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ABSTRACT

Graph Neural Networks (GNNs) have been widely used to learn node representa-
tions and with outstanding performance on various tasks such as node classification.
However, noise, which inevitably exists in real-world graph data, would consider-
ably degrade the performance of GNNs revealed by recent studies. In this work, we
propose a novel and robust method, Bayesian Robust Graph Contrastive Learning
(BRGCL), which trains a GNN encoder to learn robust node representations. The
BRGCL encoder is a completely unsupervised encoder. Two steps are iteratively
executed at each epoch of training the BRGCL encoder: (1) estimating confident
nodes and computing robust cluster prototypes of node representations through a
novel Bayesian nonparametric method; (2) prototypical contrastive learning be-
tween the node representations and the robust cluster prototypes. Experiments
on public benchmarks demonstrate the superior performance of BRGCL and the
robustness of the learned node representations. The code of BRGCL is available at
https://anonymous.4open.science/r/BRGCL-code-2FD9/.

1 INTRODUCTION

Graph Neural Networks (GNNs) have become popular tools for node representation learning in
recent years (Kipf & Welling, 2017; Bruna et al., 2014; Hamilton et al., 2017; Xu et al., 2019).
Most prevailing GNNs (Kipf & Welling, 2017; Zhu & Koniusz, 2020) leverage the graph structure
and obtain the representation of nodes in a graph by utilizing the features of their connected nodes.
Benefiting from such propagation mechanism, node representations obtained by GNN encoders
have demonstrated superior performance on various downstream tasks such as semi-supervised node
classification and node clustering.

Although GNNs have achieved great success in node representation learning, current GNN approaches
do not consider the noise in the input graph. However, noise inherently exists in the graph data for
many real-world applications. Such noise may be present in node attributes or node labels, which
forms two types of noise, attribute noise and label noise. Recent works, such as (Patrini et al., 2017),
have evidenced that noisy inputs hurt the generalization capability of neural networks. Moreover,
noise in a subset of the graph data can easily propagate through the graph topology to corrupt the
remaining nodes in the graph data. Nodes that are corrupted by noise or falsely labeled would
adversely affect the representation learning of themselves and their neighbors.

While manual data cleaning and labeling could be remedies to the consequence of noise, they are
expensive processes and difficult to scale, thus not able to handle an2 almost infinite amount of noisy
data online. Therefore, it is crucial to design a robust GNN encoder that could make use of noisy
training data while circumventing the adverse effect of noise. In this paper, we propose a novel
and robust method termed Bayesian Robust Graph Contrastive Learning (BRGCL) to improve the
robustness of node representations for GNNs. Our key observation is that there exist a subset of
nodes which are confident in their class/cluster labels. Usually, such confident nodes are far away
from the class/cluster boundaries, so these confident nodes are trustworthy, and noise in these nodes
would not degrade the value of these nodes in training a GNN encoder. To infer such confident
nodes, we propose a novel algorithm named Bayesian nonparametric Estimation of Confidence
(BEC). Since the BRGCL encoder is completely unsupervised, it first infers pseudo labels of all
the nodes with a Bayesian nonparametric method only based on the input node attributes, without
knowing the ground truth labels or the ground truth class number in the training data. Then, BEC is
used to estimate the confident nodes based on the pseudo labels and the graph structure. The robust
prototype representations, as the cluster centers of the confident nodes, are computed and used to
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train the BRGCL encoder with a loss function for prototypical contrastive learning. The confident
nodes are updated during each epoch of the training of the BRGCL encoder, so the robust prototype
representations are also updated accordingly.

1.1 CONTRIBUTIONS

Our contributions are as follows.

First, we propose Bayesian Robust Graph Contrastive Learning (BRGCL), where a fully unsupervised
encoder is trained on noisy graph data. The fully unsupervised BRGCL encoder is trained only on
the input node attributes without ground truth labels or even the ground truth class number in the
training data. GRGCL leverages confident nodes, which are estimated by a novel algorithm termed
Bayesian nonparametric Estimation of Confidence (BEC), to harvest noisy graph data without being
compromised by the noise. Experimental results on popular graph datasets evidence the advantage of
BRGCL over competing GNN methods for node classification and node clustering on noisy graph
data. The significance of the improvement of BRGCL is evidenced by p-values of t-test.

Second, our study reveals the importance of confident nodes in training GNN encoders on noisy
graph data, which opens the door for future research in this direction. The visualization results in
Section 5.3 show that the confident nodes estimated by BEC are usually far away from the class/cluster
boundaries, and so are the robust prototype representations. As a result, the BRGCL encoder trained
with such robust prototypes is not vulnerable to noise, and it even outperforms GNNs trained with
ground truth labels. The better spectrum of the Neural Tangent Kernel (Jacot et al., 2018) of BRGCL
is also demonstrated against its baseline in Section 5.3, explaining BRGCL’s better generalization
capability from a perspective of spectral analysis of neural networks.

2 RELATED WORKS

Graph Neural Networks. Graph neural networks (GNNs) have become popular tools for node
representation learning. They have shown superior performance in various graph learning tasks,
such as node classification, node clustering, and graph classification. Given the difference in the
convolution domain, current GNNs fall into two classes. The first class features spectral convolution
(Bruna et al., 2014; Kipf & Welling, 2017), and the second class (Hamilton et al., 2017; Veličković
et al., 2017; Xu et al., 2019) generates node representations by sampling and propagating features
from their neighborhood. GNNs such as ChebNet (Bruna et al., 2014) perform convolution on the
graph Fourier transforms termed spectral convolution. Graph Convolutional Network (GCN) (Kipf
& Welling, 2017) further simplifies the spectral convolution (Bruna et al., 2014) by its first-order
approximation. GNNs such as GraphSAGE (Hamilton et al., 2017) propose to learn a function
that generates node representations by sampling and propagating features from a node’s connected
neighborhood to itself. Various designs of the propagation function have been proposed. For instance,
Graph Attention Network (GAT) (Veličković et al., 2017) proposes to learn masked self-attention
layers that enable nodes to attend over their neighborhoods’ features. Different from GNNs based on
spectral convolution, such methods could be trained on mini-batches (Hamilton et al., 2017; Xu et al.,
2019), so they are more scalable to large graphs.

However, as pointed out by (Dai et al., 2021), the performance of GNNs can be easily degraded by
noisy training data (NT et al., 2019). Moreover, the adverse effects of noise in a subset of nodes can be
exaggerated by being propagated to the remaining nodes through the network structure, exacerbating
the negative impact of noise.

Existing Methods Handing Noisy Data. Previous works (Zhang et al., 2021) have shown that deep
neural networks usually generalize badly when trained on input with noise. Existing literature on
robust learning with noisy inputs mostly focuses on image or text domain. Such robust learning
methods fall into two categories. The first category (Patrini et al., 2017; Goldberger & Ben-Reuven,
2016) mitigates the effects of noisy inputs by correcting the computation of loss function, known
as loss corruption. The second category aims to select clean samples from noisy inputs for the
training (Malach & Shalev-Shwartz, 2017; Jiang et al., 2018; Yu et al., 2019; Li et al., 2020; Han
et al., 2018), known as sample selection. For example, (Goldberger & Ben-Reuven, 2016) corrects the
predicted probabilities with a corruption matrix computed on a clean set of inputs. On the other hand,
recent sample selection methods usually select a subset of training data to perform robust learning.
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Figure 1: Illustration of the BRGCL encoder. BPL stands for the Bayesian nonparametric Prototype
Learning to be introduced in Section 4.2, a Bayesian nonparametric algorithm to estimate the pseudo
labels of nodes. In the illustration of confident nodes, more confident nodes are marked in more red,
and less confident nodes are marked in more blue.

