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Abstract

We investigate the out-of-domain generalization
of random feature (RF) models and Transformers.
We first prove that in the ‘generalization on the
unseen (GOTU)’ setting, where training data is
fully seen in some part of the domain but testing
is made on another part, and for RF models in
the small feature regime, the convergence takes
place to interpolators of minimal degree as in the
Boolean case (Abbe et al., 2023). We then con-
sider the sparse target regime and explain how
this regime relates to the small feature regime, but
with a different regularization term that can alter
the picture in the non-Boolean case. We show
two different outcomes for the sparse regime with
q-ary data tokens: (1) if the data is embedded with
roots of unities, then a min-degree interpolator is
learned like in the Boolean case for RF models,
(2) if the data is not embedded as such, e.g., sim-
ply as integers, then RF models and Transformers
may not learn minimal degree interpolators. This
shows that the Boolean setting and its roots of
unities generalization are special cases where the
minimal degree interpolator offers a rare charac-
terization of how learning takes place. For more
general integer and real-valued settings, a more
nuanced picture remains to be fully characterized.
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1. Introduction
Some of the most challenging tasks for state-of-the-art ma-
chine learning models reside in settings where the training
data is not representative of the testing data, or more specif-
ically, when there is significant distribution shift. This is
in particular central to ‘reasoning tasks’, such as arithmetic
and algebra (Saxton et al., 2019; Lewkowycz et al., 2022),
visual reasoning such as CLEVR (Johnson et al., 2017),
physical reasoning such as Phyre (Bakhtin et al., 2019), al-
gorithmic data such as CLRS (Veličković et al., 2022) and
reasoning on graphs (Mahdavi et al., 2022). In such settings,
the combinatorial nature of the data makes comprehensive
data sampling challenging, resulting naturally in ‘holes’ in
the sampled domain.

An archetype example of this kind is the ‘length general-
ization’ setting: no matter how dense we sample discrete
inputs, the training data will have inputs of some bounded
length, and one can naturally ask for generalization to larger
length. This has motivated Abbe et al. (2023) to consider a
special case of out-of-distribution generalization: general-
ization on the unseen (GOTU). In its most extremal form,
the GOTU setting assumes that part of the domain (in a
large embedded dimension) is fully observed at training,
and the generalization of the model is tested on a new (un-
seen) part of the domain. Therefore in this setting, there is
no ‘estimation error’ since the model always learns perfectly
in-distribution, but the question of interest is to understand
how well the model generalizes on new domains depending
on the model parametrization and the optimization.

In (Abbe et al., 2023), it is shown that for sparse Boolean
functions, i.e., functions defined on {+1,−1}d that depend
only on a bounded number of variables, and in such a GOTU
setting where training data is available in Uc ⊆ {+1,−1}d
and generalization is tested on U , random feature models
learn functions that are interpolators on Uc with minimal
degree-profile: a specific type of polynomials that have
minimal degree and also largest mass on the lowest-degree
Fourier coefficients. Further, experiments provided in (Abbe
et al., 2023) show that this ‘minimal degree bias’ also takes
place for Transformers.

In this paper, we study how this picture changes when con-
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sidering input variables that are not necessarily valued in
{+1,−1}d. In particular, we consider input variables val-
ued in X ⊆ Rd, which may be discrete but non-binary or ar-
bitrary real-valued. We study theoretical results for random
feature models and provide experiments for Transformers.

We make this study in two settings: (i) the sparse regime
as in (Abbe et al., 2023), where the target function depends
effectively on a low input dimension, (ii) the small feature
regime, where random features have a weight scale that
tends to zero while the input dimension remains fixed. In
particular, we explain how these two regimes are related
to each other, with (ii) acting as a surrogate of (i) with
a regularization term, and investigate both regimes. We
further provide experiments for Transformers.

2. Paper Contributions and a Motivating
Example

Consider the arithmetic task where inputs are valued in
X = {−q/2, . . . ,−1, 1, . . . , q/2}, for some fixed even q,
and the target function f : X d → X · X is given by

f(x1, x2, . . . , xd) = x1 · x2 .

In the GOTU setting, we assume that a set of training ex-
amples is given that covers some part of the support and
leaves out completely some other part. For instance, con-
sider the case where x1 or x2 is always 1 at training. This
is a special case where the model would a priori not have a
reason to learn the target function (it does not see effective
multiplications). So what will the model learn in that case?

Note that one can model the GOTU constraint in this case
as follows:

(x1 − 1)(x2 − 1) = 0 ≡ x1x2 = x1 + x2 − 1 .

One possible outcome is that the model could learn a func-
tion close to f̂(x) = x1 + x2 − 1. This is explained by the
following intuition: this function is a correct interpolator of
the training data, and it has lowest possible degree. Assum-
ing that such models have a bias towards lower degree poly-
nomials, this function may be learned. This turns out to be a
correct intuition in the Boolean case, i.e., when q = 2. More
precisely, this was proved by Abbe et al. (2023) for classic
RF models when d diverges, i.e., the ‘sparse regime’, and
experiments supporting a similar outcome for Transformers
were also obtained. In this paper, as a first contribution, we
show that this outcome also takes place when the target is
not sparse (e.g., d = 2) but the random features have a van-
ishing variance, which we call the ‘small feature regime’;
this in fact provides a surrogate regime to the sparse regime.

What happens now if q > 2? Would such models still learn
a function close to f̂(x) = x1 + x2 − 1? In this paper, we
show the following:

1. (Small-feature RF and any target) Yes, this intuition is
still correct for RF models in the small feature regime
and any real inputs. See Theorem 4.2 for a formal
statement.

2. (Sparse target on arbitrary inputs) No, this intuition
is incorrect for classic RF models with general activa-
tions on sparse targets, as the model can learned higher
degree polynomials, although some activations such as
sigmoid appear to still obey the minimal degree rule;
similarly, this intuition is not correct in general for
Transformers, as we provide experiments with both
minimal degree and higher degree interpolators. These
experiments are reported in Section 7.

3. (RF and sparse target on roots of unities) Yes, this
intuition is again correct for classic RF models with
general activations (with some regularity condition)
and sparse targets if the data is not parametrized
as X = {−q/2, . . . ,−1, 1, . . . , q/2} but as U =
{e2πik/n}n−1

k=0 , with the same target x1 · x2 over the
complex numbers (i.e., the target is now the sum of
angles of the roots of unities). This is the ‘natural’
extension of the Boolean case (with q = 2) to larger
q. Note that this is not due to the fact that the target
here becomes the sum of the angles, as the result ex-
tends to more generic functions. We leave it to future
work to investigate whether this parametrization could
be useful in certain applications; it may also general-
ize to other groups than roots of unities. We refer to
Theorem 6.1 in Section 6 for the formal statement.

3. Background
3.1. Notation

We denote N the set of non-negative integers. If T ∈ Nd,
we denote |T | = ∥T∥1 = T1 + · · · + Td. We define
Nd

⩽p = {T ∈ Nd | |T | ⩽ p}. We also denote Un ={
exp

(
i 2πkn

)
| k = 0, . . . , n− 1

}
⊂ C the n-roots of unity.

We denote Πp(Rd) the set of multivariate real polynomials
on Rd with degree less or equal to p. Similarly, we denote
Πp(Ud

n) the set of functions on Ud
n that are the restriction to

Ud
n of a multivariate complex polynomial on Cd of degree

at most p.

If (V, ∥.∥) is a normed vector space, x ∈ V and W is a
subspace of V , then dist(x,W ) denotes the distance of x to
W . We denote γd the standard Gaussian measure over Rd.

3.2. Random Feature Model and Different Regimes

In the following sections, we will study the random fea-
tures (RF) model fRF(a) : Rd → R, which is defined as
fRF(a;x) =

1√
N

∑N
i=1 aiϕwi,bi(x), x ∈ Rd.
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Here, x ∈ Rd is the input variable, a ∈ RN are the trainable
parameters, and ϕwi,bi(x), i ∈ {1, . . . , N} are the random
features, defined by ϕw,b(x) = σ(⟨w, x⟩ + b), where the
weights wi and biases bi are sampled randomly and then
fixed during the training.

Traditionally, the weights wi and biases bi of random fea-
tures model are sampled independently and identically dis-
tributed (i.i.d.) according to wi ∼ N (0, 1

dId), b ∼ N (0, 1
d ).

(Abbe et al., 2023) analysed this setting with additional as-
sumptions that the target function f must be Od(1)-sparse
(i.e. it must depend on the finite number of variables) while
the dimension d diverges. We call this setting the sparse
regime.

Additionally, we consider the setting where wi ∼ N (0, εId),
b ∼ N (0, ε). Here, we assume that the dimension d is fixed,
but ε → 0. We call this setting the small features regime.

As we will see, the sparse and small features settings are
related to each other: we can show that they are equivalent
up to some regularizer term (see Section 5). However, we
will see that, at least for polynomial activation functions,
they have different generalization properties in a GOTU
setting. In small features regime, the random features model
converges to a minimum-degree interpolator (MDI) (under
some general assumption on polynomial activation function,
see Section 4), while in the sparse regime the convergence
to MDI is rather an exception (see Example 5.3 and Re-
mark 5). Finally, we note that the sparse regime requires
dimension d to be large and target function to be sparse. On
the other hand, the small features regime does not impose
any constraint on dimension d or target function f , but re-
quires non-classical initialization of the weights and biases.
Thus, these two setting have different limitations and areas
of applicability.

Define the image of fRF model as the set of functions it can
express: im(fRF) = {fRF(a), a ∈ RN}.

4. Min-Degree Interpolation in Small Features
Regime

Let U ⊂ Rd be the unseen domain, so that during the
training we only see samples from Uc = Rd \ U . We
emphasize that being a proper subset of Rd is the only
constraint we impose on the unseen domain U . In particular,
we can select U such that the training domain Uc is finite or
countable with a discrete measure defined on it. Similar to
(Abbe et al., 2023), we assume that the model has an access
to the distribution on the training domain, which makes
sampling error zero and allows to state more clear results.

For the activation function σ we assume the following.

