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Abstract

Diffusion models have been widely used for001
text-to-image generation tasks. However, state-002
of-the-art models still fail to align the gener-003
ated visual concepts with high-level seman-004
tics in a language such as object count, spatial005
relationship, etc. We approach this problem006
from an architectural perspective and investi-007
gate how conditioning architecture can affect008
vision-language alignment in diffusion models.009
We propose a new conditioning architecture010
named Intermediate Adapter to improve text-011
to-image alignment, generation quality, as well012
as training and inference speed for diffusion013
models. We perform experiments on the text-014
to-image generation task on the MS-COCO015
dataset. We apply Intermediate Adapters on016
two common conditioning methods on a U-ViT017
backbone. For both end-to-end training and018
fine-tuning of pretrained diffusion models, Our019
method boosts the CLIP Score, FID, and hu-020
man evaluation results of the generated images,021
with 20% reduced FLOPs, and 25% increased022
training and inference speed.023

1 Introduction024

Diffusion models (Sohl-Dickstein et al., 2015; Ho025

et al., 2020; Dhariwal and Nichol, 2021; Rom-026

bach et al., 2022a) have emerged as a dominant027

framework for generating images from natural lan-028

guage. By leveraging prealigned text embeddings029

such as CLIP, diffusion models can generate high-030

definition images from text prompts (Ramesh et al.,031

2021, 2022; Betker et al., 2023; Rombach et al.,032

2022b; Podell et al., 2023). Most text-to-image dif-033

fusion models use concatenation or cross-attention034

to merge the pretrained CLIP text embedding into035

the image-only diffusion model. This approach’s036

core issue is the inherent gap between the CLIP037

and diffusion objectives. The CLIP aligns the text038

embeddings and image features, but the diffusion039

training takes in different levels of noisy image fea-040

tures. Although this misalignment can be reduced041

by fine-tuning the CLIP embedding in the diffusion 042

training process, this approach complicates the al- 043

ready complex diffusion training. In addition, most 044

existing diffusion models follow a simple design of 045

adding text conditions on all levels of the backbone 046

architecture. This design potentially introduces re- 047

dundant text guidance with additional computing 048

complexity. Although some works (Zhao et al., 049

2023) have experimentally discovered that it does 050

not harm the performance to trim certain attention 051

layers for efficiency, the reason behind it has not 052

been thoroughly studied. Thus in our work, we 053

carefully examine the text-image interactions in 054

diffusion backbones, and based on this, design a 055

special mechanism to align the text embedding to 056

the image diffusion task efficiently. 057

In this paper, We investigate a specific type of 058

ViT-based diffusion backbone. By examining the 059

text-to-image and image-to-image attention maps 060

at different layers, we discover that semantic infor- 061

mation from text prompts provides more guidance 062

near bottleneck layers whereas fusing text infor- 063

mation at earlier or later layers provides minimum 064

guidance. Based on this observation, We propose a 065

new conditioning architecture named Intermediate 066

Adapter. This method has two major design com- 067

ponents: 1. removes the text-conditioning mech- 068

anism from the early and late layers and 2. adds 069

additional text-only transformer adapter layers that 070

are trainable in the diffusion process. Analytical ex- 071

periments indicate that component 1 improves the 072

efficiency of the text-image cross-attention mecha- 073

nism, and reduces the interference between image 074

and text, leading to higher quality generation. Com- 075

ponent 2 improves the text-image alignments of the 076

generated images. When combined, we see a large 077

margin of improvement in all evaluation metrics. 078

As a result, our proposed Intermediate Adapter 079

can enhance a diffusion model to generate better 080

quality and more text-aligned images, especially 081

for high-level semantics such as accurate object 082
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Figure 1: Text-to-image generation on MS-COCO validation captions. U-ViT (top) vs. U-ViT + Intermediate
Adapter (bottom). Images are generated using classifier-free guidance based on text prompts. Each text prompt
contains a type of high-level semantics in each column. Our method enhances U-ViT to generate better quality
samples that align better with the text prompt and are more efficient in training and inference.