Among the existing loss correction and sample selection methods, Co-teaching (Han et al., 2018) is
promising, which trains two deep neural networks and performs sample selection in a training batch
by comparing predictions from the two networks. However, such sample selection strategy does not
generalize well in graph domain (Dai et al., 2021) due to the extraordinarily small size of labeled
nodes. More details are to be introduced in Section 4.2. Self-Training (Li et al., 2018) finds nodes
with the most confident pseudo labels, and it augments the labeled training data by incorporating
confident nodes with their pseudo labels into the existing training data. In addition to the above two
categories of robust learning methods, recent studies (Kang et al., 2020; Zhong et al., 2021; Wang
et al., 2021) show that decoupling the feature representation learning and the training of the classifier
can also improve the robustness of the learned feature representation.

3 PROBLEM SETUP

An attributed graph consisting of N nodes is formally represented by G = (V, E ,X), where V =
{v1, v2, . . . , vN} and E ⊆ V × V denote the set of nodes and edges respectively. X ∈ RN×D are the
node attributes, and the attributes of each node is in Rd. Let A ∈ {0, 1}N×N be the adjacency matrix
of graph G, with Aij = 1 if and only if (vi, vj) ∈ E . Ã = A+ I denotes the adjacency matrix for a
graph with self-loops added. D̃ denotes the diagonal degree matrix of Ã. Let VL and VU denote the
set of labeled nodes and unlabeled nodes, respectively.

Noise usually exists in the input node attributes or labels of real-world graphs, which degrades the
quality of the node representation obtained by common GCL encoders and affects the performance of
the classifier trained on such representations. We aim to obtain node representations robust to noise
in two cases, where noise is present in either the labels of VL or in the input node attributes X. That
is, we consider either noisy label or noisy input node attributes.

The goal of BRGCL is to learn a node representation H = g(X,A), such that the node representations
{hi}Ni=1 are robust to noise in the above two cases, where g(·) is the BRGCL encoder. In our
work, we use a two-layer GCN as our encoder. Thus g(X,A) = σ(Âσ(ÂXW(0))W(1)), where
Â = D̃−1/2ÃD̃−1/2. W(0) and W(1) are the weight matrices. σ is the activation function ReLu.
hi is the i-th row of H. To evaluate the performance of the robust node representations by BRGCL,
the node representations {hi}Ni=1 are used for the following two tasks.

(1) Semi-supervised node classification, where a classifier is trained on VL, and then the classifier
predicts the labels of the remaining unlabeled nodes, VU .
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(2) Node clustering, where K-means clustering is performed on the node representations {hi}Ni=1 to
obtain node clusters.

Notations. Throughout this paper, we use ∥ · ∥2 to denote the Euclidean norm of a vector and [n] to
denote all the natural numbers between 1 and n inclusively.

4 BAYESIAN ROBUST GRAPH CONTRASTIVE LEARNING

We propose Bayesian Robust Graph Contrastive Learning (BRGCL) in this section to improve the
robustness of node representations. First, we review the preliminaries of graph contrastive learning.
Next, we propose Bayesian nonparametric Estimation of Confidence (BEC) algorithm to estimate
robust nodes and prototypes. Then, we show details of node classification and node clustering. At
last, we propose a decoupled training pipeline of BRGCL for semi-supervised node classification.
Figure 1 illustrates the overall framework of our proposed BRGCL.

4.1 PRELIMINARY OF GRAPH CONTRASTIVE LEARNING

The general node representation learning aims to train an encoder g(·), which is a two-layer Graph
Convolution Neural Network (GCN) (Kipf & Welling, 2017), to generate discriminative node
representations. In our work, we adopt contrastive learning to train the BRGCL encoder g(·). To
perform contrastive learning, two different views, denoted as G1 = (X1,A1) and G2 = (X2,A2)
are generated by node dropping, edge perturbation, and attribute masking. The representation of two
generated views are denoted as H1 = g(X1,A1) and H2 = g(X2,A2), with h1

i and h2
i being the

i-th row of H1 and H2, respectively. It is preferred that the mutual information between H1 and
H2 is maximized. For computational reason, its lower bound is usually used as the objective for
contrastive learning. We use InfoNCE (Li et al., 2021a) as our node-wise contrastive loss, that is,

Lnode =
∑N

i=1 − log
s(h1

i ,h
2
i )
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between two node representations, h1
i and h2

i .

In addition to the node-wise contrastive learning, we also adopt prototypical contrastive learning (Li
et al., 2021a) to capture semantic information in the node representations, which can be interpreted
as maximizing the mutual information between node representation and a set of estimated cluster pro-
totypes {c1, ..., cK}. Here K is the number of cluster prototypes. The loss function for prototypical
contrastive learning is Lproto = − 1

N

∑N
i=1 log

exp(hi·ck/τ)∑K
k=1 exp(hi·ck/τ)

.

BRGCL aims to improve the robustness of node representations by prototypical contrastive learning.
Our key observation is that there exists a subset of nodes that are confident about their class/cluster
labels because they are faraway from class/cluster boundaries. We propose an effective method to
infer such confident nodes. Because the BRGCL encoder is completely unsupervised, it does not have
access to the ground truth label or ground truth class/cluster number. Therefore, our algorithm for
selection of confident nodes is based on Bayesian non-parameter style inference, and the algorithm is
termed Bayesian nonparametric Estimation of Confidence (BEC) to be introduced next.

4.2 BAYESIAN NONPARAMETRIC ESTIMATION OF CONFIDENCE (BEC)

The key idea of Bayesian nonparametric Estimation of Confidence (BEC) is to estimate robust nodes
by the confidence of nodes in their labels. Intuitively, nodes more confident in their labels are less
likely to be adversely affected by noise. Because BRGCL is unsupervised, pseudo labels are used as
the labels for such estimation.

We propose Bayesian nonparametric Prototype Learning (BPL) to infer the pseudo labels of nodes.
BPL, as a Bayesian nonparametric algorithm, infers the cluster prototypes by the Dirichlet Process
Mixture Model (DPMM) under the assumption that the distribution of node representations is a
mixture of Gaussians. The Gaussians share the same fixed covariance matrix σI, and each Gaussian
is used to model a cluster. The DPMM model is specified by

G ∼ DP(G0, α),ϕi ∼ G,hi ∼ N (ϕi, σI), i = 1, ..., N, (1)
where G is a Gaussian distribution draw from the Dirichlet process DP(G0, α), and α is the concen-
tration parameter for DP(G0, α). ϕi is the mean of the Gaussian sampled for generating the node
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representation hi. G0 is the prior over means of the Gaussians. G0 is set to a zero-mean Gaussian
N (0, ρI) for ρ > 0. A collapsed Gibbs sampler (Resnik & Hardisty, 2010) is used to infer the
components of the GMM with the DPMM. The Gibbs sampler iteratively samples pseudo labels
for the nodes given the means of the Gaussian components, and samples the means of the Gaussian
components given the pseudo labels of the nodes. Following (Kulis & Jordan, 2011), such a process
is almost equivalent to K-means when σ, the variance of the Gaussians, goes to 0. The almost zero
variance eliminates the need to estimate the variance σ, making the inference efficient.

