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Abstract

Diffusion models have been widely used for
text-to-image generation tasks. However, state-
of-the-art models still fail to align the gener-
ated visual concepts with high-level seman-
tics in a language such as object count, spatial
relationship, etc. We approach this problem
from an architectural perspective and investi-
gate how conditioning architecture can affect
vision-language alignment in diffusion models.
We propose a new conditioning architecture
named Intermediate Adapter to improve text-
to-image alignment, generation quality, as well
as training and inference speed for diffusion
models. We perform experiments on the text-
to-image generation task on the MS-COCO
dataset. We apply Intermediate Adapters on
two common conditioning methods on a U-ViT
backbone. For both end-to-end training and
fine-tuning of pretrained diffusion models, Our
method boosts the CLIP Score, FID, and hu-
man evaluation results of the generated images,
with 20% reduced FLOPs, and 25% increased
training and inference speed.

1 Introduction

Diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Dhariwal and Nichol, 2021; Rom-
bach et al., 2022a) have emerged as a dominant
framework for generating images from natural lan-
guage. By leveraging prealigned text embeddings
such as CLIP, diffusion models can generate high-
definition images from text prompts (Ramesh et al.,
2021, 2022; Betker et al., 2023; Rombach et al.,
2022b; Podell et al., 2023). Most text-to-image dif-
fusion models use concatenation or cross-attention
to merge the pretrained CLIP text embedding into
the image-only diffusion model. This approach’s
core issue is the inherent gap between the CLIP
and diffusion objectives. The CLIP aligns the text
embeddings and image features, but the diffusion
training takes in different levels of noisy image fea-
tures. Although this misalignment can be reduced

by fine-tuning the CLIP embedding in the diffusion
training process, this approach complicates the al-
ready complex diffusion training. In addition, most
existing diffusion models follow a simple design of
adding text conditions on all levels of the backbone
architecture. This design potentially introduces re-
dundant text guidance with additional computing
complexity. Although some works (Zhao et al.,
2023) have experimentally discovered that it does
not harm the performance to trim certain attention
layers for efficiency, the reason behind it has not
been thoroughly studied. Thus in our work, we
carefully examine the text-image interactions in
diffusion backbones, and based on this, design a
special mechanism to align the text embedding to
the image diffusion task efficiently.

In this paper, We investigate a specific type of
ViT-based diffusion backbone. By examining the
text-to-image and image-to-image attention maps
at different layers, we discover that semantic infor-
mation from text prompts provides more guidance
near bottleneck layers whereas fusing text infor-
mation at earlier or later layers provides minimum
guidance. Based on this observation, We propose a
new conditioning architecture named Intermediate
Adapter. This method has two major design com-
ponents: 1. removes the text-conditioning mech-
anism from the early and late layers and 2. adds
additional text-only transformer adapter layers that
are trainable in the diffusion process. Analytical ex-
periments indicate that component 1 improves the
efficiency of the text-image cross-attention mecha-
nism, and reduces the interference between image
and text, leading to higher quality generation. Com-
ponent 2 improves the text-image alignments of the
generated images. When combined, we see a large
margin of improvement in all evaluation metrics.

As a result, our proposed Intermediate Adapter
can enhance a diffusion model to generate better
quality and more text-aligned images, especially
for high-level semantics such as accurate object
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Figure 1: Text-to-image generation on MS-COCO validation captions. U-ViT (top) vs. U-ViT + Intermediate
Adapter (bottom). Images are generated using classifier-free guidance based on text prompts. Each text prompt
contains a type of high-level semantics in each column. Our method enhances U-ViT to generate better quality

samples that align better with the text prompt and are more efficient in training and inference.

count, compound concepts, relationships between
multiple objects, rare concepts, and entangled con-
cepts, etc. (see Figure 1 for a few generated sam-
ples). Our method also makes diffusion models
more efficient, requiring less computing, memory,
training time, and inference time.

