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Abstract

Generative AI has established the opportunity001
to readily transform content from one medium002
to another. This capability is especially pow-003
erful for storytelling, where visual illustrations004
can illuminate a story originally expressed in005
text. In this paper, we focus on the task of narra-006
tive scene illustration, which involves automat-007
ically generating an image depicting a scene in008
a story. Motivated by recent progress on text-009
to-image models, we consider a pipeline that010
uses LLMs as an interface for prompting text-011
to-image models to generate scene illustrations012
given raw story text. We apply variations of this013
pipeline to a prominent story corpus in order014
to synthesize illustrations for scenes in these015
stories. We conduct a human annotation task016
to obtain pairwise quality judgments for these017
illustrations. The outcome of this process is the018
SCENEILLUSTRATIONS dataset, which we re-019
lease as a new resource for future work on cross-020
modal narrative transformation. Through our021
analysis of this dataset and experiments mod-022
eling illustration quality, we demonstrate that023
LLMs can effectively verbalize scene knowl-024
edge implicitly evoked by story text. Moreover,025
this capability is impactful for generating and026
evaluating illustrations.027

1 Introduction028

Observing the transformation of a story from one029

modality to another (e.g. from text to visual form)030

can make the story more compelling to its audience.031

Recent advances in generative AI have enabled032

this kind of cross-modal transformation to be per-033

formed automatically. In particular, text-to-image034

models allow people to create visual material using035

natural language alone. Current interaction with036

these models typically involves users envisioning a037

particular visual target and then crafting language038

that realizes that target. Many stories that currently039

only exist in text form would be well-suited for040

transfer to an image modality, but the text itself of041

these stories may not be naturally optimal for di- 042

rectly applying text-to-image models. Given their 043

demonstrated success at meta-prompting (e.g. Zhou 044

et al., 2023), large language models (LLMs) may 045

be able to interface with story text to synthesize 046

suitable prompts for text-to-image models towards 047

this end. The cooperation between these AI models 048

would make it possible to automatically generate 049

illustrations for any given text-based story. 050

Figure 1: Overview of scene illustration pipeline

In this paper, we exemplify this approach to vi- 051

sual transfer of story text. Generating illustrations 052

for stories, a task that has been termed story vi- 053

sualization, encompasses a myriad of challenges. 054

Some of these challenges pertain to modeling the 055

relation between the story text and illustrations 056

(text-image alignment), while others pertain to the 057

relation between illustrations for different scenes 058

in the story (image-image alignment). Existing 059

story visualization research (e.g. Li et al., 2019) 060

has largely focused on image-image alignment, in 061

particular the problem of ensuring visual consis- 062

tency between depictions of story elements like 063

characters and settings. We aim to bring more re- 064

search attention to issues of text-image alignment 065

in this domain. Thus, our work is scoped to focus 066

on individual scene illustrations. In particular, we 067

consider scene-level units of stories (fragments). 068

We present a pipeline (outlined in Figure 1) that 069

generates a scene illustration given a fragment in 070

its story context. Through systematic variation and 071

ablation of the components of this pipeline, we pro- 072

1



duce a novel set of scene illustrations for fragments073

in a notable story corpus. We then conduct a human074

annotation task to obtain relative quality judgments075

for pairs of illustrations. We refer to the resulting076

quality-annotated items as the SCENEILLUSTRA-077

TIONS dataset.078

We leverage the SCENEILLUSTRATIONS dataset079

to demonstrate that LLMs can explicate visual080

knowledge of narrative scenes by inferring this081

knowledge directly from story text, without any082

visual input. We establish this capability through083

two findings. First, we show that LLMs are an084

effective interface for transforming story text into085

prompts that facilitate text-to-image models to pro-086

duce illustrations. Second, we show that LLMs087

can verbalize scene characteristics in a way that is088

useful for evaluating the quality of illustrations. In089

particular, we demonstrate an approach to predict-090

ing human-favored illustrations among pairs in our091

dataset, through which we apply LLM-specified092

scene characteristics as evaluation criteria for scor-093

ing illustrations. The success of this approach rela-094

tive to a criteria-ablated baseline further suggests095

the utility of LLMs for explicating scene knowl-096

edge that is implicitly conveyed by story text.097

Contributions This paper makes the following098

contributions1:099

• We define and motivate the task of narrative scene100

illustration in relation to existing research on vi-101

sually aligned storytelling.102

• We demonstrate a pipeline for producing scene103

illustrations for any given story text. The pipeline104

components are fully interchangeable and can be105

used with any LLM and text-to-image models.106

• We apply our pipeline to synthesize scene illustra-107

tions for existing stories and elicit human quality108

annotations for pairs of these illustrations, result-109

ing in the newly created SCENEILLUSTRATIONS110

dataset.111

• Through analysis of the quality annotations in112

SCENEILLUSTRATIONS, we show that LLMs are113

an effective interface between story text and text-114

to-image models in facilitating scene illustration.115

• We assess an approach to predicting these qual-116

ity annotations that involves applying LLM ver-117

balizations of scene characteristics as evaluation118

criteria. We discuss the evaluation results as ad-119

ditional evidence that LLMs can explicate visual120

scene knowledge inferred from story text.121

1The SCENEILLUSTRATIONS dataset and all code for our
experiments is available at: withheld/during/review

2 Background and Related Work 122

Image-Aligned Story Data Datasets that pair 123

story text with images have emerged from research 124

on visually grounded story generation, which in- 125

volves writing a story given a sequence of im- 126

ages. Human authors have performed this task 127

for existing media-sourced images (Halperin and 128

Lukin, 2023; Huang et al., 2016; Hong et al., 2023). 129

For the reverse-direction task of story visualiza- 130

tion, which involves generating a sequence of im- 131

ages given story text, some research has leveraged 132

videos for data creation (Li et al., 2019; Tao et al., 133

2024). Distinct frames of video are sampled as 134

static images, while crowdsourced descriptions of 135

frames are designated as the story text (Li et al., 136

2019; Maharana and Bansal, 2021; Maharana et al., 137

2022). A key design factor of all the above datasets 138

is that the story text is authored specifically in re- 139

sponse to the images, rather than originating in text 140

form. We explore an alternative process for visu- 141

ally aligning narratives by synthesizing images for 142

existing text-based stories. 143

Multimodal Storytelling Systems In addition 144

to datasets, there are increasing demonstrations 145

of story visualization systems, as well as systems 146

that generate story text and images in parallel, i.e. 147

multimodal story generation (An et al., 2024; Koh 148

et al., 2023; Singh et al., 2023; Wan et al., 2024; 149

Yang et al., 2024). While some models applied to 150

these use cases have been trained end-to-end on the 151

specialized datasets described above (Feng et al., 152

2023; Maharana and Bansal, 2021; Tao et al., 2024), 153

researchers have also begun to leverage generi- 154

cally pretrained models to expand the scope of 155

these systems to open-domain storytelling (de Lima 156

et al., 2024; Gong et al., 2023; Soumik Rakshit, 157

2024). We follow suit in leveraging a plug-and- 158

play pipeline for scene illustration. 159

Meta-Prompting for Text-to-Image Models 160

One challenge with using generic models for story 161

visualization is that the story text itself is not neces- 162

sarily an optimal prompt for text-to-image models. 163

In particular, this text tends to lack detailed visual 164

descriptions (e.g. the physical appearance of story 165

elements like entities and locations), which are 166

considered essential when providing instructions 167

to text-to-image models (Maharana et al., 2022). 168

Users of these models who have become skilled in 169

writing prompts have done so largely through an it- 170

erative process of observing what prompt language 171
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yields desirable images (Don-Yehiya et al., 2023).172

