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ABSTRACT

Dynamic reconstruction of deformable surgical scenes has the potential to signif-
icantly advance robot-assisted surgery. Building on recent advancements in 3D
Gaussian splatting (3DGS), current surgical scene reconstruction (SSR) methods
have made notable initial progress. Despite this progress, challenges remain in
accurately tracking local tissue deformations during surgery, primarily due to the
lack of deformation constraints within the local Gaussian neighborhoods of surgi-
cal tissues. In this work, we address these issues by proposing a local geometric
refinement (LGR) framework based on 3DGS for high-fidelity SSR. Specifically,
we first utilize prior visual information to efficiently perform the Gaussian initial-
ization. Following the initialization, we incorporate local geometric constraints to
accurately track the local non-rigid deformations occurring in the surgical scene.
Furthermore, considering the low-quality scenarios in real surgeries, we apply low-
quality enhancement to optimize the fidelity of local details in the preliminarily
rendered scene. Experimental results on public datasets demonstrate that LGR
outperforms previous state-of-the-art methods. Notably, it achieves an average
improvement of over 50% in terms of LPIPS, a metric that better reflects human
perceptual consistency, while maintaining favorable computational cost. These
results highlight the great potential of the proposed LGR for promoting practical
applications in surgical scenarios. Our code and model will be released publicly.

1 INTRODUCTION

Surgical scene reconstruction (SSR) plays a critical role in minimally invasive surgery (Yang et al.,
2024c; Liu et al., 2024a; Long et al., 2021; Xie et al., 2024), enhancing the surgeon’s understanding
of the operative field and supporting various clinical applications, such as surgical simulation (Chong
et al., 2022; Montaña-Brown et al., 2023), robotic surgery automation (Lu et al., 2021; Li et al.,
2025), and medical education (Schmidt et al., 2024; Hashimoto et al., 2024). Traditional SLAM-
based methods (Song et al., 2017; Zhou & Jagadeesan, 2019; Zhou & Jayender, 2021) struggle
to address challenges posed by sparse viewpoints, dynamic scene deformations, and instrument
occlusions (Gunderson et al., 2025; Yang et al., 2025; Wang et al., 2025; Yang et al., 2024b).

Recently, methods based on Neural Radiance Fields (NeRF) (Zha et al., 2023; Wang et al., 2022;
Chen et al., 2025; Han et al., 2025; Gerats et al., 2024) have made initial progress in dynamic scene
modeling for surgery. For example, EndoNeRF (Wang et al., 2022) and EndoSurf (Zha et al., 2023)
enhance scene reconstruction by incorporating occlusion-aware modeling and joint shape–appearance
representation strategies. However, the implicit representation of NeRF requires dense sampling of
millions of rays to represent surgical scenes. Consequently, it incurs high computational costs when
processing complex scenarios, thereby limiting its potential for real-time rendering (Xu et al., 2024;
Yang et al., 2024c). To address the issue of inefficient rendering, methods based on 3D Gaussian
Splatting (3DGS) (Kerbl et al., 2023) have been proposed (Zhu et al., 2024; Xie et al., 2024; Chen
et al., 2024; Liu et al., 2024b; Yang et al., 2024b). These methods represent the scene as a series of 3D
Gaussian distributions and render 2D images through the splatting-based rasterization process after
tracking dynamic deformations. For instance, SurgicalGS (Chen et al., 2024) enhances reconstruction
accuracy by using surgical motion masks, SurgicalGaussian (Xie et al., 2024) learns soft tissue
deformations through multilayer perceptions (MLP), achieving higher quality scene renderings.
Nevertheless, applying the aforementioned methods to the reconstruction of real dynamic surgical
scenes still faces challenges: i) As depicted in the left image of Figure 1 C), dynamic deformations
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Figure 1: A) Illustration of the main workflow: Gaussian Initialization (GI), Gaussian Deformation
Tracking (GDT), and Render & Optimization (RO). B) Radar chart of performance metrics: The
proposed LGR achieves the best results on the EndoNeRF-Pulling dataset in terms of rendering
quality ( PSNR ↑, SSIM ↑, LPIPS ↓ ) and shows certain advantages in rendering speed ( FPS ↑ ) and
GPU ↓ memory usage ( Note: For clarity, LPIPS and GPU axes are visualized as 1 − LPIPS and
24− GPU, respectively ). C) Two key points considered: the left image shows an example of local
dynamic deformation, and the right image shows a visual example of low-quality reconstruction.

of local tissues occur in the surgical scene. Existing methods typically combine a single MLP (Zhu
et al., 2024; Yang et al., 2024b; Huang et al., 2024; Liu et al., 2024b) with Gaussian point cloud
rendering for global Gaussian deformation tracking, but do not adequately consider the geometric
constraints of the local tissue Gaussian neighborhood, leading to insufficient tracking of complex and
subtle local dynamic deformations. ii) As shown in the right image of Figure 1 C), surgical scenes
often contain low-quality interference such as splashes (Wu et al., 2024b;a), previous studies have
not considered low-quality enhancement for rendering results.

To address these challenges, we propose a local geometric refinement (LGR) framework aimed
at reconstructing high-fidelity models and enabling real-time rendering for SSR. As shown in
Figure 1 A), LGR is built upon 3DGS, with its workflow consisting of three main stages: Gaussian
Initialization (GI), Gaussian Deformation Tracking (GDT), and Rendering & Optimization (RO).
Specifically, as shown in Figure 2, in the GI stage, LGR rapidly performs Gaussian point cloud
initialization for the surgical scene using input visual prior information (i.e., RGB images, depth
images, and tool masks). After initialization, the GDT stage utilizes a multi-head attribute decoder to
capture variations in the attributes of the Gaussian points. Simultaneously, we design local geometric
constraints (LGC) to constrain the positions, covariance, and feature consistency of the sampled
Gaussian points and their neighboring points, further enhancing the alignment precision of Gaussian
points in spatio-temporal space. To further enhance the scene detail reconstruction, LGR integrates
a Low-quality Enhancement (LQE) module in the RO stage to address low-quality interference
issues in real surgical scenes. As shown in the radar chart in Figure 1 B), LGR outperforms existing
methods across all rendering quality metrics on the EndoNeRF-Pulling dataset while maintaining low
computational overhead. More experimental comparisons can be found in Section 4, Appendix A.4,
and supplementary materials.