Let K̃ denote the number of inferred prototypes at the current iteration, the pseudo label zi of node
vi is then calculated by

zi = argmin
k

{dik} , i = 1, ..., N, dik =

{
∥hi − ck∥22 k = 1, ..., K̃,

ξ k = K̃ + 1,
(2)

where the Euclidean distance {dik} is used to determine the pseudo labels of the node representation
hi. ξ is the margin to initialize a new prototype. In practice, we choose the value of ξ by performing
cross-validation on each dataset with details in Section A in the supplementary.

After obtaining the pseudo labels of nodes by BPL with K being the inferred number of prototypes,
we estimate the confidence of the nodes based on their pseudo labels and the graph structure. We first
select nodes confident in their labels, also referred to as confident nodes, by considering the label
information from the neighborhood of each node specified by the adjacency matrix. Let zi denote
the one-hot pseudo label of node vi estimated by the Bayesian method. Label propagation (Zhang &
Chen, 2018) is applied based on the adjacency matrix to get a soft pseudo label for each node. Let
Z ∈ RN×K be the matrix of pseudo labels with zi being the i-th row of Z. The label propagation
runs the following update for T steps,

Z(t+1) = (1− α)ÃZ(t) + αZ t = 1, ..., T − 1, (3)

where T is the number of propagation steps, α is the teleport probability, which are set to the suggested
values in (Zhang & Chen, 2018). Let Z̃ = Z(T ) be the soft labels obtained by the label propagation
with z̃i being the i-th row of Z̃. Following (Han et al., 2018), we use the cross-entropy between zi
and z̃i, denoted by ϕ(zi, z̃i), to identify confident nodes. Intuitively, smaller cross-entropy ϕ(zi, z̃i)
of a node vi leads to a larger probability of the pseudo label, so node vi is more confident about its
pseudo label z̃i. As a result, we denote the set of confident nodes assigned to the k-th cluster as

Tk = {hi | ϕ(zi, z̃i)<γk}, (4)

where γk is a threshold for the k-th class. Figure 3 illustrates the cross-entropy values of all the
nodes for the case that different levels of noise are present in the input node attributes, where the heat
value indicates the corresponding cross-entropy value for every node. The confident nodes with less
cross-entropy values, which are marked in more red, are far away from cluster boundaries, so that
noise on these nodes is more unlikely to affect their classification/clustering labels. These confident
nodes are the robust nodes leveraged by BRGCL to fight against noise.

The threshold γk is dynamically set by

γk = 1−min

{
γ0, γ0

t

tm

}
, (5)

where t is the current epoch number and tm is a preset number of epochs. In Co-teaching (Han et al.,
2018), a similar threshold is used to select a ratio of data for training. However, due to the limited
size of training data in graph domain, training with only a subset of nodes usually leads to degraded
performance. For example, with 5% of nodes labeled on Cora dataset, only 1% of nodes will be
used for training if the threshold is set to 20% by Co-teaching. In contrast, BEC selects confident
nodes by a dynamic threshold on the confidence of nodes in their labels given the labels from their
neighbors. The selected confident nodes are only used to obtain the robust prototype representations,
and BRGCL is trained with such robust prototypes to obtain robust representations for all the nodes
of the graph.

γ is an annealing factor. In practice, the value of γ0 is decided by cross-validation for each dataset,
with details in Section A of the supplementary. Previous methods such as (Li et al., 2021a) estimate
each prototype as the mean of node representations assigned to that prototype. After acquiring the
confident nodes {Tk}Kk=1, the prototype representations are updated by ck = 1

|Tk|
∑

hi∈Tk
hi for
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Algorithm 1 Training algorithm of BRGCL encoder
Input: The input attribute matrix X, adjacency matrix A, and the training epochs tmax.
Output: The parameter of BRGCL encoder g.
1: Initialize the parameter of BRGCL encoder g
2: for t← 1 to tmax do
3: Calculate node representations by H = g(X,A)
4: Generate augmented views G1 = (X1,A1) and G2 = (X2,A2)
5: Calculate node representations of augmented views by H1 = g(X1,A1) and H2 = g(X2,A2)
6: Calculate loss Lnode

7: Obtain the pseudo labels of all the nodes Z and the number of inferred prototypes K by Eq. (2)
8: Obtain soft labels of nodes Z̃ by label propagation in Eq. (3)
9: Update the confidence thresholds {γk}Kk=1 by Eq. (5)

10: Estimate the sets of confident nodes {Tk}Kk=1 by Eq. (4)
11: Update confident prototype representations by ck = 1

|Tk|
∑

hi∈Tk
hi for all k ∈ [K]

12: Update the parameter of BRGCL encoder g using the loss Lrep in Eq. (6)
13: end for
14: return The BRGCL encoder g

each k ∈ [K]. With the updated cluster prototypes {ck}Kk=1 in the prototypical contrastive learning
loss Lproto, we train the encoder g(·) with the following overall loss function,

Lrep = Lnode + Lproto. (6)

Training BRGCL with the loss function Lrep does not require any information about the ground truth
labels. We summarize the training algorithm for the BRGCL encoder in Algorithm 1. It is noted that
confident nodes and robust prototypes are estimated at each epoch by BEC.

4.3 DECOUPLED TRAINING

The typical pipeline for semi-supervised node classification is to jointly train the classifier and the
encoder. However, the noise in the training data would degrade the performance of the classifier.
To alleviate this issue, we decouple the representation learning for the nodes from the classification
of nodes to mitigate the effect of noise, which consists of two steps. In the first step, the BRGCL
encoder g(·) is trained by Algorithm 1. In the second step, with the node representation H from
the trained BRGCL encoder, the classifier f(·) is trained by optimizing the loss function Lcls. In
Section B.5 of the supplementary, we show the advantage of such decoupled learning pipeline over
the conventional joint training of encoder and classifier.

5 EXPERIMENTS

In this section, we evaluate the performance of BRGCL on five public benchmarks, with details
deferred to Section A.1 of the supplementary. For semi-supervised node classification, the perfor-
mance of BRGCL is evaluated with noisy label or noisy input node attributes. For node clustering,
only noisy input node attributes are considered because there are no ground truth labels given for
clustering purposes. The implementation details about node classification are deferred to Section A.2
of the supplementary.