Assumption 4.1. Assume that σ is a polynomial of degree p

whose coefficients are non-zero:

σ(y) = bpy
p + . . .+ b1y + b0, where bp, . . . , b0 ̸= 0 .

Theorem 4.2. Consider training the random features model
fRF(a;x) in the small features regime (with parameter ε)
on the polynomial target function f . Assume that we ob-
serve the target function on the training set Uc, and that the
activation function σ satisfies Assumption 4.1.

For a sufficiently large number N of random features, the
model fRF can interpolate the target function perfectly on
U c.

Among all parameters a such that fRF(a) interpolates f on
Uc, denote a∗ the parameter of minimum ℓ2 norm. Denote
by p∗ the minimum possible degree for a polynomial interpo-
lator of f on the training set Uc. Then with high probability,
we have1:

lim
ε→0

lim
N→∞

dist(fRF(a
∗),Πp∗) = 0 .

Remark 4.3. Note that the model will converge to the mini-
mum ℓ2 norm solution a∗ if trained with (stochastic) gradi-
ent descent starting from a = 0 initialization under the mean
squared error loss (in an overparametrized setting). Thus
the theorem describes the bias of gradient descent methods.
Remark 4.4. If the target function f is not a polynomial, we
can still apply Theorem 4.2 to describe where the random
features model converges. Let λ be the distribution on the
training set Uc and assume that the mean square error is
used to train the model. Denote by f̃ the projection of f in
L2(Uc, λ) on the space Πp(Rd) of polynomials of degree
at most p:

f̃ = projΠp(Rd)(f) = argminh∈Πp(Rd)∥f − h∥L2(Uc,λ)

Then the loss function can be decomposed as

L(a) = Ex∼λ

[
(fRF(a;x)− f(x))2

]
= ∥fRF(a)− f∥2L2(Uc,λ)

= ∥fRF(a)− f̃ + f̃ − f∥2L2(Uc,λ)

= ∥fRF(a)− f̃∥2L2(Uc,λ) + ∥f̃ − f∥2L2(Uc,λ) .

The second term in the last expression is independent of a.
Thus, the training trajectory would be the same as if we
trained the model on the target function f̃ ∈ Πp(Rd), and
we may predict where the random features model converges
by applying Theorem 4.2 to the target function f̃ .
Remark 4.5. Our theorem is not specific to Gaussian pa-
rameters of the random features. The proof also works
for any weights and biases of the form wi = ε1/2w̄i and
bi = ε1/2b̄i, with w̄i ∼ µ and b̄i ∼ ν and µ, ν are any
distributions with all moments finite.

1Since the space Πd(Rd) has finite dimension, the convergence
in all norms is equivalent in this space.
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We refer to Appendix B for the proof of the theorem. The
proof can be decomposed into two parts. First, we show
that for fixed ε, as N → ∞ the random features model,
denoted as g, converges to the minimizer of the quadratic
form ĝTΦ−1ĝ, denoted as gε, where Φ is a feature kernel
matrix, and ĝ is the vector of Hermite coefficients of g.
The proof of this part follows the scheme of Theorem 3.8
from (Abbe et al., 2023). Second, we analyze how this
minimizer gε behaves in the limit of ε → 0 and prove that
dist(gε,Πp∗) → 0. This part of our proof is original. In
the Boolean case of (Abbe et al., 2023), the matrix Φ was
diagonal. Hence it was enough to estimate its diagonal en-
tries, which directly leads to the approximation of its inverse.
However, in general case matrix Φ is non-diagonal. Thus,
we estimate all entries of the matrix Φ and derive the suit-
able upper and lower bounds on the quadratic form ĝTΦ−1ĝ
(Lemma B.6 and Corollary B.7 in Appendix B). This is the
part where most of the technical difficulty and conceptual
novelty lies. This is also where the big picture changes with
the min-degree bias of (Abbe et al., 2023) breaking, if we
do not use the small features regime (see Example 5.3 for
the demonstration of min-degree bias breaking).

5. Motivations for the Small Features Setting
In this section, we derive equivalences between the setting
with fixed dimension and small features, and the setting with
diverging dimension and O(1) features.

Let k denote a fixed dimension and d ≫ 1 denote a large
dimension. We set ourselves in the multi-index model where
we seek to learn a function f : Rd → R of the form

f(x) = φ(U⊤x) ,

where U ∈ Rd×k, U⊤U = Ik and φ : Rk → R.

We consider the approximation of f with random features:

fRF(a;x) =

N∑
i=1

aiσ(⟨wi, x⟩+ ci) ,

where wi ∼ N (0, 1
dId) and ci ∈ R. (The reasoning actually

works for other random features, this is simply to set an
order of magnitude for the wi.)

We define the loss function in the approximation

L(a) = 1

2
Ex

[
(f(x)− fRF(a;x))

2
]
.

Denote P∥ the orthogonal projection onto im(U) and P⊥
the orthogonal projection onto kerU⊤ = (kerU)⊥. If
q ∈ Rd, we denote q∥ = P∥q and q⊥ = P⊥q. We make the
following assumption on the input distribution of x.

Assumption 5.1. We assume that x∥ and x⊥ are indepen-
dent.

Example 5.2. This assumption holds in many cases of
interest. We show two examples.

1. If x ∼ N (0, Id), then the assumptions holds. Indeed,
then x∥ ∼ N (0, P∥) and x⊥ ∼ N (0, P⊥) are indepen-
dent.

2. If x ∼ Unif({−1, 1}d) and the columns of U are a
subset of the canonical basis. (This means that the
multi-index model is sparse, meaning that it only de-
pends on a subset of the coordinates.) In this case, x∥
and x⊥ are independent with uniform distribution on
hypercubes of respective dimension k and d− k.

Under Assumption 5.1, we compute

L(a) = 1

2
Ex

[
(f(x)− fRF(a;x))

2
]

(1)

=
1

2
Ex∥Ex⊥

[
(f(x)− fRF(a;x))

2
]
. (2)

As U⊤x is independent of x⊥, we have

Ex⊥

[
(f(x)− fRF(a;x))

2
]

= Ex⊥

[(
φ(U⊤x)− fRF(a;x)

)2]
=
(
φ(U⊤x)− Ex⊥fRF(a;x)

)2
+ varx⊥fRF(a;x) =(

φ(U⊤x)−
N∑
i=1

aiEx⊥σ(⟨wi∥, x∥⟩+ ⟨wi⊥, x⊥⟩+ ci)

)2

+ varx⊥

(
N∑
i=1

aiσ(⟨wi, x⟩+ ci)

)
.

We denote σi(λ) = Ex⊥ [σ(λ+ ⟨wi⊥, x⊥⟩)]. This cor-
responds to a smoothed version of the non-linearity σ.
(For instance, in the case of Gaussian inputs x ∼
N (0, Id), the smoothing noise ⟨wi⊥, x⊥⟩ would be Gaus-
sian N (0, ∥wi⊥∥2)). We then obtain:

Ex⊥

[
(f(x)− fRF(a;x))

2
]

=

(
φ(U⊤x)−

N∑
i=1

aiσi(⟨wi∥, x∥⟩+ ci)

)2

+

N∑
i,j=1

aiajcovx⊥ (σ(⟨wi, x⟩+ ci), σ(⟨wj , x⟩+ cj)) .
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Thus, returning to (1)–(2), we obtain

L(a) = 1

2
Ex∥

(φ(U⊤x)−
N∑
i=1

aiσi(⟨wi∥, x∥⟩+ ci)

)2


+
1

2
a⊤Λa

=
1

2
Ez

(φ(z)− N∑
i=1

aiσi(⟨U⊤wi, z⟩+ ci)

)2


(3)

+
1

2
a⊤Λa , (4)

where z = U⊤x and

Λi,j = Ex∥ [covx⊥ (σ(⟨wi, x⟩+ ci), σ(⟨wj , x⟩+ cj))] .

The take-home message is that the high-dimensional regres-
sion problem in x ∈ Rd reduces to a lower dimensional
regression problem in z ∈ Rk with an additional regulariza-
tion term a⊤Λa and modified features. The non-linearities
are smoothed and the feature vectors wi are projected
onto U . If wi ∼ N (0, 1

dId), then U⊤wi ∼ N (0, 1
dIk).

This gives small features: E∥U⊤wi∥2 = k
d .

As a consequence, minimizing only the first term in (3)–
(4), and taking the minimum norm solution, would lead to
a minimum degree solution by Section 4. However, the
second term, that controls the variance of the model in the
orthogonal direction, actually has an important effect on
the chosen minimizer. As we demonstrate in Example 5.3
below, in some cases it can break down the MDI bias.

Example 5.3. Consider the target function be f(x) = 1
with GOTU constraint x1 = 1, and assume that the support
of the training distribution contains a subset of the hyper-
plane {x ∈ Rd |x1 = 1} of the form {1} × S2 × · · · × Sd

with |S2|, . . . , |Sd| ⩾ 3. Then the MDI is given by the tar-
get function itself, but the random features model trained
in sparse regime with σ(x) = (1 + x)2 converges to
fRF(x) = 2

5x1 + 3
5 (as N → ∞ before d → ∞). This

shows that the random features model in general does not
converge to the MDI in the sparse case, provided that the
training distribution has strictly more than two inputs on
each coordinate. Thus it is not possible to naively extend
the results of (Abbe et al., 2023) beyond the hypercube
{−1, 1}d.

See the proof of Example 5.3 in Appendix C, and the simu-
lation results in Figure 4. From Figure 4 we see that even
for moderate values d = 15 and N = 1024, the model
converges close to the asymptotic value.
Remark 5.4. Empirically we observed the lost of MDI prop-
erty in this example for all polynomial activation functions
that we checked, e.g. (1 + x)2, (1 + x)2 − 1, x2 + x, (1 +

x)3, (1 + x)4. Thus, we believe that it is a general property
for polynomial activations rather than a degenerate case.