count, compound concepts, relationships between083

multiple objects, rare concepts, and entangled con-084

cepts, etc. (see Figure 1 for a few generated sam-085

ples). Our method also makes diffusion models086

more efficient, requiring less computing, memory,087

training time, and inference time.088

2 Related Work089

ViT-based diffusion model backbones have been090

explored recently (Peebles and Xie, 2023; Bao091

et al., 2023a). They bring several large-scale ap-092

plications in the text-guided generation domain093

(Karaarslan and Aydın, 2024; Rombach et al.,094

2022b) and multimodal generation domain (Bao095

et al., 2023b). These models leverage different096

mechanisms to fuse the text guidance to the diffu-097

sion model, with simple concatenation and cross-098

attention being the two commonly used mecha-099

nisms. As for text-image alignment, most existing100

works try to improve the alignment from a training101

perspective including finetuning with augmented102

data (Paiss et al., 2023; Betker et al., 2023), intro-103

ducing additional alignment guidance (Wu et al.,104

2023), etc. Quite differently, we approach this105

problem from an architectural perspective to en-106

able better alignment without additional data. Re-107

garding efficient diffusion models, recent works108

include reducing sampling steps using an efficient109

sampler (Song et al., 2020a; Lu et al., 2022a,b),110

consistency training and distillation (Song et al.,111

2023; Luo et al., 2023), or reusing calculations112

across timesteps (Zhang et al., 2024). These works113

focus more on algorithmic efficiency, while our 114

work focuses on reducing architectural redundancy. 115

Adapters are commonly used in diffusion models 116

to provide additional control in generation (Zhang 117

et al., 2023; Mou et al., 2023; Ye et al., 2023). How- 118

ever, in this study, we explore an extra function- 119

ality of adapters to reduce the inference between 120

text conditions and generated images, leading to 121

improved alignment between them. 122

3 Preliminaries 123

3.1 Diffusion Models 124

Diffusion models (Song et al., 2020b; Ho et al., 125

2020) are generative models that learn to gener- 126

ate new samples from noise by approximating the 127

score function of a data distribution p(x) using a 128

neural network. The score function is defined as 129

the gradient of the log-probability density of the 130

training data points: 131

S(x) = ∇x log p(x). (1) 132

Training. Given a dataset with data distribution 133

p(x), the training involves two steps: 134

Noise addition. Given a data sample x, we pro- 135

gressively inject Gaussian noise over T steps until 136

reaching a full noise xT . This process can be for- 137

malized as follows: 138

xt =
√

1− βtxt−1 +
√

βtϵt, (2) 139

140

where ϵt ∼ N (0, I), t = 1, . . . , T , x0 = x, and 141
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Figure 2: Two conditioning methods using a U-ViT backbone, with and without Intermediate Adapter. We only
show 3 groups of transformer blocks for simplicity. In our experiments, all setups have 13 layers of transformer
blocks, with N = 4 and M = 5. Time embeddings, pre-processing layers, and post-processing layers are omitted
for simplicity. In practice, the time embedding is concatenated with the image input and follows the same path.

{βt}Tt=0 is a noise schedule.142

Score function learning. The training objective is143

to minimize the discrepancy between the true score144

function S(·) and its neural network approximation145

sθ(·):146
L(θ) = E[(S(xt)− sθ(xt))

