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Abstract

The quadratic complexity of self-attention prevents transformers from scaling
effectively to long input sequences. On the other hand, modern GPUs and other
specialized hardware accelerators are well-optimized for processing small input
sequences in transformers during both training and inference. A natural question
arises: can we take advantage of the efficiency of small transformers to deal with
long input sequences?

In this paper, we show that transformers with long input sequences (large trans-
formers) can be efficiently simulated by transformers that can only take short input
sequences (small transformers). Specifically, we prove that any transformer with
input length N can be efficiently simulated by only O((NN/M)?) transformers
with input length M < N, and that this cannot be improved in the worst case.
However, we then prove that in various natural scenarios including average-case
inputs, sliding window masking and attention sinks, the optimal number O(N/M)
of small transformers suffice.

1 Introduction

The transformer architecture [VSP™ 17 has revolutionized modern machine learning, natural language
processing and computer vision. It achieves state-of-the-art performance on various tasks such as
language reasoning [Dee21l, [Ope20]], image recognition [KDW ™21, ICMS™20|] and many others. At
the core of the transformer architecture is the attention mechanism, which captures correlations
between all pairs of tokens. However, this is also a major bottleneck for transformers, as the quadratic
complexity (in both time and memory) of the attention mechanism prohibits effective scaling of
transformers as the sequence grows in length. Moreover, it has been theoretically proved that the
quadratic complexity cannot be avoided (under popular complexity-theoretic assumptions) [AS24].
To address this fundamental issue, there has been a fruitful literature on the design of “subquadratic
alternatives" to transformers, where researchers come up with mechanisms that replace the attention
mechanism and take subquadratic time (usually close to linear time) [KKL20, ICLD™ 21, IDFET22,
KMZ24, [ BPC20,|GD23|]. However, they usually have worse performance than standard transformers,
especially on downstream tasks and translation [VPSP23| JBKM24| IAY?25]].

In the meantime, modern GPUs are increasingly optimized for handling short-to-moderate transformer
contexts [WXQ™21, [DFET22]. Some companies are even producing specialized hardware for
efficient transformer inference that have superior performance on inputs of length between 128 to
2048 [Kim?24, [Etc24]. This approach motivates the following questions:

Can we use small transformers to perform tasks more efficiently than large transformers? Are
(multiple) small transformers inherently capable of dealing with long contexts?
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In this paper, we give positive answers to these questions through the lens of representational strength,
which studies whether one can select parameters for transformers so that they can perform certain
tasks of interest. The representational strength of transformers has been studied broadly in recent
years [BHBK24, LAG™ 23| [SHT24, [MS23]], and it is believed that it is one of the core reasons why
transformers outperform previous architectures such as RNN and LSTM [WDL25, AET 24, [SHT23].

Our problem can be stated as follows. Suppose that we have all the parameters of a large transformer
T with input length N, as well as an input X that we would like to evaluate 7 on. However, to
evaluate 7 (X'), we are not allowed to perform any particularly complicated computations; we are
restricted to simple operations, and to making use of a small transformer O (as an oracle) that can
only take input sequences of length M < N. We can input into O any sequence and parameters that
we can easily compute, and obtain its output. Our goal is to minimize the number of calls to O that
we need to obtain 7 (X)) for arbitrary input X of length N.

Our main results show that roughly O((N/M)?) oracle calls suffice, which we show is optimal. In
addition, our algorithm requires minimal processing outside of the oracle calls, and it has properties
needed for efficient training and inference, including that the gradients of its parameters are easily
computed, and that its oracle calls can be computed in parallel in only O (L) rounds of adaptivity,
where L is the number of layers in the large transformer 7.

In addition, we show that in many scenarios arising in practice, such as when certain masking
schemes are used, or when the data is not “worst-case” and satisfies some boundedness guarantees,
the information-theoretically optimal O(N /M) oracle calls suffice.

Our results provide a new way to deal with long input sequences for transformers, as we prove that
any computation performed by large transformers can be decomposed into computations that only
use smaller transformers. If the oracles are implemented using a quadratic number of floating-point
operations, then our algorithm also still requires a quadratic amount of floating-point operations.
However, if modern GPUs enable faster transformer inference with respect to the “wall-clock™
time when the input sequence is short-to-moderate, then our algorithms allow faster wall-clock
time inference. For example, if the oracle can compute the output using O(M) wall-clock time
compared to the standard O(M?) time, then the total wall-clock running time of our algorithms will
be O(N?/M).

Our approach is fundamentally different from designing “subquadratic alternatives” to transformers
[KKL20, ICLD" 21, BPC20, KMZ24, [GD23]. In particular, our algorithm preserves the represen-
tational strength of transformers (or even improves it), whereas it has been shown that all the
subquadratic alternatives to transformers will lose representational strength as they cannot capture all
the pairwise relationship even approximately [AY25]].

Now we define our model of computation and state our main contributions in more detail.

1.1 Computational Model for Simulating Large Transformers

We now describe our model of computation in more detail. We are careful to allow only very simple
operations beyond oracle calls, to ensure that the vast majority of computation can be performed by
efficient hardware for evaluating small transformers, and that the number of oracle calls accurately
measures the complexity of the problem.

We are given a large transformer 7 with input length N, L layers, H attention heads in each layer,
and embedding dimension d (all the parameters, including the query, key, value matrices in each
of its attention head and multilayer perceptron functions). Throughout this paper, we assume that
L,H < N,d=O(log N),Q(log N) < M < o(N), and one can typically imagine M =~ +/N. Our
goal is to design an algorithm that (approximately) output 7 (X) € R*4 for arbitrary input X
(length at most N).

We have a limited set of operations we can perform as part of the algorithm. We criticaly have access
to a small transformer (oracle) O that can take as input a sequence of length at most M < N, as
well as the parameters for a transformer which has L’ layers and H' attention heads in each layer,
and outputs the transformer evaluated on that sequence. Our algorithm is allowed to:

1. Feed the oracle O with input sequences and parameters which are currently in memory to
obtain its output;



2. Processing: Edit existing vectors or matrices in memory by padding at most O(d?) fixed
numbers (constants independent of the input) to them, or arranging (concatenating) matrices
in memory.

We also assume that all the numbers in input matrices, parameters, and algorithms have O(log N)-bit
representations. We say that such an algorithm simulates T if it always outputs a Y € RY*? such
that

Vi) = T(X)[i, ]2 < el T(X) [ ]2

for all ¢ € [N], and for very small error e = G)(QLN) We want to design algorithms that simulate
T with as fewer oracle calls as possible. (Such an ¢ is essentially unavoidable in limited precision
architectures, but we will see it will be very helpful in some algorithms below. We also emphasize
that our main result, Theorem [I.1] is an exact computation in the unlimited precision scenario with
e=0)

Notice that any such algorithm can be viewed as a composition of oracles and the padding function.
Since we only allow for very simple processing, it is straightforward to compute the gradients of the
padding functions, so training the large model could be done via computing the gradients of the small
transformer oracles.

1.2 Main Results

Quadratic small transformers are sufficient and necessary for worst-case inputs. As summa-
rized below, our main result shows that any computation performed on a large transformer can be
decomposed into multiple instances of computation performed on smaller transformers with the same
computational complexity or floating-point operations. Since the oracle can only tell us the final
output instead of intermediate embeddings, it might be somewhat surprising that we are able to utilize
all the layers in small transformers.