6. MDI for Data Embedded in Roots of Unity
We recall that Un =

{
exp

(
i 2πkn

)
| k = 0, . . . , n− 1

}
⊂

C denotes the n-roots of unity. Consider learning a target
function f : Ud

n → C using a random feature model

fRF(a;x) =
1√
N

N∑
i=1

aiϕw,b(x) ,

where the random features are defined as ϕw,b(x) =
σ(⟨w, x⟩ + b). Compared to Section 3, this section takes
the suitable generalization to the complex case: ai ∈ C,
bi ∈ C with distribution (ℜbi,ℑbi) ∼ N

(
0, 1

dI2
)
, wi ∈

Cd with distribution (ℜwi1,ℑwi1, . . . ,ℜwid,ℑwid) ∼
N
(
0, 1

dI2d
)
, σ : C → C and ⟨wi, x⟩ = wi1x1 + · · · +

widxd.

Let U ⊂ Ud
n denote the subset of which f is unseen and

denote

a∗ = argmin
a:fRF(a;x)=f(x), x∈Uc

∥a∥

the minimum norm interpolant of f on the training domain.
We recall that Πp(Ud

n) denotes the set of complex polyno-
mial functions of degree p on Ud

n (i.e. the set of functions on
Ud

n that are the restriction to Ud
n of a multivariate complex

polynomial on Cd of degree at most p).

Theorem 6.1. Denote by p∗ the minimum possible degree
for a polynomial interpolator of f on the set Uc. Then

lim
d→∞

lim
N→∞

d(fRF(a
∗, .),Πp(Ud

n)) = 0 .

This result is proved in Appendix D.

7. Experiments
7.1. Experiments Setup

We run experiments2 with the random features (RF) model
and Transformer (Vaswani et al., 2017). For the RF model,
we sample 65536 training points from the standard Gaus-
sian distribution (except for the coordinates affected by the
GOTU constraint, for which we simply hard code the re-
quired value) and train the model using Gradient Descent
with line search (we refer to Appendix A.1 for the exact
procedure). For convex functions with Lipschitz continu-
ous gradient, this method provably converges to the global
optimum and does not require the learning rate tuning. As
for Transformer, we use AdamW optimizer (Loshchilov &
Hutter, 2017) (without weight decay), and for each batch

2Code: https://github.com/DenisPushkin/GOTU-real-valued
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we generate 256 random samples satisfying the GOTU con-
straint on the fly, imitating the access to the whole data on
the seen domain. For the exact Transformer architecture we
used, see Appendix A.2.

In both cases, we train the model on the data satisfying
GOTU constraints and then evaluate on the full domain to
capture its behavior on the unseen data. In case of the real-
valued training domain, we evaluate the Hermite coefficients
of the model. Note that the choice of Hermite polynomial
basis is arbitrary, yet sufficient for our needs. Indeed, we are
mainly interested in the polynomial degree of the function
learnt by the model, which does not depend on the choice
of polynomial basis.

When the training domain is a discrete grid, i.e. repre-
sented by x ∈ X d, where X is a finite set, we evaluate
the model’s coefficient considering it as a simple multi-
variate polynomial. It is justified by the fact that the set
B = {

∏d
i=1 x

ti
i | 0 ⩽ ti ⩽ |X | − 1 ∀i} of monomials with

degree at most |X | − 1 in each variable forms a basis of
functions in X d. This result may be derived as a conse-
quence of Combinatorial Nullstellensatz (Alon, 1999). Note
that in a special case where X = {±1}, this basis produces
the Fourier-Walsh basis of boolean functions, which was a
central ingredient of MDI analysis in (Abbe et al., 2023).

7.2. Small Features Regime

First, we empirically confirm convergence to min-degree
interpolator (MDI) for RF model in small features regime
with polynomial activation (Theorem 4.2). We run two
experiments: 1) f(x) = 1 with GOTU constraint x1 = 1
(see Figure 1) and 2) f(x) = x2

2 + x2 + 1 with x1 = 1
(Figure 2). In both cases, the target function f is itself an
MDI, but in the second case the MDI is not unique: any
function of the form f(x) + (x1 − 1)∆(x) with deg(∆) ⩽
1 would be an MDI. As predicted by Theorem 4.2, the
RF model converges to MDI in both cases. However, in
the second experiment, the trained model depends on the
variable x1, while the target function does not. This shows
that the random features model in small features regime
does not always converge to ”the simplest”3 MDI.

7.3. Random Features Model with Standard Activations

Now, we examine the RF model with standard (non-
polynomial) activations. First, we compare the sparse and
the small features regimes on the target f(x) = 1 with
GOTU constraint x1 = 1. For both regimes, we use the
same model architecture with d = 15 input dimension and
N = 1024 random features and compare the same set of ac-
tivation functions. You can see the result in Table 2 for small

3One possible formalization of ”the simplest” MDI is a mini-
mum degree-profile interpolator, defined in (Abbe et al., 2023).

Figure 1. Training the random features model on f(x) = 1 with
GOTU constraint x1 = 1 in small features regime. Here, d = 2,
N = 256, ε = (0.05)2, and σ(x) = (1 + x)2.

Figure 2. Training the random features model on f(x) = x2
2 +

x2 + 1 with GOTU constraint x1 = 1 in small features regime.
Here, d = 2, N = 16384, ε = (0.05)2 and σ(x) = (1 + x)2.
The model converged to MDI, but not ”the simplest one”, since it
depends on x1.
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Table 1. Training the random features model on f(x) = x1x2, x ∈ Rd with GOTU constraint (x1 − 1)(x2 − 1) = 0 in sparse regime.
Here, d = 15 and N = 40000. The MDI is given by x1 + x2 − 1.

ACTIVATION 1 x1 x2 x1x2

RELU −0.952± 0.002 0.955± 0.005 0.955± 0.004 0.042± 0.009
SHIFTED RELU −0.957± 0.002 0.958± 0.004 0.958± 0.005 0.039± 0.009
SIGMOID −1.013± 0.003 0.996± 0.003 0.996± 0.006 −0.001± 0.009
SOFTPLUS −0.975± 0.003 0.978± 0.004 0.977± 0.006 0.022± 0.010

Table 2. Training the random features model on f(x) = 1, x ∈ Rd

with GOTU constraint x1 = 1 in small features regime with
ε = (0.03)2. Here, d = 15 and N = 1024.

ACTIVATION 1 x1

(1 + x)2 0.997± 0.002 0.001± 0.003
RELU 0.564± 0.009 0.430± 0.010
SHIFTED RELU 1.000± 0.000 −0.001± 0.003
SIGMOID 1.000± 0.000 −0.001± 0.003
SOFTPLUS 1.000± 0.001 −0.001± 0.003

Table 3. Training the random features model on f(x) = 1, x ∈ Rd

with GOTU constraint x1 = 1 in sparse regime. Here, d = 15 and
N = 1024.

ACTIVATION 1 x1

(1 + x)2 0.624± 0.017 0.374± 0.017
RELU 0.564± 0.009 0.431± 0.011
SHIFTED RELU 0.782± 0.009 0.217± 0.011
SIGMOID 0.992± 0.003 0.007± 0.002
SOFTPLUS 0.789± 0.010 0.208± 0.012

features regime and Table 3 for sparse regime. We see that in
sparse regime, the RF model in general learns a linear inter-
polator instead of the constant one (the only exception is Sig-
moid activation). For small features regime, the RF model
converges to the constant interpolator for all activations,
except for ReLU. We conjecture that this happens because
ReLU(0) = 0, which breaks the Assumption 4.1, used in
the Theorem 4.2 (note that this assumption was stated only
for polynomial activations). In contrast, with Shifted ReLU
activation, given by Shifted ReLU(x) = ReLU(x)− 1, the
convergence to MDI is restored. Hence, we conjecture that
Assumption 4.1 is also a prerequisite for non-polynomial
activations to guarantee the convergence to MDI in small
features regime.

Next, we train RF model in sparse regime on f(x) = x1x2

with GOTU constraint (x1 − 1)(x2 − 1) = 0 (see Table 1),
where the MDI is given by x1 + x2 − 1. In this example,
the RF model converges close to MDI for all activations we
tried, which shows that, for some target functions, the MDI
bias may also holds for the RF model in sparse regime.

Figure 3. Training the random features model on f(x) = 1 with
GOTU constraint x1 = 1 in sparse regime with σ(x) = (1 + x)4

activation. Here, d = 15, N = 3 · 105, and H2(x1) denotes the
normalized second degree Hermite polynomial. The MDI is a
constant function 1, but the model learns the quadratic function.

Finally, Example 5.3 illustrates that the RF model in sparse
regime with polynomial activation generally does not learn
the MDI. But how far can it depart from the MDI, e.g. can
the degree of the trained model exceed the minimum degree
of interpolator by more than one? In Figure 3 we demon-
strate that the RF model with σ(x) = (1 + x)4 activation
trained on f(x) = 1 with GOTU constraint x1 = 1 learns
the quadratic function. It shows that the RF model in sparse
regime can exceed the MDI by more than one degree. We
conjecture that this gap can be arbitrarily large as we in-
crease the degree of the polynomial activation function.

7.4. Transformer and Random Features with Discrete
Input

Finally, we consider the input variable x from the discrete
space. It allows us to apply Transformer model in our ex-
periments.

For Transformer, we run the following experiments: 1)
f(x) = 1, x ∈ {−2,−1, 0, 1, 2}d with GOTU constraint

7
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x1 = 1 in dimension d = 15 (see Figure 5) and 2)
f(x) = x1x2, x ∈ {−1, 0, 1}d with (x1 − 1)(x2 − 1) = 0
and d = 15 (Figure 6). In the first experiment, the MDI
is given by a target function f(x) = 1 itself, and Trans-
former indeed learns a constant function and neglects the
constrained variable x1. In the second experiment, the MDI
is given by a linear function f(x) = x1 + x2 − 1. In this
case, the Transformer’s behavior depends on the learning
rate. With a moderate learning rate of 10−4 (Figure 6, left),
Transformer’s coefficients are noisy at the first half of the
training, but then sharply stabilize and converge to the inter-
polator4 fint(x) =

1
2 (x1 + x2 − x2

1 + x1x2 − x2
2 + x2

1x
2
2)

(see the exact coefficients in Table 4). This shows that
Transformer consistently learns the interpolator of degree
4 instead of the linear MDI. We also repeat this experi-
ment with 10−5 learning rate - the same one which leads to
the min-degree interpolator for boolean functions in (Abbe
et al., 2023) (Figure 6, right). In this case, Transformer’s
coefficients did not converge even after 6 · 106 iterations.
However, the trajectory suggests that the coefficient of x1x2

is non-negligible, which means that Transformer learns at
least a quadratic function. Moreover, the coefficient x1x2

is likely to dominate all other coefficients, implying that
the learnt function is not an MDI even in a leaky sense
(i.e. the high-degree monomials are not dominated by the
low-degree alternatives).