2]. (3)147

Sampling. The sampling process is in a reverse148

direction. We first initialize the noisy sample xT149

from a standard Gaussian distribution. We then150

apply the learned score function to denoise xT over151

t ∈ [T, 1] steps to gradually remove noise and152

generate a sample:153

xt−1 =
1√

1− βt

(xt −
βt√
1− β̄t

sθ(xt)) +
√

βtϵ (4)154

155

Classifier-free guidance (CFG). We can also156

model the conditional score function S(xt|y)157

by approximating the unconditional score func-158

tion ∇xt log p(xt) and the joint score function159

∇xt log p(xt, y) simultaneously to enable condi-160

tional generation:161

S(xt|y) = (1+ω)∇xt log p(xt, y)−ω∇xt log p(xt), (5)162

where ω is the CFG scale that controls the strength163

of guidance. The conditional generation in our164

study is achieved through classifier-free guidance165

from caption y to image x, while unconditional166

generation uses the same approach with an empty167

caption embedding.168

3.2 Conditioning Methods169

Our major contribution is to enhance the cur-170

rent conditioning approaches with the Intermediate171

Adapter. In our empirical exploration, we mainly172

focus on two common conditioning methods used173

by SOTA text-to-image diffusion models: 174

Concatenation. Text, image, and timestamps are 175

all processed as tokens and concatenated. They 176

are fed into a self-attention transformer as a long 177

sequence. (See Figure 2 sub-figure 1.) 178

Cross-attention. The image self-attention is joined 179

by the cross-attention from the conditioning text. 180

(See Figure 2 sub-figure 3.) 181

We only use these two common approaches to 182

show that our method is applicable and effective 183

on different conditioning approaches. Although 184

AdaNorm has also demonstrated effectiveness in 185

recent diffusion models (Peebles and Xie, 2023; 186

Crowson et al., 2024), its original version does not 187

support long conditioning texts, which restricts its 188

use in our text-to-image generation task. 189

4 Methodology 190

We first introduce the base diffusion model and the 191

backbone we use in sections 4.1 and 4.2. Then we 192

introduce our Intermediate Adaptor in sections 4.3 193

and 4.4, each focusing on one of the two compo- 194

nents: intermediate fusion and text adapter. 195

4.1 Latent Diffusion 196

Latent Diffusion Models (LDMs) (Rombach et al., 197

2022b) operate directly in the latent space of pre- 198

trained image features. We use a stable diffusion 199

KL-based autoencoder to encode an input image 200

into the latent space and decode the denoised latent 201

space representation back to the input image space. 202

For text embeddings, we use the CLIP embedding 203

with ViT-L-14. These models are frozen during 204

diffusion model training. 205
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4.2 Diffusion Backbone Model206

Evidence suggests that under a diffusion model207

setting, segmentation networks with long skip con-208

nections are essential to the efficient learning of209

discrete time ODE (Huang et al., 2024). When long210

skip connections are used, distant network blocks211

can be connected to aggregate long-distant infor-212

mation and alleviate vanishing gradient. For this213

reason, we choose U-ViT-Small (Bao et al., 2023a)214

as our baseline backbone. The model proposed in215

the orginal paper uses concatentation to merge the216

text information. (Figure 2 sub-figure 1). On top of217

this, we also study another cross-attention setting218

(Figure 2 sub-figure 3). These settings are con-219

structed by only changing the architecture without220

modifying the training and inference setups.221

4.3 Intermediate Fusion222

In multimodal fusion, intermediate fusion refers to223

a fusion that occurs at an intermediate level. This224

way different modality data are allowed to prepro-225

cess in a single modality manner before joining a226

shared latent space. We borrow the same idea in227

the context of diffusion models. In our method, we228

remove the text conditioning at the beginning and229

the end of the diffusion model as shown in Figure230

2 sub-figures 2 and 4. In the specific setup, we231

remove 4 layers of text-conditioning mechanism232

each from the beginning and end of the 13 layers233

of diffusion backbone, keeping only 5 intermediate234

layers text-guided. This choice is made from the235

observations in Section 5.6 that the text guidance236

is weak at the early and late stages of the backbone.237

Removing these text conditionings reduces the text-238

related attention calculations, thus improving the239

speed of the model.240

4.4 Text Adapter241

Instead of directly introducing pretrained CLIP242

text embedding in the diffusion backbone, we add243

a preprocessing adaptor transformer layer for the244

text embedding as shown in Figure 2 sub-figures245

2 and 4. This layer allows the text embedding to246

be fine-tuned to better align with the diffusion task.247

The adapter is a one-layer multi-head self-attention248

transformer (Figure 3).249

5 Experiments250

5.1 Dataset and Training Settings251

In our experiments, we use the MS-COCO (Lin252

et al., 2015) train and validation datasets to train253

Figure 3: The text adapter architecture. Here Multi-
head Self-attention (MHSA) and Multi-layer Perceptron
(MLP) follow the default implementations used in ViT.