Theorem 1.1 (Theorem [3.4] Theorem[3.5). For any transformer T with L layers, H attention heads
in each layer, input length N, embedding dimension d, there exists an algorithm that simulates T
with O((%)2 . Igf,) calls to a transformer oracle with L' layers, H' attention heads in each layer,
input length M, embedding dimension O( dth' ). The result still holds when we add causal masking
to both large and small transformers.

Notice that these simulations are fight, and roughly (N/M)? oracle calls are necessary in the worst-
case due to computational complexity constraints. To see this, note thatwhen L = H = L' = H' =1,
a straightforward algorithm can compute the responses of T" oracle calls in time only O(TM 2). Thus,
since it is known that even approximation of a large attention requires time Q(N2~°(1)) (under
standard complexity-theoretic assumptions) [AS24]], we must have T > ((N/M )2)L=o(d),

One might be concerned with the fact that O((N/M)?) small transformers have many more param-
eters than one large transformer, since each transformer has ©(d?) parameters, independent of the
sequence length. However, this is not a problem because in our construction, we reuse the parameters
such that the total number of parameters does not depend on V. In fact, all the query, key and value
matrices that we feed into the oracle share most entries with the query, key, value matrices in the
large transformer that are given. We ultimately only have a small, constant factor blowup on the
number of parameters.

Linear small transformers are weaker but sufficient with average-case inputs. Even though we
cannot use O(N /M) oracle calls to simulate a large transformer in the worst case, we show that it is
possible when we have reasonable additional assumptions on the queries, keys and values.

Theorem 1.2 (Informal version of Theorem[@.1). Let T be a transformer with L layers, H attention
heads in each layer, input length N and embedding dimension d. Suppose that the queries, keys and
values in the attention heads are all somewhat bounded in how much they may differ from each other.

Then, there exists an algorithm using O(% . Igﬁ,) oracle calls to simulate T .

Models such as Hierarchical Transformers [PZV ™19} [LLT9L [CDF™22] split the input sequence into
chunks of size M and send each chunk into a transformer before aggregating the outputs. We give
the first provable guarantees for this approach, showing that O(N/M) small transformers have
approximately equal expressivity as a large transformer when the input data satisfies our assumptions.



This provides a possible explanation of the success of Hierarchical Transformers and relevant ideas
from an expressivity viewpoint.

On the other hand, we supplement Theorem[I.2] with its converse, which shows that a linear number
of small transformers are at most as expressive as one large transformer for worst-case inputs (we
only prove the statement for single-head transformers to illustrate the message). As a result, when the
inputs follow assumptions in Theorem[I.2] a linear number of small transformers are equivalent to a
larger one in expressive power.

Theorem 1.3 (Theorem . Given N/M instances of single layer, single head transformers with
input length M and embedding dimension d, there exists an algorithm that simulates them with one
call of a single layer, single head transformer with input length O(N) and embedding dimension
O(d), along with O(N/M ) many matrix multiplications of size M X d x d.

We briefly comment on the small matrix multiplications in Theorem [I.3] Note that they could be
computed in the straightforward way in nearly linear time O(Md?) (since d = O(log N)) and thus
do not substantially contribute to the total running time. This implies, in particular, that they could
not simulate the transformer oracles on their own, and are only “assisting” the large transformer
oracle. Their presence seems unavoidable because of the ©(/N/M) weight matrices of the oracles
which must be simulated by a single large transformer, which only has a constant number of weight
matrices. Moreover, we emphasize that our other constructions are even simpler, and do not need
such small matrix computations outside of the oracle calls.

Efficient simulation of transformers with sliding window and StreamingL.LLMs. Sliding window
and StreamingLLM [XTC™ 24| are popular ways to make transformer inference more memory
efficient. Both sliding window and StreaminglLLM are based on the observation that certain attention
scores are often higher than others. Sliding window is based on the intrinsic structure of languages,
where each token is typically more correlated to the previous few tokens. Therefore, for each query we
only take into account the contributions of the keys that are positionally close to it. The StreaminglL.LM
framework is motivated by the observation that autoregressive LLMs have a surprisingly large amount
of attention score concentrated to the initial tokens, and thus each query only takes into account
keys that are positionally close to it, as well as the first few (usually 3 ~ 5) keys, which are called
“attention sinks”.

‘We show that in both cases we can use a linear number of small transformer oracle calls to simulate
them, even in the worst case. As summarized below, our result indicates that oracles can capture
efficient attention based on sliding windows and attention sinks efficiently.

Theorem 1.4 (Theorem[5.1). For any transformer T with L layers, H attention heads in each layer,
input length N, embedding dimension d, constant-size sliding window, there exists an algorithm that
simulates T with O(% . Igf, ) calls to a transformer oracle with L' layers, H' attention heads in
each layer, input length M and embedding dimension O(dH};L/) with causal masking. This result
still holds if we have constant-size attention sinks.

1.3 Related Work

Representational strength and limitations of transformers. The representational strength of
transformers has been intensively studied in recent years from a variety of perspectives. To list a
few, [MSS22 MS23, ISMW " 24] study the class of problems that transformers can solve from a
circuit complexity viewpoint; [BAG20, LAG™ 23| [Hah20] aim to understand whether transformers
can recognize formal languages; [SHT23]] focus on reasoning tasks and show that transformers
are inherently capable of solving sparse averaging; [SHT24] gives important connections between
transformers and the massively parallel computation model; [HSK™25,[HWL ™ 24]] uses computational
complexity to characterize the computational limits of diffusion transformers and low-rank adaptation
for transformers; [LCW23] studies attention’s capability of approximating sparse matrices; [YBR™20)
YCB™20]] shows that transformers and many subquadratic variants are universal approximators for
sequence-to-sequence functions;

Fast attention mechanisms. There has been a fruitful literature of dealing with long input se-
quence by designing “subquadratic alternatives" to transformers, which are variants on the attention
mechanism which can be performed in subquadratic time. For example, researchers have studied
various sparse attention mechanisms that only consider the query-key pairs that have high correlation,



including Reformer [KKL20], Longformer [BPC20], and Hyperattention [HIK™24]. Additionally,
there has been work on kernel/low-rank attention that approximates attention mechanism using
kernels such as Performer [CLD™21] and Polysketchformer [KMZ24], and there has been a growing
interest in state space models such as Mamba [[GD23]]. See [TDBM22] for a comprehensive survey
on efficient attention mechanisms. However, [AY25] proves that none of these subquadratic models
can capture all pairwise correlations even approximately as the sequence length grows.

2 Preliminaries

2.1 Transformers

We first define the standard attention mechanism in Transformer.
Definition 2.1 (Attention Mechanism). Given input X € RN*? query, key, value matrices
We WE WV e R¥™™, the attention mechanism computes

Attn(X) = softmax((XW)(XWE)T)(XWV) e RV>m,

Here we say N is the context length, and d is the embedding dimension. We will also call each
attention mechanism an attention head in the transformer architecture. For notational convenience,
we let

{ql,...,QN} ERm7{k1,...,l€N} ERm,{Ul,...,UN} eR™
be the rows of XW XWX XWV respectively. We will call them the queries, keys and values.
As a result, the attention mechanism is computing

1
S exp({gi b

N
9 ZGXP(<% k) - v;

for each query g;.

Another important component in transformers is the multilayer perceptron (MLP). An MLP is a
feed-forward, fully-connected neural network consisting of one or more hidden layers using ReLU
activation. The universal approximation theorem states that any continuous function with a finite
support can be approximated by a neural network with one hidden layer [HSW&9]]. In light of this,
in many relevant works [SHT23| [SHT24]], MLPs are modeled as arbitrary functions on compact
domains.