LGR has several appealing merits: First, integrating local geometric constraints: LGR introduces a
local geometric constraint mechanism during Gaussian deformation tracking, which jointly constrains
the spatial positions, covariance, as well as feature consistency of Gaussian points and their local
neighborhoods. This effectively compensates for the loss of fine details caused by relying solely
on global Gaussian optimization, thereby enabling higher-fidelity scene reconstruction. Second,
considering low-quality enhancement: LGR further refines image quality after Gaussian recon-
struction through low-quality enhancement, effectively mitigates the impact of low-quality data,
such as splashes, commonly encountered in real surgical scenes. Third, demonstrating practical
applicability potential: LGR consistently achieves accurate reconstruction results (particularly with
an average improvement of over 50% in LPIPS), better aligning with human visual perception, while
maintaining low computational overhead, making it promising for deployment in medical scenarios.
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Figure 2: Overview of LGR. LGR comprises three stages: Gaussian Initialization (GI) (Sec. 3.2),
Gaussian Deformation Tracking (GDT) (Sec. 3.3), and Render & Optimization (RO) (Sec. 3.4). In GI,
a point cloud is initialized by back-projecting the rgb images, depth maps, and surgical tool masks to
construct 3D Gaussians representing the canonical space. GDT decouples deformation modeling into
Basic Deformation Modeling (BDM) and Local Geometric Constraints (LGC), where LGC is enforced
via position (Lpos), covariance (Lcov), and feature (Lfeat) losses, forming Lgeo = Lcov+Lpos+Lfea.
In RO, rgb and depth maps are rendered through a differentiable rasterizer, and after low-quality
enhancement (LQE), compared with the inputs to compute Lcolor and Ldepth.

2 RELATED WORK

NeRF for Surgical Scene Reconstruction. Neural implicit representation (Mildenhall et al., 2021)
has gained significant attention in medical imaging (Molaei et al., 2023; Feng et al., 2025; Shan et al.,
2024; Wang et al., 2024; Choi et al., 2025). Neural Radiance Fields (NeRF), a representative of neural
implicit representation, advances medical imaging by mapping input coordinates to corresponding
values within the domain through implicit representation. Recent studies have extended neural
implicit representations to dynamic deformable surgical scenes. EndoNeRF (Wang et al., 2022) first
applies NeRF to deformable surgical scenes by integrating tool-guided ray casting, stereo-guided ray
marching, and depth supervision, achieving effective reconstruction. Building on EndoNeRF (Wang
et al., 2022), EndoSurf (Zha et al., 2023) enhances surface reconstruction by regularizing geometry
with a signed distance field. However, this method requires optimizing the entire spatiotemporal field,
which incurs high computational costs and limits its practical use in medical settings. To improve
efficiency, subsequent works such as Lerplane (Yang et al., 2023) and Forplane (Yang et al., 2024a)
decompose scene representation into 2D planes for static and dynamic components, speeding up
optimization. Despite this, NeRF still necessitates dense sampling and querying of millions of rays,
which inevitably leads to significantly increased computational overhead and decreased rendering
speed, thereby limiting its practicality in medical applications (Liu et al., 2024b; Xie et al., 2024;
Wang et al., 2025; Guo et al., 2025).

3DGS for Surgical Scene Reconstruction. 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023)
has demonstrated outstanding performance in modeling static scenes. By leveraging differentiable
splat-based rendering with tile rasterization, it enables efficient scene reconstruction and rendering.
Benefiting from these advantages, recent research has begun to adopt 3D Gaussian representations
combined with deformation fields to model deformable surgical scenes (Liu et al., 2024a; Zhu et al.,
2024; Xie et al., 2024; Li et al., 2024; Huang et al., 2024; Liu et al., 2024b). To handle dynamic tissue
deformations of surgical organs, 3D Gaussians are typically coupled with deformation fields modeled
in various ways. EndoSparse (Li et al., 2024) and SurgicalGaussian (Xie et al., 2024) employ MLPs to
capture scene deformations, following a strategy similar to EndoNeRF (Wang et al., 2022). Another
approach, adopted by Endo-GS (Zhu et al., 2024) and Endo-4DGS (Huang et al., 2024), models soft
tissue deformation by combining multiple orthogonal 2D feature planes with a small MLP, inspired
by Lerplane (Yang et al., 2023) and Forplane (Yang et al., 2024a), which further reduces training
time. EndoGaussian (Liu et al., 2024b), on the other hand, adopts a motion-aware frame synthesis
strategy to achieve high-fidelity reconstruction quality. However, most of these methods overlook
the local fine-grained deformations in surgical scenes and the challenges associated with low-quality
enhancement. In this paper, we combine visual prior information, local geometric constraints, and
low-quality enhancement strategies to further improve reconstruction quality and rendering efficiency.
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3 METHOD

3.1 PRELIMINARIES

We implement SSR using 3DGS as the underlying scene representation. As an explicit representation,
3DGS models the scene with a set of Gaussian primitives. Each Gaussian point has learnable attributes,
including position µ ∈ R3, rotation r ∈ R4, scale s ∈ R3, opacity α, and spherical harmonic (SH)
coefficients for view-dependent appearance modeling. The spatial influence of each Gaussian is
further parameterized by its mean position vector µ and full covariance matrix Σ ∈ R3×3:

Σ = RSS⊤R⊤, G(x) = exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
, (1)

where x ∈ R3 denotes an arbitrary 3D coordinate in the world frame, and Σ is factorized into a
scaling matrix S and a rotation matrix R for spatial transformation. Specifically, R is computed from
rotation vector r, and S is a diagonal matrix constructed from scale vector s to control anisotropic
spread. Then, the color Ĉ(p) and depth D̂(p) of pixel p can be rendered using the following
function:

Ĉ(p) =

n∑
i=1

ciαi

i−1∏
j=1

(1− αj), D̂(p) =

n∑
i=1

diαi

i−1∏
j=1

(1− αj), (2)

where ci is the color computed from the SH coefficients of the i-th Gaussian, and αi is obtained by
evaluating the 2D covariance matrix Σ′

i and multiplying it by the learnable opacity value oi. The 2D
covariance matrix is computed as Σ′ = JVΣV⊤J⊤, where J is the Jacobian matrix of the affine
approximation of the projective transformation, and V denotes the camera view matrix respectively.