Note the crucial difference with the boolean case, where
Transformer converges to MDI when trained on the same
target function with 10−5 learning rate (Abbe et al., 2023).5

This shows that min-degree bias for Transformer does not
generalize beyond the boolean domain.

We also train RF model on f(x) = 1, x ∈
{−2,−1, 0, 1, 2}d with GOTU constraint (x1 − 1)(x2 −
1) = 0 in dimension d = 15, using σ(x) = (1 + x)2 activa-
tion (see Figure 4). We observe that the RF model learns
a linear function, while the MDI is given by a constant. It
confirms the statement of Example 5.3 that even for discrete
domains, the RF model in sparse regime with polynomial
activation does not converge to MDI.

4Of course, it’s just a hypothesis that Transformer converges to
this exact function. In the experiments, the final coefficients of the
Transformer are very close to ±1/2, but never equal to it.

5The other distinction between our experiments and the ones
made by (Abbe et al., 2023) is that the latter stops the training
when the loss reaches a low enough threshold, while we train
the model longer until its coefficients are well stabilized. It may
happen that (leaky) MDI bias is stronger when lower learning rates
or early stopping is used; we leave this hypothesis, as well as the
evolution of the MDI on long training past a ‘low’ threshold for
future research.

Figure 4. Training the random features model on f(x) = 1, x ∈
{−2,−1, 0, 1, 2}d with GOTU constraint x1 = 1 and σ(x) =
(1 + x)2 activation. Here, d = 15, N = 1024. While MDI is
given by a constant function, the model learns a linear interpolator.

Figure 5. Training Transformer on f(x) = 1, x ∈
{−2,−1, 0, 1, 2}d with GOTU constraint x1 = 1 using AdamW
optimizer with 10−4 learning rate. Here, d = 15.
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Figure 6. Training Transformer on f(x) = x1x2, x ∈ {−1, 0, 1}d with GOTU constraint (x1 − 1)(x2 − 1) = 0 in dimension d = 15
using AdamW optimizer. The MDI is given by x1 + x2 − 1. We used the learning rate 10−4 for the left plot, and 10−5 for the right one.

Table 4. Final coefficients of the trained Transformer on f(x) =
x1x2, x ∈ {−1, 0, 1}d with GOTU constraint (x1−1)(x2−1) =
0 in dimension d = 15. Here, we used AdamW optimizer with
10−4 learning rate.

MONOMIAL COEFFICIENT

1 −0.020± 0.028
x1 0.499± 0.000
x2 0.501± 0.001
x2
1 −0.480± 0.027

x1x2 0.500± 0.004
x2
2 −0.481± 0.027

x2
1x2 0.002± 0.005

x2
2x1 0.005± 0.003

x2
1x

2
2 0.484± 0.024

8. Additional Related Literature
This paper is a generalization and extension of (Abbe et al.,
2023).

Out-of-distribution generalization is a critical aspect of ma-
chine learning that has been studied both in theory (Ben-
David et al., 2006; Mansour et al., 2009; Redko et al., 2020)
and in practice (Gulrajani & Lopez-Paz, 2020; Miller et al.,
2021; Wiles et al., 2022). Our work considers an extreme
case of distribution shift in which part of the domain is
entirely unseen during the training. OOD generalization
and the ability to extrapolate have also been used as prox-
ies for measuring the reasoning capabilities of neural net-
works (Saxton et al., 2019; Zhang et al., 2021; Csordás
et al., 2021; Zhang et al., 2022) as these models are prone
to memorization of training samples (Carlini et al., 2019;
Feldman & Zhang, 2020; Kandpal et al., 2022; Carlini et al.,
2022; Zhang et al., 2021) or learning undesirable shortcuts
(Zhang et al., 2022). A special case is length generalization

(Zaremba & Sutskever, 2014; Lake & Baroni, 2018; Hupkes
et al., 2020; Zhang et al., 2022; Anil et al., 2022), i.e., gen-
eralization to the input lengths beyond what is seen during
the training.

It has been shown that training with gradient descent im-
poses particular implicit regularization on the solutions
found by the models such as sparsity (Moroshko et al.,
2020), norm minimization (Bartlett et al., 2021), and mar-
gin maximization (in linear classification setting) (Soudry
et al., 2017). This implicit regularization (or implicit bias)
of neural networks trained with gradient-based algorithms
has been used to explain the generalization of (often over-
parametrized) models (Bartlett et al., 2021). These results
depend on the optimizer (Gunasekar et al., 2018a) and model
(Gunasekar et al., 2018b) and are usually proven for simple
models such as linear models (Soudry et al., 2017; Yun et al.,
2020; Jacot et al., 2021) including diagonal linear neural
networks (Gunasekar et al., 2018b; Moroshko et al., 2020).
Our result for the random feature model builds upon the
implicit bias toward solutions with minimum norm (Bartlett
et al., 2021). Related to us is also the spectral bias (Xu et al.,
2019; Rahaman et al., 2019) stating that neural networks,
when learning a function in continuous settings, capture
the lower frequency components faster (note that degree in
Boolean functions plays a similar role to the frequency).

9. Conclusion
This paper shows that the min-degree bias in the non-
Boolean case is mitigated by various phenomena. One
setting admits a clear min-degree bias, i.e., the roots of uni-
ties. Moreover, Transformer may still admit some leaky
min-degree bias, and it remains open to understand what
else drives the bias of Transformers; e.g., does the produced
output alphabet or influence of variables play a role?
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Experiments Details
A.1. Gradient Descent with Line Search

Algorithm 1 Gradient Descent with Line Search

Input: data point x0, Liphitz constant estimator L0 = 1
for n = 0, 1, . . . do
xn+1 = xn − 1

Ln
∇f(xn)

while not f(xn+1) ⩽ f(xn)− 1
2Ln

∥∇f(xn)∥2 do
Ln := 2Ln

xn+1 = xn − 1
Ln

∇f(xn)
end while
Ln+1 = Ln/2

end for

A.2. Transformer Architecture

For Transformer, we use the encoder-only architecture from the Vision Transformer model (Dosovitskiy et al., 2020). This
model consists of 12 layers, each of them formed by multi-head self-attention block with 6 heads followed by Feed-Forward
block. Following standard practices, there is a layer normalization before each self-attention and Feed-Forward blocks. The
model uses decoupled weights, i.e. there is no parameters sharing between the layers or the attention heads. For each input
sequence, the model prepends a special classification token at the beginning of the sequence. Then it encodes each token
(which comes from the discrete alphabet) using the input embedding layer and adds it to the trainable positional embedding.
We keep the embedding dimension equal to 64 both at the beginning of the model and between the model blocks. The
Feed-Forward module is represented by a 2-layers MLP with hidden dimension 64 and GELU activation (Hendrycks &
Gimpel, 2016). To get the final prediction, the model extracts the final classification token embedding, and feeds it through
the layer normalization followed by a linear layer with a single output.

B. Proof of Theorem 4.2
Reminder on the Hermite decomposition. Let Ht denote the Hermite polynomial of degree t, using the probabilist
convention, and normalized such that {Ht, t ⩾ 0} is an orthonormal basis of L2(R, γ1). (We recall that γd denotes the
standard Gaussian measure in dimension d.) Said differently, if Z is a univariate standard normal random variable, we
assume that E [Hs(Z)Ht(Z)] = 1s=t. Further, we define the multivariate Hermite polynomials as χT (x) =

∏d
i=1 Hti(xi),

where T = (t1, . . . , td) ∈ Nd. Note that deg(χT (x)) = |T | = T1 + · · ·+ Td. The set of functions {χT (x), T ∈ Nd} forms
an orthonormal basis of L2(Rd, γd).

Recall that Πp(Rd) denotes the set of polynomials of degree at most p on Rd. Any h ∈ Πp(Rd) admits a Hermite
decomposition of the form h(x) =

∑
T∈Nd

⩽p
ĥ(T )χT (x), where Nd

⩽p = {T ∈ Nd | |T | ⩽ p} and ĥ(T ) = EZ [h(Z)χT (Z)],

Z ∼ N (0, Id).

We now turn to the proof of the theorem.

Lemma B.1. If σ ∈ Πp(R), then w.h.p. we have that for any large enough N ,

im(fRF) = Πp(Rd) .

Proof. Since σ ∈ Πp(R), we have that ∀i ∈ [N ]: ϕwi,bi(x) = σ(⟨wi, x⟩ + bi) ∈ Πp(Rd). Thus, fRF(a;x) =
1√
N

∑N
i=1 aiϕwi,bi(x) ∈ Πp(Rd) ∀a ∈ RN , which shows that im(fRF) ⊆ Πp(Rd).

It remains to show that im(fRF) ⊇ Πp(Rd). Let γd denote the standard Gaussian measure in dimension d. We define the
operator M : Πp(Rd) → Πp(Rd) by the formula

M(f) = Ew,b

[
⟨f, σ(⟨w, x⟩+ b)⟩L2(γd)

σ(⟨w, x⟩+ b)
]
, f ∈ Πd(Rd) .
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Similarly, we define the empirical version MN : Πp(Rd) → Πp(Rd) by the formula

MN (f) =
1

N

N∑
i=1

⟨f, σ(⟨wi, x⟩+ bi)⟩L2(γd)
σ(⟨wi, x⟩+ bi) , f ∈ Πd(Rd) .

The operators M and MN are positive definite over (Πp(Rd), ⟨., .⟩L2(γd)).

Assume that M is positive definite. By the law of large numbers, MN −−−−→
N→∞

M almost surely. As the set of

positive definite matrices is an open set, this implies that for all η > 0, there exists N0 ∈ N such that for all N ⩾ N0,
Pr(MN is positive definite) ⩾ 1− η.