In this paper, our goal is to use small transformers to simulate large transformers, and we would like
to ensure that the MLPs in the small transformers are as simple as possible. We will therefore assume
that MLPs in small transformers compute functions ¢ : R4 — R4 such that:

1. They are at least as strong as the MLPs in the large transformers, i.e. they can do whatever
computation that MLPs in the large transformers can do, and

2. They can do basic arithmetic operations on the input vector z € R? or pad fixed numbers to
it (both are simple continuous functions) as long as they take O(d?) time.

When a MLP ¢ is applied on a matrix, it will be applied row-wise to output another matrix. In other
words, it is applied on each token given a sequence of tokens.

An attention layer f with H attention heads consists of H attention mechanisms with query embed-
ding W,? ,WE WY € R™*™ for the h-th attention such that m = %. The input X is partitioned
into H matrices X [:, D1], ..., X[, Dg] € RV*™ column-wise, where D; = {% +1,...,4
for all ¢, such that the h-th attention head computes

softmax((X[:, Dp]W2)(X[:, DRIWY ) )(X [, DR]WY) € RVX™,
All attention outputs are concatenated column-wise and fed through a layer MLP 1) such that the

output of attention layer f is

F(X) = w([softmax«X[:, DRW2)(X[:, D)WY ) ) (X[, DJWY )}Z;) e R4,



Definition 2.2 (Transformer). A transformer T with L layers and H attention heads in each layer

consists of an input MLP ¢ : RY — RY applied token-wise on the input X € RN xd' I, attention
layers f1, ..., fr : RN*d — RNXdwhich contain L layer MLPs 1)1, . . . , 1, applied token-wise at
the end of each attention layer. For each2 < { < L,

XW = (f1(6(X)), X = w(fo(X 1))
Finally, the transformer T outputs T (X) = X (),

We will simplify the notion of positional encoding into input MLP ¢ and assume that the input MLP
has positional information of the tokens. In other words, if 2:; = X[z, :] is the -th input token, then
¢(x;) is also a function of i.

Transformer is powerful as computational model, and we refer the readers to Appendix [A]for more
operations that transformers can do that will be useful in our proofs.

Transformer Oracle. A transformer oracle O is a small transformer that can only take inputs of
length at most M (its embedding dimension, number of layers, number of heads in each layer, causal
masking etc will be specified in result statements). In this paper we are mostly concerned with
simulating transformers with large input length N using transformer oracles with input length M
such that M < N (recall that we assume Q(log N) < M < o(N)).

2.2 Causal masking, sliding window and StreamingL.LM

We first define the most commonly used causal masking in attention heads.

Definition 2.3 (Causal Masking Attention). Given input X € RN*? query, key, value matrices
W WK WV € RIX™, the attention mechanism with causal masking computes

Attn(X) = softmax (mask((XWQ)(XWK)T)) (XWV) e RV*m,
where the mask function sets all upper triangular entries (not including diagonal entries) to —oo.
Another commonly used masking scheme for efficient transformer inference/training is sliding

window, where we only keep the keys whose indices are close to the query index.

Definition 2.4 (Sliding Window Attention). Given input X € RN*9, query, key, value matrices
We WE WV e R¥™™ and window size r > 1, the attention mechanism with sliding window of
size r computes

Attn(X) = softmax (window((XWQ)(XWK)T)) (XWY) e RN*m,
where the window function sets all entries in {(i,7) : j >iorj <i—r}to —oc.

In other words, for each query ¢; we only look at k; such that: —r +1 < j <.

Finally, StreamingLLM [XTC™24] is a framework designed for efficient training with a finite length
window. Upon having a fixed-size sliding window, each query also attends to the first s keys (called
“attention sinks”), where s is usually a small positive constant (around 3 ~ 5).

Definition 2.5 (Attention Sink). Given input X € RN*? guery, key, value matrices
WQ, WK, WV e RY™™ and window size r > 1, sink size s > 1, the attention mechanism with
attention sink computes

Attn(X) = softmax (sink((XWQ)(XWK)T)) (XWV) e RV*™,
where the sink function sets all entries in {(i,j) : j > iors < j <i—r}to—oc.
Transformers with causal masking attention, sliding window, and Streamingl.LMs are defined exactly

the same as transformers except that we replace standard attention mechanisms by attention with
causal masking, attention with sliding window and attention with sinks.
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Figure 1: Proof Roadmap

2.3 Notation

Throughout the paper, we denote X € RV *4 as the input to the large transformer, where N is the
input length and d is the embedding dimension. For a N x d matrix X, we use X[i,:] to denote
its i-th row, X[:, j] to denote its j-th column, and X[, j] to denote its (i, j)-th entry. Given sets
S C [N],D C [d], we use X[S,:] to denote the submatrix consisting of the rows in S, X[:, D] to
denote the submatrix consisting of the columns in D, and X [S, D] to denote the submatrix consisting
of the entries in S x D of X.

We use W&, WX WV to denote the query, key and value matrices for attention heads, and we use
@, ks, v; to denote the i-th row of XW® XWX XWV respectively. We also let S; = {(t — 1)M +
1,tM} foralll <t¢ < N/M.

We use 1, to denote the a x b matrix whose entries are all 1, and 0, to denote the a x b matrix
whose entries are all 0.

We now turn to proving our results. We give proof sketches and main ideas here; full proofs are
deferred to the appendix.

3  Quadratic calls suffice for simulation

In this section, we prove that O((4%)? - %) small transformers with L’ layers and H’ attention
heads in each layer suffice to simulate a large transformer with L layers and H attention heads in
each layer (Theorem [3.4). Our proof roadmap is illustrated in Figure [I] where the arrows A — B
indicate that A can be simulated by B. Complete proofs of all the statements can be found in
Appendix [B] We first show that this is the case when they both only have a single attention head, i.e
H=H=L=L =1.

Lemma 3.1. For any single layer, single head transformer T with input length N, embedding

dimension d, there exists an algorithm that simulates T with O(J]\VTZ) calls to a transformer oracle
with input length M and embedding dimension O(d).

Proof Sketch. Our high-level idea is to partition the N x NN attention matrix of 7 into ]\1\/;—22 blocks of
size M x M, and then use a constant number of oracles to separately handle each block. In particular,
each block corresponds to two sub-intervals of length M out of the input sequence of length N (one
interval for the rows, or queries, and one interval for the columns, or keys), so we can aim to have an
oracle for sequence length O(M) compute the contribution of each block. To be more precise, as in
Definition[2.T] above, let

{q1,---,qn} ER™ {ky,...,kn} € R™ {vy,...,on} € R™



be the rows of XWC, XWX XWV respectively. Define
a;,j = exp({gi, kj)), and b; j = exp({qi, k;)) - v;.