3.2 GAUSSIAN INITIALIZATION

The vanilla 3DGS (Kerbl et al., 2023) method initializes 3D Gaussians using point clouds gener-
ated by Structure-from-Motion (SfM) (Schonberger & Frahm, 2016). However, in the context of
endoscopic surgical videos, it is challenging to obtain accurate SfM point clouds due to limited
viewpoints, sparse soft tissue textures, and dynamically varying lighting conditions, which hinder
precise initialization. To enhance reconstruction quality and stabilize the training process, we perform
Gaussian initialization based on prior visual information, including the rgb image I, depth map
D, and binary mask M. By incorporating the camera model with known intrinsic and extrinsic
parameters, the point cloud can be computed as:

M̂ =

T⋂
i=0

Mi, P̂ = {D̂K−1T−1(Î⊙ (1− M̂))}, (3)

where the collected pixels from other frames are added to frame 0 to construct the refined image Î,
depth map D̂, and mask M̂. Mi denotes the binary mask of frame i, with a value of 1 indicating
occlusion (i.e., surgical instrument) and 0 indicating visible tissue. The intersection M̂ identifies pixels
that are occluded in all frames. Subtracting this result from 1 yields a visibility mask highlighting
pixels that are visible in at least one frame. These pixels are retained via element-wise multiplication
with the refined image Î before being projected into 3D space using the depth map D̂ and the inverse
of the intrinsic and extrinsic matrices, K−1 and T−1. The resulting point cloud P̂ is then used to
initialize the position µ and color of the 3D Gaussians.

3.3 GAUSSIAN DEFORMATION TRACKING

To achieve high-fidelity reconstruction of dynamic surgical scenes, we propose a deformation
modeling strategy called GDT. This strategy decouples deformation tracking into two components:
learning the deformation from canonical Gaussian to deformed Gaussian based on 3DGS (Kerbl
et al., 2023), and enforcing local geometric constraints to regularize deformation trends. The local
geometric constraint specifically regulates the modeling of changes in Gaussian position and shape,
enabling high flexibility in capturing complex, high-order variations within the scene.

Basic Deformation Modeling. The deformation from the canonical Gaussian to the deformed
Gaussian is modeled using a set of MLPs, each dedicated to learning a specific component of the
transformation. Specifically, Fµ, Fs, and Fq are responsible for predicting the offsets of the Gaussian
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center position δµ, scale δs, and rotation δq, respectively. Each network takes as input the center
position µ and the timestamp t of the current frame, which are both processed through a positional
encoding function γ(·) to capture spatial and temporal variations. Notably, the network does not
predict the opacity α or the spherical harmonic (SH) coefficients, as these are considered static
attributes of each Gaussian and remain unchanged across time. The final deformed Gaussian at time t
is then composed as:

Gd = {µ+ δµ, R+ δR, S+ δS, α, SH} . (4)
Local Geometric Constraints. To further regularize the deformation behavior, we introduce local
geometric constraints. Specifically, we first apply Farthest Point Sampling (FPS) (Zhang et al., 2023;
Eldar et al., 1997) on the canonical point cloud to select representative Gaussian anchor points. Given
the set of all canonical Gaussians Gc = {µi}Ni=1, FPS selects a subset A = {µij}Mj=1 such that the
minimum pairwise distance between anchor points is maximized:

A = FPS(Gc), s.t.min
i̸=j

∥µi − µj∥2 is maximized. (5)

Then, for each anchor point µi ∈ A, we construct a local neighborhood by retrieving its K-Nearest
Neighbors (KNN) (Zhang et al., 2017; 2023) from Gc based on Euclidean distance:

N (µi) = KNN(µi,Gc,K). (6)

For each anchor and its neighbors, we extract the center positions (µc,µd), covariance matrices
(Σc,Σd), and feature embeddings (fc,fd) in both the canonical and deformed spaces. Based on
this, we impose three deformation consistency losses: position loss, covariance loss, and feature
consistency loss, to ensure locally coherent deformation and to preserve both structural and semantic
consistency. The detailed design and computation of these losses are provided in Sec. 3.4.

3.4 RENDER & OPTIMIZATION

Reconstruction losses and regularization terms jointly guide our method to optimize the parameters of
the canonical Gaussian deformation representation, local geometric consistency constraints, and the
low-quality region enhancement module. Since surgical instruments in the video are to be removed,
we invert the original masks to focus on soft tissue regions, where reconstruction supervision is
exclusively applied. Specifically, unlike previous methods that directly compute the loss between
Gaussian-rendered images and the reference images, we account for common degradations in real
endoscopic videos, such as motion blur and camera shake. Therefore, we apply a lightweight low-
quality enhancement (LQE) method, detailed in the Appendix A.5, to the rendered images before
computing the reconstruction loss, enabling more robust alignment with the reference images.

Color Loss and Depth Loss. For the i-th frame, Ĉi and D̂i denote the RGB image and the
corresponding depth map obtained from the initial rendering followed by LQE, respectively.

Lcolor =
1

HW

∑
p

(1−Mi(p))|Ii(p)− Ĉi(p)|, Ldepth =
1

HW

∑
p

(1−Mi(p))|Di(p)− D̂i(p)|, (7)

where Mi is the binary tool mask that filters tool pixels, and H , W are the image height and width.

Local Geometric Loss. Due to the limited viewpoint variations in endoscopic surgical videos,
local geometric deformation fields often suffer from severe under-constrained problems, leading to
distortion in the transformation from canonical Gaussians to deformed Gaussians. To tackle this
challenge, we introduce a local geometric constraint to ensure that neighboring Gaussian primitives
exhibit similar deformation behavior. Specifically, we impose local geometric losses on Gaussian
position µ, covariance matric Σ, and point features to enforce consistency of deformation within local
regions. As described in Sec. 3.3, each sampled Gaussian Gi is paired with its K nearest neighbors in
the canonical space. We then compute local losses on position, covariance, and feature consistency
across both canonical and deformed representations to achieve fine-grained deformation optimization.
To enforce structural consistency between domains, we define a set of alignment losses: Lpos, Lcov ,
and Lfeat, which measure domain-wise discrepancy in Gaussian position, covariance, and feature
spaces, respectively. Each loss takes the form:

Lx =

N∑
i=1

K∑
k=1

∥∥∥dist(x(i)
c , x(k)

c )− dist(x(i)
d , x

(k)
d )

∥∥∥
1
, x ∈ {µ,Σ, f }, (8)

where Lpos = Lµ, Lcov = LΣ, and Lfeat = Lf . Specifically, µ(i), Σ(i), and f (i) represent the
center coordinate, covariance matrix, and encoded feature of the i-th Gaussian, respectively. The
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subscripts c and d indicate quantities in the canonical and deformed spaces. dist(·, ·) denotes the
Euclidean distance. These losses encourage the relative pairwise distances in the source and target
domains to remain consistent across multiple feature levels.