Even with this skill, significant effort is required173

to manually compose a prompt that captures the174

intended visual features of the scene correspond-175

ing to a story fragment. Following the paradigm176

of meta-prompting (e.g. Zhou et al., 2023), there177

is a variety of research on automated prompt op-178

timization for text-to-image models (Brade et al.,179

2023; Feng et al., 2024; Hao et al., 2023; Wang180

et al., 2024), some of which establishes the effec-181

tiveness of LLMs in facilitating this process (Lian182

et al., 2024). Accordingly, recent story visualiza-183

tion work has used LLMs as an interface for de-184

riving text-to-image prompts from story text. In185

particular, Gong et al. (2023) and He et al. (2024)186

instructed GPT-4 to transform a story into a se-187

ries of scene-level prompts intended as input to188

text-to-image models. It is presumed that these189

synthesized prompts are more visually descriptive190

than the story text and thus produce better images,191

but this has not been empirically validated. Thus,192

we address this opportunity in our work.193

LLMs for Image Evaluation Assessing the de-194

gree of semantic alignment between images and195

text is a prominent research endeavor, which has196

primarily involved measuring their similarity when197

projected into a shared embedding space (e.g. Hes-198

sel et al., 2021). Because of their capacity for vi-199

sually descriptive language, even unimodal (text-200

only) LLMs can contribute to this endeavor. Sev-201

eral works have demonstrated the utility of LLMs202

for zero-shot visual recognition tasks (Li et al.,203

2023; Maniparambil et al., 2023; Menon and Von-204

drick, 2023; Pratt et al., 2023). This line of research205

has recently extended to eliciting visual knowledge206

from LLMs as a strategy for text-to-image evalu-207

ation (Lin et al., 2025; Lu et al., 2023; Hu et al.,208

2023). Encouraged by recent demonstrations of209

LLM-based evaluation in multimodal story gener-210

ation (An et al., 2024), we pursue this method for211

evaluating scene illustrations.212

Criteria-based Evaluation with LLMs In NLP,213

criteria is a means of anchoring evaluation to214

certain objectives (Yuan et al., 2024). With the215

rapidly expanding LLM-as-a-judge paradigm, this216

has evolved to the point where LLMs are not just217

applying human-authored criteria to assess text, but218

are also generating their own criteria (Cook et al.,219

2024). We examine LLMs’ capacity to generate220

evaluation criteria for the scene illustration task.221

3 Scene Illustration Pipeline 222

We first outline the high-level components2 of the 223

illustration pipeline in this section, before describ- 224

ing their application in the next section. 225

Story Fragmentation In our work, we consider 226

a scene to be an abstract unit of a story that can 227

be distinctly illustrated by a single image. The 228

story text that aligns to a scene is referred to as 229

a fragment. Thus, the first step of producing a 230

scene illustration is to identify its source fragment. 231

Recent work has validated the use of LLMs for 232

the related task of segmenting events in narrative 233

text (Michelmann et al., 2025). Accordingly, we 234

utilize an LLM for this fragmentation task, by in- 235

structing it to explicitly annotate the boundaries of 236

all fragments in a given story. Table A.13 shows 237

the prompt we provide to the LLM to facilitate this, 238

where the input contains the story text and the LLM 239

is expected to generate the same text with brackets 240

demarcating the left and right boundaries of each 241

fragment, as demonstrated by the exemplars. We 242

parse this output with a simple regular expression 243

to gather the list of fragments. 244

Scene Descriptions Once a fragment is identi- 245

fied, the fragment with its story context can then 246

be mapped to a scene description. A scene descrip- 247

tion is a verbalization of what should be illustrated 248

in the image corresponding to the fragment. This 249

text serves as the input to the text-to-image model 250

used to produce the scene illustration. As described 251

below in §4, we consider different types of scene 252

descriptions in order to evaluate the capability of 253

LLMs to generate these descriptions. 254

Image Generation As mentioned, the scene de- 255

scriptions are the inputs to a text-to-image model, 256

referred to here as an image generator. While we 257

use the term ‘illustration’ to describe the end-to- 258

end process that yields an image depicting a scene, 259

the output of this process (i.e. the image generator 260

output) is also called an illustration. 261

4 SCENEILLUSTRATIONS Dataset 262

Each item in the SCENEILLUSTRATIONS dataset 263

consists of a fragment with its story context, along 264

with two illustrations depicting the fragment. The 265

illustrations vary based on their scene description 266

2We ran all model components using APIs, which we spec-
ify here for each model. Unless otherwise indicated, we used
the default inference parameters defined by the model’s API.

3



and/or the image generator used to produce them.267

The dataset consists of 2995 items in total, which268

were created in two phases: Phase 1 yielded 1777269

items and Phase 2 yielded 1218 items. In this sec-270

tion, we detail the pipeline for synthesizing and an-271

notating the items in both phases, then we present272

analyses of the annotation results.273

4.1 Story Text274

Seeking out a story corpus suitable for the scene275

illustration task, we ultimately selected the well-276

studied ROCStories corpus (Mostafazadeh et al.,277

2016) based on some key considerations. In par-278

ticular, these English-language stories were au-279

thored to adhere to basic narrative structure in a280

tightly length-constrained format. In particular,281

each story consists of five sentences conveying “a282

causally (logically) linked set of events involving283

some shared characters”. Thus, we can expect that284

stories are composed of distinct fragments that are285

each appropriately visualized as a scene illustration.286

Moreover, the stories are narrations of everyday287

experiences that can be interpreted according to288

commonsense knowledge. This knowledge is gen-289

eral enough it is likely to be familiar to the model290

components of our illustration pipeline.291

4.2 Phase 1 Pipeline Details292

We applied the pipeline outlined in §3 to produce293

an initial set of scene illustrations, which we refer294

to as Phase 1 data. As inputs to the pipeline, we295

used the first 50 stories in the ROCStories dev set.3296

Fragmentation We divided these stories into297

fragments as described in §3, using CLAUDE-298

3.54 as the LLM, which has displayed notable299

storytelling-related capabilities (e.g. Mazur, 2025).300

As shown in Table A.6, this resulted in 206 total301

fragments across all 50 stories, an average of 4.12302

per story. §A.1.1 presents some additional analysis.303

Scene Descriptions We applied an LLM to trans-304

form a fragment alongside its story context into a305

scene description, using the prompt in Table A.15306

with CLAUDE-3.5 as the LLM. We employ the term307

scene captioner to refer to an LLM’s role when308

3The dev and test items in ROCStories are actually des-
ignated as the Story Cloze Test, where items have a specific
format: each story consists of four sentences plus two alterna-
tive fifth sentences, where one is the ‘correct’ story ending and
the other is the ’incorrect’ ending. For each item, we discarded
the incorrect ending and appended the correct ending after the
initial four sentences to form a single five-sentence story.