The goal of the attention mechanism is to compute, for all ¢,

N N N/M
: Y exp((gis ky)) vy = Sibiy _ Seh Yjes, big
N v 7 N - N/M :
Sl exp((an ki) = Yty i Y s, aig

The main technical difficulty is that one oracle call is not able to give us information on the sum of a; ;
(or b; ;) overall j € [N]. However, we show that one oracle call allows us to compute Zj s, @i

where Sy = {(t — 1)M + 1,...,tM?} such that N/M oracle calls suffice to give us Zjvzl a; ;. We
do this by adding in one synthetic token to the sequence so that its contribution is fixed, i.e. its inner
product with all the keys will be the same and known. In addition, we assign its corresponding value
token to be 0 and other value tokens to be 1 such that the output does not contain the synthetic token’s
value, while the normalizing term still counts its contribution. As a result, the output of the oracle
will give us
2 jes, s
Yjes, Qi ta’

where a is the attention value (that we set and thus know in advance) for the normalizing term. This
information allows us to compute | jes, @i,j as we can solve a linear equation using MLP. Secondly,

we will directly feed the oracle with X[S;,:], W@, WX WV to obtain
> jes, bij
Zjest aij’

and since we already know } . ¢, a; j, we can compute b ;, which will furthermore give us

JESt
Z;\/:l b; ; by summing them up. 0O

We now move on to generalizing Lemma to general H, L, H', L', i.e., when the transformer 7
and the oracles can have multiple heads and layers. A first attempt to do this might use different
layers of O to simulate different layers of 7, but this appears difficult to implement, since Lemma[3.T]
requires some processing between layers of attentions that is not available to us when the different
layers are connected only through MLPs within an oracle. Indeed, since the output of each attention
head needs processing before it can be used in another attention head, it is unclear how to take
advantage of more than one layer of each oracle in this way. We instead take a different approach: we
use all the attention heads in all the layers of the oracle completely independently from each other to
simultaneously simulate ©(H'L’) different attention heads, and we use these all together to simulate
one layer at a time of 7.

First, it is not hard to generalize Lemmato general H, L (but still H' = L’ = 1) by separately
simulating each attention head in 7 regardless of which layer it is in:

Corollary 3.2. For any transformer T with L layers, H attention heads in each layer, input length
N, embedding dimension d, there exists an algorithm that simulates T with O((A—I\g)2 - HL) calls to
a single head, single layer transformer oracle with input length M and embedding dimension O(%).

Next we show that a transformer with L’ layers, H' attention heads in each layer, input length M,

and embedding dimension O( dH}}L, ) can be used to simulate H'L’ instances of single head, single

layer transformers with input length M and embedding dimension %. In other words, we are able
to independently use each attention head in the transformer, regardless of which of the L’ layers it
appears in:

Lemma 3.3. One transformer with L' layers, H' attention heads in each layer, input length M and
embedding dimension O( dHHL ) can be used to simulate H' L' independent instances of single layer,

single head transformers with input length M and embedding dimension %.

Proof Sketch. Consider first when L' = 1. A transformer with H' attention heads naturally parti-
tions (by definition) the embedding dimension O(dTH,) into H' parts of size O(<), and each head



separately computes an attention mechanism on one of those parts. The result follows almost directly,
with some care to details about MLPs and aggregation.

More care is needed when L' > 1. We partition the @(dhzy
dimension into L’ parts of size ©( dTH/) each, and the key idea is that each layer will operate on one of
those parts while leaving the rest unchanged. Indeed, weights for the query and keys can be selected
so that only the relevant part of the coordinates will impact the attention matrices at each layer, then
weights for the values can be selected so that the other parts are passed through the layer without

being changed. O

) coordinates of the embedding

Finally, we combine Lemma 3.1} Corollary [3.2]and Lemma[3.3]to obtain our main result.

Theorem 3.4. For any transformer T with L layers, H attention heads in each ljz\z)/er, ingut length N,
embedding dimension d, there exists an algorithm that simulates T with O((47)? - 72%;) calls to
a transformer oracle with L' layers, H' attention heads in each layer, input length M, embedding
dimension O(%/L/).

We additionally show that these results still hold when both the large and small transformers have
causal masking. The proofs are similar to the proof of Theorem [3.4] and are deferred to Appendix [B]

Theorem 3.5. For any transformer T with L layers, H attention heads in each layer, input length
N, embedding dimension d and causal masking, there exists an algorithm that simulates T with
O((E)? - HL) calls to a transformer oracle with L' layers, H' attention heads in each layer, input

I dH'L
length M, embedding dimension O(“57=)

and causal masking.

4 Efficient simulation with average-case input assumptions

4.1 Linear calls suffice for average-case inputs

In this section we prove that if the queries, keys and values in the attention heads are somewhat
bounded in how much they may differ from each other, then O(%) small transformers suffice to
approximate a large transformer. We provide a proof sketch below, and the complete proof can be
found in Appendix[C.1]

Theorem 4.1. Let T be a transformer with L layers, H attention heads in each layer, input length N
and embedding dimension d. Suppose there exist absolute constants C, D > 0 such that

1

N
c <a;; <C, and DN - mjax||bi7j||2 < H jzlbi,jHQ

where

aij = exp((¢i, k;)), bij = exp({qi, kj)) - v
for any query q;, k;,v; in any attention head. There exists an algorithm using O(% . %) oracle
calls to a small transformer with L' layers, H' attention heads in each layer, embedding dimension
o4 L ) to obtain an (1 + €) approximation of T with probability at least 0.9 for any fixed constant

bij
e > 0.

Proof Sketch. The high-level idea is to partition the queries into N/M parts of size M each, and
then permute the keys (but not the queries) using a random permutation 7. We then aim to ap-
proximate the desired quantities Zjvzl exp((qi, k;)) and Z;V:1 exp((gi, k;)) - v; using rescalings
of > .cs, exp((¢i, kr(j))) and 3~ s exp({¢, kr(;))) - vr(j) (Where Sy is the part of size M that
contains query ¢;). This can be seen as estimating the desired sums by sampling only M of the N
summands at random. At the same time, by blocking the queries and keys like this, the samples can
be computed using oracle calls similar to Lemma 3.1 above. O

4.2 Linear small transformers are weaker than large transformers

We also show that N/M small transformers can be simulated by a large transformer along with an
oracle for performing very small matrix multiplications (M x d with d x d). We only prove the
statement for single head transformers to illustrate the need for linear amount of oracle calls.



Theorem 4.2. Given N/M instances of single layer, single head transformers with input length M
and embedding dimension d, there exists an algorithm that simulates them with one call of a single
layer, single head transformer with input length O(N) and embedding dimension O(d), along with
O(N/M) many matrix multiplications of size M x d x d.

The key idea behind Theorem is to concatenate the tokens from all N/M input sequences into a
single long sequence of length /V, but then slightly increase the embedding dimension in a way which
makes tokens from different short sequences highly uncorrelated with each other. Thus, the large
attention will not give much weight to pairs of tokens from different short sequences. The complete
proof is delayed to Appendix [C.2]

5 Simulation of transformers with sliding window and Streaming.LI. Ms

In our last section, we show that small transformers work well when we add sliding window masking
to attention heads, and when in the Streamingl.LLM framework. Our constructions are similar to
above, but with additional techniques to take advantage of the masking structures, and can be found
in the Appendix D]

When we consider sliding window attention, we only need to deal with keys that are close to each
query. It is intuitive to see that in such scenario, the attention scores of consecutive M — r queries
can be covered with a M x M block matrix, which can be computed using our oracle. Transformers
with attention sink is similar to transformers with sliding window, except that we have an extra “sink
window" in the beginning for all the queries. These sinks windows can be computed using O(%)
oracle calls.

Theorem 5.1. For any transformer T with L layers, H attention heads in each layer, input length
N, embedding dimension d, constant-size sliding window, there exists an algorithm that simulates
T with O(2% - 25 calls to a transformer oracle with L' layers, H' attention heads in each layer,
input length M and embedding dimension O( dHI;L /) with causal masking. This result still holds if
we have constant-size attention sink.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Abstract highlights this paper’s main results and motivations.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Even though the motivation comes from practice, this paper is purely theo-
retical. It mentions that the goal is to provide a theoretical framework for possible future
empirical followups.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

14



Answer: [Yes]

Justification: All the model assumptions are clearly stated in introduction section.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: This is a purely theoretical paper with no experiment.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: This is a purely theoretical paper with no experiment.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: This is a purely theoretical paper with no experiment.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: This is a purely theoretical paper with no experiment.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: This is a purely theoretical paper with no experiment.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper does not have harmful content and only has theoretical analysis and
proofs.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: The authors are unaware of any possible societal impacts.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This is a purely theoretical paper with no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: This paper mentions related work to the best knowledge of the authors.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This is a purely theoretical paper with no new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This is a purely theoretical paper with no use of human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This is a purely theoretical paper with no crowdsourcing or human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method of this paper does not use LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Transformers as Basic Functions

We show that a single layer, single head transformer (attention mechanism with two MLPs) can act
as a few different basic functions on the input matrix X that we will need later.