Total Loss. We combine reconstruction loss Lrec and local geometric loss Lgeo to optimize the
dynamic 3D Gaussian representation. Additionally, to ensure completeness in the reconstruction of
global structures, we incorporate SSIM loss (Li et al., 2022) to enforce structural similarity between
the rendered image and the ground-truth image. The relative importance of each loss term is balanced
using a set of hyperparameters, and the final optimization objective can be represented as follows:

Ltotal = (Lcolor + λ1Lssim + λ2Ldepth)︸ ︷︷ ︸
Lrec

+(λ3Lpos + λ4Lcov + λ5Lfeat)︸ ︷︷ ︸
Lgeo

.
(9)

The pseudo-code for the overall method can be found in Appendix A.1.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Datasets and Evaluation. We conduct experiments on two publicly available surgical video datasets:
EndoNeRF (Wang et al., 2022) and StereoMIS (Hayoz et al., 2023). The EndoNeRF dataset is
collected from DaVinci robotic (Bodner et al., 2005) surgery video clips, with each clip having
a resolution of 512×640 and a frame rate of 15fps. The EndoNeRF dataset includes complex
scenes with dynamic scene deformations and tool occlusions, accurately reflecting the various
visual and geometric challenges encountered during surgery. Following previous studies, we select
two of the most challenging surgical scenarios: pulling and cutting for evaluation. On the other
hand, the StereoMIS dataset is a stereo endoscopic video dataset captured from in-vivo porcine
subjects, showcasing diverse anatomical structures and significant tissue deformations, thus presenting
more complex scenarios. We select two clips from StereoMIS dataset, which feature a greater
diversity of anatomical structures compared to the EndoNeRF dataset. To comprehensively evaluate
reconstruction performance, we employ several commonly used quantitative metrics, including Peak
Signal-to-Noise Ratio (PSNR) (Sara et al., 2019), Structural Similarity Index Measure (SSIM) (Sara
et al., 2019) and Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018). We also
report rendering speed in frames per second (FPS) and GPU memory usage. For more details, please
refer to Appendix A.3.

Implementation details. In our implementation, we empirically set the number of initialized points
to 30,000. Following prior works, we split the surgical video frames of each scene into a 7:1
training/testing ratio ratio. During training, one frame is randomly selected in each iteration, and all
scenes are trained for 40,000 iterations. The Adam optimizer is used with an initial learning rate
of 1.6× 10−3, and the remaining training parameters follow the original 3DGS (Kerbl et al., 2023)
settings. All experiments are conducted on a single RTX 4090 GPU. For more details, please refer to
Appendix A.2.

4.2 COMPARISON WITH PRIOR WORKS

We compare LGR with several state-of-the-art SSR methods, including EndoNeRF (Wang et al., 2022),
EndoSurf (Zha et al., 2023), LerPlane (Yang et al., 2023), EndoGaussian (Liu et al., 2024b), and
SurgicalGaussian (Xie et al., 2024). The quantitative results are summarized in Table 1. Apparently,
LGR outperforms all other methods across all reconstruction evaluation metrics and demonstrates
superior reconstruction performance while maintaining lower computational overhead. Specifically,
LGR achieves the best PSNR values of 39.201 and 38.401 on the EndoNeRF-Pulling and Cutting
video clips (Wang et al., 2022), respectively, improving by 0.418 and 0.114 compared to the second-
best methods. In terms of perceptual quality measured by LPIPS, which better reflects human visual
perception, LGR achieves an average improvement of over 50% on both the EndoNeRF-Pulling
and EndoNeRF-Cutting video clips. On the StereoMIS (Hayoz et al., 2023) dataset, LGR also
demonstrates consistent superiority, achieving the best LPIPS scores of 0.065 and 0.047 on the S1
and S2 clips, respectively. Additionally, LGR shows improvements in SSIM and PSNR metrics.

We further provide qualitative visual comparisons, as shown in Figure 3. By examining the enlarged
regions of interest, LGR achieves the most accurate reconstruction results, which are consistent with
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Table 1: Quantitative evaluation on the EndoNeRF (Wang et al., 2022) and StereoMIS (Hayoz et al.,
2023) dataset. We report the PSNR↑, SSIM↑, and LPIPS↓ scores. The Avg.FPS↑ and Avg.GPU
memory↓ are also provided. The optimal and suboptimal results are shown in bolded and underlined
respectively.

EndoNeRF-Pulling EndoNeRF-CuttingMethods PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Avg.
FPS↑

Avg.
GPU↓

EndoNeRF (Wang et al., 2022) 34.217 0.938 0.160 34.186 0.932 0.151 0.04 15GB
EndoSurf (Zha et al., 2023) 35.004 0.956 0.120 34.981 0.953 0.106 0.05 17GB
LerPlane (Yang et al., 2023) 36.241 0.950 0.102 35.580 0.955 0.101 1.02 20GB
EndoGaussian (Liu et al., 2024b) 37.308 0.958 0.070 38.287 0.962 0.058 160 2GB
SurgicalGaussian (Xie et al., 2024) 38.783 0.970 0.049 37.505 0.961 0.062 80 4GB
LGR (Ours) 39.201 0.972 0.025 38.401 0.969 0.022 150 4GB

StereoMIS-S1 StereoMIS-S2Methods PSNR ↑ SSIM↑ LPIPS ↓ PSNR ↑ SSIM↑ LPIPS↓
Avg.
FPS↑

Avg.
GPU↓

EndoNeRF(Wang et al., 2022) 28.694 0.783 0.279 27.738 0.712 0.345 0.04 15GB
EndoSurf (Zha et al., 2023) 29.660 0.853 0.204 28.941 0.820 0.248 0.05 17GB
LerPlane (Yang et al., 2023) 29.441 0.822 0.206 28.852 0.793 0.254 1.02 20GB
EndoGaussian (Liu et al., 2024b) 29.024 0.805 0.213 26.174 0.728 0.295 160 2GB
SurgicalGaussian (Xie et al., 2024) 31.496 0.890 0.145 31.668 0.893 0.135 80 4GB
LGR (Ours) 32.444 0.919 0.065 32.273 0.924 0.047 150 4GB

EndoNeRF EndoSurf LerPlane EndoGaussian LGR (Ours) ReferenceSurgicalGaussian

Figure 3: Qualitative evaluation on the EndoNeRF (Wang et al., 2022) and StereoMIS (Hayoz et al.,
2023) dataset.