When MN is positive definite, then im(MN ) = Πp(Rd). As im(MN ) ⊂ im(fRF) ⊂ Πp(Rd), this enables to conclude that
im(fRF) = Πp(Rd).

We thus now need to prove that M is positive definite. Consider f such that ⟨f,M(f)⟩L2(γd)
= 0. We prove that f = 0.

We have that Ew,b

[
⟨f, σ(⟨w, x⟩+ b)⟩2L2(γd)

]
= 0. Thus ⟨f, σ(⟨w, x⟩+ b)⟩L2(γd)

= 0 almost surely. As this expression is

a multivariate polynomial in w and b, this implies that actually ⟨f, σ(⟨w, x⟩+ b)⟩L2(γd)
= 0 for all w ∈ Rd and b ∈ R. In

particular, if λ ⩾ 0, we have ⟨f, σ(λ⟨w, x⟩)⟩L2(γd)
= 0.

We use a Taylor expansion for σ:

σ(y) =

p∑
k=0

σ(k)(0)

k!
yk .

As a consequence,

0 = ⟨f, σ(λ⟨w, x⟩)⟩L2(γd)
=

p∑
k=0

〈
f,

σ(k)(0)

k!
(λ⟨w, x⟩)k

〉
L2(γd)

=

p∑
k=0

σ(k)(0)

k!
λk
〈
f, ⟨w, x⟩k

〉
L2(γd)

.

Identifying powers of λ in this expression, and using that σ(k)(0) ̸= 0 for all k, we have that〈
f, ⟨w, x⟩k

〉
L2(γd)

, k = 0, . . . , p .

To conclude, we only need to prove that the set of functions ⟨w, x⟩k for w ∈ Rd and k = 0, . . . , p spans Πp(Rd).

Consider w such that ∥w∥ = 1. We decompose f into multivariate Hermite polynomials: f(x) =
∑

|β|⩽p f̂(β)hβ(x). Then

0 = ⟨f, hk(⟨w, x⟩)⟩L2(γd)
=
∑
|β|⩽p

f̂(β) ⟨hβ(x), hk(⟨w, x⟩)⟩L2(γd)
=
∑
|β|⩽p

f̂(β)

(
k

β

)1/2

wβ1

1 · · ·wβd

d .

The last quantity is a multivariate polynomial in w, which is zero on the unit sphere. It thus need to be identically zero. Thus
for all β, f̂(β) = 0. Thus f = 0. This concludes the proof.

Lemma B.2. Assume that An → A as n → ∞, where (An)
∞
n=1, A are positive-definite matrices in Rd×d and let S be any

affine subspace of Rd. Then

argminx∈Sx
⊤Anx → argminx∈Sx

⊤Ax

Proof. Let us introduce the following notations:

yn = argminx∈Sx
⊤Anx

y = argminx∈Sx
⊤Ax

ρ = min
x∈S

x⊤Ax = y⊤Ay

13
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First, let us show that ∥yn∥2 is uniformly bounded over n. From An → A we get that λmin(An) → λmin(A) and
y⊤Any → y⊤Ay. Thus, ∃n0 ∈ N s.t. ∀n ⩾ n0 both of the following holds: λmin(An) ⩾ λmin(A)/2 > 0 and

|y⊤Any − y⊤Ay| < 1. We claim that for any such n it holds that ∥yn∥2 ⩽ C
def
=
√

2(ρ+1)
λmin(A) . Indeed, consider any x such

that ∥x∥2 > C. Then

x⊤Anx ⩾ λmin(An)∥x∥22 ⩾
λmin(A)

2
∥x∥22 >

λmin(A)

2

2(ρ+ 1)

λmin(A)
= ρ+ 1

On the other hand, y⊤Any < y⊤Ay + 1 = ρ+ 1. Hence, y⊤Any < x⊤Anx, which shows that none of such x can be the
minimizer. This concludes ∥y∥2 ⩽ C. As a side effect, from y⊤Any < x⊤Anx ∀x : ∥x∥2 > C we get ∥y∥2 ⩽ C.

To complete the proof, it is enough to show that y is a unique partial limit of the sequence (yn). Define S ′ = {x ∈ S :
∥x∥2 ⩽ C}. As we have proved above, y, yn ∈ S ′ for large enough n. Let us show that the functions x → x⊤Anx converge
to x → x⊤Ax uniformly over x ∈ S ′. Indeed,

|x⊤Anx− x⊤Ax| ⩽ ∥x∥2 · ∥(An −A)x∥2 ⩽ ∥An −A∥2 · ∥x∥22
and the last term converges to zero uniformly whenever ∥x∥2 is uniformly bounded.

Now let l be any partial limit of yn, that is ∃(ynk
): ynk

→ l. We want to show that l = y. Let us fix any ε > 0. From the
uniform convergence we know that ∃n0 ∈ N s.t. |x⊤Anx− x⊤Ax| < ε ∀x ∈ S ′, ∀n ⩾ n0. Recall that y, yn ∈ S ′ for large
enough n, which means all the elements of (ynk

) belong to S ′ starting from some k0. For these elements, we can estimate

ρ = y⊤Ay ⩽ y⊤nk
Aynk

⩽ y⊤nk
Ank

ynk
+ ε ⩽ y⊤Ank

y + ε ⩽ y⊤Ay + 2ε = ρ+ 2ε

where the first inequality comes from y = argminx∈Sx
⊤Ax, and the third - from ynk

= argminx∈Sx
⊤Ank

x. Thus, ∀ε > 0
we get

ρ ⩽ y⊤nk
Aynk

⩽ ρ+ 2ε ∀k ⩾ k0(ε)

which shows that y⊤nk
Aynk

→ ρ = minx∈S x⊤Ax. Taking into account that the function x → x⊤Ax is strongly convex
(since A is positive-definite), we conclude that ynk

→ y. Hence, the only partial limit of (yn) is y, which proves that
yn → y.

Lemma B.3. For any basis monomial χT (x) and any non-negative integer k < |T | we have:

Ex∼N (0,Id)[(⟨w, x⟩+ b)kχT (x)] = 0

Proof. Since the term (⟨w, x⟩+ b)k is a polynomial of degree k in x, in Hermite basis it only contains Hermite polynomials
of degree at most k. The rest comes from the orthogonality of Hermite polynomials.

Lemma B.4. For any non-negative integer k we have:

Ex∼N (0,Id)[|(⟨w, x⟩+ b)kχT (x)|] ⩽ εk/2polyT (w̄, b̄)

where polyT (w̄, b̄) is some polynomial in w̄1, . . . , w̄d, b̄ which depends on T . Here, w̄ = ε−1/2w, b̄ = ε−1/2b.

Proof.

Ex[|(⟨w, x⟩+ b)kχT (x)|] = εk/2Ex[|(⟨w̄, x⟩+ b̄)kχT (x)|]

= εk/2Ex

∣∣∣∣∣∣
∑

α1+...+αd+1=k

(
k

α1 . . . αd+1

)
(w̄1x1)

α1 . . . (w̄dxd)
αd b̄αd+1χT (x)

∣∣∣∣∣∣


⩽ εk/2
∑

α1+...+αd+1=k

(
k

α1 . . . αd+1

)
|w̄α1

1 . . . w̄αd

d b̄αd+1 | · Ex[|xα1
1 . . . xαd

d χT (x)|]

⩽ εk/2
∑

α1+...+αd+1=k

(
k

α1 . . . αd+1

)(
w̄2

1 + 1

2

)α1

. . .

(
w̄2

d + 1

2

)αd
(
b̄2 + 1

2

)αd+1

· Ex[|xα1
1 . . . xαd

d χT (x)|]

= εk/2polyT (w̄, b̄)

14



On the Minimal Degree Bias in Generalization on the Unseen for non-Boolean Functions

Lemma B.5. For any T ∈ Nd such that |T | ⩽ p we have

ϕ̂w,b(T ) = ε|T |/2 · σ
(|T |)(0)

|T |!

(
|T |

t1 . . . td

)
w̄t1

1 . . . w̄td
d +O(ε(|T |+1)/2 · polyT (w̄, b̄))

Here, w̄ = ε−1/2w, b̄ = ε−1/2b, so that the distribution of w̄ and b̄ does not depend on ε: w̄ ∼ N (0, Id), b̄ ∼ N (0, 1).

Proof. Using Taylor series, we get

ϕw,b(x) = σ(⟨w, x⟩+ b) = σ(G) = σ(0) + σ′(0)G+ . . .+
σ(|T |)(0)

|T |!
G|T | +

σ(|T |+1)(ξ)

(|T |+ 1)!
G|T |+1

where |ξ| ⩽ |G|. Note that the expansion ϕw,b(x) =
∑

T ϕ̂w,b(T )χT (x) is the basis of Hermite polymonials χT (x) does
not depend on the distribution on the input space Rd. Hence, for simplicity, we can assume the Gaussian distribution:
x ∼ N (0, Id), which allows us to express the Hermite coefficients using the dot product: ϕ̂w,b(T ) = Ex[ϕw,b(x)χ(T )].
Thus, by Lemma B.3 we obtain

ϕ̂w,b(T ) = Ex[
σ(|T |)(0)

|T |!
G|T |χT (x) +

σ(|T |+1)(ξ)

(|T |+ 1)!
G|T |+1χT (x)] = Ex[A] + Ex[B]

where A = σ(|T |)(0)
|T |! G|T |χT (x) and B = σ(|T |+1)(ξ)

(|T |+1)! G|T |+1χT (x). For the first term we get

Ex[A] =
σ(|T |)(0)

|T |!
Ex[(⟨w, x⟩+ b)|T |χT (x)] = ε|T |/2σ

(|T |)(0)

|T |!
Ex[(⟨w̄, x⟩+ b̄)|T |χT (x)]

= ε|T |/2σ
(|T |)(0)

|T |!

(
|T |

t1 . . . td

)
w̄t1

1 . . . w̄td
d

For the second term, we can estimate

|Ex[B]| ⩽ Ex[|B|] = 1

(|T |+ 1)!
Ex[|σ(|T |+1)(ξ)G|T |+1χT (x)|]

By assumption 4.1 we have

|σ(|T |+1)(ξ)| ⩽ C(ξl + 1) ⩽ C(|ξ|l + 1) ⩽ C(|G|l + 1)

Substituting, we obtain:

|Ex[B]| ⩽ C

(|T |+ 1)!