First we show that we can turn any matrix X into a matrix that is consisted of a block matrix of ones
and zeros everywhere else.

Lemma A.1. There exists a fixed matrix U € RUYTD*D gnd input MLP ¢ : R — R such that
for any input X € RN*4,
_ 1a><b 0
P(X)U = ( 0 0)
forany a < N,b <d.

Proof. Let x; = X][i,:] for all i € [N]. Define ¢(x;) = (;,1) if i < a and ¢(x;) = (z;,0) if

1> a+ 1. Let
U= Oaxt  Odx(d—b)
Lixo  Oax(a—v)
It is straightforward to check that ¢(X)U is the matrix desired. O

Using this, we can construct a transformer that computes the sum of all input tokens.
Lemma A.2. There exists a single layer, single head transformer with embedding dimension d such
that, on input matrix X € RN*? it computes Zf\il X[i,:] € R1x4,

Proof. By Lemma [A.1] there exists W% WX such that (XW®)[i,:] = (XWX)[i,:] = 11x4
and k; = N - X[i,:] forall 1 < ¢ < N. As a result, the output for any token will exactly be
sy X[,:): O

A single layer, single head transformer also allows us to construct a look-up table such that each
token can find information from other tokens.

Lemma A.3 (Lemma D.1 of [SHT24]). Given input matrix X € RN*9, an indexing function
7:R? x [N] — [N] and f : R™ — R™, there exists a single layer, single head transformer with
embedding dimension d such that the i-th output is p(X[1(X[i,:], 1), :]).

B Missing Proofs in Section 3]

Lemma B.1 (Lemma[3.1). For any single layer, single head transformer T with input length N,

embedding dimension d, there exists an algorithm that simulates T with O(ﬁ—z) calls to a transformer
oracle with input length M and embedding dimension O(d).

Proof. Let T be any single layer, single head transformer with query, key, value matrices
W WHE WV ¢ R4 with arbitrary input X € RV*? Let B be an upper bound of the ab-
solute value of all entries in X, W®, W WV Without loss of generality we can assume the first
MLP ¢ is the identity function because otherwise we will compose it with the input MLP in the
oracles. In addition, we can also assume that the layer MLP is the identity function, and this is
because if not, we can first set the layer MLP in our oracle to be the identity function to compute the
output of the large transformer before the layer MLP, and then use O(%) oracles as layer MLP to
compute the final output.

Define (as usual) Q = XWO K = XWX V = XWYV and ¢; = Qli,:], ki = K[i,:],v; = Vi,]
foralll1 <i< N,andlet S; ={(t —1)M,...,tM}foralll <t < % Our goal is to simulate
N N
Zj:l exp((gi, k;)) - v; . Zj:l bi,;j . ivz/lM Bi+
N T &N =
Zj:l exp({g;, k;)) Zj:l @5 ivz/lM Ait
forall 1 <i < N, where we define

ai,j = exp((qi, k;)), bi j := exp((qi, kj)) - v;.

softmax(¢; K ")V =

ey
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and A; ;=) jes, Qi and B;; =Y jes, b; ;. Our algorithm can be summarized as the following
two steps: 4

1. (Step 1) We calculate A; , forall 1 <i < N,1 <t < N/M using (%)2 oracle calls.

2. (Step 2) For each ¢, we exactly compute % for all i € [N] using (£})? oracle calls. Since

we already know A; ; for all ¢, ¢, we can now compute

N/M N/M Bii 4.

t:/I Bi,t_ t=1 A;, Al’t

N/M - N/M
Et:l Az}t Et:l Az}t

for all 4. Notice that this can be done either trivially or with O((4%)?) oracle calls with
Lemma[A2land the fact that we allow MLPs to do division.

Step 1: Calculating A; , for all i, t. We first consider the case when i € S;. Forany 1 <t < &,
define 0 K
o (W 0 k(W 0 (d+1) x (d+1)
and MLP ¢ such that
qe-1ym+1 1
, X[St:] 1mxa we 0 : :
"= ¢(X[Sy,]) - W = v ) T = ' '
Q= (X[S:,1]) ( 01 a 1 Oixa 1 Gim i
0 1
Ee—vym+1 1
K= o(X[S0 ) W = (XISe] L) (WK 0ea) _| 1 5|
01d 1 O1xa 1 ki 1
0 1

1 0
V/ — Mxd Mx1 )
( 01 xd 0
(We can construct WY and add an extra dimension using MLP such that we obtain V' using Lemma
but we omit it for simplicity. In particular, we will only need to use the first column of V", so for

what follows below, V"’ could be (1,...,1,0)" € RM+1)x1 We keep our notation consistent and
let it have d + 1 columns.) Therefore, we have

(Qe-vym+1, ke—yme) +1 oo {qu-1ymsr, k) +1 1

QK = 3 : i
(@ene, Bg—1ym1) +1 e (qenrs kenr) +1 1

1 o 1 1

Finally, we can calculate that the entries of softmax(Q’(K’) ")V’ are given by

Zjest exp((gi, kj) +1) _ Zjest Qg5 Ay

Yies, p((@i ki) + 1) +exp(l) Y., aij+exp(0)  Ais+exp(0)

for all ¢ € S;. Therefore, we can use the MLP layer to calculate A; ; as:

At
exp(O) ' Ai,t"l‘e)f(p(o)
it — 1 A,

T A t+exp(0)

Now we compute A; ; when ¢ € Sy, for some ¢’ # ¢. The high-level idea is similar, but now we feed
the oracle with [X[S;,:], X[Sy, :]] € RM*24 and we let the MLP ¢ be such that

O([X[St,:], X[Sp,:]]) = (Xo[it;:} Xéid d }) € RIM+D)x(2d+1)
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and we furthermore define

. Odxd  Oax1 ., WE 04x1
W = [ WP 0gr |, WE" = | O4xa Oaxy | € REZFD>(EHD
01><d 11><d 01><d 11><d

such that
qr-nm+1 1
Q" = ¢([X[S,:], X[Sy,:]]) - W = : € ROM+D)x(d+1)
Qe M 1
01><d 1

ke—tym+r 1

K” = ¢([X[Sf7 :]7 X[St’v ]]) : WK” = e R(M+1)X(d+1)

—_ ..

ki
01><d 1
V" .= <10M><d Oj%xl) c R(M+1)X(d+1).
1xd
Therefore, we have

(qer—vym+1, ke—vym+1) +1 oo (qe—vyms1, k) +1 1
QH(KN)T _ e
(qernas k—1yn41) +1 e (qonrs kear) + 1 1
1 o 1 1

We can now compute A, ; for all ¢ € Sy for the exact same reason as above. Step 1 requires (%)2
oracle calls.