5.1 EXPERIMENTAL SETTINGS

Due to the fact that most public benchmark graph datasets do not come with corrupted labels or
attribute noise, we manually inject noise into public datasets to evaluate our algorithm. We follow
the commonly used label noise generation methods from the existing work (Han et al., 2020) to
inject label noise. We generate noisy labels over all classes according to a noise transition matrix
QK×K , where Qij is the probability of nodes from class i being flipped to class j. We consider
two types of noise: (1) Symmetric, where nodes from each class can be flipped to other classes
with a uniform random probability, s.t. Qij = Qji; (2) Asymmetric, where mislabeling only occurs
between similar classes. The percentage of nodes with flipped labels is defined as the label noise level
in our experiments. To evaluate the performance of our method with attribute noise, we randomly
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Figure 2: Performance comparisons on semi-supervised node classification on ogbn-arxiv with
different levels of attribute noise, symmetric label noise, and asymmetric label noise. The shaded
areas around the lines denote the standard deviation of the classification accuracy.

shuffle a certain percentage of input attributes for each node following (Ding et al., 2022). The
percentage of shuffled attributes is defined as the attribute noise level in our experiments.

We compare BRGCL against semi-supervised node representation learning methods GCN (Kipf &
Welling, 2017), GCE (Zhang & Sabuncu, 2018), S2GC (Zhu & Koniusz, 2020), UnionNet (Li et al.,
2021b), NRGNN (Dai et al., 2021). In addition, we also compare BRGCL against state-of-the-art
GCL methods, including GraphCL (You et al., 2020), MVGRL (Hassani & Khasahmadi, 2020),
MERIT (Jin et al., 2021), and SUGRL (Mo et al., 2022). The training settings for different baselines
are categorized into two setups: (1) Unsupervised Setup, where the training of the encoder does not
use the ground truth label information. The node representations obtained by the encoder are then
used for downstream tasks, which are node classification and node clustering; (2) Supervised Setup,
where the training of the encoder uses the ground truth label information. Our proposed BRGCL
follows the unsupervised setup in all our experiments, and every baseline follows its corresponding
setup by its nature.

5.2 EVALUATION RESULTS

Semi-supervised Node Classification with Label Noise. We compare BRGCL against competing
methods for semi-supervised node classification on input with two types of label noise. To show
the robustness of BRGCL against label noise, we perform the experiments on graphs injected with
different levels of label noise ranging from 40% to 80% with a step of 20%. The classification follows
the widely used semi-supervised setting (Kipf & Welling, 2017). Note the labels are only used for
the training of the classifier. The BRGCL encoder generates node representations, and the classifier
for node classification is trained on these node representations.

In our experiment, a two-layer MLP whose hidden dimension is 128 is used as the classifier. The
results of different methods with respect to different levels of symmetric and asymmetric label noise
on ogbn-arxiv are illustrated in Figure 2. Detailed results on PubMed and ogbn-arxiv are shown
in Table 1, where we report the means of the accuracy of 10 runs and the standard deviation. We
also show the results on Cora, Citeseer, and Coauthor CS in Section B.1 in the supplementary. It is
observed from the results that BRGCL outperforms all the baselines, including the methods using
ground truth labels to train their encoders. By selecting confident nodes and computing robust
prototypes using BEC, BRGCL outperforms all the baselines by an even larger margin with a larger
label noise level. To verify the statistical significance of improvements, we show the p-values of t-test
between BRGCL and the second best baseline in Section B.2 in the supplementary. The p-values for
all datasets with all noise levels for both symmetric label noise and asymmetric label noise are less
than 0.05, suggesting the statistically significant improvement of BRGCL over baseline methods.

Semi-supervised Node Classification with Attribute Noise. We compare BRGCL with baselines
for noisy input with attribute noise levels ranging from 40% to 80% with a step of 20%. The results
on ogbn-arxiv are illustrated in Figure 2. Detailed results on PubMed, and ogbn-arxiv are shown in
Table 1, where we report the means of the accuracy of 10 runs and the standard deviation. The results
on Cora, Citeseer, and Coauthor CS are deferred to Section B.1 in the supplementary. The results
clearly show that BRGCL is more robust to attribute noise compared to all the baselines for different
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Table 1: Performance comparison for node classification on PubMed and ogbn-arxiv with asymmetric
label noise, symmetric label noise, and attribute noise. Results with label noise on Cora, Citeseer,
and Coauthor CS, and results with attribute noise for all the datasets are deferred to Section B.1 in
the supplementary. The encoders of methods marked with * are trained with label information. The
p-values of the t-test between BRGCL and the second best baseline are attached in Section B.2 in the
supplementary.

Dataset Methods
Noise Level

0 40 60 80
- Asymmetric Symmetric Attribute Asymmetric Symmetric Attribute Asymmetric Symmetric Attribute

PubMed

GCN * 0.790±0.007 0.584±0.022 0.574±0.012 0.595±0.012 0.405±0.025 0.386±0.011 0.488±0.013 0.305±0.022 0.295±0.013 0.423±0.013
S2GC * 0.799±0.005 0.585±0.023 0.589±0.013 0.610±0.009 0.421±0.030 0.401±0.014 0.497±0.012 0.310±0.039 0.290±0.019 0.431±0.010

GCE 0.792±0.009 0.589±0.018 0.581±0.011 0.590±0.014 0.430±0.012 0.399±0.012 0.491±0.010 0.311±0.021 0.301±0.011 0.424±0.012
UnionNET 0.793±0.008 0.603±0.020 0.620±0.012 0.592±0.012 0.445±0.022 0.424±0.013 0.489±0.015 0.313±0.025 0.327±0.015 0.435±0.009
NRGNN 0.797±0.008 0.602±0.022 0.618±0.013 0.603±0.008 0.443±0.012 0.434±0.012 0.499±0.009 0.330±0.023 0.325±0.013 0.433±0.011
GraphCL 0.790±0.006 0.592±0.016 0.603±0.015 0.601±0.007 0.434±0.015 0.418±0.019 0.479±0.014 0.310±0.017 0.302±0.014 0.439±0.013
SUGRL 0.819±0.005 0.603±0.013 0.615±0.013 0.615±0.010 0.445±0.011 0.441±0.011 0.501±0.007 0.321±0.009 0.321±0.009 0.446±0.010
MVGRL 0.794±0.003 0.599±0.012 0.613±0.012 0.606±0.008 0.441±0.013 0.433±0.013 0.496±0.010 0.322±0.012 0.312±0.012 0.438±0.010
MERIT 0.801±0.004 0.593±0.011 0.612±0.011 0.613±0.011 0.447±0.012 0.443±0.012 0.497±0.009 0.328±0.011 0.323±0.011 0.445±0.009
BRGCL 0.793±0.007 0.624±0.014 0.632±0.010 0.625±0.011 0.465±0.011 0.468±0.010 0.514±0.011 0.342±0.014 0.349±0.013 0.470±0.011

ogbn-arxiv

GCN * 0.717±0.003 0.401±0.014 0.421±0.014 0.478±0.010 0.336±0.011 0.346±0.021 0.339±0.012 0.286±0.022 0.256±0.010 0.294±0.013
S2GC * 0.732±0.003 0.417±0.017 0.429±0.014 0.492±0.010 0.344±0.016 0.353±0.031 0.343±0.009 0.297±0.023 0.266±0.013 0.284±0.012