(
Ex[|G|T |+1χT (x)|] + Ex[|G|T |+l+1χT (x)|]

)
Applying Lemma B.4 to the expectations above, we proceed

|Ex[B]| ⩽ C

(|T |+ 1)!

(
ε(|T |+1)/2poly(1)T (w̄, b̄) + ε(|T |+l+1)/2poly(2)

T (w̄, b̄)
)

⩽
C

(|T |+ 1)!
· ε(|T |+1)/2

(
poly(1)T (w̄, b̄) + poly(2)

T (w̄, b̄)
)

= ε(|T |+1)/2polyT (w̄, b̄)

which completes the proof.

Lemma B.6. If g ∈ Πp(Rd), then

ĝ⊤⩽pΦ
−1ĝ⩽p = Θ(ε−def(g))

15



On the Minimal Degree Bias in Generalization on the Unseen for non-Boolean Functions

Proof. By the previous lemma we know that

Φ = Gram
{
ϕ̂w,b(T ) = ε|T |/2cT w̄

t1
1 . . . w̄td

d +O(ε(|T |+1)/2 · polyT (w̄, b̄)), T ∈ Nd
⩽p

}
where cT = σ(|T |)(0)

|T |!
( |T |
t1...td

)
̸= 0 given that σ(|T |)(0) ̸= 0 by Assumption 4.1. Define

A = Gram
{
ε−|T |/2ϕ̂w,b(T ) = cT w̄

t1
1 . . . w̄td

d +O(ε1/2 · polyT (w̄, b̄)), T ∈ Nd
⩽p

}
Then A and Φ are connected by

Φi,j = ε(|Ti|+|Tj |)/2 ·Ai,j (5)

Φ−1
i,j = ε−(|Ti|+|Tj |)/2 ·A−1

i,j (6)

(the second can be established, for example, by Cramer’s rule). Next, define

Ã = Gram
{
cT w̄

t1
1 . . . w̄td

d , T ∈ Nd
⩽p

}
e.g. we dropped the reminders from the Gram basis elements of A. Then we have that Ai,j = Ãi,j +O(ε1/2) ∀i, j (here,
we use that the expectation of any polynomial in w̄, b̄ is finite). It gives us det(A) = det(Ã) +O(ε1/2). Besides, denoting
by C and C̃ the cofactor matrices of A and Ã respectively, we also have Ci,j = C̃i,j +O(ε1/2) ∀i, j. Finally, det(Ã) ̸= 0

since the basis elements of Ã are linearly independent. Combining all together, we have

A−1
i,j =

Cj,i

det(A)
=

C̃j,i +O(ε1/2)

det(Ã) +O(ε1/2)
= Ã−1

i,j +O(ε1/2)

Combining with (6), we get

Φ−1
i,j = ε−(|Ti|+|Tj |)/2 ·A−1

i,j = ε−(|Ti|+|Tj |)/2 · Ã−1
i,j +O(ε−(|Ti|+|Tj |−1)/2) (7)

As a corollary, we may estimate

Φ−1
i,j = O(ε−(|Ti|+|Tj |)/2) (8)

Now consider any fixed g ∈ Πp(Rd). Denote s = deg(g), then ĝ(T ) = 0 ∀T : |T | > s. Hence,

ĝ⊤⩽pΦ
−1ĝ⩽p =

∑
|T |,|T ′|⩽s

ĝ(T )ĝ(T ′)Φ−1
T,T ′

Note that if |T | < s or |T ′| < s then (|T |+ |T ′|)/2 ⩽ s− 1/2 and from (8) we get Φ−1
T,T ′ = O(ε−s+1/2). Thus, we can

estimate

ĝ⊤⩽pΦ
−1ĝ⩽p =

∑
|T |,|T ′|=s

ĝ(T )ĝ(T ′)Φ−1
T,T ′ +O(ε−s+1/2)

(7)
= ε−s

∑
|T |,|T ′|=s

ĝ(T )ĝ(T ′)Ã−1
T,T ′ +O(ε−s+1/2) (9)

Now define g′ ∈ Πp(Rd) by setting ĝ′(T ) = ĝ(T ) if |T | = s and ĝ′(T ) = 0 otherwise. Then∑
|T |,|T ′|=s

ĝ(T )ĝ(T ′)Ã−1
T,T ′ = (ĝ′⩽p)

⊤Ã−1ĝ′⩽p (10)

Note that Ã ≻ 0 since A is a Gram matrix of linearly independent set of functions. Thus, Ã−1 ≻ 0. Moreover, since
deg(g) = s, we have ĝ′⩽p ̸= 0. Combining these, we conclude that the value of (10) is strictly positive. Denoting this value
by C1 > 0 and substituting it into (9), we obtain

ĝ⊤⩽pΦ
−1ĝ⩽p = C1ε

−s +O(ε−s+1/2) = Θ(ε−s)

which completes the proof.
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Corollary B.7. There exist c, ε0 > 0 such that ∀ε < ε0 we have:

Φ−1 ⪰ cDε

where Dε = diag({ε−|Ti|, Ti ∈ Nd
⩽p})

Proof. We can write (6) in matrix form as

Φ−1 = D1/2
ε A−1D1/2

ε (11)

Since Ã−1 ≻ 0, it holds that Ã−1 ≻ cI where c = λmin(Ã
−1)/2. Combining with A−1 → Ã−1, we obtain that A−1 ≻ cI

for small enough ε. Substituting in (11), we proceed

Φ−1 = D1/2
ε A−1D1/2

ε ⪰ D1/2
ε (cI)D1/2

ε = cDε

which completes the proof.

Proof of Theorem 4.2. The first statement of the theorem is given by Lemma B.1. We now turn to the proof of the second
statement. Define the set of polynomial interpolators Fint as

Fint =
{
h ∈ Πp(Rd) : ∀x ∈ Uc, h(x) = f(x)

}
.

Since f ∈ Πp(Rd), we have Fint ̸= ∅. Define the matrix F ∈ R|Nd
⩽p|×N by setting Fij = 1√

N
ϕ̂wj ,bj (Ti), where

j ∈ {1, . . . , N} and T1, . . . , T|Nd
⩽p

| are enumerated elements of Nd
⩽p. Then the Hermite coefficients of the random features

model can be expressed as f̂RF(a) = Fa.

Consider N large enough so that any interpolator g ∈ Fint can be expressed by the random features model (such N exists
w.h.p. by Lemma B.1). Then the equation

Fa = ĝ (12)

has solution in a for any g ∈ Fint. Moreover, provided that the matrix FF⊤ ∈ R|Nd
⩽p|×|Nd

⩽p| is invertible, the minimum-norm
solution a(g) of (12) is given by

a(g) = F †ĝ = F⊤(FF⊤)−1ĝ (13)

and we get

∥a(g)∥2 = ĝ⊤(FF⊤)−1ĝ . (14)

Let us show that FF⊤ is indeed invertible (w.h.p.). We have

(FF⊤)i,j =

N∑
k=1

Fi,kF
⊤
k,j =

N∑
k=1

Fi,kFj,k

=
1

N

N∑
k=1

ϕ̂wk,bk(Ti)ϕ̂wk,bk(Tj)

a.s.−−−−→
N→∞

Ew,b[ϕ̂w,b(Ti)ϕ̂w,b(Tj)]

where the last step follows from the Strong Law of Large Numbers (SLLN). To be able to use the SLLN, we have to check
that Ew,b[|ϕ̂w,b(Ti)ϕ̂w,b(Tj)|] < ∞. For this, we use the Cauchy-Schwarz inequality:

Ew,b[|ϕ̂w,b(Ti)ϕ̂w,b(Tj)|] (15)

⩽
√
Ew,b[ϕ̂w,b(Ti)2] ·

√
Ew,b[ϕ̂w,b(Tj)2] . (16)

17
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The finiteness of the right-hand side follows (at least for small enough ε) from Lemma B.5 after noting that the expectation
of any polynomial in w̄, b̄ is finite, where w̄ ∼ N (0, Id), b̄ ∼ N (0, 1). In the following, we consider ε small enough for
(15)–(16) to hold for any i, j.

Thus, we get that FF⊤ a.s.→ Φ, where Φ ∈ R|Nd
⩽p|×|Nd

⩽p| is a deterministic matrix defined by

Φij = Ew,b[ϕ̂w,b(Ti)ϕ̂w,b(Tj)] (17)

Let us show that the matrix Φ is invertible. Note that Φ is the Gram matrix for the set of functions {(w, b) 7→ ϕ̂w,b(T ), T ∈
Nd

⩽p} in L2(Rd+1, γd+1) space. Hence, if matrix Φ were degenerate, it would mean that the functions {(w, b) 7→
ϕ̂w,b(T ), T ∈ Nd

⩽p} are linearly dependent. Denote k = |Nd
⩽p|. Then there exists a linear subspace L of dimension

dim(L) ⩽ k − 1 such that for all w, b we have ϕ̂w,b ∈ L. This implies that f̂RF ∈ L for all N , {wi}Ni=1, {bi}Ni=1, {ai}Ni=1.
Therefore, we have dim(im(f̂RF)) ⩽ k − 1 thus dim(im(fRF)) = dim(im(f̂RF)) ⩽ k − 1 < k = dim(Πp(Rd)). The last
inequality shows that im(fRF) ̸= Πp(Rd), and this statement holds for all N , {wi}Ni=1, {bi}Ni=1. Thus, we get a contradiction
with Lemma B.1. This proves that matrix Φ must be invertible.