Step 2: Computing g%’: for all i, t. If © € S, we can compute ]j%‘: using one oracle call simply by
feeding the oracle with X[S;,:], W@ WX WV It remains to compute i"fi for all 1 € Sy where

t' # t. We feed the oracle with [X[St, :], X[Sy, :]] and let

WQ/// _ (?}/g) 7WK”/ _ <(I)/d[/lil> ’Wv/// _ ((;};/‘;) c R2d><d
X X

such that
dt'—1)M+1
Q" = [X[S,:], X[Sy,:]] - W = : ,
qv' M
k(t—l)M+1
K" .= [X[Ss,:], X[Sy,:]] - WK = : ,
ki
V(t—1)M+1
V"= [X[S,:], X[Sy, ]| - WY = :
VtM

A simple calculation shows that softmax(Q"'(K"")T)V"" gives us %’: for i € Sy. In total we need

v ‘,

M

Corollary B.2 (Corollary 3.2). For any transformer T with L layers, H attention heads in each

layer, input length N, embedding dimension d, there exists an algorithm that simulates T with
N

O((57)* - HL) calls to a single head, single layer transformer oracle with input length M and

embedding dimension O ().

oracle calls in step 2. O
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Proof. We simply compute 7 layer by layer and head by head. For each layer, we compute the output
of each attention head, which requires O((2%)? - H) oracle calls using Lemma , concatenate and
repeat for each layer. O

Lemma B.3 (Lemma . One transformer with L' layers, H' attention heads in each layer, input
length M and embedding dimension O( dHHL ) can be used to simulate H' L' independent instances

of single layer, single head transformers with input length M and embedding dimension %

Proof. Given H'L’ independent instances, we label the instances by (h, ¢) € H’ x L’ and concatenate
dH’

them together by columns to X € R 7 such that

X=[X11,X12,... X1, Xo1,..., X, 1/],

where X, ¢ is the input of the (5, £)-th instance for h € [H'],¢ € [L']. As aresult, in the first layer,
(Xni,- s Xnr] € RM X %% is sent to attention head h. Let We WK wV e R# X denote the
query, key and value matrices in the (h, 1)-th instance. We construct we WK WV as

we Wk wvV

) Odya Oaya Oaya
we = H_ H ’WK’ _ H”H 7WV’ _ H. H 6R(dL’/H)xd/H

Ot Ottt Odxth

and layer MLP the same as the layer MLP in instance (h, 1) such that attention head h in layer 1
exactly computes the (h, 1)-th instance. Also observe that we are not performing any computation
regarding (h, £)-th instance for any £ # 1. The same argument holds for all &, and therefore layer
one of the large transformer computes (h, 1)-th instance for all 1 < h < H'. Since the outputs of all
H' attention heads are stored at predefined locations after each layer, we can repeat this process for
L' times to compute all instances. O

Theorem B.4 (Theorem [3.4). For any transformer T with L layers, H attention heads in each
layer, input length N, embedding dimension d, there exists an algorithm that simulates T with
O((£5)% - 2L calls to a transformer oracle with L' layers, H' attention heads in each layer, input

length M, embedding dimension O(dHT/L/).

Proof. This follows from Corollary [B.2]and Lemma[B.3] O

Theorem B.5 (Theorem [3.3). For any transformer T with L layers, H attention heads in each layer,
input length N, embedding dimension d and causal masking, there exists an algorithm that simulates
T with O((3%)? - 2227 calls to a transformer oracle with L' layers, H' attention heads in each layer;

input length M, embedding dimension O( dHI;L /) and causal masking.

The high-level idea is identical to Theorem [B.4 We first show that a single layer, single head
transformer with input length M and causal masking can compute 2321 exp({(g;, k;)) forall 1 <
1 < M given input and all parameters.

Claim B.6. Given any X € RM*d W@ WK WV ¢ R¥, one calls to a single layer, single head
transformer oracle O with input length M, embedding dimension O(d) and causal masking suffices
to compute 22‘21 exp({g;, k;)) forall 1 <i < M.

Proof. We define

we — W 0ixa Wk — WE 0144 € R+ X (d+1)
Od><1 1 ’ 0d><1 1
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such that

0 1
, 0 1 we o g 1
/:: X) . Q' _ 1xd . Ixd ) _ R(M+1)><(d+1)
@ = 9(X)-W (X L) 0w 1 | €
qu 1
0 1
k 1
;_ ik _ (Oixa 1\ (WE 01a) _ [ ™ (M+1)x(d+1)
K =o(X)- W= = ( X 1M><1> <0d><1 L) <R
ky 1
V= 0 01xd € RIMADX(d+1).
Omx1 lamxd
As a result, we have
1 1 1
L Aqi, k) oo g1 k)
QKN =1. : : :
U {qm, k1) oo {qm, k)

Finally, we can calculate that the (i,j)-th entry (2 < ¢ < M + 1) of the oracle output,
softmax (mask(Q'(K') "))V, is

i—1 i—1
Zj:l eXp((Qifly kj> +1) . 23:1 Ai—1,5

o1 exp((gi-1,ky) +1) +exp(l) iy aioy +exp(0)
Finally, we can define the MLP such that it outputs

) Yiliai-1y 4
xp(0) = ee®
il :Za’i—ld
L 2=1%iL =
1 225=1 @i—1,5+exp(0) 7=l
forall2 << M + 1. O

Proof of Theorem[B.3] The proof is similar to the proof of Theorem [B.4] First notice that Lemma
still holds if we add causal masking to the transformers because the proof is not affected by
causal masking. In addition, the analog of Corollary [B.2will hold even if we add causal masking to
the transformers if we can show that Lemma|B.1|holds under causal masking since the proof is the
same. Therefore, it suffices to prove Lemma under causal masking.

Let 7 be any single layer, single head transformer with query, key, value matrices W&, WX WV ¢
R¥*? and causal masking, with arbitrary input X € RV ¥, For the same reason as Lemma we
assume without loss of generality that both the input MLP and layer MLP are identity functions, and
we use the same notation as in Lemma[B.1] Our goal is to approximate

Z;:l exp(<ql7 kﬂ>) : UJ Z;:l b'LvJ

>i—1exp((gi, kj)) D1 i
forall 1 < ¢ < N. Notice that we already include causal masking in this expression by only summing
over j < i. Define

Af,lt) = Z aiyj,Agi) = Z Q; j = Ai,t = Af,lt) + Agi)
JESN[i] JESt—[i]

and
1 ._ (2) ._ _ p® (2)
Bjy = > bijBjy = > bij=Bi.=B;)+B.
JjeSin[i] j€Ss—li]
For each i € Sy, we want to compute

B(Q) B(l)

=1 Bl ) B 4@ 940
zf_:ll By + Bz‘(,lt) Ztrzl(Aizlt), 'Aiﬂf/ + A7(2t)/ 'Ai,t/) + Agélt) 'Ai,t
4 n 101 2 1
i’:l Ai,t’ + Ai(',t) :/:1(141(,2 + Az(',t)) + Az(,t)
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BM  B®
Just like Lemma we will compute Aglt)/ , AEQt), , ﬁ ﬁ with our oracle independently for all

it/ it/

1 < ¢ < t—1 (each with one oracle call). In addition, Ag}t) can be computed with a single oracle call
1)

using Claim and % can be computed using a single oracle call by simply feeding the oracle

with X[S, ], W@, WK WV,
(1)

it/

1 B . . .
To compute Az(- t), and o) with one oracle each for all 7, %', we can use the exact same construction

it/
in step 1 in the proof of Lemma [B.T] (this works because our oracle also has causal masking). To
B2
compute Aﬁ), and —5-, we first define ¢ such that

it/

Tinm 01xd
TtM—1 Tt M

(b(X[St’:LX[St’v:]) = : :
Tt—1)M+1 Tt/ —1)M+2
O1xa T(—1)M+1

Notice that this is valid because ¢ has information on the position of all the tokens. Furthermore,
Lemma [A3]allows us to use our oracle to perform this computation as well. We also let