4claude-3-5-sonnet-20240620, ran via the Anthropic API

running this prompt, and we refer to the outputs 309

as CAPTION scene descriptions. As outlined in 310

Table 1, CAPTION is one of four scene description 311

types we consider for Phase 1. We compare CAP- 312

TION with baseline scene descriptions composed 313

of the raw story text. In the first baseline case, NC- 314

FRAGMENT (i.e. no context fragment), we use the 315

original fragment isolated from its story context 316

as a scene description. The obvious limitation of 317

NC-FRAGMENT is that the ablated context may be 318

necessary for understanding certain information in 319

the fragment (for example, a fragment might use 320

a pronoun whose referent is only specified in the 321

context). Thus, we considered two additional base- 322

line scene descriptions that account for the story 323

context, referred to as VC-FRAGMENT and SC- 324

FRAGMENT. As Table 1 shows, VC-FRAGMENT 325

(i.e. verbose context) inserts the full story text into 326

the scene description, which is formatted as an 327

instruction to consider this context when illustrat- 328

ing the fragment. Alternatively, SC-FRAGMENT 329

(i.e. succinct context) is a rewritten version of the 330

fragment where references to information in the 331

story context are made explicit, enabling the frag- 332

ment to be understood independently of the con- 333

text. We prompt an LLM (also CLAUDE-3.5) to do 334

this rewriting task, using the prompt in Table A.14. 335

Table 1 gives examples of these different scene de- 336

scriptions, with additional examples in Table A.16. 337

Image Generation We then applied two image 338

generators5 to generate images using the scene de- 339

scriptions as prompts. In particular, we used Mid- 340

journey v6.1, denoted here as MJ-6.1 (Midjourney, 341

2024), and FLUX-1[pro], denoted here as FLUX-1- 342

PRO (Black Forest Labs, 2024a). We selected these 343

image generators because they topped the Artifi- 344

cial Analysis Image Arena Leaderboard at the time 345

of Phase 1 in August 2024. This leaderboard cap- 346

tures the relative ELO score (Boubdir et al., 2023) 347

of text-to-image models based on pairwise human 348

judgments regarding how well images from differ- 349

ent models reflect the input prompt. Table A.16 350

includes examples of generated illustrations. 351

4.3 Phase 1 Annotation Task 352

Illustration Pairs Our primary objective for 353

Phase 1 was to assess the effectiveness of the LLM 354

scene captioner (i.e. CAPTION scene descriptions) 355

in generating illustrations relative to generating 356

5With exception to Midjourney, we ran all image genera-
tion models via the Replicate API.
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Type Format Example
NC-FRAGMENT {{fragment}} “Alice called her mother and apologized profusely.”
VC-FRAGMENT “Consider this story:

[{{story}}] Based
on this context,
illustrate this frag-
ment of the story:
[{{fragment}}]”

“Consider this story: [Alice was getting married in a few weeks. One night,
her mother called and she forgot to call her back. Her mother left an angry
message on her phone. She threatened not to come to the wedding. Alice called
her mother and apologized profusely.] Based on this context, illustrate this
fragment of the story: [Alice called her mother and apologized profusely.]”

SC-FRAGMENT LLM output of
fragment rewriting
prompt (Table A.14)

“The bride-to-be called her mother and apologized profusely for forgetting to
return her call and for the resulting angry message threatening not to attend the
wedding.”

CAPTION LLM output of scene
captioning prompt
(Table A.15)

“A young woman with a worried expression sits on a couch, holding a phone to
her ear. She’s gesticulating with her free hand, appearing to speak emphatically.
In the background, a wedding dress can be seen hanging on a closet door. The
room is dimly lit, suggesting it’s evening, and there’s a notepad with wedding
plans visible on a nearby coffee table.”

Table 1: Types of scene descriptions for Phase 1

them directly from the raw story text. To address357

this, we randomly sampled pairs of illustrations358

each belonging to the same story fragment (across359

206 possible fragments), where one illustration360

used CAPTION as the scene description, while361

the other used one of the baseline scene descrip-362

tions, NC-FRAGMENT, VC-FRAGMENT, or SC-363

FRAGMENT. This sampling resulted in some pairs364

where the illustrations used the same image genera-365

tor and others that used different image generators.366

Ultimately there were 1777 illustration pairs. The367

exact distribution of types for the illustrations and368

resulting pairs is specified in A.1.2 and A.1.3.369

Task Design We designed an annotation task to370

assess the relative quality of the two illustrations371

in each pair. In judging a pair, human annotators372

were shown the full story with the target fragment373

for that scene underlined, along with the two alter-374

native images. As shown in Figure A.3, annotators375

were instructed to select the image that was “the376

better visualization of the underlined fragment”.377

Annotators could express uncertainty by selecting378

“I can’t decide which is better”. We implemented379

the UI for this task using POTATO (Pei et al., 2022).380

Procedure We deployed the task on Prolific to381

obtain annotators. English proficiency was the only382

requirement for participation. We sought 2 annota-383

tors to judge each illustration pair. Each participant384

judged between 33 and 74 pairs (median=47), plus385

3 “attention check” items where one illustration386

in the pair was replaced with one for a different387

story, making it trivially easy which image to se-388

lect. Participants were paid $6 for an expected389

completion time of 30 minutes. We filtered out390

participants who did not pass all of the attention391

check items. Ultimately, 75 (out of 80) participants392

passed the attention checks. This resulted in a total 393

of 3554 responses for the 1777 pairs, where each 394

item received a response from 2 annotators. 395

4.4 Phase 1 Annotation Results 396

Inter-annotator Agreement Given the anno- 397

tated pairs resulting from §4.3, we computed the 398

inter-annotator agreement of which illustration was 399

selected as the better one in each pair. We did this 400

using an uncertainty-weighted variation of Cohen’s 401

Kappa score (Cohen, 1960), which we abbreviate 402

here as κu. This variation considers that response 403

disagreements arising from one annotator express- 404

ing uncertainty (i.e. selecting “I can’t decide”) 405

should be weighted half as much as disagreements 406

where the two annotators each select a different 407

illustration as better. As indicated in Table A.8, the 408

overall κu for all 1777 items was 0.436, which can 409

be classified as moderate agreement (Landis and 410

Koch, 1977). Annotators agreed in their responses 411

for 62.3% of items. §A.1.3 provides a finer-grained 412

analysis of agreement for different types of pairs. 413

Win Rates for Scene Description Types To de- 414

termine whether using an LLM as a scene captioner 415

helps illustration quality, we counted how often the 416

favored illustration was associated with each scene 417

description type, i.e. each type’s win rate. Table 418

2 shows the win rate for CAPTION illustrations 419

when alternatively paired with NC-FRAGMENT, 420

VC-FRAGMENT, and SC-FRAGMENT illustrations. 421

This win rate is represented as the percentage of 422

responses in which annotators selected the CAP- 423

TION illustration as better among all responses for 424

each respective set of pairs. In all three cases, the 425
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CAPTION is significantly6 better: it has an overall426

win rate of ≈78% against NC-FRAGMENT, ≈75%427

against VC-FRAGMENT, and ≈73% against SC-428

FRAGMENT. Table A.17 further examines the win429

rates for pairs that used the same image generator,430

verifying that CAPTION is equally favorable re-431

gardless of which image generator was used. This432

validates the importance of the scene captioner in433

the pipeline: the resulting verbalization enables434

the image generator to better depict how a story435

fragment should be visually illustrated as a scene.436

Scene Description Pair # Pairs CAPTION %
CAPTION vs. NC-FRAGMENT 680 78.1
CAPTION vs. VC-FRAGMENT 384 74.7
CAPTION vs. SC-FRAGMENT 393 72.5

Table 2: Win rates of CAPTION over the baseline scene
descriptions in Phase 1

Win Rates for Image Generators While we fo-437

cus primarily on how scene descriptions affect il-438

lustration quality, we also considered whether there439

were quality differences based on which image gen-440

erator was used. These results are given in §A.1.4.441

4.5 Phase 2 Motivation and Design442

After observing that the CAPTION scene descrip-443

tions significantly contribute to illustration qual-444

ity, we wanted to compare the impact of different445

LLMs as scene captioners. Phase 1 only consid-446

ered CLAUDE-3.5. In Phase 2, we included other447

LLMs with storytelling-relevant capabilities (e.g.448

Tian et al., 2024): GPT-4O7 (OpenAI et al., 2024)449

and LLAMA-3.18 (Grattafiori et al., 2024). We used450

the same captioning prompt from §4 (Table A.15).451

We expanded the Phase 2 data to include a larger452

set of fragments compared with those of Phase453

1. We randomly sampled 1000 stories from the454

ROCStories dev set, split them into fragments using455

the same method from Phase 1 (CLAUDE-3.5 with456

the Table A.13 prompt), then randomly selected457

one fragment per story for inclusion in the dataset.458

We also considered a larger set of image gen-459

erators in Phase 2. Based on the state of the Ar-460

tificial Analysis Leaderboard in November 2024,461

we selected five image generators. This included462

MJ-6.1 from Phase 1, as well as FLUX1.1[pro]463

6Statistical significance was computed using a one-sample
binomal test at α = 0.05 to determine if the win rate was
higher than that expected by chance, where chance is defined
as (1−#ties/#responses)/2