the quantitative evaluations. In contrast, other methods often suffer from texture blurring or loss in
dynamic regions of the scene. Specifically, EndoNeRF (Wang et al., 2022) encodes both geometric and
appearance changes within a single MLP, limiting its ability to model complex non-rigid deformations.
LerPlane (Yang et al., 2023) fixes sampling points on regular grid nodes, which reduces adaptability to
spatially localized, nonlinear motion. EndoSurf (Zha et al., 2023) introduces smoothness constraints
to improve temporal consistency, but it lacks independent modeling of appearance and geometry,
often leading to over-smoothed structures and reduced spatial fidelity. In comparison, 3DGS-based
methods such as EndoGaussian (Liu et al., 2024b) and SurgicalGaussian (Xie et al., 2024) have
demonstrated improvements in rendering efficiency. However, EndoGaussian uses low-rank tensor
feature planes to encode Gaussian deformation fields, which limits its ability to capture complex
scene dynamics. SurgicalGaussian (Xie et al., 2024) incorporates local regularization to enhance
deformation modeling, but the constraints are applied globally across the entire Gaussian point
cloud, resulting in overly rigid structures, increased computational overhead, and reduced flexibility
in modeling. In contrast, LGR enforces geometric deformation constraints within the sampled
Gaussian points and their local neighborhoods, and integrates a low-quality enhancement module
after rendering, leading to more accurate reconstruction in complex surgical scenes. More results and
videos are available in Appendix A.4 and the supplementary materials.
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Table 2: Ablation study on LGC.

EndoNeRF-Pulling EndoNeRF-CuttingModel
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

W/O LGC 38.911 0.967 0.034 38.072 0.960 0.027
W/ LGC (ours) 39.201 0.972 0.025 38.401 0.969 0.022

Table 3: Ablation study on LQE.

StereoMIS-S1 StereoMIS-S2Model
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

W/O LQE 32.199 0.908 0.085 32.134 0.918 0.058
W/ LQE (ours) 32.444 0.919 0.065 32.273 0.924 0.047

Table 4: Ablation study on FPS Numbers.
EndoNeRF-Pulling EndoNeRF-CuttingNumber PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

512 38.991 0.968 0.027 38.200 0.965 0.026
2048 39.201 0.972 0.025 38.401 0.969 0.022
4096 39.279 0.974 0.025 38.414 0.971 0.021

Table 5: Ablation study on KNN Numbers.
EndoNeRF-Pulling EndoNeRF-CuttingNumber PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

50 39.075 0.970 0.027 38.259 0.966 0.024
90 39.201 0.972 0.025 38.401 0.969 0.022
150 39.136 0.970 0.026 38.302 0.968 0.022
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Figure 4: Quantitative evaluation on the EndoNeRF (Wang et al., 2022) and StereoMIS (Hayoz et al.,
2023) datasets for analyzing the effect of the LGC and LQE. We randomly select 5 testing images
from each scenario and compare the LPIPS scores, all of which show improvements. The overall
average results across all test images are reported in Table 2 and Table 3.

4.3 ABLATION STUDIES

Effect of LGC and LQE. We evaluate the effectiveness of the Local Geometric Constraints (LGC)
and Low Quality Enhancement (LQE) modules through comprehensive ablation studies. As shown
in Table 2, the removal of the LGC module results in a noticeable decline in PSNR and SSIM,
along with a significant increase in LPIPS, indicating degraded reconstruction quality and perceptual
consistency. This highlights the crucial role of LGC in promoting structurally coherent motion
and improving geometric representation. Similarly, Table 3 demonstrates that excluding the LQE
module significantly compromises performance, especially on datasets with a high proportion of
low-quality frames such as StereoMIS-S1 and StereoMIS-S2. To further illustrate this, Figure 4
compares LPIPS scores across five randomly selected test images, consistently showing lower values
when both modules are present. Moreover, visual comparisons in Figure 5 reveal enhanced edge and
texture details in the enlarged regions after integrating LGC and LQE. These observations align with
the quantitative improvements, confirming the effectiveness of LGC and LQE in enhancing dynamic
scene reconstruction and preserving fine-grained visual details.

Effect of FPS and KNN Numbers. We further analyze the impact of two hyperparameters in the
LGC module: the number of FPS anchor points and the number of K-Nearest Neighbors (KNN)
per anchor. As shown in Table 4, using too few FPS points (e.g., 512) leads to under-constrained
deformation and reduced reconstruction quality, while using too many (e.g., 4096) brings only minor
performance gains at the cost of increased computational overhead. Similarly, Table 5 shows that
a small K limits the expressiveness of local neighborhoods and weakens the modeling of local
deformation consistency. Conversely, a large K imposes overly rigid local constraints, which hinders
the flexibility of Gaussian deformation, especially in modeling non-rigid and non-uniform tissue
motion. In our implementation, setting the number of FPS anchors to 2048 and K = 90 effectively
balances modeling accuracy and computational efficiency, enhancing scene fidelity while maintaining
perceptual consistency.

Effect of Loss Components. To evaluate the contribution of each loss component in our framework,
we perform a series of ablation experiments on both the EndoNeRF-Pulling and EndoNeRF-Cutting

8
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Reference

W/O LGC 

EndoNeRF

W/ LGC

StereoMIS

W/O LQE

Reference

W/ LQE

Figure 5: Qualitative evaluation on the EndoNeRF (Wang et al., 2022) and StereoMIS (Hayoz et al.,
2023) datasets for analyzing the effect of the LGC and LQE. We select and zoom in on specific
detailed regions for comparison.

Table 6: Ablation Study on Loss Components.

Loss Components EndoNeRF-Pulling EndoNeRF-Cutting
Lcolor Ldepth Lssim Lpos Lcov Lfeat PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
✓ ✓ × × × × 38.452 0.960 0.051 37.201 0.956 0.042
✓ ✓ ✓ × × × 38.911 0.967 0.034 38.072 0.960 0.027
✓ ✓ ✓ ✓ × × 39.112 0.967 0.031 38.140 0.966 0.026
✓ ✓ ✓ × ✓ × 39.118 0.970 0.026 38.327 0.968 0.024
✓ ✓ ✓ ✓ ✓ × 39.125 0.970 0.027 38.383 0.969 0.022
✓ ✓ ✓ ✓ ✓ ✓ 39.201 0.972 0.025 38.401 0.969 0.022

subsets, as shown in Table 6. Starting from a baseline with only color and depth supervision, we
observe significant improvements in all metrics as additional loss terms are incorporated. Specifically,
introducing Lssim and Lpos enhances structural and perceptual consistency, reflected by increased
SSIM and decreased LPIPS. Further addition of Lcov and Lfeat contributes to finer geometric
coherence and feature-level alignment, leading to consistent gains across PSNR, SSIM, and LPIPS.
Notably, the full loss configuration achieves the best performance, confirming the complementary
roles of these loss components in improving both reconstruction fidelity and perceptual quality. These
findings demonstrate the importance of joint supervision from pixel, geometric, and feature spaces
for robust modeling of complex surgical scenes.