GCE 0.720±0.004 0.410±0.018 0.428±0.008 0.480±0.014 0.348±0.019 0.344±0.019 0.342±0.015 0.310±0.014 0.260±0.011 0.275±0.015
UnionNET 0.724±0.006 0.429±0.021 0.449±0.007 0.485±0.012 0.362±0.018 0.367±0.008 0.340±0.009 0.332±0.019 0.269±0.013 0.280±0.012
NRGNN 0.721±0.006 0.449±0.014 0.466±0.009 0.485±0.012 0.371±0.020 0.379±0.008 0.342±0.011 0.330±0.018 0.271±0.018 0.300±0.010
GraphCL 0.701±0.004 0.431±0.013 0.455±0.009 0.467±0.013 0.364±0.016 0.373±0.012 0.328±0.010 0.317±0.022 0.266±0.015 0.294±0.012
SUGRL 0.693±0.002 0.439±0.010 0.467±0.010 0.480±0.012 0.365±0.013 0.385±0.011 0.341±0.009 0.327±0.011 0.275±0.011 0.295±0.011
MVGRL 0.713±0.002 0.443±0.009 0.461±0.009 0.481±0.008 0.372±0.012 0.382±0.012 0.339±0.009 0.329±0.013 0.274±0.013 0.290±0.012
MERIT 0.717±0.001 0.442±0.009 0.463±0.009 0.483±0.010 0.368±0.011 0.381±0.011 0.341±0.012 0.324±0.012 0.272±0.010 0.304±0.009
BRGCL 0.720±0.005 0.459±0.013 0.482±0.006 0.495±0.010 0.392±0.014 0.399±0.009 0.350±0.011 0.345±0.012 0.296±0.013 0.326±0.012

noise levels. To verify the statistical significance of improvements, we show the p-values of t-test
between BRGCL and the second best baseline in Section B.2 in the supplementary. The p-values for
all datasets with all levels of attribute noise are less than 0.05, suggesting the statistically significant
improvement of BRGCL over baseline methods.

Node Clustering with Attribute Noise. To further evaluate the robustness of node representation
learned by BRGCL, we perform experiments on node clustering with attribute noise injected. We
follow the same evaluation protocol as that in (Hassani & Khasahmadi, 2020). K-means is applied on
the learned node representations to obtain clustering results. We use accuracy (ACC) and normalized
mutual information (NMI) as the performance metrics for clustering. The node clustering results for
inputs with 60% attribute noise are shown in Table 2. We report the averaged clustering results and
standard deviations over 20 times of execution. Results on clean benchmark datasets are deferred to
Section B.3 in the supplementary. It is observed that node representation obtained by BRGCL is more
robust to attribute noise for node clustering. To show the statistical significance of improvements, we
also calculate p-values of the t-test between BRGCL and the second best baseline for each result. It
is observed that BRGCL significantly improves the performance of node clustering as the p-values
for ACC and NMI are less than 0.05 on all datasets.

Table 2: Node clustering performance comparison on benchmark datasets with 60% input attribute
noise. Results on clean benchmark datasets are shown to Section B.3 in the supplementary. The
p-values of the t-test between BRGCL and the second best baseline are listed in the last row of the
table.

Methods Cora Citeseer PubMed Coauthor CS ogbn-arxiv
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

Supervised
GCN 57.4±0.61 44.7±0.57 57.1±0.65 35.4±0.34 56.9±0.99 28.3±0.46 52.8±0.74 52.6±0.95 43.7±1.19 49.6±0.84
S2GC 58.4±0.72 47.3±0.79 58.3±0.82 35.1±0.65 57.4±0.89 28.3±0.31 53.6±0.99 54.0±1.09 45.2±0.97 50.2±0.70

NRGNN 61.1±0.73 47.8±0.93 57.8±0.77 36.2±0.71 57.1±1.03 29.1±0.59 53.3±0.87 54.1±1.02 44.1±1.04 50.1±0.85
Unsupervised

K-means 39.9±0.94 26.9±0.88 44.8±0.59 26.8±1.76 49.0±1.45 29.3±1.49 25.4±1.76 14.6±1.86 24.3±1.76 27.9±1.86
GAE 49.1±0.95 36.9±0.67 33.2±0.64 16.4±1.36 56.6±0.87 26.1±0.65 39.6±1.25 38.9±1.40 34.5±1.14 36.4±1.32

ARVGA 53.8±1.01 39.0±0.59 45.2±0.82 24.2±0.78 57.2±0.69 27.0±0.46 49.8±0.65 48.3±1.13 40.2±0.77 44.3±1.03
GALA 63.3±0.78 50.0±0.68 59.4±0.80 35.8±0.88 57.1±0.79 29.1±0.17 52.5±1.03 53.8±0.98 45.2±0.97 50.5±0.79

GraphCL 61.2±0.96 49.1±0.79 58.3±0.88 34.9±1.02 57.3±0.89 29.1±0.49 53.2±0.88 54.2±1.14 43.9±0.97 49.3±1.03
MVGRL 62.5±0.79 50.5±0.63 59.2±0.79 35.7±0.76 57.6±0.70 29.6±0.55 54.1±0.87 55.2±1.02 45.1±0.89 50.2±0.95
MERIT 63.0±0.87 51.1±0.75 59.2±0.69 36.1±0.45 57.9±0.80 30.2±0.42 54.8±0.87 56.4±0.79 45.4±0.78 51.0±0.81
BRGCL 63.8±0.69 51.9±0.81 60.3±0.79 37.1±0.63 58.8±0.59 30.9±0.85 56.1±0.64 58.2±0.96 46.5±0.86 52.2±0.91
p-value 0.0014 0.0021 0.0231 0.0030 0.0401 0.0154 0.0075 0.0102 0.0112 0.0144

Comparison to Existing Sample Selection. We also compare our BRGCL to the representative
sample selection methods for node classification, including Co-teaching (Han et al., 2018), in
Section B.4 of the supplementary. It is observed that BRGCL outperforms these competing methods
by a noticeable margin.
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5.3 VISUALIZATION OF CONFIDENCE SCORE AND SPECTRUM OF BRGCL

We visualize the confident nodes selected by BEC in the embedding space of the learned node
representations in Figure 3. The node representations are visualized by the t-SNE figure. Each mark
in t-SNE represents the representation of a node, and the color of the mark denotes the confidence
of that node. The results are shown for different levels of attribute noise. It can be observed from
Figure 3 that confident nodes, which are redder in Figure 3, are well separated in the embedding
space. With a higher level of attribute noise, the bluer nodes from different clusters blended around
the cluster boundaries. In contrast, the redder nodes are still well separated and far away from cluster
boundaries, which leads to more robustness and better performance in downstream tasks.
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Figure 3: Visualization of confident nodes with different levels of attribute noise for semi-supervised
node classification on Citeseer.

In order to understand why BRGCL generalizes better than prior SOTA on noisy data, we plot the
eigenvalues of the sample Neural Tangent Kernel (Jacot et al., 2018) in Figure 4. Previous studies
such as (Rahaman et al., 2019) indicate that neural networks empirically generalize well if the target
function lies in low-frequency directions, or the subspace spanned by eigenfunctions corresponding
to high eigenvalues of NTK. It can be observed that BRGCL usually has larger eigenvalues than the
top baseline, MERIT (Jin et al., 2021), which explains its better generalization from the perspective
of spectral analysis of neural networks.
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Figure 4: Illustration of the top-50 eigenvalues of the sample Neural Tangent Kernel for MERIT and
BRGCL. Both MERIT and BRGCL are trained on inputs with attribute noise at level 40 and 60.