7gpt-4o-2024-05-13, ran via the OpenAI API
8llama-3.1-405b-instruct, ran via the Replicate API

(referred to here as FLUX-1.1-PRO) (Black For- 464

est Labs, 2024b), Ideogram 2.0 (IDEOGRAM-2.0) 465

(Ideogram, 2024), Recraft V3 (RECRAFT-V3) (Re- 466

craft, 2024), and Stable Diffusion 3.5 Large (SD- 467

3.5-LARGE) (Stability AI, 2024). 468

We applied the scene illustration pipeline to pro- 469

duce illustrations for all 1000 fragments, varying 470

runs of the pipeline between the 3 scene captioners 471

and 5 image generators. We sampled a roughly 472

equal ratio of pairs where the illustrations varied 473

by scene captioner, image generator, or both scene 474

captioner and image generator. The exact distribu- 475

tion is specified in A.1.2 and A.1.3. We repeated 476

the same §4.3 procedure to obtain selections from 477

two annotators for the better illustration in each 478

pair. There were 48 (out of 49 total) annotators on 479

Prolific who passed the attention checks, each an- 480

notating between 46 and 109 pairs (median=50), re- 481

sulting in a total of 2436 responses for 1218 pairs. 482

4.6 Phase 2 Annotation Results 483

Inter-annotator Agreement As shown in Table 484

A.8, the overall κu for all 1218 items in Phase 2 485

was 0.228, and annotators agreed in their responses 486

for 52.4% of these items. This is lower than the 487

agreement observed for Phase 1. §A.1.3 analyzes 488

agreement across different pair subsets. 489

Win Rates for Scene Captioners Table 3 shows 490

the win rates for each LLM scene captioner against 491

each of the others. In particular, each value is the 492

percentage of responses where the illustration as- 493

sociated with the scene captioner in the row label 494

was selected as better than the illustration associ- 495

ated with the scene captioner in the column label. 496

Statistically significant win rates are denoted with 497

an asterisk. These results show that CLAUDE-3.5 498

yields the highest win rates, followed by GPT-4O, 499

with LLAMA-3.1 having lowest rates. The win rate 500

for CLAUDE-3.5 against LLAMA-3.1 is statistically 501

significant, suggesting that the former generates 502

more descriptive captions compared with the latter. 503

CLAUDE-3.5 GPT-4O LLAMA-3.1
CLAUDE-3.5 - 46.1 49.6*
GPT-4O 41.2 - 47.8
LLAMA-3.1 39.7 42.9 -

Table 3: Win rates (%) by scene captioner for Phase 2

Win Rates for Image Generators While not the 504

focus of our analysis, we observed some signifi- 505

cant differences in the win rates of different image 506

generators. These results appear in §A.1.4. 507
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Fragment (within story) Illustration 1 Illustration 2

Sophie’s nana was terminally ill. Sophie visited her in the hospital to say goodbye. Her
nana gave Sophie her prized gold locket. She told Sophie to keep it to remember her
by. Sophie cried.

Criteria Response Response
1. The image shows two people: an elderly woman (nana) and a younger woman (Sophie) ✓ ✗
2. The setting appears to be a hospital room or medical facility ✓ ✓
3. The elderly woman is in a hospital bed or medical chair ✓ ✗
4. The image shows a gold locket ✓ ✓
5. The locket is clearly visible and recognizable as a piece of jewelry ✓ ✓
6. The elderly woman is holding or presenting the locket to the younger woman ✗ ✓
7. The younger woman’s hand is positioned to receive or touch the locket ✓ ✗
8. The facial expressions of both women convey emotional significance ✓ ✓
9. The elderly woman’s expression shows love, tenderness, or sadness ✓ ✓
10. The younger woman’s expression shows a mix of emotions (sadness, gratitude, love) ✓ ✗
11. The body language of both women suggests intimacy and connection ✓ ✓
12. The composition focuses on the moment of giving/receiving the locket ✓ ✓
13. The lighting adequately illuminates the locket and the faces of both women ✓ ✓
14. The locket appears to be in good condition, suggesting its value as a keepsake ✓ ✓
15. The elderly woman’s appearance suggests illness or frailty ✓ ✗
16. The younger woman’s appearance and demeanor suggest she is visiting ✓ ✗
17. The overall atmosphere of the image conveys a solemn and meaningful moment ✓ ✓
18. The spatial relationship between the two women suggests closeness and care ✓ ✓
19. Any medical equipment or hospital elements are present but not dominating the scene ✓ ✓
20. The perspective allows viewers to see both the locket and the emotional exchange between the women ✓ ✓

Score=19.0 Score=14.0

Table 4: Demonstration of criterial rating approach applied to both illustrations in a given pair. In this particular
example, the criteria writer is CLAUDE-3.5, and the rater providing each response is GPT-4O.

5 Predicting Illustration Quality508

5.1 Perfect-Agreement Data Subset509

The SCENEILLUSTRATIONS dataset provides an510

opportunity to understand what characterizes a suc-511

cessful transformation of a narrative scene from512

text to image form. To initiate this line of work,513

we explored a particular approach to modeling an-514

notators’ judgments of relative illustration quality.515

For this experiment, we combined the items from516

Phase 1 and Phase 2, and disregarded items involv-517

ing annotator disagreement. The resulting Perfect-518

Agreement subset consists of 1745 items (≈58% of519

the full dataset) where both annotators agreed in520

their selection of the better illustration in the pair.521

5.2 Criteria Generation522

Our approach leverages the finding from §4 that523

LLMs can effectively verbalize visual descriptions524

of scenes based on the story text. We consider525

whether these descriptions can be used as criteria526

for predicting illustration quality. For each frag-527

ment, we ran the prompt in Table A.18 to produce528

criteria articulating the expected visual character-529

istics of the scene illustration. We use the term530

criteria writer to refer to an LLM’s role when run-531

ning this prompt, and we refer to its output as a532

criteria set. An example of a criteria set is included533

in Table 4. Note that a criteria writer model does534

not require vision capabilities, since it observes535

only the story text as input. §A.2.1 discusses some 536

design considerations for generating criteria. 537

Criteria Writer Details We examined three cri- 538

teria writers, the same LLMs that operated as scene 539

captioners in §4.5: CLAUDE-3.5, GPT-4O, and 540

LLAMA-3.1. Applying the Table A.18 prompt 541

with temperature=0 to facilitate deterministic out- 542

put, each criteria writer generated one criteria set 543

per fragment. We post-processed this output to 544

identify each individual criterion according to its 545

expected numerical label in the set. §A.2.2 gives 546

some descriptive analysis of the criteria sets. 547

5.3 Criteria-based Ratings 548

After obtaining the criteria sets, we then enlisted 549

visually-enabled models to assess illustrations 550

based on this criteria. In our scheme, when apply- 551

ing a criteria set to score a given illustration, each 552

criterion receives a response indicating whether or 553

not it is satisfied by the image. The overall illus- 554

tration quality is quantified by the total number of 555

satisfied criteria. Our scoring protocol is as fol- 556

lows: a response conveying that the criterion is 557

satisfied is assigned 1.0 points; a response convey- 558

ing “maybe” or partial satisfaction is assigned 0.5 559

points; and a response conveying the criterion is 560

not satisfied is assigned 0.0 points. The total score 561

for an illustration is the sum of these point values. 562

We implemented this by prompting a visually- 563
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VLM Rater
Criteria Writer CLAUDE-3.5 GPT-4O PIXTRAL Average