5 CONCLUSION AND LIMITATIONS

Conclusion. In this study, we propose a Local Geometric Refinement (LGR) framework for dynamic
3D reconstruction of deformable surgical scenes. LGR integrates Gaussian initialization guided
by visual priors, Gaussian deformation tracking under local geometric constraints, and low-quality
enhancement. Extensive comparative experiments on public datasets show that LGR improves
reconstruction quality in complex surgical environments while maintaining favorable computational
efficiency, outperforming existing state-of-the-art methods. Our method has the potential to extend
3D reconstruction technology to practical clinical applications.

Limitations. Although LGR has shown promising results in surgical scene reconstruction, its
deployment in real medical scenes still faces limitations: i) the implementation of inference in clinical
scenes demands high requirements, and the speed of inference needs further improvement; ii) a lack
of high-quality video data, constrained by privacy and security concerns, which limits the ability to
consider diverse scenarios. Our future work will focus on improving training and inference efficiency,
developing lightweight alternatives, and constructing a more comprehensive surgical scene dataset,
with the goal of leveraging artificial intelligence more effectively to advance medical research.
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A APPENDIX

Overview. We thank the reviewers for viewing the appendix. The supplementary includes the
following sections:

• Pseudo-code fo Algorithm. (Section A.1).

• Implementation Details. (Section A.2).

• Datastes and Metrics. (Section A.3).

• More Our Results. (Section A.4).

• Details of the Low-Quality Enhancement (LQE) Module. (Section A.5).

• Potential Broader Impacts. (Section A.6).

• Use of Large Language Models (LLMs).(Section A.7).

The visualization videos will be provided in the supplementary materials package.

A.1 PSEUDO-CODE FOR ALGORITHM

Algorithm 1 LGR Framework for Dynamic Surgical Scene Reconstruction
1: Input: RGB frames {It}, depth maps {Dt}, masks {Mt}, camera intrinsics K, extrinsics T
2: Output: Reconstructed dynamic 3D Gaussian representation
3: Gaussian Initialization:
4: Aggregate multi-frame data by projecting pixels from all frames onto frame 0
5: Construct refined image Î, depth D̂, and mask M̂

6: Compute visibility mask:V = 1− M̂, M̂ =
⋂T

i=1 Mi

7: Project visible pixels into 3D: P̂ = D̂ ·K−1T−1(Î⊙V)

8: Initialize Gaussians Gc from P̂
9: for each training iteration do

10: for each frame t do
11: Gaussian Deformation Tracking:
12: // Basic Deformation Modeling
13: for each Gaussian Gi ∈ Gc do
14: Encode input: x = γ(µi, t)
15: Predict offsets: δµ, δs, δq = Fµ(x),Fs(x),Fq(x)
16: Update deformed Gaussian: Gid = Gic + δ
17: end for
18: // Local Geometric Constraints
19: Apply FPS to select anchor set A ⊂ Gc
20: for each anchor i ∈ A do
21: Retrieve KNN neighbors N (µi)
22: Compute local consistency losses: Lpos,Lcov,Lfeat

23: end for
24: Rendering and Reconstruction Loss:
25: Render image and depth: (Ĉt, D̂t) = Render(Gd)
26: Apply LQE to get enhanced output
27: Compute pixel-wise losses: Lcolor,Ldepth,Lssim

28: Total Loss Computation:
29: Lrec = Lcolor + λ1Lssim + λ2Ldepth

30: Lgeo = λ3Lpos + λ4Lcov + λ5Lfeat

31: Ltotal = Lrec + Lgeo

32: Backpropagate and update network parameters
33: end for
34: end for
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Table 7: Training Hyperparameters for the LGR

Parameter Value Description

Iterations 40000 Total training steps
Initial learning rate lrinit 1.6× 10−4 Start learning rate
Final learning rate lrfinal 1.6× 10−6 End learning rate
Learning rate delay multiplier mdelay 0.01 Scale factor before decay
Learning rate maximum steps S 30000 Steps for LR decay
MLP layers 8 MLP depth in BDM
MLP width 256 MLP width in BDM
λ1, λ2, λ3, λ4, λ5 [0.2, 0.001, 1, 200, 0.001] Loss weights
FPS Number 2048 Points sampled in LGC
KNN Number 90 Neighbors used in LGC

A.2 IMPLEMENTATION DETAILS

Our proposed LGR method is trained and tested on a single 4090 GPU. The training and testing
configurations are summarized below to ensure reproducibility and clarity. Table 7 lists the key
hyperparameters used in training the proposed LGR framework, including learning rates, network
architecture parameters, and settings for local geometric constraints (LGC) and basic deformation
modeling (BDM).

In addition, inspired by Fridovich-Keil et al. (2022), Algorithm 2 provides the pseudo-code for
an exponential learning rate scheduler with a warm-up delay mechanism, which controls dynamic
learning rate adjustment during training. This approach helps stabilize early-stage optimization while
ensuring effective convergence over long training schedules.

Algorithm 2 Exponential Learning Rate Function with Delay
1: Input: Initial learning rate lrinit, final learning rate lrfinal, delay steps sdelay, delay multiplier

mdelay, maximum steps S
2: Output: A function LR(s) returning the learning rate at step s
3: function EXPONENTIAL LEARNING RATE(lrinit, lrfinal, sdelay,mdelay, S)
4: function LR(s)
5: if s < 0 or (lrinit = 0 and lrfinal = 0) then
6: return 0.0
7: end if
8: if sdelay > 0 then
9: r ← clip(s/sdelay, 0, 1)

10: d← mdelay + (1−mdelay) · sin(0.5πr)
11: else
12: d← 1.0
13: end if
14: t← clip(s/S, 0, 1)
15: ℓ← exp ((1− t) · log(lrinit) + t · log(lrfinal))
16: return d · ℓ
17: end function
18: return LR(s)
19: end function

A.3 DATASTES AND METRICS

A.3.1 DATASTES

We conduct experiments on two publicly available surgical video datasets: EndoNeRF and Stere-
oMIS. Both datasets are licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License (CC BY-NC-SA 4.0), do not involve any privacy violations,
and have been properly cited in our work. These datasets provide realistic, diverse surgical

15
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T

EndoNeRF
Pulling

EndoNeRF
Cutting

StereoMIS
S1

StereoMIS
S2

Figure 6: Representative samples from the EndoNeRF and StereoMIS datasets illustrating the
diversity of scenes used in our experiments.