Q dxd
Q/_ W K/_ 0
W= (o) = ()

such that
qtm
qtM—1
Q"= (X[St,1], X[Sp,1]) - W = : :
qd(t—1)M+1
led
led
LY
K= 9(X[Sy,], X[Sp, ) - WK = | Fearmn
K —1ym41
. led 0
V= <1de 0Mx1)'
Now notice that
0 (qenr, ke ar) o (qene, ke —1ym+1)
0 Aqenvr—1,kenr) oo (@enr—1, k@ —1)nm+1)
QK)" = |: : . :
0 (qu—vym+1i,kenr) - (Qe—1ym+1 Be—1y)m+1)
0 0 0

Therefore, the (tM — i + 1)-th row of softmax(mask(Q’(K’)"))V’, which corresponds to g;, is
computing

S exp((gi k)
SN exp((gi kj)) + exp(0)

B®
it/

which allows us to compute Z;/:Af 11 exp((qi, kj)) = AEQt), exactly. Furthermore, —tz- can be

Q dxd dxd
Q”_ W K" _ 0 v 0
= (o) = ) v = ()
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such that

atMm
" Q// qtM—1
Q = ¢(X[Sta:]7X[St/7:])'W - . ;
qt—1)M+1
L34
17 K" ke -1
K" = ¢(X[Sy, ], X[Sp,:]) - WK = : :
k@ —1yam41
Ve M
v V' M—1
V(' —1)M+1
In total we need O((4%)?) oracle calls, and the proof is complete. O

C Missing Proofs in Section 4]

C.1 Missing Proofs in Section[4.1]

Theorem C.1 (Theorem[@.1). Let T be a transformer with L layers, H attention heads in each layer,
input length N and embedding dimension d. Suppose there exist absolute constants C, D > 0 such
that

1

N
6 < Qg5 < 07 and DN - m?X||bi,j||2 < H rzlble2

where

aij = exp((¢i, k;)), bij = exp({gi, kj)) - vj
for any query q;, kj,v; in any attention head. There exists an algorithm using O(% . Igf, ) oracle
calls to a small transformer with L' layers, H' attention heads in each layer, embedding dimension
O( dgHL ) to obtain an (1 + €) approximation of T with probability at least 0.9 for any fixed constant
e >0

Proof. By Corollary [B.2]and Lemma [B.3] it suffices to prove the Theorem with H = L = 1 because
when we generalize, all the attention head computation will be in parallel with each other.

Let 7 be any attention head with query, key, value matrices W, WX WV € R¥*™ with arbitrary
input X € RV>4, Without loss of generality we can assume the first MLP ¢ is the identity function
because otherwise we will compose our oracle MLP with ¢. In addition, we can also assume that the
layer MLP is the identity function, and this is because if not, we can still use identity functions in our
oracle layer MLPs to compute the output of the large transformer before the layer MLP, and then use
O(4%) oracles as MLP to compute the final output.

Define Q = XW®, K = XWXV = XWV such that ¢; = Q[i,:], k; = K[i,:],v; = Vi, :] for all
1<i<N,andletS; ={(t —1)M,...,tM}foralll <t < % Our goal is to approximate
N N
o ex i ki)) - v; Y by
softmax(q; K ")V = E]_]b p({gi, k;)) - vy - ng—l J 2)
Zj:l exp((qi, kj>) Zj:l Qg5

forall 1 < ¢ < N. The algorithm will be divided into two parts like before.

Step 1: Approximating Z;\le a;jforalll <i < N.Leti € S; forsomel <t < % We pick a
random permutation 7 of [N], and by Lemmawe can use O(N/M) oracle call{] (one for each

'In practice, one would likely perform this permutation directly rather than using oracle calls, such as using
the pytorch utility randperm. However, since it is a negligible additional number of calls, we use oracle calls
here to simplify the computational model.
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X[S¢,:]) to map ; to [z, 2,(;)] forall 1 < ¢ < N. Now we use the first MLP ¢ in the oracles to
map (X[Stv :]7 X[T(St)7 ]) to

S(X[S, ], X[7(S,), ]) = ( [Se.] X[7(S0), ] 1)

01><d O1><d 1

and we furthermore define

, WQ de1 , ded 0d><1
W = | 0axa Oax1 | W5 = | WE 04
01x4q 1 01xd 1

in the oracle such that

q(t—1)M+1 1

Q = G(X[S1, 1, X[r(S), YW = | erOIHDx@D),
GtM 1
0 1
kre—nyms1y 1
K= 6(X[80,1], X[r(80), hW™' = 5 | e ROTHDX(@HY),
kr(ear) 1
0 1

1 0
V= Mxd Mx1 )
( 1d>< 1 1
Now we can compute » jes, Wi r(y) for all i using % oracle calls (the remaining proof is exactly the
same as the proof of Lemma . Our estimator of Zj\;l a; j will be

N
M Z aiaT(j)'
JESt

Our estimator is unbiased because

B[ X ] = 3 e

JESt Jj=1

We can use Hoeffding’s Inequality to show that

[ () Zam > Zam}—Pr[ Za” - Za”‘_ Za”}

JES: JES:

2 M? N
< 2exp ( B % : (Zj:l ai,j)Q)
: M- 3P
2e2M (N/C)?
< 2e p(’ 16N2C2 )
22 M
- QQXP(* 16C4 )

4
which is at most ﬁ if M > %}MOM, which is true by our assumption on M. A union bound

over all ¢ € [IN] allows us to show that we get a (1 + £/4) approximation of Zjvzl a; ; for all 7 with
probability at least 0.95.

Step 2: Approximating Z}vilj foralll <i < N. Leti € S; forsome 1 <t < 7. We pick a

j=1Qij
random permutation 7 of [N], and define

O(X[Se, <], X[r(S0),:]) = [X[St, o], X[r(Sh), :]]
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and furthermore

Q" _ (W@ K" _ (Odxd v _ (Odxa
= () = () = ()

The output softmax(Q" (K")T)V" gives us exactly
2jes, bir()
Yies,; Tir()
which will be our estimator. First observe that
v
E[ > bi,r(j)} =N > by
JES: Jj=1
We can again use Hoeffding’s Inquality to show that

N N 2 N 2
N £ e*M - [| 3252 bisll3
Pr(| 57 D by = Db, = 1D 0] | < 2-ex0 (- L)
a;sf, v ; Ml H; 2 128N?(max; [|b; ;[|2)?
<9 ( SQMDQ)
cexp [ —
=STep 128
which is at most W when M > 128(og d+1205,7240+10g N) 'We have shown that
N
N Zj:l Qi j N

<
(1+€/4)M - ZjESt Q5 1 (5) - (]. —5/4)M
and now we prove

N
HZb,J D bin) - RESLER H <e- szu

jes, 2 jes, ()

which concludes the proof Indeed, we first decompose

Nlai,j N N
T ) LY o M SN ST 1]

JES, jES @i,7(4) JES: jES,
N
< H Zb i = Y bii) - MH2+(1 —5)H > b 37,
JES: JES:
3)
where N
1 < 5 L M - Ej:l a'iaj 1
l4+e/4 ™~ o N'ZjeSt Qir(j) 1_5/4.
Now we already know
N N
N €
DICEED LN v A 8 DICH K
Jj=1 JES Jj=1
and therefore Equation [3|can be further bounded by
HZb,j |+ (1= 0)(1+e/1) HZbJ i
€ al € al
< - b i —(1 4 H b; i
< 31 bu], + oz rem]| b,
j=1 Jj=1
N
<eg- H Zbi’j 2,
Jj=1
which concludes the proof. O
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C.2 Missing Proofs in Section

Theorem C.2 (Theorem . Given % instances of single layer, single head transformers with input
length M and embedding dimension d, there exists an algorithm that simulates them with one call
of a single layer, single head transformer with input length O(N) and embedding dimension O(d),
along with O(%) many matrix multiplications of size M x d X d.