Criterial Base Criterial Base Criterial Base Criterial Base
CLAUDE-3.5 0.717 0.606 0.709 0.567 0.712 0.589 0.713 0.587
GPT-4O 0.701 0.602 0.687 0.583 0.699 0.589 0.695 0.592
LLAMA-3.1 0.684 0.597 0.678 0.589 0.677 0.581 0.679 0.589
Average 0.700 0.602 0.691 0.580 0.696 0.586 0.696 0.589

Table 5: Accuracy of criterial and baseline (Base) raters grouped by criteria writer and VLM

enabled LLM (i.e. VLM) to assign responses to564

each criterion for a given illustration. We use the565

term criterial rater to refer to a VLM’s role when566

running this prompt, which appears in Table A.19.567

As shown, the rater observes an illustration and the568

criteria set for the corresponding fragment. The569

rater is asked to respond to each criterion (where a570

response of ‘✓’ means the criterion is satisfied, ‘✗’571

means not satisfied, and ‘?’ means “maybe”). As572

post-processing, we parsed these response tokens573

and mapped them to the point values defined above574

to obtain the illustration score. Table 4 exemplifies575

this approach applied to both illustrations in a pair.576

Rater Details For raters, we utilized three VLMs577

that have obtained notable performance on visual578

understanding benchmarks: CLAUDE-3.5, GPT-4O,579

and PIXTRAL9 (Mistral AI, 2024). Each rater ran580

the prompt in Table A.19 with temperature=0. All581

images were resized to a height of 240 pixels with582

proportional width. We briefly assessed the correct-583

ness of raters’ responses, which appears in §A.2.3.584

Comparative Baseline To determine the impact585

of criteria in assessing quality, we designed a com-586

parable rating approach that scores illustrations on587

the same scale as the criterial rater but without ob-588

serving the criteria itself. We use the term baseline589

rater to refer to a VLM’s application of the prompt590

for this approach, which is shown in Table A.20.591

The prompt presents the fragment and illustration,592

and instructs the VLM to assign a rating in half-593

point increments between 0 and a maximum that594

is dynamically set to the length of the given crite-595

ria set. For each criteria writer, we compare the596

result obtained by a particular criterial rater to the597

analogous result obtained by the baseline rater.598

5.4 Selection Performance Results599

We applied all raters to score the illustrations in600

the Perfect-Agreement subset of SCENEILLUSTRA-601

TIONS. For a given pair, a rater’s selection was602

the image it assigned a higher score. We measured603

9pixtral-large-2411, ran via the MistralAI API

each rater’s performance in terms of proportion of 604

pairs where the rater’s selection matched the human 605

selection. We refer to this metric as accuracy. 606

Table 5 shows the accuracy for all raters on these 607

pairs, with the respective averages for each criteria 608

writer and rater. For reference, always selecting 609

the second illustration in each pair yields 49.4% 610

accuracy. We observe that the criterial raters all 611

considerably outperform the baseline raters (an av- 612

erage accuracy of ≈70% vs. 59%). Criteria from 613

different writers yields comparable results, with 614

CLAUDE-3.5 averaging the highest accuracy across 615

raters (≈71%). The raters obtain similar accuracies 616

when applied to the same criteria. Overall this out- 617

come suggests that criteria are an effective strategy 618

for modeling illustration quality, which in turn pro- 619

vides further evidence of LLMs’ capacity to verbal- 620

ize visual characteristics of narrative scenes. This 621

leaves room for further accuracy gains, motivating 622

future exploration of this dataset for understanding 623

what makes a compelling scene illustration. 624

6 Conclusion and Future Work 625

This paper details a pipeline for generating illustra- 626

tions of narrative scenes, which we apply to pro- 627

duce SCENEILLUSTRATIONS, a quality-annotated 628

dataset of illustrations for a popular story corpus. 629

We identify that LLMs can facilitate this illustra- 630

tion task by distilling scene descriptions from story 631

text. We show that this capacity to verbalize im- 632

plicit scene knowledge is also useful for modeling 633

illustration quality. 634

The scene illustration task isolates text-image 635

alignment challenges in story visualization from 636

issues of image-image alignment. In future work, 637

we plan to consider recent approaches addressing 638

the latter, such as ensuring visual consistency be- 639

tween story elements (e.g. Liu et al., 2025) and 640

progressive story development across images (e.g. 641

Maharana et al., 2022), in order to extend our il- 642

lustration pipeline to generate multi-scene image 643

sequences that depict complete stories. 644
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Limitations645

We consider the following limitations:646

Proprietary Models Our scene illustration647

pipeline has a plug-and-play design, enabling any648

LLM to be used for fragmentation and scene cap-649

tioning and any text-to-image model to be used650

for image generation. However, most of the mod-651

els we assessed in this paper are proprietary (i.e.652

closed-weight), with exception to LLAMA-3.1 and653

SD-3.5-LARGE. While the gap between closed and654

open-weight models is narrowing (Cottier et al.,655

2024), currently most models with capabilities rele-656

vant to the illustration task are closed-weight. This657

poses a general disadvantage in accessibility and re-658

producibility, which applies likewise to this work.659

Prompt Design Currently there is no tractable660

way to ensure that a particular prompt is optimal661

for the task it is intended to perform. Prompt op-662

timization is fundamentally a process of iterative663

trial-and-error, even when automation is used to664

increase the number of trials. For our experiments,665

we primarily employed a principled approach to666

writing prompts, which involved adhering to gen-667

eral guidance on effective prompt design such as668

explaining instructions clearly and including rep-669

resentative exemplars (e.g. DAIR.AI, 2025). We670

iterated on this design according to qualitative sub-671

jective assessment of model outputs for inputs not672

included in our scene illustration dataset (i.e. “vibe-673

based” prompt engineering), rather than employing674

a quantitative optimization approach (e.g. Khattab675

et al., 2024) based on targets in a designated devel-676

opment set. There are tradeoffs to this technique:677

while it avoids overfitting to our presented dataset,678

it leaves open the possibility of further prompt op-679

timization, which could yield a different view of680

model behavior compared with our observations.681

Story Corpus The story corpus we use, ROCSto-682

ries, is popular in NLP research for some of the683

same reasons discussed in §4: the constrained lan-684

guage and structure of the text makes the narrative685

elements more accessible to computational model-686

ing techniques. The stories were authored specifi-687

cally for the benefit of this research. However, this688

corpus is distinct from “naturally” authored stories689

whose complexity is what makes them compelling690

to readers. We have not yet fully assessed whether691

our scene illustration pipeline generalizes to more692

complex narratives.693

Ethical Considerations 694

Generative AI models, and in particular text-to- 695

image models, pose various ethical risks (Bird et al., 696

2023). In this work, we were primarily concerned 697

with the risk of exposing Prolific annotators to 698

harmful content. We attempted to mitigate this 699

risk by manually reviewing stories sampled for in- 700

clusion in our dataset. We flagged stories that we 701

anticipated could yield objectionable illustrations, 702

and re-sampled a different story to replace each of 703

these. Ultimately, this re-sampling was triggered 704

for 10 stories. Of course, this procedure did not 705

eliminate the risk, so we also utilized the content 706

warning feature on the Prolific platform, which in- 707

dicated to potential annotators that the task could 708

expose them to offensive and/or biased content. 709
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A Appendix1014

A.1 Additional Statistics for1015

SCENEILLUSTRATIONS Dataset1016

A.1.1 Analysis of Phase 1 Fragments1017

As mentioned in §4.2, there were 206 total frag-1018

ments derived from the 50 stories in Phase 1, based1019

on applying CLAUDE-3.5 to the prompt in Table1020

13. As shown in Table 6, the majority consist of1021

a single sentence, with some consisting of 2 sen-1022

tences and a few having 3 sentences. An internal1023

annotator assessed each fragment to determine if it1024

was the correctly-sized unit for a scene illustration.1025

A fragment was considered incorrectly-sized if it1026

either did not include all the text in the story rel-1027

evant to a single scene (i.e. the fragment was too1028

short) or if it included text pertaining to more than1029

one scene (i.e. the fragment was too long). The1030

annotator considered the vast majority of fragments1031

to be correctly-sized (≈96%).1032

# Total Fragments 206
# 1-Sentence Fragments 164
# 2-Sentence Fragments 40
# 3-Sentence Fragments 2
Mean # Sentences Per Fragment 1.21
Mean # Fragments Per Story 4.12
% of Correctly-Sized Fragments 96.1%