and evaluate the performance of our model. For 254

our training configuration, we train all models for 255

1 million steps and use a batch size of 256. We 256

use the AdamW optimizer, with a learning rate of 257

0.0002, weight decay of 0.03, and beta parameters 258

set to (0.9, 0.9). We incorporate a warm-up phase 259

of 5000 steps to adjust the learning rate. The ViT 260

model takes image features with a channel of 4, 261

both spatial dimensions of 32 and an image patch 262

size of 2. All attention mechanisms use an embed- 263

ding dimension of 512 and 8 attention heads. CLIP 264

embedding has 77 tokens each with a dimension of 265

768, and is transformed to a dimension of 512 using 266

a linear layer to align with the transformer input. 267

For classifier-free guidance, we use a probability 268

of 0.1 for unconditional training. 269

5.2 Evaluation Metrics 270

Quantitative evaluation. We use FID, and CLIP 271

Score as our quantitative metrics. To generate 272

the score we select 30000 captions from the MS- 273

COCO validation set and the corresponding gen- 274

erated images from our text-to-image models. For 275

CLIP Score we use the CLIP version CLIP-ViT-L- 276

14. 277

Human evaluation - object count. We choose 278

a challenging generation aspect even for most of 279

the foundation text-to-image models - matching 280

object count, where we require the model to gener- 281

ate the same amount of objects as described in the 282

prompts. We select four objects - bus(es), sheep, 283

person(people), and apple(s). These four are se- 284

lected since they represent 4 different plural forms 285

and 4 categories (human, animal, fruit, human- 286
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Table 1: Comparative results on text-to-image generation and alignment metrics. The baseline U-ViT corresponds
to the first setting. For training speed, an iteration (iters) is a full forward-backward pass on an RTX-4090 GPU with
a mini-batch size 256. GFLOPs are calculated on a single forward pass of the model at a timestamp.

Conditioning Method Model FID-30K ↓ CLIP Score ↑ Training iters/s GFLOPs

Concatenation
U-ViT 5.98 0.584 1.81 29.56
U-ViT + IA 5.77 0.588 2.31 25.84

Cross-attention
U-ViT 6.48 0.575 2.54 23.82
U-ViT + IA 5.68 0.588 2.74 23.66

Figure 4: Evaluation during training and FID-30K vs CLIP Score at different CFG scales. settings with IA show
improved generation quality and text-image alignment compared to their early fusion counterparts. CLIP Score is
measured on 30K pairs using CLIP-ViT-L-14.

made object). We use 5 words of count - a(an),287

two, three, four, five. Since larger numbers are288

rare in MS-COCO training captions, we restrict289

our study to small numbers. We generate 10 im-290

ages for each object-count pair (20 pairs) and let291

evaluators count the number of target objects in the292

generated image. Then we use the average error293

(AE) and average match ratio (AMR) to evaluate294

the performance, based on the evaluators’ counts295

Ceval and the prompts’ counts Cprompt:296

AE =

∑n
i=1 |Ci,human − Ci,prompt|

n
(6)297

298

AMR =

∑n
i=1 I(Ci,human = Ci,prompt)

n
(7)299

Human evaluation - preference score. In addi-300

tion, we ask 5 evaluators to provide a preference301

ranking from 1 to 4 on the overall quality of302

images generated by each model given captions303

from the evaluation set. We use the same random304

seed and prompts for all models and provide the305

generated images with prompts to the evaluators.306

The human evaluators are told to skip any group of307

samples if the ranks are hard to call. 100 captions308

are evaluated by 5 evaluators, with a maximum of309

500 scores for each setting. We assign 4, 3, 2, and310

1 scores to rank 1, 2, 3, and 4 respectively, and 311

calculate the average score for each model setting. 312

313

5.3 Results 314

We selected U-ViT (Bao et al., 2023a) as our base- 315

line model since it has the best MS-COCO FID 316

score among dedicated diffusion models with a 317

manageable size. We first compare the perfor- 318

mance between 2 different conditioning methods 319

with their counterparts with intermediate adapters 320

in Table 1. We observed that the intermediate 321

adapter (IA) improves the FID, CLIP Score, train- 322

ing speed, and FLOPs of the base models. 323

Next, we visualize the FID (Figure 4, left), CLIP 324

Score (Figure 4, middle) during training, and FID 325

vs. CLIP Score at different CFG scales (Figure 326

4, right). We find that the models with interme- 327

diate adapters exhibit better FID and CLIP scores 328

throughout the training. They also show a better 329

trade-off between CLIP Score and FID. Among 330

all four settings, a cross-attention U-ViT with an 331

intermediate adapter has the best FID, CLIP score, 332

lowest GFLOPs, and fastest training. 333

We then select 12 random captions and generate 334
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Figure 5: Generated samples comparison between the baseline U-ViT(top) and U-ViT with an intermediate adapter
across 12 validation prompts. (Best viewed when zoomed-in.)

images with a CFG scale of 3, which is an elbow335

point in the FID vs. CLIP Score curve. We show336

the baseline (top) compared with the one with an337

intermediate adapter (bottom) in Figure 5. We ob-338

serve that the generated images are more spatially339

consistent and more aligned with the text prompts.340

We then show that our intermediate adapter341

boosts U-ViT against several foundation models342

and dedicated models (Table 2). Our model can343

reach the best text-image alignment performance344

and comparable image quality to all models with a345

relatively small model size.346

Table 2: Performance of text-to-image diffusion models.