6 CONCLUSIONS

In this paper, we propose a novel node representation learning method termed Bayesian Robust Graph
Contrastive Learning (BRGCL) that aims to improve the robustness of node representations by a
novel Bayesian nonparametric algorithm, Bayesian nonparametric Estimation of Confidence (BEC).
We evaluate the performance of BRGCL with comparison to competing baselines on semi-supervised
node classification and node clustering, where graph data are corrupted with noise in either the labels
for the node attributes. Experimental results demonstrate that BRGCL generates more robust node
representations with better performance than the current state-of-the-art node representation learning
methods.
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A IMPLEMENTATION DETAILS

A.1 DATASETS

We evaluate BRGCL on five public benchmarks that are widely used for node representation learning,
namely Cora, Citeseer, PubMed (Sen et al., 2008), Coauthor CS, and ogbn-arxiv (Hu et al., 2020).
Cora, Citeseer and PubMed are three most widely used citation networks. Coauthor CS is co-
authorship graph. The ogan-arxiv is a directed citation graph. We summarize the statistics of the
datasets in Table 3. Among the five benchmarks, ogbn-arxiv is known for its larger scale, and is
more challenging to deal with. For all our experiments, we follow the default separation of training,
validation, and test sets on each benchmark.

Table 3: The statistics of the datasets.
Dataset Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7
CiteSeer 3,327 4,732 3,703 6
PubMed 19,717 44,338 500 3
Coauthor CS 18,333 81,894 6,805 15
ogbn-arxiv 169,343 1,166,243 128 40

A.2 MORE DETAILS ABOUT NODE CLASSIFICATION

The robust node representations are used to perform node classification and node clustering mentioned
in Section 3 of the main paper. More details about node classification are introduced in this subsection.
As the connected neighbors in a graph usually show similar semantic information, we generate soft
labels of nodes via label propagation on the graph to take the advantage of the information from the
neighborhood. The classifier for node classification is trained with soft labels instead of hard labels.

First, we define the one-hot hard label matrix Y ∈ RN×K , where Yij = 1 if and only if node vi
is in class j for i ∈ [N ] and j ∈ [K]. If a node vi ∈ VL, then Yij = 1 if the ground truth label of
vi is j. If vi /∈ VL, we initialize Yij = 0 for all j ∈ [K]. Then the soft labels of all the nodes are
generated by graph label propagation. Similar to (3), after T aggregation steps of label propagation,
we have Y(t+1) = (1 − β)ÃY(t) + βY(0), t = 1, ..., T − 1, where Y(0) = Y, β is the teleport
probability. The soft labels are then obtained by Ỹ = softmax(Y(T )). We denote the i-th row of
Ỹ by ỹi, which is the soft label of node vi. f(·) is a classifier built by a two-layer MLP followed
by a softmax function, which is trained by minimizing the standard loss function for classification,
Lcls =

1
|VL|

∑
vi∈VL

H(ỹi, f(hi)), where H is the cross-entropy function.

A.3 TUNING HYPER-PARAMETERS BY CROSS-VALIDATION

In this section, we show the tuning procedures on the hyper-parameters ξ from Equation (2) and γ0
from Equation (5). We perform cross-validations on 20% of training data to decide the value of ξ and
γ0. The value of ξ is selected from {0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0, 5}. The value of γ0
is selected from {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The selected values for ξ and γ0 on each
dataset are shown in Table 4.

Table 4: Selected hyper-parameters for each dataset.
Dataset Cora Citeseer PubMed Coauthor CS ogbn-arxiv

ξ 0.20 0.15 0.35 0.40 0.25
γ0 0.3 0.5 0.7 0.4 0.4
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B ADDITIONAL EXPERIMENT RESULTS

B.1 ADDITIONAL NODE CLASSIFICATION RESULTS WITH LABEL NOISE AND ATTRIBUTE
NOISE.

The results for node classification with symmetric label noise and asymmetric label noise on Cora,
Citeseer, and Coauthor CS are shown in Table 5. In addition, the results for node classification with
attribute noise on Cora, Citeseer, and Coauthor CS are shown in Table 6. It is observed that BRGCL
outperforms all the baselines for node classification with both label noise and attribute noise on all
three benchmark datasets.

Table 5: Performance comparison on node classification with symmetric label noise and asymmetric
label noise.

Dataset Methods Noise Level
0 40 60 80
- Asymmetric / Symmetric Asymmetric / Symmetric Asymmetric / Symmetric

Cora

GCN * 0.817±0.005 0.547±0.015 / 0.636±0.007 0.405±0.014 / 0.517±0.010 0.265±0.012 / 0.354±0.014
S2GC * 0.831±0.002 0.569±0.007 / 0.664±0.007 0.422±0.010 / 0.535±0.010 0.279±0.014 / 0.366±0.014

GCE 0.819±0.004 0.573±0.011 / 0.652±0.008 0.449±0.011 / 0.509±0.011 0.280±0.013 / 0.353±0.013
UnionNET 0.820±0.006 0.569±0.014 / 0.664±0.007 0.452±0.010 / 0.541±0.010 0.283±0.014 / 0.370±0.011
NRGNN 0.822±0.006 0.571±0.019 / 0.676±0.007 0.470±0.014 / 0.548±0.014 0.282±0.022 / 0.373±0.012
GraphCL 0.815±0.005 0.560±0.011 / 0.661±0.009 0.450±0.017 / 0.541±0.012 0.270±0.018 / 0.368±0.017
MVGRL 0.829±0.007 0.566±0.009 / 0.672±0.009 0.455±0.014 / 0.545±0.014 0.275±0.014 / 0.379±0.014
MERIT 0.831±0.006 0.560±0.008 / 0.670±0.008 0.467±0.013 / 0.547±0.013 0.277±0.013 / 0.385±0.013
SUGRL 0.834±0.005 0.564±0.011 / 0.674±0.012 0.468±0.011 / 0.552±0.011 0.280±0.012 / 0.381±0.012
BRGCL 0.822±0.006 0.584±0.009 / 0.694±0.007 0.484±0.013 / 0.567±0.013 0.295±0.012 / 0.394±0.012

Citeseer

GCN * 0.703±0.005 0.475±0.023 / 0.501±0.013 0.351±0.014 / 0.341±0.014 0.291±0.022 / 0.281±0.019
S2GC * 0.727±0.005 0.488±0.013 / 0.528±0.013 0.363±0.012 / 0.367±0.014 0.304±0.024 / 0.284±0.019

GCE 0.705±0.004 0.490±0.016 / 0.512±0.014 0.362±0.015 / 0.352±0.010 0.309±0.012 / 0.285±0.014
UnionNET 0.706±0.006 0.499±0.015 / 0.547±0.014 0.379±0.013 / 0.399±0.013 0.322±0.021 / 0.302±0.013
NRGNN 0.710±0.006 0.498±0.015 / 0.546±0.015 0.382±0.016 / 0.412±0.016 0.336±0.021 / 0.309±0.018
GraphCL 0.715±0.008 0.479±0.017 / 0.534±0.016 0.373±0.015 / 0.411±0.014 0.331±0.017 / 0.297±0.016
MVGRL 0.726±0.007 0.491±0.013 / 0.541±0.013 0.379±0.013 / 0.420±0.013 0.341±0.016 / 0.301±0.016
MERIT 0.740±0.007 0.496±0.012 / 0.536±0.012 0.383±0.011 / 0.425±0.011 0.344±0.014 / 0.301±0.014
SUGRL 0.730±0.005 0.493±0.011 / 0.541±0.011 0.376±0.009 / 0.421±0.009 0.339±0.010 / 0.305±0.010
BRGCL 0.722±0.004 0.510±0.013 / 0.569±0.013 0.403±0.012 / 0.433±0.014 0.359±0.013 / 0.321±0.014