Table 6: Fragmentation statistics for stories in Phase 1

A.1.2 Illustration Types1033

Table 7 characterizes the illustrations contained1034

in the SCENEILLUSTRATIONS dataset. In particu-1035

lar, we display the number of unique illustrations1036

derived from each scene description and image gen-1037

erator considered for Phase 1 and Phase 2.1038

A.1.3 Illustration Pair Types and1039

Inter-annotator Agreement1040

Table 8 lists the number of illustration pairs as-1041

sociated with each combination of scene descrip-1042

tion types and image generators. This table also1043

presents the specific inter-annotator agreement of1044

different subsets of pairs. As presented in §4.4, the1045

inter-annotator agreement in terms of uncertainty-1046

weighted kappa (κu) for all Phase 1 pairs was 0.436.1047

The first section of Table 8 shows that agreement1048

was higher among the 1457 Phase 1 pairs where1049

the illustrations used different scene descriptions1050

(κu=0.483), while agreement was lower among1051

the 661 pairs where the illustrations used different1052

image generators (κu=0.364). This indicates that1053

Illustration Type # Illustrations
Phase 1

All 1576
By Scene Description

NC-FRAGMENT 395
VC-FRAGMENT 384
SC-FRAGMENT 393
CAPTION 404

By Image Generator
FLUX-1-PRO 791
MJ-6.1 785

Phase 2
All 1582
By Scene Captioner

CLAUDE-3.5 496
GPT-4O 532
LLAMA-3.1 554

By Image Generator
FLUX-1.1-PRO 307
IDEOGRAM-2.0 300
MJ-6.1 321
RECRAFT-V3 323
SD-3.5-LARGE 331

Table 7: Number of unique illustrations associated with
each scene description type and image generator in
Phase 1 (top) and Phase 2 (bottom)

Illustration Pair Type # Pairs κu

Phase 1
All 1777 0.436
Different Scene Descriptions 1457 0.483

NC-FRAGMENT vs. CAPTION 680 0.520
VC-FRAGMENT vs. CAPTION 384 0.504
SC-FRAGMENT vs. CAPTION 393 0.398

Different Image Generators
FLUX-1-PRO vs. MJ-6.1 661 0.364

Phase 2
All 1218 0.228
Different Scene Captioners 810 0.236

CLAUDE-3.5 vs. GPT-4O 266 0.198
CLAUDE-3.5 vs. LLAMA-3.1 268 0.234
GPT-4O vs. LLAMA-3.1 276 0.273

Different Image Generators 813 0.228
FLUX-1.1-PRO vs. IDEOGRAM-2.0 72 0.079
FLUX-1.1-PRO vs. MJ-6.1 74 0.183
FLUX-1.1-PRO vs. RECRAFT-V3 75 0.089
FLUX-1.1-PRO vs. SD-3.5-LARGE 71 0.164
IDEOGRAM-2.0 vs. MJ-6.1 99 0.312
IDEOGRAM-2.0 vs. RECRAFT-V3 81 0.159
IDEOGRAM-2.0 vs. SD-3.5-LARGE 94 0.339
MJ-6.1 vs. RECRAFT-V3 73 0.419
MJ-6.1 vs. SD-3.5-LARGE 88 0.184
RECRAFT-V3 vs. SD-3.5-LARGE 86 0.271

Phase 1 & 2
All 2995 0.351

Table 8: Illustration pair statistics for Phase 1 and Phase
2 of the SCENEILLUSTRATIONS dataset, including inter-
annotator agreement (κu) for different pair types

the scene description type was particularly influen- 1054

tial to annotators’ judgments of which illustration 1055

was better. Considered along with Table 2, we can 1056

specifically conclude that ablating the scene cap- 1057

tioner (i.e. using the baseline NC-FRAGMENT/VC- 1058
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FRAGMENT/SC-FRAGMENT scene descriptions)1059

yielded illustrations that annotators consistently1060

judged as lower quality relative to those that used1061

the scene captioner.1062

For Phase 2, as reported in §4.6, the overall κu1063

was 0.228 among all 1218 pairs. The second sec-1064

tion of Table 8 shows that the agreement level was1065

similar between the 810 pairs where illustrations1066

involved different scene captioners (κu=0.236) and1067

the 813 pairs that involved different image gen-1068

erators (κu=0.228). Agreement varied especially1069

widely based on which particular image genera-1070

tors were paired together (ranging from 0.079 for1071

FLUX-1.1-PRO vs. IDEOGRAM-2.0, up to 0.4191072

for MJ-6.1 vs. RECRAFT-V3). This indicates that1073

in contrast to Phase 1 where there was a significant1074

variable (the presence/absence of the scene cap-1075

tioner) that made the relative quality of illustrations1076

more consistently distinguishable to annotators, the1077

Phase 2 pairs were less reliably distinct.1078

A.1.4 Win Rates for Image Generators1079

To determine whether the choice of image genera-1080

tor influenced illustration quality in both Phase 11081

and Phase 2, we computed the win rates for each1082

image generator against each other among the pairs1083

that used different image generators.1084

For Phase 1, there were only two image genera-1085

tors used to produce illustrations, FLUX-1-PRO vs.1086

MJ-6.1. We did not find any significant difference1087

in the win rates of these image generators. Table 91088

shows these results.1089

FLUX-1-PRO MJ-6.1
42.6% 41.0%

Table 9: Win rates (percentages) of FLUX-1-PRO vs
MJ-6.1 for Phase 1 pairs

.