Table 8: Comparison of EndoNeRF and StereoMIS Datasets

Attribute EndoNeRF StereoMIS
Capture Device Da Vinci Surgical Robot Da Vinci Xi Surgical Robot

Resolution 640× 512 640× 512 (downsampled)

Surgical Type Prostatectomy (Human) In-vivo Porcine Study

Key Challenges Deformation, Tool Occlusion Anatomical Diversity, Deformation

Additional Data Depth, Tool Masks Camera Poses, Kinematics

scenes and serve as valuable benchmarks for evaluating surgical scene reconstruction methods under
real-world challenges.

EndoNeRF Dataset. The EndoNeRF dataset is specifically designed for stereo 3D reconstruction
tasks. It consists of stereo video clips collected from Da Vinci robotic-assisted prostatectomy
surgeries. Each clip has a resolution of 640× 512 and a frame rate of 15 fps. The dataset contains
complex surgical scenes with dynamic soft tissue deformation and frequent tool occlusion, accurately
reflecting the visual and geometric difficulties encountered in minimally invasive surgery. Following
previous studies, we select two of the most challenging scenarios pulling and cutting for evaluation. In
addition to the RGB frames, EndoNeRF also provides estimated depth maps and manually annotated
tool masks to support supervised learning and detailed evaluation.

StereoMIS Dataset. The StereoMIS dataset is a large-scale stereo endoscopic video dataset acquired
from in-vivo porcine experiments using the Da Vinci Xi surgical system. It consists of 11 stereo
sequences recorded during real surgical procedures, with each sequence showcasing diverse anatomi-
cal structures and substantial tissue deformation. The original resolution is 1280× 1024 at 60 fps,
downsampled to 640 × 512 for compatibility. Each sequence includes synchronized stereo pairs
along with forward kinematics and camera pose data, making it suitable for evaluating both scene
reconstruction and camera tracking. We select two representative clips from StereoMIS that exhibit
more anatomical diversity compared to EndoNeRF.

These two datasets provide complementary scenarios for comprehensive evaluation. As summarized
in Table 8, the EndoNeRF dataset emphasizes high-fidelity stereo reconstruction in human surgical

16
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environments, whereas the StereoMIS dataset captures more anatomically diverse and dynamically
deforming tissue structures from preclinical studies. Each dataset introduces distinct challenges in
terms of anatomical complexity, tissue dynamics, and camera motion, thereby enabling thorough
assessment of non-rigid reconstruction approaches across varied conditions. Representative samples
from both datasets are shown in Figure 6, illustrating their differences in structural variability
and visual characteristics. Together, these datasets constitute a robust and diverse benchmark for
evaluating reconstruction algorithms under both structural and perceptual challenges.

A.3.2 METRICS

Peak Signal-to-Noise Ratio (PSNR). PSNR is a widely used metric for evaluating the pixel-wise
fidelity between a reconstructed image and its ground truth counterpart. It is particularly relevant
in surgical scene reconstruction tasks, where precise intensity recovery is essential for preserving
anatomical details. PSNR is defined based on the Mean Squared Error (MSE) between the predicted
and ground truth images. Given an image of resolution H ×W , PSNR is computed as:

PSNR = 10 · log10
(
MAX2

MSE

)
, where MSE =

1

HW

H∑
i=1

W∑
j=1

(
I(i, j)− Î(i, j)

)2

, (10)

where I and Î denote the ground truth and reconstructed images, respectively, and MAX is the max-
imum possible pixel value (typically 1.0 or 255). Higher PSNR values indicate better reconstruction
accuracy in terms of low-level pixel similarity, which is especially important for recovering fine
textures in surgical scenes.

Structural Similarity Index Measure (SSIM). SSIM measures the perceptual similarity between
two images by evaluating their luminance (l), contrast (c), and structural consistency (s). It is
particularly suitable for surgical scene reconstruction, where preserving spatial structure and tissue
morphology is critical. Given image patches x and y, SSIM is defined as:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (11)

where µx, µy are the local means, σ2
x, σ2

y are the variances, and σxy is the covariance of patches x
and y. C1 and C2 are constants to stabilize the division. SSIM ranges from 0 to 1, with higher values
indicating better structural consistency—a key property in reconstructing deformable surgical scene.

Learned Perceptual Image Patch Similarity (LPIPS). LPIPS evaluates perceptual similarity by
comparing deep feature activations extracted from pretrained convolutional neural networks, such as
AlexNet or VGG. It provides a measure of high-level perceptual closeness, which aligns well with
human visual judgment—an important consideration in assessing visual quality in surgical scene
rendering. The LPIPS score between two images x and y is computed as:

LPIPS(x, y) =
∑
l

1

HlWl

∑
h,w

∥wl ⊙ (fx
l (h,w)− fy

l (h,w))∥
2

2
, (12)

where fx
l and fy

l are the feature maps of images x and y at layer l, wl is a learned weight vector, and
⊙ denotes element-wise multiplication. Lower LPIPS values indicate greater perceptual similarity.
In surgical scene reconstruction, LPIPS helps evaluate whether reconstructed images are visually
realistic and consistent with human perception, beyond just pixel-level accuracy.

A.4 MORE OUR RESULTS

To further demonstrate the effectiveness of our proposed LGR framework, we present additional
quantitative and qualitative results. Figure 7 compares the reconstruction performance of LGR with
existing methods on the EndoNeRF-Pulling and StereoMIS-S1 test datasets, evaluated using PSNR
and SSIM metrics. Extended visual comparisons on the EndoNeRF-Pulling, EndoNeRF-Cutting,
StereoMIS-S1, and StereoMIS-S2 datasets are provided in Figure 8 and Figure 9. In light of the
availability of corresponding open-source code, we have included quantitative comparisons with
Endo-4DGS (Huang et al., 2024), Deform3DGS (Yang et al., 2024b), and EH-SurGS (Shan et al.,

17
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Figure 7: Quantitative comparison between LGR and comparison methods. A) PSNR and SSIM
comparisons on individual frames from the EndoNeRF-Pulling test dataset. B) PSNR and SSIM
comparisons on individual frames from the StereoMIS-S1 test dataset.

Table 9: Quantitative evaluation on the EndoNeRF (Wang et al., 2022) and Hamlyn (Mountney et al.,
2010) dataset. We report the PSNR↑, SSIM↑, and LPIPS↓ scores.