2 Related Work

ViT-based diffusion model backbones have been
explored recently (Peebles and Xie, 2023; Bao
et al., 2023a). They bring several large-scale ap-
plications in the text-guided generation domain
(Karaarslan and Aydin, 2024; Rombach et al.,
2022b) and multimodal generation domain (Bao
et al., 2023b). These models leverage different
mechanisms to fuse the text guidance to the diffu-
sion model, with simple concatenation and cross-
attention being the two commonly used mecha-
nisms. As for text-image alignment, most existing
works try to improve the alignment from a training
perspective including finetuning with augmented
data (Paiss et al., 2023; Betker et al., 2023), intro-
ducing additional alignment guidance (Wu et al.,
2023), etc. Quite differently, we approach this
problem from an architectural perspective to en-
able better alignment without additional data. Re-
garding efficient diffusion models, recent works
include reducing sampling steps using an efficient
sampler (Song et al., 2020a; Lu et al., 2022a,b),
consistency training and distillation (Song et al.,
2023; Luo et al., 2023), or reusing calculations
across timesteps (Zhang et al., 2024). These works

focus more on algorithmic efficiency, while our
work focuses on reducing architectural redundancy.
Adapters are commonly used in diffusion models
to provide additional control in generation (Zhang
etal.,2023; Mou et al., 2023; Ye et al., 2023). How-
ever, in this study, we explore an extra function-
ality of adapters to reduce the inference between
text conditions and generated images, leading to
improved alignment between them.

3 Preliminaries

3.1 Diffusion Models

Diffusion models (Song et al., 2020b; Ho et al.,
2020) are generative models that learn to gener-
ate new samples from noise by approximating the
score function of a data distribution p(z) using a
neural network. The score function is defined as
the gradient of the log-probability density of the
training data points:

S(x) = V. logp(x). 0

Training. Given a dataset with data distribution
p(x), the training involves two steps:

Noise addition. Given a data sample =, we pro-
gressively inject Gaussian noise over 7' steps until
reaching a full noise x7. This process can be for-
malized as follows:

e =1— Bexe—1 + \/EQ, 2

where ¢, ~ N(0,I),t =1,...,T, xyp = x, and
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Figure 2: Two conditioning methods using a U-ViT backbone, with and without Intermediate Adapter. We only
show 3 groups of transformer blocks for simplicity. In our experiments, all setups have 13 layers of transformer
blocks, with N = 4 and M = 5. Time embeddings, pre-processing layers, and post-processing layers are omitted
for simplicity. In practice, the time embedding is concatenated with the image input and follows the same path.

{B:}L, is a noise schedule.

Score function learning. The training objective is
to minimize the discrepancy between the true score
function S(-) and its neural network approximation
so("):

L(0) = E[(S(x¢) — so(x1))’]- 3)

Sampling. The sampling process is in a reverse
direction. We first initialize the noisy sample x7
from a standard Gaussian distribution. We then
apply the learned score function to denoise 7 over
t € [T,1] steps to gradually remove noise and
generate a sample:
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Classifier-free guidance (CFG). We can also
model the conditional score function S(x:|y)
by approximating the unconditional score func-
tion V,, logp(z;) and the joint score function
V., log p(x¢,y) simultaneously to enable condi-
tional generation:

S(xtkl/) = (1 +w)vﬂﬂt logp(xta y) - wvﬂﬂt 1ng(mt)7 (5)

where w is the CFG scale that controls the strength
of guidance. The conditional generation in our
study is achieved through classifier-free guidance
from caption y to image x, while unconditional
generation uses the same approach with an empty
caption embedding.

3.2 Conditioning Methods

Our major contribution is to enhance the cur-
rent conditioning approaches with the Intermediate
Adapter. In our empirical exploration, we mainly
focus on two common conditioning methods used

by SOTA text-to-image diffusion models:
Concatenation. Text, image, and timestamps are
all processed as tokens and concatenated. They
are fed into a self-attention transformer as a long
sequence. (See Figure 2 sub-figure 1.)
Cross-attention. The image self-attention is joined
by the cross-attention from the conditioning text.
(See Figure 2 sub-figure 3.)

We only use these two common approaches to
show that our method is applicable and effective
on different conditioning approaches. Although
AdaNorm has also demonstrated effectiveness in
recent diffusion models (Peebles and Xie, 2023;
Crowson et al., 2024), its original version does not
support long conditioning texts, which restricts its
use in our text-to-image generation task.

4 Methodology

We first introduce the base diffusion model and the
backbone we use in sections 4.1 and 4.2. Then we
introduce our Intermediate Adaptor in sections 4.3
and 4.4, each focusing on one of the two compo-
nents: intermediate fusion and text adapter.

4.1 Latent Diffusion

Latent Diffusion Models (LDMs) (Rombach et al.,
2022b) operate directly in the latent space of pre-
trained image features. We use a stable diffusion
KL-based autoencoder to encode an input image
into the latent space and decode the denoised latent
space representation back to the input image space.
For text embeddings, we use the CLIP embedding
with ViT-L-14. These models are frozen during
diffusion model training.