The Phase 2 data utilized a larger set of image1090

generators. Table 10 shows the win rates of these1091

image generators, presented comparably to Table1092

3 where each value is the percentage of selections1093

for the image generator in the row against the im-1094

age generator in the column. According to these1095

results, IDEOGRAM-2.0 obtains the highest win1096

rates against the other image generators, with sig-1097

nificant success against FLUX-1.1-PRO, MJ-6.1,1098

and SD-3.5-LARGE. Additionally, RECRAFT-V31099

is significantly favored over MJ-6.1. Further anal-1100

ysis of these model differences for this task is an1101

opportunity for future work.1102

A.2 Criteria-based Evaluation Details 1103

A.2.1 Criteria Design Considerations 1104

As referenced in §5.2, two design considerations 1105

for the criteria generation prompt (Table 18) were 1106

flexibility and atomicity. Flexibility emphasizes 1107

that a scene characteristic referenced by a criterion 1108

may be depicted with multiple alternative visual 1109

details that all align equally with the story text. 1110

For example, if a criterion conveys that the scene 1111

should take place at a particular location, it should 1112

be flexible about how the location is portrayed. 1113

Regarding atomicity, we aimed for each criterion 1114

to be as atomic as possible, meaning that it should 1115

refer to only a single characteristic of the scene. 1116

This promotes concise and easy-to-parse responses 1117

when judging whether the criterion is satisfied by 1118

an image, as opposed to a criterion that conflates 1119

multiple characteristics, some of which are satisfied 1120

and others that are not. Concerning the length of 1121

the generated criteria, our prompt did not specify 1122

a particular number of criteria to return, but the 1123

exemplar and instructions indicated that the criteria 1124

should comprehensively refer to as many scene 1125

characteristics as possible without redundancy. 1126

A.2.2 Descriptive Analysis of Criteria Sets 1127

Regarding the generated criteria sets (§5.2), Table 1128

11 compares the average number of criteria in the 1129

sets generated by each criteria writer, revealing that 1130

CLAUDE-3.5 generated the longest criteria sets, 1131

followed by GPT-4O, and LLAMA-3.1. 1132

CLAUDE-3.5 GPT-4O LLAMA-3.1
19.3 17.3 15.8

Table 11: Mean number of criteria per set for each writer

Additionally, Figure 2 visualizes all criteria, 1133

based on encoding each criterion with the Mod- 1134

ernBERT embedding model (Warner et al., 2024), 1135

then running PCA + t-SNE to yield a 2D embed- 1136

ding. While there are no distinct clusters asso- 1137

ciated with each criteria writer, some separation 1138

can be observed between the criteria generated by 1139

CLAUDE-3.5 and GPT-4O, while those generated 1140

by LLAMA-3.1 are more distributed alongside both 1141

other writers. 1142

A.2.3 Criterial Rater Assessment 1143

As referenced in §5.3, we conducted a small as- 1144

sessment of the correctness of the VLM raters’ re- 1145

sponses to criteria. To do this, we randomly sam- 1146

pled 100 items, each with a unique image and crite- 1147
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FLUX-1.1-PRO IDEOGRAM-2.0 MJ-6.1 RECRAFT-V3 SD-3.5-LARGE
FLUX-1.1-PRO - 35.4 43.2 45.3 48.6
IDEOGRAM-2.0 53.5* - 61.6* 46.9 58.5*
MJ-6.1 39.9 31.8 - 28.8 44.9
RECRAFT-V3 44.0 40.1 61.6* - 50.6
SD-3.5-LARGE 43.7 30.3 43.8 37.8 -

Table 10: Win rates (percentages) by image generator for Phase 2. Statistically significant win rates are denoted
with an asterisk.

Figure 2: Visualization of criteria generated by each
writer. Each point is a single criterion represented by its
ModernBERT embedding. We applied PCA followed
by t-SNE to plot the embedding in 2D space.

ria set. We then enlisted an expert human annotator1148

to assign a response to each criterion, which we1149

treated as the gold standard criterion response for1150

the sampled image. We measured rater correct-1151

ness in terms of linear-weighted κ agreement with1152

the gold standard, where responses of ‘✗’ were1153

mapped to -1, ‘?’ to 0, and ‘✓’ to 1; this results1154

in less weight assigned to disagreements involving1155

‘?’ (“maybe”) responses. Table 12 shows the κ1156

on these 1699 criterion responses. It indicates that1157

raters are all substantially aligned with the human1158

annotator, though GPT-4O appears to have the high-1159

est human agreement, followed by CLAUDE-3.5,1160

and then PIXTRAL.1161

Rater κ
CLAUDE-3.5 0.676
GPT-4O 0.710
PIXTRAL 0.622

Table 12: Correctness of criterial rater responses (κ)
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You are performing the task of story fragmentation. The task is to split a story into fragments where each fragment consists
of a distinct part of the story. A fragment contains enough information to yield a visualization that is unique to that part of the
story. In this version of the task, you will insert brackets (i.e. [ and ]) into the given story text to annotate the beginning and
end of each fragment. Write the fragments without preamble. Here are some examples:

Story: Mia sat at home in her living room watching sports. Her favorite soccer team was playing their rival. To encourage her
team, she began chanting positive phrases. During her chant, her favorite team scored a goal. Mia cheered loudly and thought
that she helped score that goal.
Fragmented Story: [Mia sat at home in her living room watching sports. Her favorite soccer team was playing their rival.] [To
encourage her team, she began chanting positive phrases.] [During her chant, her favorite team scored a goal.] [Mia cheered
loudly and thought that she helped score that goal.]

[...2 more exemplars...]

Story: {{story}}
Fragmented Story:

Table 13: Fragmentation prompt. LLM prompt for annotating fragment boundaries in a story, which consists of a
task instruction and exemplars demonstrating the task. The stories in the exemplars are from various corpora

(ROCStories, TinyStories, and the ARL Creative Visual Storytelling Anthology).

You will be shown a story fragment along with its story context. Your task is to rewrite the fragment so that its meaning can
be fully understood if read independently of the story context. For instance, you should replace names of characters with
generic nouns. You should replace pronouns with the nouns they refer to (if the reference is a character, replace it with the
appropriate generic noun). For first-person pronouns, replace the pronoun with a generic identifier (e.g. "I" -> "A person",
"my" -> "the person’s"). If the fragment implicitly refers to any other information in the story context, this information should
be made explicit in the revised fragment. Write the revised fragment without preamble. Here are some examples:

Story Context: Anna was filling her bird feeders. But a chunk of suet fell onto the ground. Her dog rushed over and lapped it
up! Anna was astonished. She had no idea dogs loved bird food!
Story Fragment: Her dog rushed over and lapped it up!
Revised Story Fragment: The woman’s dog rushed over and lapped up the chunk of suet that had fallen onto the ground.

[...2 more exemplars...]

Story Context: {{story}}
Story Fragment: {{fragment}}
Revised Story Fragment:

Table 14: Fragment rewriting prompt. LLM prompt for generating SC-FRAGMENT scene descriptions. The
prompt consists of a task instruction and exemplars demonstrating the task. The stories in the exemplars are
from the ROCStories corpus.

Imagine an AI system will be used to generate illustrations for story fragments. This AI illustrator generates a single image
given a caption describing what is contained in the image. Your task is to read a story fragment along with its story context
and write a caption that describes how to illustrate the fragment. The caption should elaborately describe the most salient way
to visualize the fragment. It should completely specify all the information the illustrator needs to generate the image. Write
the caption without preamble. Here are some examples:

Story Context: Carrie had just learned how to ride a bike. She didn’t have a bike of her own. Carrie would sneak rides on her
sister’s bike. She got nervous on a hill and crashed into a wall. The bike frame bent and Carrie got a deep gash on her leg.
Story Fragment: Carrie would sneak rides on her sister’s bike.
Caption for Story Fragment: A young girl with a mischievous expression carefully wheels a bicycle that’s slightly too big for
her out of a garage, glancing over her shoulder as if making sure no one sees her.

[...2 more exemplars...]

Story Context: {{story}}
Story Fragment: {{fragment}}
Caption for Story Fragment:

Table 15: Scene captioning prompt. LLM prompt for generating CAPTION scene descriptions. The prompt consists
of a task instruction and exemplars demonstrating the task. The stories in the exemplars are from various corpora
(ROCStories, TinyStories, and the ARL Creative Visual Storytelling Anthology).
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Fragment (within story) CAPTION CAPTION Illustration VC-FRAGMENT
Illustration

Joe went to the junk-
yard to find treasures.
He dug through a stack of
old clothes. At the bottom
was a vintage shirt with a
rock band on it. Joe put
the shirt on to try it out.
Joe was happy the shirt
fit.

A young man with an excited expres-
sion stands at the entrance of a sprawl-
ing junkyard. He’s wearing casual
clothes and holding a small backpack.
The junkyard is filled with piles of dis-
carded items, including old appliances,
furniture, and scrap metal. The sky is
bright and sunny, creating an adventur-
ous atmosphere. In the foreground, a
rusty sign reads "Junkyard" with oper-
ating hours listed below.

Trish hated the outdoors.
Her friends convinced her
to go camping. She
wasn’t having a good
time. They showed her
how to fish and showed
her the stars. Eventually
Trish grudgingly came to
accept nature.

A young woman with a scowling ex-
pression sits on a log by a campfire,
arms crossed and looking miserable.
She’s surrounded by cheerful friends
setting up tents and unpacking camp-
ing gear in a forest clearing. Her
clean, urban clothing contrasts with the
rugged outdoor setting, emphasizing
her discomfort with nature.