Proof. We assume that the input/layer MLPs in all the instances are identity functions for the same
reason as in Lemma Let X; € RM*d pe the input, WQ WE WY € R?*4 be the query, key
and value matrices for each instance 1 < ¢ < 7. Our goal is to calculate
softmax((XiWQ)(XiW-K)T)(leWvV)
forall 1 <i < & We first compute X, W2, X, W/, X;W} forall 1 <i < & For convenience
we will denote
= (XaW) ] kig = (XKW vy = (W) ]
such that our goal is to compute softmax(g; j(X;W5)T )(XiWiV) foralll <i< & 1<j<M.
For convenience we let
IXilloo.2 - W ll2s | Xilloo.2 - W 2, 1 X low,2 - [IW [l2 < € < poly(N),

for some C (because we assume that all entries have O(log N) bit representation, and therefore each
parameter is at most poly(N)). As a result,

-C* < < (G, ki gr) < c?, lvijll2 < C
forany 1 <i,¢/ < N/M,1<jj <M.
Let B € R to be determined. Define
Up, .. UN € {0,-B}"

such that (. /2) > N/M (we only need r < O(log(N/M)) by Stirling approximation) and all u;

have exactly r/2 zeros (if there are more vectors than needed, simply make sure they are distinct),
and let
vi=B-(1,....,1) +u;

forall1 <i < 4 N such that (u;,v;) = 0 for all i. For any i # 7, notice that there must exist an index

at which u; is —B and v; is B. This is because the set of nonzeros in v; is the compliment of the set
of nonzeros in u;, and the former set must be different from the set of nonzeros in v;. Now append
u; to g; j to get q; ; and v; to k; j to get k; ; forall 1 < j < M. Setd’ = d + r. For each pair of ¢; ;
and kj, .

e If i =4/, i.e. ¢; and k; are in the same small transformer instance, then

(g ,]ak;/3/>—<%mk2’ i)+ (ui, vir) = <quak1’ i)

o If 7 £ 4/, i.e. ¢; and k; are in different small transformer instances, then

<q137k;/ /> <%,j7kz’ ’>+<uiavi/> <Qz]7kz’ ’>7BZ-

Now we let Q € RN*?' be the matrix of q;jand K € RN*4" be the matrix of ki jand V = X; WY,
Weset X = [Q,K,V] € RN*(3d) (note that we can always pad zeros to V' to make dimensions

match),
Ty xar « Odrscar . Oarscar
WO = 0wxa | , WE = Ioxa |, WY = | Ourxar
Ogr xar Oarsca Ty xar

Q, K, VIW® =Q,[Q,K,VIWX = K,[Q,K,VIWV =V.

such that
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Furthermore, for each query (g, ;, u;), its inner product between all keys in the same small transformer
will be preserved, while its inner product between all keys in a different small transformer will be at
most C2 — B2, Therefore, for each query ¢; .j» we can calculate the error as:

N/M M

exp (qij, k exp((q; ki 1))
|5 ekl ., SIS ——
e 1 exp((qm, ) =1 j'=1 2u0=1 Ze/ 1exp({q; ;, k7 ¢r))
exp({(¢; j, ki j')) M exp({q; g k; j’>)
’ Z k “ V4.5 — Z N/ i Vi, 5 )
Zg 1exp(<q,7], >) j'=1 2u0=1 ZZ/ 1exp(<qw,k£ e'>)
NC exp(C? — B?)
M
Ze 16xP((gi 5, ki)
< exp({gij, ki) N exp((¢i 5, ki,jr)) N
Z . U'L,]/ - N/M M , ; . ’UZ’]/ )
Ze 1exp(<q”,k: 0)) 21 2p—1 exp({di j, Ky )
NC’ exp(C’2 - B?)
M exp(—C?)
Now notice that
N/M M M N/M M
DD exp(gh ki) =D exp({ai ki) + Y Y exp((g] ko)
=1 =1 =1 0=1,05i £'=1
and that
M
M exp(—C?) < Zexp((qi,j, ki) < Mexp(C?)
=1
/M M
Nexp(-C* — B?) < > exp((di ;. ki) < Nexp(C? = B?).
£=1,04i0/=1
As a result,
1 1 ‘ < Nexp(C? — B?) N exp(2C? — B?)
ST exp({gi ki) YoM exp((d). Ky ,))| - M exp(—C?) M?
Therefore, we can further upper bound the error by
Nexp(2C? — B%) NCexp(C? — B?)
M- c?.C -
exp(C7) M? M exp(—C?)
_ NCexp(20? — B?)(1 + exp(C?))
= i )
Therefore, we can set B < poly(IV) to be sufficiently large such that the error is O (5% ). O

D Missing Proofs in Section

Theorem D.1 (Theorem[5.1). For any transformer T with L layers, H attention heads in each layer,
input length N, embeddmg dimension d, constant-size sliding window, there exists an algorithm that
simulates T with O( i Igf, ) calls to a transformer oracle with L' layers, H' attention heads in

dH'L’

each layer, input length M and embedding dimension O(*5=) with causal masking. This result

still holds if we have constant-size attention sink.

Proof. The proof goes in the same way as Theorem [B.5] where we assume without loss of generality
that H = L = H' = L' = 1. We start with the sliding window scenario where the size of sliding
window is r. Notice that for each query ¢; (z > r + 1) we want to compute

)

> exp((aik ZeXp g k ZGXP g k

j=i—r+1
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and
i

> exp((gi k) - Z exp({gi, k;)) - v; — > exp((gi, k;))

j=t—r+1 Jj=1

given window size . In addition, we can compute >’ _, exp((g;, k;)) and 377, exp((gi, k;)) - v;
for all « < r with 2 oracle calls, as shown in the proof of Theorem@

We will partition {r+1,..., N}into chunks S| = {r+1,..., M}, S, = {M+1,...,2M —r},...
of size M — r and approximate the terms above for all ¢ € S} in each chunk using constant many
oracle calls, which suffices since r is a constant. Without loss of generality we only prove our claim
for S7 as the proof can be easily generalized to the remaining S;. Indeed, observe that

Zexp ¢, k;)) and Zexp gi, k

for all ¢ € S can both be computed exactly with one oracle call using the proof of Claim
Furthermore, one oracle call suffices to compute either

B espllanky) oy 30 expllan b)) vy

> =1 exp({ai, kj)) > -1 exp({ai, kj))
for all i € 5] because we can feed the oracle with X[Sy,:] and use W€ to project X[S,:] to
{Gr+1,---,qn} and use W to project X[Sy,:] to {k1,...,knr—.} (similar to proof of Lemma

B.1).
Finally, when there are attention sinks, we simply need to further calculate Z -, exp({g;, k;)) and
> 5—1exp((gi, k;)) - vj. Observe that

ZGXP g,k ZeXp ai ki) = Y exp({ai k),

j=s+1

i

ZGXP(@J%)) vy = ZGXP(@iakj)) i = > exp((gi ky)) - vy

Jj=s+1

Each of the four terms can be computed with the exact same technique as in sliding window with 1
oracle call. O
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