Coauthor CS

GCN * 0.918±0.001 0.645±0.009 / 0.656±0.006 0.511±0.013 / 0.501±0.009 0.429±0.022 0.389±0.011
S2GC* 0.928±0.001 0.657±0.012 / 0.663±0.006 0.516±0.013 / 0.514±0.009 0.437±0.020 0.396±0.010
GCE 0.922±0.003 0.662±0.017 / 0.659±0.007 0.515±0.016 / 0.502±0.007 0.443±0.017 0.389±0.012

UnionNET 0.918±0.002 0.669±0.023 / 0.671±0.013 0.525±0.011 / 0.529±0.011 0.458±0.015 0.401±0.011
NRGNN 0.919±0.002 0.678±0.014 / 0.689±0.009 0.545±0.021 / 0.556±0.011 0.461±0.012 0.410±0.012
GraphCL 0.905±0.005 0.664±0.018 / 0.679±0.014 0.541±0.017 / 0.550±0.015 0.441±0.015 0.396±0.014
MVGRL 0.913±0.001 0.675±0.008 / 0.685±0.008 0.550±0.014 / 0.560±0.014 0.453±0.013 0.405±0.013
MERIT 0.924±0.004 0.679±0.011 / 0.689±0.008 0.552±0.014 / 0.562±0.014 0.452±0.013 0.403±0.013
SUGRL 0.922±0.005 0.675±0.010 / 0.695±0.010 0.550±0.011 / 0.560±0.011 0.449±0.011 0.411±0.011
BRGCL 0.920±0.003 0.690±0.012 / 0.710±0.008 0.566±0.014 / 0.572±0.011 0.461±0.011 / 0.428±0.015

Table 6: Performance comparison on node classification with attribute noise.
Dataset Methods Noise Level

0 40 50 60 70 80

Cora

GCN * 0.817±0.005 0.639±0.008 0.510±0.006 0.439±0.012 0.371±0.014 0.317±0.013
S2GC * 0.831±0.002 0.661±0.007 0.521±0.008 0.454±0.011 0.371±0.010 0.320±0.013
NRGNN 0.822±0.006 0.654±0.009 0.517±0.009 0.449±0.014 0.385±0.012 0.322±0.013
SUGRL 0.829±0.007 0.655±0.011 0.522±0.007 0.445±0.012 0.381±0.011 0.330±0.014
MVGRL 0.831±0.006 0.671±0.009 0.531±0.008 0.450±0.014 0.385±0.010 0.335±0.009
MERIT 0.834±0.005 0.675±0.009 0.528±0.011 0.452±0.012 0.388±0.012 0.338±0.014
BRGCL 0.822±0.006 0.690±0.010 0.540±0.010 0.469±0.013 0.399±0.010 0.356±0.011

Citeseer

GCN * 0.703±0.005 0.529±0.009 0.468±0.012 0.372±0.011 0.313±0.011 0.290±0.014
S2GC * 0.727±0.005 0.553±0.008 0.491±0.011 0.390±0.013 0.310±0.012 0.2880±0.011
NRGNN 0.710±0.006 0.540±0.007 0.501±0.013 0.384±0.014 0.317±0.009 0.287±0.012
SUGRL 0.726±0.007 0.540±0.008 0.501±0.008 0.386±0.011 0.315±0.005 0.282±0.011
MVGRL 0.740±0.007 0.542±0.010 0.505±0.007 0.387±0.008 0.311±0.007 0.295±0.009
MERIT 0.730±0.005 0.544±0.010 0.503±0.008 0.388±0.009 0.314±0.011 0.300±0.009
BRGCL 0.722±0.004 0.562±0.007 0.514±0.012 0.399±0.012 0.331±0.012 0.312±0.010

Coauthor CS

GCN * 0.918±0.001 0.702±0.010 0.628±0.012 0.531±0.010 0.455±0.011 0.415±0.013
S2GC * 0.928±0.001 0.713±0.010 0.638±0.010 0.556±0.009 0.476±0.012 0.422±0.012
NRGNN 0.919±0.002 0.710±0.012 0.632±0.013 0.560±0.008 0.469±0.011 0.423±0.012
SUGRL 0.913±0.001 0.706±0.008 0.633±0.008 0.561±0.008 0.465±0.009 0.412±0.008
MVGRL 0.924±0.004 0.709±0.005 0.634±0.007 0.562±0.011 0.466±0.005 0.426±0.005
MERIT 0.922±0.005 0.714±0.006 0.639±0.009 0.561±0.007 0.471±0.007 0.429±0.008
BRGCL 0.920±0.003 0.722±0.009 0.653±0.011 0.575±0.013 0.488±0.010 0.442±0.012
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B.2 STATISTICAL SIGNIFICANCE OF IMPROVEMENTS FOR NODE CLASSIFICATION WITH LABEL
NOISE.

To validate the statistical significance of the improvements of BRGCL over competing methods,
we further calculate the p-values of t-test between BRGCL and the second best baseline for each
noise level and dataset for symmetric label noise, asymmetric label noise, and attribute label noise.
The p-values for node classification with label noise are shown in Table 7. The p-values for node
classification with attribute noise are shown in Table 8. We run all the experiments for 10 times
with random initialization and injected symmetric and asymmetric label noise. The p-values for all
datasets with all noise levels are less than 0.05, suggesting the statistically significant improvement
of BRGCL over baseline methods.

Table 7: p-values of the t-test between BRGCL and the second best baseline on semi-supervised node
classification with symmetric label noise and asymmetric label noise.

Dataset
Noise Level

40 60 80
Asymmetric / Symmetric Asymmetric / Symmetric Asymmetric / Symmetric

Cora 0.0285 / 0.0021 0.0091 / 0.0038 0.0079 / 0.0217
Citeseer 0.0133 / 0.0024 0.0003 / 0.0013 0.0009 / 0.0401
PubMed 0.0051 / 0.0354 0.0219 / 0.0129 0.0279 / 0.0106

Coauthor CS 0.0341 / 0.0102 0.0121 / 0.0267 0.0317 / 0.0097
ogbn-arxiv 0.0393 / 0.0076 0.0039 / 0.0331 0.0095 / 0.0292

Table 8: p-values of the t-test between BRGCL and the second best baseline on semi-supervised node
classification with attribute noise.