4.2 Diffusion Backbone Model

Evidence suggests that under a diffusion model
setting, segmentation networks with long skip con-
nections are essential to the efficient learning of
discrete time ODE (Huang et al., 2024). When long
skip connections are used, distant network blocks
can be connected to aggregate long-distant infor-
mation and alleviate vanishing gradient. For this
reason, we choose U-ViT-Small (Bao et al., 2023a)
as our baseline backbone. The model proposed in
the orginal paper uses concatentation to merge the
text information. (Figure 2 sub-figure 1). On top of
this, we also study another cross-attention setting
(Figure 2 sub-figure 3). These settings are con-
structed by only changing the architecture without
modifying the training and inference setups.

4.3 Intermediate Fusion

In multimodal fusion, intermediate fusion refers to
a fusion that occurs at an intermediate level. This
way different modality data are allowed to prepro-
cess in a single modality manner before joining a
shared latent space. We borrow the same idea in
the context of diffusion models. In our method, we
remove the text conditioning at the beginning and
the end of the diffusion model as shown in Figure
2 sub-figures 2 and 4. In the specific setup, we
remove 4 layers of text-conditioning mechanism
each from the beginning and end of the 13 layers
of diffusion backbone, keeping only 5 intermediate
layers text-guided. This choice is made from the
observations in Section 5.6 that the text guidance
is weak at the early and late stages of the backbone.
Removing these text conditionings reduces the text-
related attention calculations, thus improving the
speed of the model.

4.4 Text Adapter

Instead of directly introducing pretrained CLIP
text embedding in the diffusion backbone, we add
a preprocessing adaptor transformer layer for the
text embedding as shown in Figure 2 sub-figures
2 and 4. This layer allows the text embedding to
be fine-tuned to better align with the diffusion task.
The adapter is a one-layer multi-head self-attention
transformer (Figure 3).

5 Experiments

5.1 Dataset and Training Settings

In our experiments, we use the MS-COCO (Lin
et al., 2015) train and validation datasets to train
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Figure 3: The text adapter architecture. Here Multi-
head Self-attention (MHSA) and Multi-layer Perceptron
(MLP) follow the default implementations used in ViT.

and evaluate the performance of our model. For
our training configuration, we train all models for
1 million steps and use a batch size of 256. We
use the AdamW optimizer, with a learning rate of
0.0002, weight decay of 0.03, and beta parameters
set to (0.9, 0.9). We incorporate a warm-up phase
of 5000 steps to adjust the learning rate. The ViT
model takes image features with a channel of 4,
both spatial dimensions of 32 and an image patch
size of 2. All attention mechanisms use an embed-
ding dimension of 512 and 8 attention heads. CLIP
embedding has 77 tokens each with a dimension of
768, and is transformed to a dimension of 512 using
a linear layer to align with the transformer input.
For classifier-free guidance, we use a probability
of 0.1 for unconditional training.

5.2 Evaluation Metrics

Quantitative evaluation. We use FID, and CLIP
Score as our quantitative metrics. To generate
the score we select 30000 captions from the MS-
COCO validation set and the corresponding gen-
erated images from our text-to-image models. For
CLIP Score we use the CLIP version CLIP-ViT-L-
14.

Human evaluation - object count. We choose
a challenging generation aspect even for most of
the foundation text-to-image models - matching
object count, where we require the model to gener-
ate the same amount of objects as described in the
prompts. We select four objects - bus(es), sheep,
person(people), and apple(s). These four are se-
lected since they represent 4 different plural forms
and 4 categories (human, animal, fruit, human-



Table 1: Comparative results on text-to-image generation and alignment metrics. The baseline U-ViT corresponds
to the first setting. For training speed, an iteration (iters) is a full forward-backward pass on an RTX-4090 GPU with
a mini-batch size 256. GFLOPs are calculated on a single forward pass of the model at a timestamp.

Conditioning Method Model FID-30K | CLIP Score 1 Training iters/s GFLOPs
Concatenation U-ViT 5.98 0.584 1.81 29.56
U-ViT + 1A 5.77 0.588 231 25.84
Cross-attention U-ViT 6.48 0.575 2.54 23.82
U-ViT + 1A 5.68 0.588 2.74 23.66
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Figure 4: Evaluation during training and FID-30K vs CLIP Score at different CFG scales. settings with IA show
improved generation quality and text-image alignment compared to their early fusion counterparts. CLIP Score is

measured on 30K pairs using CLIP-ViT-L-14.