Model FID-30K ↓ CLIP Score ↑

Foundation Models Zero-shot on MS-COCO

Imagen 7.27 ∼0.29
Stable Diffusion 8.59 0.325

Models Trained/Finetuned on MS-COCO

VQ-Diffusion 19.75 -
Frido 8.97 -
U-ViT 5.98 0.584
U-ViT+IA(ours) 5.68 0.588

5.4 Human Evaluation347

Object count. The results are shown in Figure 6.348

In the left four figures, for 18 out of 20 object-count349

pairs, U-ViT using concatenation with intermedi-350

ate adapters generates objects with more human-351

aligned count compared to the baseline. For 14352

out of 20 object-count pairs, U-ViT using cross-353

attention with intermediate adapters generates ob-354

jects with more or equal human-aligned count com-355

pared to the baseline. In the top right figure, the356

average error of models with intermediate adapters357

is consistently lower than the baselines. In the bot-358

tom right figure, the average match ratio of models359

with intermediate adapters is consistently higher or360

on par with the baselines. All of the above results361

show that the intermediate adapter improves the362

count alignment in the generation regardless of the 363

conditioning method. 364

Preference score. The results are shown in Fig- 365

ure 7. 287 scores are collected after removing 366

invalid scores and those are too difficult to call 367

by the human evaluators. The score is consistent 368

with our FID and CLIP Score evaluation, with 369

cross-attention U-ViT with an intermediate adapter 370

achieving the highest score, and concatenation with 371

an intermediate adapter coming second. All set- 372

tings with intermediate adapters outperform their 373

corresponding baseline models. 374

5.5 Ablations 375

We also apply the two components of the interme- 376

diate adapter separately and study their individual 377

contribution to the FID, and CLIP Score. In Figure 378

8, we show that fusing the text embedding only 379

in the middle of the diffusion backbone is the ma- 380

jor source of FID improvement. This is expected 381

since this setting has image-only skip connections 382

that can maintain spatial consistency at the upsam- 383

pling layers. But this will negatively impact the 384

CLIP Score. Adding a text adapter learns more 385

aligned text embeddings, which is the major source 386

of improved CLIP Score, but this will impact the 387

model efficiency in terms of increased FLOPs and 388

reduced training speed. When the two methods are 389

combined, we achieve improvements in all metrics. 390

We see that these two components compensate for 391

each other’s weaknesses while maintaining their 392

respective advantages in the intermediate adapter. 393

5.6 Analysis 394

Layer-wise Attention Maps. To better visual- 395

ize the text-image alignment across the model lay- 396

ers, we analyze the average attention maps of all 397

timesteps during the diffusion process. In Figure 398

9 we show the comparison of U-ViT and U-ViT 399

with an intermediate adapter. The text-to-image 400

attention maps in both early and late layers indicate 401
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Figure 6: Human evaluation on object count. Lighter colors represent the baseline U-ViTs, while darker colors
represent corresponding models with an intermediate adapter. The left four figures are the average error given
different ground truth counts, where the x-axis is the ground truth. Each figure corresponds to an object. The right
top figure is the average error across all counts for different objects. The bottom right figure is the average match
ratio for each object. The plots indicated lower average count errors and higher matching counts of intermediate
fusion.