Sammy’s coffee grinder
was broken. He needed
something to crush up his
coffee beans. He put his
coffee beans in a plastic
bag. He tried crushing
them with a hammer. It
worked for Sammy.

A man in casual clothing stands at
a kitchen counter, holding a hammer
above a clear plastic bag filled with
whole coffee beans. The hammer is
poised mid-swing, about to strike the
bag. The man’s face shows a mix of de-
termination and uncertainty. Scattered
around the counter are a few stray cof-
fee beans and an unplugged, visibly
broken coffee grinder.

I decided to go on a bike
ride with my brother. We
both headed out in the
morning. We were hav-
ing a lot of fun. Suddenly,
he hit a rock and broke his
wheel! I felt very badly
for my brother.

A concerned young person stands next
to their brother, who sits dejectedly on
the ground next to a fallen bicycle with
a visibly bent front wheel. The scene
takes place on a sunny morning on a
bike path, with trees and nature in the
background. The standing sibling has
a sympathetic expression, reaching out
to comfort their brother, who looks dis-
appointed and upset about the broken
bike.

Table 16: Examples of scene illustrations in Phase 1. For each story fragment, we show an illustration resulting
from the LLM-generated CAPTION scene description and one resulting from the baseline VC-FRAGMENT scene
description. The image generator for all illustrations is FLUX-1-PRO.

CAPTION Win %
Scene Description Pair MJ-6.1 & FLUX-1-PRO MJ-6.1 Only FLUX-1-PRO Only
CAPTION vs. NC-FRAGMENT 78.1 79.2 77.7
CAPTION vs. VC-FRAGMENT 74.7 74.5 75.0
CAPTION vs. SC-FRAGMENT 72.5 76.1 68.9

Table 17: Extended view of Table 2. Here, the win rates (percentages) for CAPTION vs. baseline scene descriptions
in Phase 1 are split out by pairs where both illustrations used the same image generator (the MJ-6.1 Only and
FLUX-1-PRO Only columns). This shows that the CAPTION win rate is similar regardless of which image generator
is used.
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Figure 3: Example of a item shown to participants in the annotation task described in §4.3

Imagine an AI system will be used to judge the quality of images intended to illustrate story fragments. This AI judge scores
the images given some criteria about what should be depicted in the images. Your task involves writing the criteria for this AI
judge. In particular, you will read a story and focus on a fragment at a specific position in the story. You will write the criteria
defining the characteristics the image for that fragment should satisfy in order to be considered a good illustration of the
fragment. There are a few things to consider when writing the criteria. First, while the criteria should define the fundamental
characteristics depicted in the image, the visual details of these characteristics may vary across images, and alternative details
may be similarly effective in illustrating the fragment. Each criterion should be written in a way that accommodates these
potential variations in detail, without assuming specific information that is not defined explicitly in the story. Additionally,
each criterion should refer to only a single atomic characteristic of the image. If a criterion references multiple characteristics
such that an image might satisfy some but not others, it should be further split into multiple separate criteria. For example,
instead of writing "the image shows a sapphire ring on the bathroom floor" as one criterion, you should write "the image
shows a ring", "the ring contains a sapphire", and "the ring is on the bathroom floor" as separate criteria. The criteria should
not only consider the presence of certain elements in the image, but also the visual quality of their depiction. Write the criteria
without preamble, with a number header (e.g. ’1.’) for each criterion. Try to write as many criteria as possible, but avoid
specifying extraneous or redundant criteria. Here is an example:

Story Context: Lisa has a beautiful sapphire ring. She always takes it off to wash her hands. One afternoon, she noticed
it was missing from her finger! Lisa searched everywhere she had been that day. She was elated when she found it on the
bathroom floor!
Story Fragment: She was elated when she found it on the bathroom floor!
Image Criteria for Story Fragment:
1. The image shows a clearly visible ring
2. The image portrays a bathroom setting recognizable through typical bathroom elements (tiles, fixtures, etc.)
3. The ring contains a blue gemstone recognizable as a sapphire
4. The ring is on the bathroom floor
5. The ring appears to be positioned naturally as if it had fallen or been dropped
6. A female figure (Lisa) is present in the image
7. The woman’s facial expression clearly conveys joy or elation
8. The woman’s body language demonstrates excitement or relief
9. The woman’s positioning suggests she has just discovered or is reaching for the ring
10. The lighting adequately illuminates the ring to make it visible as the focal point
11. The perspective of the image allows viewers to see both the ring and the woman’s emotional reaction
12. The composition draws attention to the moment of discovery
13. The spatial relationship between the woman and ring suggests imminent retrieval
14. The overall scene composition captures the spontaneous nature of the discovery
15. The woman’s appearance suggests this is taking place during daytime/afternoon
16. The ring appears intact and undamaged, justifying the woman’s relief
17. The bathroom setting appears residential rather than public

Story Context: {{story}}
Story Fragment: {{fragment}}
Image Criteria for Story Fragment:

Table 18: Criteria generation prompt. LLM prompt used to generate evaluation criteria for assessing the quality
of scene illustrations.
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You will observe an image along with a list of criteria, where each criterion describes a characteristic or quality that may or
may not be depicted in the image. Your task is to determine whether or not each criterion is satisfied by the image. For each
criterion, if the image fully satisfies that criterion, write a checkmark (’✓’) after it. If the image only partially satisfies the
criterion but not completely, write a question mark (’?’) after it. Otherwise, if the image does not satisfy that criterion, write
an X mark (’✗’) after it. Reiterate each criterion before giving your assessment for it, but do not provide additional preamble
in your response. Here is an example:

Criteria:
1. The image shows a young woman (Laura) in an apartment setting
2. The woman’s facial expression conveys happiness or contentment
3. The apartment appears to be newly moved into, with some visible unpacked items
4. There are visible windows in the apartment
5. The view through the windows shows recognizable California scenery (palm trees, ocean, mountains, or urban landscape)
6. The lighting suggests natural daylight entering the apartment
7. The apartment appears residential and suitable for a recent college graduate
Image: <IMAGE WILL APPEAR HERE>
Criteria Responses:
1. The image shows a young woman (Laura) in an apartment setting ✓
2. The woman’s facial expression conveys happiness or contentment ✗
3. The apartment appears to be newly moved into, with some visible unpacked items ?
4. There are visible windows in the apartment ✓
5. The view through the windows shows recognizable California scenery (palm trees, ocean, mountains, or urban landscape)
✗
6. The lighting suggests natural daylight entering the apartment ✓
7. The apartment appears residential and suitable for a recent college graduate ✓

Criteria:
{{criteria}}
Image: {{image}}
Criteria Responses:

Table 19: Criteria-based rating prompt. VLM prompt used to score the quality of a scene illustration by assigning
responses to each criterion in a provided criteria set

Your task is to rate how well a particular image illustrates a fragment of a story. You will observe the fragment with its story
context, alongside the image depicting the fragment. Provide a rating on a scale ranging from 0.0 to {{len(criteria)}}
in half-point increments, where 0.0 indicates the image is unrelated to the fragment and {{len(criteria)}} indicates the
image is a perfect illustration of the fragment. Do not provide additional preamble before the rating. Here is an example:

Story: Laura had just graduated college. She was planning on moving on California. She packed all her belongings in her car
and drove 18 hours. When she arrived at her new apartment she unpacked all her things. Laura loved the new change of
scenery at her new place.
Fragment: Laura loved the new change of scenery at her new place.
Image: <IMAGE WILL APPEAR HERE>
Rating: 4.5

Story: {{story}}
Fragment: {{fragment}}
Image: {{image}}
Rating:

Table 20: Baseline rating prompt. VLM prompt used to score the quality of a scene illustration by directly
assigning a rating between 0 and a maximum. This maximum is dynamically set to the total number of criteria in a
provided criteria set ({{len(criteria)}}), even though the criteria themselves are not referenced in the prompt.
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