made object). We use 5 words of count - a(an),
two, three, four, five. Since larger numbers are
rare in MS-COCO training captions, we restrict
our study to small numbers. We generate 10 im-
ages for each object-count pair (20 pairs) and let
evaluators count the number of target objects in the
generated image. Then we use the average error
(AE) and average match ratio (AMR) to evaluate
the performance, based on the evaluators’ counts
Ceval and the prompts’ counts Cpromp:

Z?:1 |Ci,human - Cz‘,prompt|

AE = (6)
n
mI(C, =C;
AMR = 2171 ( i,human ,prompt) 7
n

Human evaluation - preference score. In addi-
tion, we ask 5 evaluators to provide a preference
ranking from 1 to 4 on the overall quality of
images generated by each model given captions
from the evaluation set. We use the same random
seed and prompts for all models and provide the
generated images with prompts to the evaluators.
The human evaluators are told to skip any group of
samples if the ranks are hard to call. 100 captions
are evaluated by 5 evaluators, with a maximum of
500 scores for each setting. We assign 4, 3, 2, and

1 scores to rank 1, 2, 3, and 4 respectively, and
calculate the average score for each model setting.

5.3 Results

We selected U-ViT (Bao et al., 2023a) as our base-
line model since it has the best MS-COCO FID
score among dedicated diffusion models with a
manageable size. We first compare the perfor-
mance between 2 different conditioning methods
with their counterparts with intermediate adapters
in Table 1. We observed that the intermediate
adapter (IA) improves the FID, CLIP Score, train-
ing speed, and FLOPs of the base models.

Next, we visualize the FID (Figure 4, left), CLIP
Score (Figure 4, middle) during training, and FID
vs. CLIP Score at different CFG scales (Figure
4, right). We find that the models with interme-
diate adapters exhibit better FID and CLIP scores
throughout the training. They also show a better
trade-off between CLIP Score and FID. Among
all four settings, a cross-attention U-ViT with an
intermediate adapter has the best FID, CLIP score,
lowest GFLOPs, and fastest training.

We then select 12 random captions and generate
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Figure 5: Generated samples comparison between the baseline U-ViT(top) and U-ViT with an intermediate adapter
across 12 validation prompts. (Best viewed when zoomed-in.)

images with a CFG scale of 3, which is an elbow
point in the FID vs. CLIP Score curve. We show
the baseline (top) compared with the one with an
intermediate adapter (bottom) in Figure 5. We ob-
serve that the generated images are more spatially
consistent and more aligned with the text prompts.

We then show that our intermediate adapter
boosts U-ViT against several foundation models
and dedicated models (Table 2). Our model can
reach the best text-image alignment performance
and comparable image quality to all models with a
relatively small model size.

Table 2: Performance of text-to-image diffusion models.

Model FID-30K | CLIP Score 1
Foundation Models Zero-shot on MS-COCO

Imagen 7.27 ~0.29
Stable Diffusion 8.59 0.325

Models Trained/Finetuned on MS-COCO

VQ-Diffusion 19.75 -
Frido 8.97 -
U-ViT 5.98 0.584
U-ViT+IA(ours) 5.68 0.588

5.4 Human Evaluation

Object count. The results are shown in Figure 6.
In the left four figures, for 18 out of 20 object-count
pairs, U-ViT using concatenation with intermedi-
ate adapters generates objects with more human-
aligned count compared to the baseline. For 14
out of 20 object-count pairs, U-ViT using cross-
attention with intermediate adapters generates ob-
jects with more or equal human-aligned count com-
pared to the baseline. In the top right figure, the
average error of models with intermediate adapters
is consistently lower than the baselines. In the bot-
tom right figure, the average match ratio of models
with intermediate adapters is consistently higher or
on par with the baselines. All of the above results
show that the intermediate adapter improves the

count alignment in the generation regardless of the
conditioning method.

Preference score. The results are shown in Fig-
ure 7. 287 scores are collected after removing
invalid scores and those are too difficult to call
by the human evaluators. The score is consistent
with our FID and CLIP Score evaluation, with
cross-attention U-ViT with an intermediate adapter
achieving the highest score, and concatenation with
an intermediate adapter coming second. All set-
tings with intermediate adapters outperform their
corresponding baseline models.

5.5 Ablations

We also apply the two components of the interme-
diate adapter separately and study their individual
contribution to the FID, and CLIP Score. In Figure
8, we show that fusing the text embedding only
in the middle of the diffusion backbone is the ma-
jor source of FID improvement. This is expected
since this setting has image-only skip connections
that can maintain spatial consistency at the upsam-
pling layers. But this will negatively impact the
CLIP Score. Adding a text adapter learns more
aligned text embeddings, which is the major source
of improved CLIP Score, but this will impact the
model efficiency in terms of increased FLOPs and
reduced training speed. When the two methods are
combined, we achieve improvements in all metrics.
We see that these two components compensate for
each other’s weaknesses while maintaining their
respective advantages in the intermediate adapter.