Since Φ is invertible and FF⊤ → Φ as N → ∞, the matrix FF⊤ must be invertible for large enough N and (FF⊤)−1 →
Φ−1. Thus, we justified (13)–(14) and from (14) can deduce

∥a(g)∥2 a.s.−−−−→
N→∞

ĝ⊤Φ−1ĝ . (18)

Recall that a∗ denotes the minimum norm interpolating solution. Thus, for finite N , fRF(a
∗) is the minimizer of (14) over

g ∈ Fint. Besides, denote the minimizer of (18) over g ∈ Fint by gε. Since (FF⊤)−1 ≻ 0 (for large enough N ), Φ−1 ≻ 0,
(FF⊤)−1 → Φ−1 as N → ∞, and since Fint is an affine subspace, by Lemma B.2 we get that f̂RF(a

∗) → ĝε as N → ∞
for any small enough ε > 0, which implies fRF(a

∗) → gε.

It remains to show that dist(gε,Πp∗) → 0 as ε → 0. Consider h ∈ Fint such that deg(h) = p∗. Then by Lemma B.6
we have ĥ⊤Φ−1ĥ = Θ(ε−p∗), which implies ∃c1 > 0: ĥ⊤Φ−1ĥ ⩽ c1ε

−p∗ for any small enough ε > 0. Since gε is the
minimizer of (18), we can estimate

ĝ⊤ε Φ
−1ĝε ⩽ ĥ⊤Φ−1ĥ ⩽ c1ε

−p∗ (19)

On the other hand, from Corollary B.7, there exists c2 > 0 such that

ĝ⊤ε Φ
−1ĝε ⩾ c2

∑
|T |⩽p

ĝε(T )
2ε−|T |

⩾ c2
∑
|T |=k

ĝε(T )
2ε−k = c2eε(k)ε

−k

where we define eε(k) =
∑

|T |=k ĝε(T )
2 - the energy of the degree-k monomials of gε. Combining this with (19), we

obtain

c2eε(k)ε
−k ⩽ ĝ⊤ε Φ

−1ĝε ⩽ c1ε
−p∗ ⇒ eε(k) ⩽

c1
c2

εk−p∗ .

For k > p∗ we have εk−p∗ → 0, and thus eε(k) → 0. As dist(gε,Πp∗(Rd)) is bounded by
∑

k>p∗
eε(k) up to a constant,

this concludes the proof.

C. Proof of Example 5.3
Lemma C.1. Let T = (t1, . . . , td), T

′ = (t′1, . . . , t
′
d) ∈ Nd are such that ∃i ∈ [d]: ti ̸≡ t′i (mod 2). Then it holds

Ew,b[ϕ̂w,b(T )ϕ̂w,b(T
′)] = 0

Proof. Denote by w−i and x−i the vectors w and x respectively with flipped i-th coordinate. Note that

ϕw−i,b(x) = σ(⟨w−i, x⟩+ b) = σ(⟨w, x−i⟩+ b) = ϕw,b(x−i)

18
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Suppose that ϕw,b(x) has the following Hermite decomposition:

ϕw,b(x) =
∑
T∈Nd

ϕ̂w,b(T )χT (x)

where χT (x) =
∏d

i=1 Hti(xi). Note that the Hermite polynomial Ht(xt) is an odd function for odd t and even function for
even t. Thus, we have

χT (x−i) =

{
χT (x), ti ≡ 0 (mod 2)

−χT (x), ti ≡ 1 (mod 2)

Thus, for the function ϕw−i,b(x), we get:

ϕw−i,b(x) = ϕw,b(x−i) =
∑

T∈Nd,ti≡0 (mod 2)

ϕ̂w,b(T )χT (x)−
∑

T∈Nd,ti≡1 (mod 2)

ϕ̂w,b(T )χT (x)

which shows that

ϕ̂w−i,b(T ) =

{
ϕ̂w,b(T ), ti ≡ 0 (mod 2)

−ϕ̂w,b(T ), ti ̸≡ 0 (mod 2)
(20)

Finally, consider i ∈ [d] for which ti ̸≡ t′i (mod 2). Then

Ew,b[ϕ̂w,b(T )ϕ̂w,b(T
′)] = Ew,b[ϕ̂w−i,b(T )ϕ̂w−i,b(T

′)] = −Ew,b[ϕ̂w,b(T )ϕ̂w,b(T
′)]

Here, the first equality comes from the fact that w and w−i have the same distribution, and the second equality comes from
(20). Hence, we obtained

Ew,b[ϕ̂w,b(T )ϕ̂w,b(T
′)] = −Ew,b[ϕ̂w,b(T )ϕ̂w,b(T

′)]

which completes the proof.

Proposition C.2. Let the random features model be trained in sparse setting and diverging d regime with σ(x) = (1 + x)2

activation. Then it converges to the minimizer of:

d∑
i=1

ĝ(2ei)
2 · d

2

4
+
∑
i<j

ĝ(ei + ej)
2 · d

2

4
(21)

+

d∑
i=1

ĝ(ei)
2 · d

4
+ ĝ(0)2 · d

6
+
∑
i<j

ĝ(2ei)ĝ(2ej) ·
d

6
+

d∑
i=1

ĝ(2ei)ĝ(0) ·

(
−
√
2

3
d

)
(22)

over functions g that interpolate the training data.

Proof. The arguments in Theorem 4.2 showing that the random feature model converges to the minimizer of ĝ⊤Φ−1ĝ in
small feature regime (where matrix Φ is defined in (17)) transfer directly to the sparse regime (but now we will have this
convergence for fixed d instead of fixed ε). Let us compute this quadratic form explicitly. We have

ϕw,b(x) = σ(⟨w, x⟩+ b) =

(
d∑

i=1

wixi + b+ 1

)2

=

d∑
i=1

w2
i x

2
i + 2

∑
i<j

wiwjxixj + (b+ 1)2 + 2

d∑
i=1

wi(b+ 1)xi

=

d∑
i=1

w2
i

√
2
x2
i − 1√
2

+ 2
∑
i<j

wiwjxixj + 2

d∑
i=1

wi(b+ 1)xi + (b+ 1)2 +

d∑
i=1

w2
i
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Thus the Hermite coefficients of the random feature ϕw,b are given by:

ϕ̂(2, 0, . . . , 0) = w2
1

√
2 ⇒ E[ϕ̂(2, 0, . . . , 0)2] = 2E[w4

1] =
6

d2

ϕ̂(1, 1, 0, . . . , 0) = 2w1w2 ⇒ E[ϕ̂(1, 1, 0, . . . , 0)2] = 4E[w2
1w

2
2] =

4

d2

ϕ̂(1, 0, . . . , 0) = 2w1(b+ 1) ⇒ E[ϕ̂(1, 0, . . . , 0)2] = 4E[w2
1(b+ 1)2] = 4 · 1

d
· (1 + 1

d
) = 4(

1

d
+

1

d2
)

ϕ̂(0, 0, . . . , 0) = (b+ 1)2 +

d∑
i=1

w2
i ⇒ E[ϕ̂(0, 0, . . . , 0)2] (a)= 4 +

10

d
+

3

d2

Here, (a) comes from

E[ϕ̂(0, 0, . . . , 0)2] = E

((b+ 1)2 +

d∑
i=1

w2
i

)2


= E[(b+ 1)4 +

d∑
i=1

w4
i + 2

∑
i<j

w2
iw

2
j + 2

d∑
i=1

w2
i (b+ 1)2] = (1 +

6

d
+

3

d2
) + d · 3

d2
+ d(d− 1)

1

d2
+ 2d · 1

d
(1 +

1

d
)

= (1 +
6

d
+

3

d2
) +

3

d
+ (1− 1

d
) + (2 +

2

d
)

= 4 +
10

d
+

3

d2

For the cross-terms, we have

E[ϕ̂(2, 0, . . . , 0)ϕ̂(0, 2, . . . , 0)] = 2E[w2
1w

2
2] =

2

d

E[ϕ̂(2, 0, . . . , 0)ϕ̂(0, 0, . . . , 0)] =
√
2E[w2

1(b+ 1)2 + w4
1 +

d∑
i=2

w2
1w

2
i ] =

√
2

(
1

d
(1 +

1

d
) +

3

d2
+ (d− 1) · 1

d2

)
=

√
2

(
2

d
+

3

d2

)
All other cross-terms equal to zero by Lemma C.1. Thus, matrix Φ is block-diagonal with the only non-unit block
corresponding to the coefficients (2, 0, . . . , 0), (0, 2, . . . , 0), (0, 0, . . . , 2), (0, 0, . . . , 0) (d + 1 coefficient in the block in
total). Thus, this (d+ 1)× (d+ 1) block takes the form:

6
d2

2
d2 . . . 2

d2

√
2
(
2
d + 3

d2

)
2
d2

6
d2 . . . 2

d2

√
2
(
2
d + 3

d2

)
...

...
. . .

...
...

2
d2

2
d2 . . . 6

d2

√
2
(
2
d + 3

d2

)
√
2
(
2
d + 3

d2

) √
2
(
2
d + 3

d2

)
. . .

√
2
(
2
d + 3

d2

) (
4 + 10

d + 3
d2

)


Exploiting the permutation symmetry of the first d Hermite coefficients in this matrix, we can search for its inverse in the
following form: 

x y . . . y z
y x . . . y z
...

...
. . .

...
...

y y . . . x z
z z . . . z t


From the condition that the product of the formal matrix with the later one must be Id+1, we obtain the following 4 linear
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equations in 4 unknown variables:

6

d2
x+ 2

(
1

d
− 1

d2

)
y +

√
2

(
2

d
+

3

d2

)
z = 1

2

d2
x+ 2

(
1

d
+

1

d2

)
y +

√
2

(
2

d
+

3

d2

)
z = 0

2

(
1

d
+

2

d2

)
z +

√
2

(
2

d
+

3

d2

)
t = 0

√
2

(
2 +

3

d

)
z +

(
4 +

10

d
+

3

d2

)
t = 1

Solving this system, we obtain

x =
d2

4
+O(d)

y =
d

12
+O(1)

z = −
√
2d

6
+O(1)

t =
d

6
+O(1)

Combining with (
E[ϕ̂(1, 1, 0, . . . , 0)2]

)−1

=
d2

4(
E[ϕ̂(1, 0, . . . , 0)2]

)−1

=
d

4
+O(1)

we obtain:

ĝ⊤Φ−1ĝ ≈
d∑

i=1

ĝ(2ei)
2 · d

2

4
+
∑
i<j

ĝ(ei + ej)
2 · d

2

4

+

d∑
i=1

ĝ(ei)
2 · d

4
+ ĝ(0)2 · d

6
+
∑
i<j

ĝ(2ei)ĝ(2ej) ·
d

6
+

d∑
i=1

ĝ(2ei)ĝ(0) ·

(
−
√
2

3
d

)

Proof of Example 5.3. Assume that g is an interpolator of the training data. We show that

g(x) = ĝ(0) + ĝ(e1)x1 + ĝ(2e1)
x2
1 − 1√
2

+
∑
i⩾2

(ĝ(ei)xi + ĝ(e1 + ei)x1xi) ,

with the constraints that ĝ(0) + ĝ(e1) = 1 and ĝ(ei) + ĝ(e1 + ei) = 0 for all i ⩾ 2.