EndoNeRF-Pulling EndoNeRF-CuttingMethods PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Deform3DGS (Yang et al., 2024b) 37.816 0.958 0.062 36.918 0.958 0.065
Endo-4DGS (Huang et al., 2024) 37.183 0.955 0.072 36.132 0.951 0.054
EH-SurGS (Shan et al., 2025) 38.205 0.960 0.061 38.057 0.963 0.057
SurgicalGaussian (Xie et al., 2024) 38.783 0.970 0.049 37.505 0.961 0.062
LGR (Ours) 39.201 0.972 0.025 38.401 0.969 0.022

Hamlyn-1 Hamlyn-2Methods PSNR ↑ SSIM↑ LPIPS ↓ PSNR ↑ SSIM↑ LPIPS↓
Deform3DGS (Yang et al., 2024b) 29.946 0.930 0.139 31.902 0.947 0.131
Endo-4DGS (Huang et al., 2024) 27.506 0.921 0.158 32.111 0.948 0.112
EH-SurGS (Shan et al., 2025) 33.842 0.956 0.077 35.413 0.964 0.083
SurgicalGaussian (Xie et al., 2024) 31.436 0.934 0.125 33.161 0.948 0.122
LGR (Ours) 34.401 0.958 0.072 36.466 0.968 0.074

2025). Furthermore, we have conducted experiments on the Hamlyn dataset. The experimental results,
summarized in Table 9, demonstrate that our method achieves excellent reconstruction performance.
Additional video results of reconstructed surgical scenes are available in the supplementary material to
better showcase the spatiotemporal fidelity of our method. The visualization videos will be provided
in the supplementary materials package.
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Figure 8: Additional qualitative results of LGR on the EndoNeRF-Pulling and EndoNeRF-Cutting
datasets.
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Figure 9: Additional qualitative results of LGR on the StereoMIS-S1 and StereoMIS-S2 datasets.
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A.5 DETAILS OF THE LOW-QUALITY ENHANCEMENT (LQE) MODULE

We provide a detailed description of the structure and workflow of the Low-Quality Enhancement
(LQE) module in the form of pseudocode below. Our design is mainly inspired by the contributions
of Restormer (Zamir et al., 2022) and RSDFormer (Song et al., 2023) in low-level vision tasks. Due
to the limited size of surgical scene datasets in this project, we replace the main network architecture
from Transformer to CNN. The pseudocode 3 is as follows:
Algorithm 3 Workflow of Low-Quality Enhancement (LQE)

1: Input: x (3-channel RGB or 1-channel depth image)
2: Output: Enhanced image y
3: function LQE(x)
4: // Embedding
5: if channel(x) == 3 then
6: x1← Conv2d(x, 3→ 32, k=3) ▷ Embed RGB to feature space
7: else
8: x1← Conv2d(x, 1→ 32, k=3) ▷ Embed Depth to feature space
9: end if

10: // Encoder Path ▷ ConvBlock = 2×(dsconv + LayerNorm + ReLU)
11: enc1← ConvBlock(x1, 32→ 32)
12: down1← Downsample(enc1) ▷ Conv(32→ 16) + PixelUnshuffle(×4)
13: enc2← ConvBlock(down1, 64→ 64)
14: down2← Downsample(enc2) ▷ Conv(64→ 32)+PixelUnshuffle(×4)
15: enc3 ← ConvBlock(down2, 128→ 128)
16: down3← Downsample(enc3) ▷ Conv(128→ 64) + PixelUnshuffle(×4)
17: bottleneck← ConvBlock(down3, 256→ 256)

18: // Decoder Path
19: up3← Upsample(bottleneck) ▷ Conv(256→ 512) + PixelShuffle(÷4)
20: cat3← Concat(up3, enc3) ▷ Concatenate on channel dim
21: dec3← ConvBlock(Conv1x1(cat3, 256→ 128), 128→ 128) ▷ Reduce channels & decode

22: up2← Upsample(dec3) ▷ Conv(128→ 256) + PixelShuffle(÷4)
23: cat2← Concat(up2, enc2)
24: dec2← ConvBlock(Conv1x1(cat2, 128→ 64), 64→ 64)

25: up1← Upsample(dec2) ▷ Conv(64→ 128) + PixelShuffle(÷4)
26: cat1← Concat(up1, enc1)
27: dec1← ConvBlock(Conv1x1(cat1, 64→ 32), 32→ 32)

28: // Refinement & Output
29: refine← ConvBlock(dec1, 32→ 32)
30: if channel(x) == 3 then
31: output← Conv2d(refine, 32→ 3, k = 3)
32: else
33: output← Conv2d(refine, 32→ 1, k = 3)
34: end if

35: // Residual Connection
36: y← output+ x
37: return y
38: end function

A.6 POTENTIAL BROADER IMPACTS

The proposed LGR method demonstrates significant potential in modeling and tracking non-rigid
deformations in surgical scenes. Beyond its technical contributions, LGR may have broader impacts
across various domains:
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1. Enhancing Precision and Safety in Image-Guided Surgeries: By integrating local geo-
metric constraints, the proposed LGR method effectively captures non-rigid deformations,
thereby improving the accuracy of endoscopic tracking and surgical scene reconstruction.
This advancement assists surgeons in navigating instruments with greater precision, po-
tentially reducing inadvertent damage to healthy tissues and enhancing overall surgical
outcomes.

2. Advancing Medical Education and Virtual Reality Training: High-fidelity modeling of
soft tissue deformations is crucial for developing realistic virtual surgical training systems.
LGR’s capability to simulate authentic tissue behavior enriches medical education by
providing immersive and interactive training platforms, allowing medical professionals to
practice complex procedures in a risk-free environment.

3. Fostering Cross-Disciplinary Technological Innovations: The proficiency of LGR in
handling non-rigid deformations extends its applicability to fields such as robotics, aug-
mented reality (AR), and virtual reality (VR). For instance, in robotic surgery, precise tissue
tracking can facilitate higher levels of automation, while in AR/VR applications, realistic
deformation modeling enhances user immersion, thereby driving innovation across multiple
technological domains.

A.7 USE OF LARGE LANGUAGE MODELS (LLMS)

We used Large Language Models (LLMs), specifically OpenAI’s ChatGPT (GPT-4o/5), as an assistive
tool during the preparation of this paper. The LLMs were used for language polishing, grammar
refinement, and improving readability of the text. All technical content, data interpretation, and
scientific contributions were generated entirely by the authors. The authors take full responsibility for
the correctness, originality, and integrity of the content presented in this paper.
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