8 ± 1.2 - - -
LD Bohdal et al. (2020) 60.9 ± 3.2 87.3 ± 0.7 93.3 ± 0.3 25.7 ± 0.7 38.3 ± 0.4 42.5 ± 0.4 11.5 ± 0.4 -
CAFE Wang et al. (2022) 93.1 ± 0.3 97.2 ± 0.2 98.6 ± 0.2 30.3 ± 1.1 46.3 ± 0.6 55.5 ± 0.6 14.0 ± 0.3 31.5 ± 0.2
DM Zhao & Bilen (2023) 89.7 ± 0.6 97.5 ± 0.1 98.6 ± 0.1 26.0 ± 0.8 48.9 ± 0.6 63.0 ± 0.4 11.4 ± 0.3 29.7 ± 0.3
DSA Zhao & Bilen (2021) 88.7 ± 0.6 97.8 ± 0.1 99.2 ± 0.1 28.8 ± 0.7 52.1 ± 0.5 60.6 ± 0.5 16.8 ± 0.2 32.3 ± 0.3
DC Zhao et al. (2021) 91.7 ± 0.5 97.4 ± 0.2 98.9 ± 0.2 28.3 ± 0.5 44.9 ± 0.5 53.9 ± 0.5 12.8 ± 0.3 25.2 ± 0.3
DCC Lee et al. (2022) - - - 32.9 ± 0.8 49.4 ± 0.5 61.6 ± 0.4 13.3 ± 0.3 30.6 ± 0.4
DSAC Lee et al. (2022) - - - 34.0 ± 0.7 54.5 ± 0.5 64.2 ± 0.4 14.6 ± 0.3 33.5 ± 0.3
FRePo Zhou et al. (2022) 92.4 ± 0.5 98.4 ± 0.1 98.8 ± 0.1 41.3 ± 0.5 59.6 ± 0.3 63.6 ± 0.2 24.8 ± 0.2 31.2 ± 0.2
FRePo-w Zhou et al. (2022) 93.0 ± 0.4 98.6 ± 0.1 99.2 ± 0.0 46.8 ± 0.7 65.5 ± 0.4 71.7 ± 0.2 28.7 ± 0.1 42.5 ± 0.2
MTT Cazenavette et al. (2022) 91.4 ± 0.9 97.3 ± 0.1 98.5 ± 0.1 46.3 ± 0.8 65.3 ± 0.7 71.6 ± 0.2 24.3 ± 0.3 40.1 ± 0.4
TESLA Cui et al. (2022) - - - 48.5 ± 0.8 66.4 ± 0.8 72.6 ± 0.7 24.8 ± 0.4 41.7 ± 0.3
MIDD4 Shang et al. (2024) - - - 51.9 ± 0.3 70.8 ± 0.1 74.7 ± 0.2 31.1 ± 0.4 47.4 ± 0.3
DREAM Liu et al. (2023) 95.7 ± 0.1 98.6 ± 0.1 99.2 ± 0.1 51.1 ± 0.3 69.4 ± 0.4 74.8 ± 0.1 29.5 ± 0.3 46.8 ± 0.7

MDC He et al. (2024) - - - 49.6 ± 0.3 66.7 ± 0.4 74.5 ± 0.1 27.6 ± 0.3 41.5 ± 0.7
MIBDC 95.8 ± 0.1 98.6 ± 0.1 99.2 ± 0.1 52.5 ± 0.3 70.9 ± 0.1 75.2 ± 0.1 31.3 ± 0.6 47.4 ± 0.3
∆ (0.1↑) (0.0-) (0.0-) (1.4↑) (1.5↑) (0.2↑) (1.8↑) (0.6↑)

4 EXPERIMENTS

In this section, we conduct comprehensive experiments to evaluate our proposed method MIBDC on
three different datasets for the DC task. We designed comprehensive experiments to address the
following three Research Questions (RQ):

RQ1 (Effectiveness of MIBDC): How does MIB compare to the current state-of-the-art dataset
distillation methods in terms of effectiveness?

RQ2 (Impact of MIB Guidance): How does MIB itself affect the loss of the main task? How does
MIB impact the contained information of synthetic datasets?

RQ3 (Impact of MIB Parameters): How do the hyperparameters of MIB influence its performance?

We first describe the implementation details of MIBDC, and then compare our method with several
SoTA DC methods to demonstrate the superiority of our proposed method. Finally, we validate the
effectiveness of the MI module (connected with Eq 3.12 and Eq 3.13) by a series of ablation studies.

4.1 DATASETS AND IMPLEMENTATION DETAILS

To validate the efficacy and effectiveness of our approach, we implemented our method using PyTorch
and compared its performance with various state-of-the-art Dataset Condensation (DC) methods. We
conducted all experiments on a Ubuntu server with a 2.9GHz Intel Xeon CPU, 256GB of memory,
and an NVIDIA A10 Tensor Core GPU. We use MNIST LeCun et al. (1998), and CIFAR10/100
datasets to conduct our experiments.

Datasets. MNIST LeCun et al. (1998) is a dataset for handwritten digits recognition that is widely
used for validating image recognition models. It contains 60,000 training images and 10,000 testing
images with the size of 28× 28. CIFAR10/100 Krizhevsky et al. (2009) are two datasets consist of
tiny colored natural images with the size of 32× 32 from 10 and 100 categories, respectively. In each
dataset, 50,000 images are used for training and 10,000 images for testing.