Recall that the support of this distribution contains a subset of the form {1} × S2 × · · · × Sd where S2, . . . , Sd have
cardinality at least 3. We apply Theorem 1.1 of (Alon, 1999). There exists multivariate polynomials h1, h2, . . . , hd such
that g =

∑
i higi with g1(x) = x1 − 1 and for i ⩾ 2, gi(x) = Πs∈Si(x − xi). Moreover, the degree of h1 is at most

deg f − deg g1 = 1 and the degree of hi (i ⩾ 2) is at most deg f − deg gi = −1. Thus h2 = · · · = hd = 0. We thus get
g(x) = h1(x)(x1 − 1) with h1(x) affine, which is equivalent to the above statement.

To sum up, we minimize

ĝ⊤Φ−1ĝ ≈ ĝ(2e1)
2 · d

2

4
+
∑
i⩾2

ĝ(e1 + ei)
2 · d

2

4
+ ĝ(e1)

2 · d
4

+
∑
i⩾2

ĝ(ei)
2 · d

4
+ ĝ(0)2 · d

6
+ ĝ(2e1)ĝ(0) ·

(
−
√
2

3
d

)
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in the variables ĝ(0), ĝ(e1), ĝ(2e1), ĝ(e1 + ei), ĝ(ei), i ⩾ 2 with constraints ĝ(0) + ĝ(e1) = 1 and ĝ(ei) + ĝ(e1 + ei) = 0.

This optimization problem is separable in the groups of variables {ĝ(0), ĝ(e1), ĝ(2e1)} and {ĝ(e1 + ei), ĝ(ei)} (both the
constraints and the objective are separable). The second optimization problem is obvious and leads to the unique solution
ĝ(ei) = ĝ(e1 + ei) = 0, i ⩾ 2. Simplifying the scaling of the objective, we are left with the optimization problem of
minimizing

ĝ(2e1)
2 · d

4
+ ĝ(e1)

2 · 1
4
+ ĝ(0)2 · 1

6
+ ĝ(2e1)ĝ(0) ·

(
−
√
2

3

)

under the constraint ĝ(0) + ĝ(e1) = 1.

Minimizing marginally in ĝ(2e1), we obtain that ĝ(2e1) = ĝ(0) 2
√
2

3d . Substituting in the expression above, we minimize

ĝ(e1)
2 · 1

4
+ ĝ(0)2 · 1

6
− ĝ(0)2

4

9d

under the constraint ĝ(0) + ĝ(e1) = 1. The last term has a negligible effect as d → ∞ and thus the solution converges to
the solution with ĝ(0) = 3

5 , ĝ(e1) = 2
5 . Thus, the random feature model learns the function fRF(x) =

2
5x1 +

3
5 .

D. Proof of Theorem 6.1
The proof follows a structure similar to the one of (Abbe et al., 2023) (and to the one of Section 4 and Appendix B): the
strategy is to study the covariance matrix of the random features. The minimum degree bias follows from different scales (in
d) of different polynomial components of the random features. Here we only outline the main differences with the previous
proofs.

For functions h : Ud
n → C, the appropriate decomposition is given by its discrete Fourier transform. It corresponds to the

linear decomposition on the basis of monomials

χj1,...,jd(x) = xj1
1 · · ·xjd

d .

This basis is orthonormal in the Hermitian space L2(Ud
n,Unif(Ud

n)). More concretely, the discrete Fourier transform of
h : Ud

n → C is ĥ : {0, . . . , n− 1}d → C, such that

ĥ(j1, . . . , jd) = Ex∼Unif(Ud
n)

[
h(x)xj1

1 · · ·xjd
d

]
,

j1, . . . , jd ∈ {0, . . . , n− 1} .

The inverse Fourier transform states that

h(x) =
∑

j1,...,jd∈{0,...,n−1}

ĥ(j1, . . . , jd)x
j1
1 · · ·xjd

d .

We consider the discrete Fourier transform of the random feature ϕw,b(x) = σ (⟨w, x⟩+ b):

ϕ̂w,b(j) = Ex

[
ϕw,b(x)x

j1
1 · · ·xjd

d

]
.

Theorem 6.1 stems from the following proposition.

Proposition D.1. Consider j, j′ ∈ {0, . . . , n− 1}d, j ̸= j′. Then

1. Ew,b

[
ϕ̂w,b(j)ϕ̂w,b(j′)

]
= 0, and

2. Ew,b

[∣∣∣ϕ̂w,b(j)
∣∣∣2] = Θ

(
d−|j|) as d → ∞.

The two points of this proposition correpond respectively to the points A4 and A3 in Lemma A.1 of (Abbe et al., 2023).
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Proof. 1. From j ̸= j′, we know that there exists l ∈ {1, . . . , d} such that jl ̸= j′l . Let R denote the rotation of the l-th
root of unity

T : (x1, . . . , xd) ∈ Ud
n 7→

(x1, . . . , xl−1, e
i 2π

l xl, xl+1, . . . , xn) .

We compute the effect of a rotation of w on the discrete Fourier transform of a random feature:

ϕ̂Tw,b(j) = Ex

[
ϕTw,b(x)x

j1
1 · · ·xjd

d

]
.

Here we note that the uniform distribution of Ud
n is invariant under the map T , thus

ϕ̂Tw,b(j) = Ex

[
ϕTw,b(Tx)(Tx)

j1

1 · · · (Tx)
jd

d

]
.

Moreover,

⟨Tw, Tx⟩ = w1x1 + · · ·+ wl−1xl−1ei
2π
n wle

i 2π
n xl

+ wl+1xl+1 + · · ·+ wdwd = ⟨w, x⟩

and thus ϕTw,b(Tx) = ϕw,b(x). As a consequence, we have

ϕ̂Tw,b(j) = Ex

[
ϕw,b(x)(Tx)

j1

1 · · · (Tx)
jd

d

]
= e−i 2π

n Ex

[
ϕw,b(x)x

j1
1 · · ·xjd

d

]
= e−i

2πjl
n ϕ̂w,b(j) .

We are ready to conclude. The distribution of w is invariant under the map T , thus

Ew,b

[
ϕ̂w,b(j)ϕ̂w,b(j′)

]
= Ew,b

[
ϕ̂Tw,b(j)ϕ̂Tw,b(j′)

]
= ei

2π(j′l−jl)

n Ew,b

[
ϕ̂w,b(j)ϕ̂w,b(j′)

]
.

As jl ̸= j′l and jl, j
′
l ∈ {0, . . . , n− 1}, we have ei

2π(j′l−jl)

n ̸= 1. Thus it must be that Ew,b

[
ϕ̂w,b(j)ϕ̂w,b(j′)

]
= 0.

2. We make a Taylor expansion of σ at 0:

ϕ̂w,b(j) = Ex

[
σ(⟨w, x⟩+ b)χj(x)

]
=

∞∑
k=0

σ(k)(0)

k!
Ex

[
(⟨w, x⟩+ b)kχj(x)

]
.

We make three cases depending on the index k of the sum:

• If k < |j|, then (⟨w, x⟩ + b)k is a polynomial of degree < k ⩽ |j| = degχj thus by orthogonality

Ex

[
(⟨w, x⟩+ b)kχj(x)

]
= 0.

• If k = |j|, then

Ex

[
(⟨w, x⟩+ b)kχj(x)

]
= Ex

[
(w1x1 + · · ·+ wdxd + b)kχj(x)

]
=

∑
l1+···+ld+ld+1=k

(
k

l1, . . . , ld, ld+1

)
Ex

[
(w1x1)

l1 · · · (wdxd)
ldbld+1χj(x)

]
=

∑
l1+···+ld+ld+1=k

(
k

l1, . . . , ld, ld+1

)
wl1

1 · · ·wld
d bld+1Ex

[
xl1−j1
1 · · ·xld−jd

d

]
.
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Note that Ex

[
xl1−j1
1 · · ·xld−jd

d

]
equals 1 if l1 ≡ j1 mod n, . . . , ld ≡ jd mod n and 0 otherwise. As l1 + · · ·+

ld = k − ld+1 ⩽ k = j1 + · · ·+ jd, this is possible if and only if l1 = j1, . . . , ld = jd, ld+1 = 0. Thus

Ex

[
(⟨w, x⟩+ b)kχj(x)

]
=

(
k

j1, . . . , jd

)
wj1

1 · · ·wjd
d =

1

d|j|/2

(
k

j1, . . . , jd

)
uj1
1 · · ·ujd

d

where u := d1/2w (and thus u1, . . . , ud are i.i.d. with standard Gaussian distribution in the complex plane).
• If k > |j|, then

Ex

[
(⟨w, x⟩+ b)kχj(x)

]
=

1

dk/2
Ex

[
(⟨u, x⟩+ b)kχj(x)

]
,

where again u = d1/2w and c := d1/2b (and thus b has standard Gaussian distribution in the complex plane).

Putting these three points together, we obtain

ϕ̂w,b(j) =
1

d|j|/2

(
k

j1, . . . , jd

)
uj1
1 · · ·ujd

d + o

(
1

d|j|/2

)
.

Thus

Ew,b

[∣∣∣ϕ̂w,b(j)
∣∣∣2] = 1

d|j|

(
k

j1, . . . , jd

)2

Ew

[
|u1|2j1 · · · |ud|2jd

]
+ o

(
1

d|j|

)
= Θ

(
1

d|j|

)
.
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