Dataset Noise Level
40 50 60 70 80

Cora 0.0082 0.0193 0.0110 0.0267 0.0372
Citeseer 0.0019 0.0410 0.0394 0.0106 0.0289
PubMed 0.0286 0.0301 0.0371 0.0097 0.0165

Coauthor CS 0.0402 0.0122 0.0398 0.0051 0.0176
ogbn-arxiv 0.0219 0.0284 0.0314 0.0177 0.0120

B.3 NODE CLUSTERING WITH INPUT ATTRIBUTE NOISE

To further validate the performance of the node representation learned by BRGCL, we perform node
clustering on clean benchmark datasets. We follow the same evaluation protocol as that in Section 5.2.
K-means is then applied to the learned node representations to obtain the clustering results. It can be
observed from Table 9 that BRGCL still outperforms all baseline methods for node clustering.

Table 9: Node clustering performance comparison on clean benchmark datasets.
Methods Cora Citeseer PubMed Coauthor CS ogbn-arxiv

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI
Supervised

GCN 68.3±0.71 52.3±0.54 68.8±0.65 41.9±0.24 69.1±0.99 31.2±0.46 69.8±0.34 68.6±0.59 52.0±1.02 68.0±0.74
S2GC 69.6±0.42 54.7±0.65 69.1±0.82 42.8±0.55 70.1±0.89 33.2±0.31 70.2±0.45 67.0±0.72 53.6±0.79 68.5±0.70

NRGNN 72.1±0.53 55.6±0.49 69.3±0.77 43.6±0.51 69.9±1.03 34.2±0.59 68.8±0.59 66.2±0.84 51.9±0.84 68.1±0.65
Unsupervised

K-means 49.2±0.56 32.1±0.53 54.0±0.43 30.5±1.03 59.5±0.67 31.5±0.77 35.2±0.76 20.1±0.92 31.6±0.75 35.9±0.96
GAE 59.6±0.67 42.9±0.62 57.9±0.38 17.6±1.01 65.2±0.37 27.7±0.35 46.7±0.88 41.6±0.81 38.9±0.91 48.4±1.02

ARVGA 64.0±0.41 45.0±0.59 57.3±0.51 26.1±0.54 69.0±0.60 29.0±0.44 60.3±0.61 55.9±0.65 49.2±0.80 68.3±0.65
GALA 74.5±0.57 57.6±0.68 69.3±0.60 44.1±0.39 69.3±0.58 32.7±0.42 66.5±0.79 68.8±0.48 53.5±0.65 66.5±0.72

GraphCL 71.9±0.66 54.6±0.59 68.3±0.42 42.7±0.63 67.6±0.42 31.5±0.32 65.2±0.53 66.4±0.69 52.1±0.67 67.6±0.63
MVGRL 74.2±0.54 57.3±0.44 69.6±0.31 44.7±0.56 69.6±0.44 33.9±0.46 69.3±0.61 69.2±0.57 53.2±0.61 68.2±0.50
MERIT 74.1±0.67 57.6±0.55 69.7±0.55 45.1±0.41 69.8±0.30 33.7±0.40 69.8±0.60 69.5±0.59 54.3±0.54 68.5±0.75
BRGCL 74.8±0.39 58.1±0.51 70.3±0.39 45.7±0.63 70.4±0.39 34.9±0.45 71.4±0.43 70.2±0.56 55.5±0.52 70.2±0.71
p-value 0.0009 0.0254 0.0439 0.0395 0.0429 0.0189 0.0099 0.0302 0.0189 0.0151

B.4 COMPARISONS TO EXISTING SAMPLE SELECTION METHODS

In this subsection, we compare BRGCL against previous sample selection methods, including Co-
teaching (Han et al., 2018) and Self-Training (Li et al., 2018) for node classification with symmetric
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label noise. Co-teaching maintains two networks to select clean samples for each other. Self-Training
finds nodes with the most confident pseudo labels, and it augmented the labeled training data by
incorporating confident nodes with their pseudo labels into the existing training data.The results are
shown in Table 10. We can clearly see that BRGCL greatly outperforms competing sample selection
methods.

Table 10: Performance comparison against Co-teaching (Han et al., 2018) and Self-training (Li et al.,
2018) on node classification with different levels of symmetric label noise.

Dataset Methods Noise Level
40 50 60 70 80

Cora Self-training 0.664±0.012 0.584±0.007 0.532±0.013 0.459±0.011 0.368±0.012
Co-teaching 0.668±0.011 0.593±0.011 0.527±0.010 0.465±0.010 0.367±0.017

BRGCL 0.694±0.007 0.622±0.009 0.567±0.013 0.500±0.014 0.394±0.012
Citeseer Self-training 0.541±0.014 0.465±0.013 0.397±0.013 0.347±0.016 0.301±0.022

Co-teaching 0.522±0.018 0.461±0.011 0.383±0.011 0.338±0.014 0.299±0.020
BRGCL 0.569±0.013 0.496±0.011 0.433±0.014 0.368±0.013 0.321±0.014

PubMed Self-training 0.597±0.019 0.507±0.011 0.419±0.021 0.380±0.020 0.345±0.023
Co-teaching 0.584±0.013 0.499±0.015 0.403±0.014 0.371±0.011 0.342±0.022

BRGCL 0.632±0.010 0.530±0.010 0.468±0.010 0.399±0.012 0.349±0.013
Coauthor CS Self-training 0.672±0.010 0.614±0.012 0.542±0.013 0.462±0.015 0.397±0.015

Co-teaching 0.666±0.012 0.610±0.011 0.529±0.015 0.451±0.013 0.404±0.019
BRGCL 0.710±0.008 0.638±0.009 0.572±0.011 0.480±0.011 0.428±0.015

ogbn-arxiv Self-training 0.462±0.012 0.413±0.014 0.368±0.018 0.328±0.014 0.276±0.020
Co-teaching 0.437±0.024 0.406±0.011 0.359±0.016 0.322±0.012 0.282±0.025

BRGCL 0.482±0.006 0.432±0.009 0.399±0.009 0.344±0.012 0.296±0.013

B.5 JOINT TRAINING VS. DECOUPLED TRAINING.

We study the effectiveness of our decoupled training framework compared with jointly training the
encoder and the classifier. We compare the performance on node classification with 20% label noise
level. The results are shown in Table 11. It can be observed that decoupling the training of classifier
and encoder can mitigate the effects of label noise.

Table 11: Ablation study on contrastive components for node classification with label noise.

Method Cora Citeseer PubMed
Confident K-means Confident K-means Confident K-means

Joint 77.7±0.08 78.2±0.11 65.7±0.09 65.3±0.10 72.5±0.10 72.5±0.12
Decoupled 79.3±0.09 78.5±0.09 66.8±0.07 66.3±0.08 73.4±0.07 73.0±0.09

B.6 NUMBER OF CONFIDENT PROTOTYPES.

To further study the behavior of BRGCL, we show the number of robust prototypes estimated by
BPL in Table 12. It can be observed from the results that the estimated number of robust prototypes
is usually very close to the ground truth number of classes for different datasets, justifying the
effectiveness of BPL. Because BEC is based on the pseudo labels estimated by BPL, the success of
BPL leads to trustworthy estimation of confident nodes and robust prototypes by BEC.

Table 12: Number of robust prototypes inferred by BPL compared with the ground truth number of
classes on different datasets

Datasets Citeseer Cora PubMed Coauthor CS ogbn-arxiv
ξ in eq. (2) 0.15 0.20 0.35 0.30 0.4

Estimated K 6 8 3 19 48
Classes 6 7 3 15 40
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