4.2 RQ1: COMPARISON WITH SOTA METHODS

We compare mid with a series of state-of-the-art (SoTA) dataset distillation methods, including DD
Wang et al. (2018), LD Bohdal et al. (2020), DC Zhao et al. (2021), DC with Differentiable Siamese
Augmentation (DSA) Zhao & Bilen (2021), DC with Distribution Matching (DM) Zhao et al.
(2021), CAFE Wang et al. (2022), FRePo Zhou et al. (2022), TESLA Cui et al. (2022), BPTT Deng
& Russakovsky (2022), and MTT Cazenavette et al. (2022). Table 1 shows the performance and
comparison results of our method across the three datasets. Evaluating the overall performance of
MIB on these mainstream dataset extraction benchmarks, it is evident that our approach consistently
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outperforms existing SoTA methods, including those based on information gain. For instance, in
the scenario of generating 10 images per class, our method achieves the best results across all
datasets. Furthermore, when synthesizing 10 images per class using CIFAR100 as a real-world
dataset, our method surpasses DREAM and MIDD4 by 1.8% and 0.7%, respectively. Notably, our
approach requires only a single training run to generate synthetic datasets of all desired sizes, which
significantly enhances the training efficiency for IoT devices of varying scales.

4.3 RQ2: THE IMPACT OF MIXTURE-OF-INFORMATION BOTTLENECK GUIDANCE

4.3.1 REGULARIZATION PROPERTY

This section analyzes the changing trend of the dataset distillation loss during training. The loss
shown is the sum of the Lmatch of IPC=1, IPC=10, and IPC=50, the value of the previous term of
Eq 3.11. From Figure 4, we can observe that under the guidance of mixed mutual information, even
though the initial loss of MIBDC is not as small as that of DREAM (the randomness introduced by
the dataset initialization), as the number of training rounds gradually increases, the final loss also
decreases sharply, so that the SoTA performance in Table 1 can be obtained. Therefore, we can
conclude that the mixture-of-information guidance loss actually plays a regularization property in the
whole DC procedure.
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Figure 4: Lmatch curves training with/without Mixture-of-information Bottleneck Guidance.
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(c) MIBDC (IPC=50)
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Figure 5: The t-SNE of feature vectors under two dataset condensation method on CIFAR-10.
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4.3.2 CONTAINED INFORMATION ANALYSIS

To describe the detailed information, we use the t-SNE graph to describe the contained information in
the synthetic dataset compared to other IPC numbers. As can be seen from the Figure 5, after using
MIB guidance, the distances between each class in synthetic datasets with different IPC numbers have
been improved (indicated by the scale of the Y-axis), which means that the information contained in
the synthetic data sets has been partially improved.

4.4 ABLATION STUDY

In this section, we present a series of experiments focused on hyperparameters, using the IPC=1
dataset as a representative example. We examine the effects of parameters α and β under three
different conditions (0.1, 0.5, 1), with the results summarized in the accompanying Table 2. From the
data, we observe that when the value of beta is low, it positively influences the overall performance of
the synthetic dataset. However, as beta increases, its impact on performance becomes progressively
negative.

Table 2: Hyperparameter tuning results: α and β in CIFAR10 with IPC=1

Alpha (α) Beta (β) Accuracy (%)
0.1 0.1 49.1±0.3
0.1 0.5 48.3±0.4
0.1 1.0 47.6±0.2
0.5 0.1 50.7±0.3
0.5 0.5 49.5±0.2
0.5 1.0 48.7±0.2
1.0 0.1 52.5±0.3
1.0 0.5 50.9±0.2
1.0 1.0 49.6±0.4

5 RELATED WORK

To address this issue, various methods have been proposed, which can be broadly categorized into two
classes: parameter matching methods and distribution matching methods. The parameter matching
approach focuses on aligning superior parameters during the DNN training process to optimize
the representational capacity of synthetic datasets. For instance, Zhao et al. (2021) used gradient
matching between synthetic and real dataset batches with the same DNN. Similarly, Wang et al. (2022)
optimized feature maps derived from real datasets, while Liu et al. (2023) employed a combination
of techniques to optimize distance, and Shang et al. (2024) used mutual information to measure the
distance between synthetic and real datasets. However, since parameters require substantial storage,
this approach demands a large amount of memory during training. On the other hand, distribution
matching methods aim to enhance the representational capability of synthetic datasets by focusing
on the intermediate outputs (i.e., dataset distribution) of DNNs. While both methods can partially
improve the representational capacity of synthetic datasets, they inevitably face a trade-off between
representational power and storage constraints.

6 CONCLUSION

In this paper, we propose a method named Mixture-of-Information Bottleneck Dataset Condensation
(MIBDC) method. The proposed method effectively addresses the limitations of existing data
condensation technologies by enhancing both the generalization performance and scalability of
synthetic datasets across edge devices. By leveraging information bottlenecks and collaboratively
utilizing synthetic datasets with varying images per classses, MIBDC not only improves dataset
quality and convergence but also reduces training overheads. The experimental results validate the
superiority of MIBDC over state-of-the-art methods, showcasing its potential for efficient deployment
in buffer-constrained and heterogeneous edge environments.
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