5.6 Analysis

Layer-wise Attention Maps. To better visual-
ize the text-image alignment across the model lay-
ers, we analyze the average attention maps of all
timesteps during the diffusion process. In Figure
9 we show the comparison of U-ViT and U-ViT
with an intermediate adapter. The text-to-image
attention maps in both early and late layers indicate
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a more uniformly distributed pattern than interme-  quantify the influence of text guidance on image
diate layers, suggesting that text guidance is less  features, we conducted SVD on the text-to-image
focused and effective in early and late layers. Be-  attention map matrices and analyzed their rank
sides this observation, we observe that the early = property in Figure 9 bar charts below the attention
and late layers attend more to the border of the  maps. Since the softmax function is applied to the
latent image due to the padding added in the convo-  attention map QK each layer is normalized thus
lutional layers in the autoencoder model. To reduce  providing a fair comparison across layers. We see
the influence of such padded borders, we removed  that U-ViT models have relatively low-rank text-to-
the border so that the later rank analysis could re-  image attention maps with smaller singular values
flect more semantic guidance. at all layers, especially the layers away from the
Rank Analysis on Adjusted Attention Map To  middle. On the other hand, the one with an interme-
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Figure 9: Attention maps and singular value analysis. For each setting, the first row is the image-to-image attention,
the second row is the text-to-image attention, and the third row is the singular values of the first 10 orders from
the text-to-image attention maps. An intermediate adapter removes the low-information text-to-image attention
at the early and late levels. This reduces the interference between image and text at these levels and improves the
information capacity of the text-to-image attention at the middle layers.

diate adapter has high singular values. The analysis
indicates that low-capacity text-to-image attention
occurs in the early and end layers of a diffusion
backbone, whereas most of the text information is
processed around the bottleneck. This justifies our
presumption of redundant text guidance in U-ViT.
Additionally, the comparison of singular values
around the intermediate layers proves that the elim-
ination of the early and end fused layers never hurts
the effectiveness of guidance. It instead boosted the
guidance in the intermediate layers. Thus, we can
potentially improve model efficiency without dam-
aging the semantic control of text. This observation
aligns with the experiment results.

6 Conclusion

In this study, we presented an effective architec-
ture for enhancing text-to-image diffusion models
by leveraging an intermediate adapter mechanism
for text conditioning. Our experiments and anal-
yses on the MS-COCO dataset demonstrate that
this method outperforms traditional architectural
design in aligning visual concepts with language,
improving generation quality, and enhancing the
efficiency of the training and inference. More gen-
erally, our findings suggest that the placement and
preprocessing of text embeddings within diffusion
models play a critical role in the performance and
efficiency of text-to-image generation tasks. This
provides a direction for large foundation models to
a more efficient and text-aligned design.



7 Limitations

Other conditioning strategies. The main focus
of this paper is to investigate the influence of an
intermediate adapter on a diffusion backbone, in
terms of text-image alignment, generation quality,
and computational efficiency. Admittedly, some
other conditioning methods such as the AdaNorm
used by DiT are not explored in this paper. We rea-
sonably argue that the intermediate fusion can be
transferred with ease to other unexplored condition-
ing strategies since the approach resolved the issue
of less efficient text guidance caused by joining
image and text at early and late levels of a diffusion
model.

Pretrained model fine-tuning. Since our method
uses an adapter, it can be fine-tuned on pretrained
foundation models to replace text conditioning.
From our experiments, full fine-tuning of a pre-
trained U-ViT can achieve comparable perfor-
mance with the end-to-end training with only 5%
of total steps. However, due to the limited computa-
tion resources, its application to foundation models
is not discussed in this paper. The issue is that
our method aims to learn less interfered features of
the image and trainable embeddings for language,
which require changes in all layers of the diffu-
sion backbone. This requires the full fine-tuning
of a pretrained model. However, full fine-tuning
of a foundation model is beyond the scope of this
work. The main focus of this work is to show
that multimodal information fusion in diffusion
models should follow an intermediate fusion de-
sign, where the conditions should be preprocessed
jointly within the diffusion process. The goal of
this work is to inspire the next-generation founda-
tion model design to follow a similar design for
better generation quality and condition-following.
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