Figure 7: Human evaluation on general quality of generation. Models with intermediate adapters (deep blue and red)
have more frequent high scores (left). They also have higher average scores than the corresponding baselines (right).

a more uniformly distributed pattern than interme-402

diate layers, suggesting that text guidance is less403

focused and effective in early and late layers. Be-404

sides this observation, we observe that the early405

and late layers attend more to the border of the406

latent image due to the padding added in the convo-407

lutional layers in the autoencoder model. To reduce408

the influence of such padded borders, we removed409

the border so that the later rank analysis could re-410

flect more semantic guidance.411

Rank Analysis on Adjusted Attention Map To412

quantify the influence of text guidance on image 413

features, we conducted SVD on the text-to-image 414

attention map matrices and analyzed their rank 415

property in Figure 9 bar charts below the attention 416

maps. Since the softmax function is applied to the 417

attention map QKT , each layer is normalized thus 418

providing a fair comparison across layers. We see 419

that U-ViT models have relatively low-rank text-to- 420

image attention maps with smaller singular values 421

at all layers, especially the layers away from the 422

middle. On the other hand, the one with an interme- 423
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Figure 8: Ablation Study. We show the effect of the adapter and intermediate fusion separately by removing
the corresponding components (green and orange), compared to the joint effect (red) and baseline (red). Despite
being more efficient by removing the adapter (green), it impacts the CLIP-Score and FID negatively. When both
components are present(blue), the model shows a better balance between performance (sub-figure 1, 2) and efficiency
(sub-figure 3, 4).

Figure 9: Attention maps and singular value analysis. For each setting, the first row is the image-to-image attention,
the second row is the text-to-image attention, and the third row is the singular values of the first 10 orders from
the text-to-image attention maps. An intermediate adapter removes the low-information text-to-image attention
at the early and late levels. This reduces the interference between image and text at these levels and improves the
information capacity of the text-to-image attention at the middle layers.

diate adapter has high singular values. The analysis424

indicates that low-capacity text-to-image attention425

occurs in the early and end layers of a diffusion426

backbone, whereas most of the text information is427

processed around the bottleneck. This justifies our428

presumption of redundant text guidance in U-ViT.429

Additionally, the comparison of singular values430

around the intermediate layers proves that the elim-431

ination of the early and end fused layers never hurts432

the effectiveness of guidance. It instead boosted the433

guidance in the intermediate layers. Thus, we can434

potentially improve model efficiency without dam-435

aging the semantic control of text. This observation436

aligns with the experiment results.437

6 Conclusion 438

In this study, we presented an effective architec- 439

ture for enhancing text-to-image diffusion models 440

by leveraging an intermediate adapter mechanism 441

for text conditioning. Our experiments and anal- 442

yses on the MS-COCO dataset demonstrate that 443

this method outperforms traditional architectural 444

design in aligning visual concepts with language, 445

improving generation quality, and enhancing the 446

efficiency of the training and inference. More gen- 447

erally, our findings suggest that the placement and 448

preprocessing of text embeddings within diffusion 449

models play a critical role in the performance and 450

efficiency of text-to-image generation tasks. This 451

provides a direction for large foundation models to 452

a more efficient and text-aligned design. 453
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7 Limitations454

Other conditioning strategies. The main focus455

of this paper is to investigate the influence of an456

intermediate adapter on a diffusion backbone, in457

terms of text-image alignment, generation quality,458

and computational efficiency. Admittedly, some459

other conditioning methods such as the AdaNorm460

used by DiT are not explored in this paper. We rea-461

sonably argue that the intermediate fusion can be462

transferred with ease to other unexplored condition-463

ing strategies since the approach resolved the issue464

of less efficient text guidance caused by joining465

image and text at early and late levels of a diffusion466

model.467

Pretrained model fine-tuning. Since our method468

uses an adapter, it can be fine-tuned on pretrained469

foundation models to replace text conditioning.470

From our experiments, full fine-tuning of a pre-471

trained U-ViT can achieve comparable perfor-472

mance with the end-to-end training with only 5%473

of total steps. However, due to the limited computa-474

tion resources, its application to foundation models475

is not discussed in this paper. The issue is that476

our method aims to learn less interfered features of477

the image and trainable embeddings for language,478

which require changes in all layers of the diffu-479

sion backbone. This requires the full fine-tuning480

of a pretrained model. However, full fine-tuning481

of a foundation model is beyond the scope of this482

work. The main focus of this work is to show483

that multimodal information fusion in diffusion484

models should follow an intermediate fusion de-485

sign, where the conditions should be preprocessed486

jointly within the diffusion process. The goal of487

this work is to inspire the next-generation founda-488

tion model design to follow a similar design for489

better generation quality and condition-following.490
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