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ABSTRACT

Diffusion-based language models offer a compelling alternative to autoregressive
(AR) models by enabling parallel and controllable generation. Among this family
of models, Masked Diffusion Models (MDMs) achieve the strongest performance
but still underperform AR models in perplexity and lack key inference-time effi-
ciency features—most notably, KV caching. In this work, we introduce Eso-LMs,
a new family of models that fuses AR and MDM paradigms, enabling smooth in-
terpolation between their perplexities while overcoming their respective limitations.
Crucially, we introduce KV caching for MDMs while preserving parallel gener-
ation, significantly improving inference efficiency. Combined with an optimized
sampling schedule, our method achieves a new state of the art on the speed-quality
Pareto frontier for unconditional generation. On long contexts, our method achieves
14 - 65x faster inference than standard MDMs and 3 — 4 x faster inference than
prior semi-autoregressive approaches.

1 INTRODUCTION

A paradigm shift is underway in language modeling: autoregressive (AR) language models, long
considered the gold standard, are now being rivaled by diffusion language models for standard
language generation. Recent works (Sahoo et al., 2024a; Schiff et al., 2025) show that Masked
Diffusion Models (MDMs) are closing the gap with AR models on small-scale language benchmarks,
and even outperform them on tasks involving discrete structures, such as molecular generation (Schiff
et al., 2024; Lee et al., 2025) and graph generation (Liu et al., 2023). When scaled to larger sizes
(e.g., 8B parameters), MDMs match models like LLaMA on challenging datasets in math, science,
and tasks such as reverse poem completion (Nie et al., 2025).

These results make MDMs a compelling alternative to AR models. However, they suffer from two
key limitations: (1) Inference speed: Despite supporting parallel generation, MDMs are significantly
slower than AR models in practice, largely due to the lack of KV caching, which is a crucial
optimization for real-time applications like chat systems. (2) Generation quality: MDM:s still show
a noticeable likelihood gap on more complex language modeling tasks (Sahoo et al., 2024a).

Recently proposed BD3-LMs (Arriola et al., 2025) address the speed issue by introducing a semi-
autoregressive generation strategy. These models perform diffusion over fixed-length blocks of text
sequentially. Because previously denoised blocks can be cached, BD3-LMs partially support KV
caching and are faster than standard MDMs. However, we identify two key shortcomings in BD3-
LMs: (1) Degraded samples at low sampling steps: When the number of denoising steps is reduced
for faster inference, BD3-LMs exhibit severe degradation in sample quality and diversity—worse
than both AR (at high Number of Function Evaluations (NFEs), i.e., neural network forward passes)
and other diffusion models (at low NFEs) (Sec. A.1 and Sec. 5.2). (2) Incomplete caching: While
KV caching is possible across blocks, intra-block diffusion still lacks KV support, limiting overall
speed gains.

To address these challenges, we propose a new language modeling paradigm that fuses autoregressive
and masked diffusion approaches. Our model is trained with a hybrid loss—a combination of AR and
MDM objectives—which allows it to interpolate smoothly between the two paradigms in terms of
perplexity. This requires two key innovations: (1) A revised attention mechanism in the denoising
transformer to support both AR and MDM styles of generation. (2) A new training and sampling
procedure that enables KV caching within the diffusion phase, a feature previously unavailable in
MDMs. Due to the unconventional nature of this hybrid design, we name our method Esoteric
Language Models (Eso-LMs).
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Figure 1: Efficient generation of an example sequence with our proposed Eso-LMs. During

Phase, Eso-LMs denoise one or more, potentially non-neighboring mask tokens (V1) per step. During
Sequential Phase, Eso-LMs denoise the remaining mask tokens one at a time from left to right.
Eso-LMs allow for KV caching in both phases using just a single unified KV cache: bounding
boxes enclose transformer cells that are building their KV cache; a cell becomes once its KV
cache is built. The sequences below the transformers depict tokens in their natural order.

In summary, our contributions are as follows. (1) We propose a new hybrid framework for language
modeling: one that fuses AR and MDM paradigms and outperforms the previous hybrid approach,
BD3-LMs. (2) We show that our proposed Eso-LMs achieve fine-grained interpolation between AR
and MDM perplexities, narrowing the gap to AR models (Sec. 5.1). (3) By enabling KV caching
during diffusion while preserving parallel generation, Eso-LMs achieve a new state of the art on
the speed-quality Pareto frontier for unconditional generation. BD3-LMs degrade at low sampling
steps, while our method remains competitive with MDMs in the low NFE regime and with AR in the
high NFE regime (Sec. 5.2). (4) At long contexts, Eso-LMs provide 14 — 65x faster inference than
standard MDMs and 3 — 4x faster inference than KV-cached semi-autoregressive baselines (Sec. 5.3).

2 BACKGROUND

Notation We represent scalar discrete random variables that can take K values as ‘one-hot’ column
vectors and define V € {x € {0,1} % : Zfil x; = 1} as the set of all such vectors. In the context of
language modeling, K is the vocabulary size and V is the vocabulary. Let m € V) be a special mask
vector such that its K-th entry is one, i.e., my = 1. Define Cat(-; 7r) as the categorical distribution
over K classes with probabilities given by 7 € A where AX denotes the K -simplex. Additionally,
let (a, b) denote the dot product between vectors a and b. We use parentheses () to denote ordered
sets (tuples) and curly brackets {} to denote unordered sets. |A| denotes the cardinality of the set A.

MDMs feature two salient orderings: the sequence order and the denoising order. We use a permuta-
tion o to describe the relationship between these orderings. Let Py, denote the set of all permutations
of [L] ={1,...,L}. o € Pr, is an ordered set (tuple) and also serves as a bijective function: o (1)
is the position in sequence order that appears /™ in denoising order o, and o~1(4) is the position
in denoising order for the ™ position in sequence order. For example, o = (2,4, 1, 3) denotes a
denoising order of (1,2,3,4); 01(4) = 2 means the 4™ token in sequence is the 2" one to denoise.

Let x € VL denote a sequence of length L with no mask tokens, and let x* denote the /" entry in x.
Note that x' is one-hot under our notation. We use the term ‘token index’ to refer to the position of a
token in the original ordering, e.g., the token index for x' is [. Let (Z¢)te[0,1] € VL denote a sequence

of length L that may contain mask tokens. Let M(z;) = {¢| z{ = m} denote token indices of mask
tokens in z; and C(z;) = {¢ | zf # m} denote token indices of clean tokens in z;.

Let ®: V™ x V" — V™" denote a concatenation operator on two sequences x = (x!,x?,...,x™)
and z = (z',2%,...,2") of length m and n. When the concatenated sequence x @ z is fed into the
transformer, x and z carry the same positional embeddings as they would if they were fed into a
transformer independently. Let ® : V™ x V™ — V" denote a substitution operator; for any z € V™
and x € V™ with m > n, the output y = z © x is given by: y'™ = x and y"*1™ = g"*1m,
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2.1 AUTOREGRESSIVE MODELS

Given a sequence X € V¥ ~ gyua, AR models define the following factorization of the joint distribu-
tion: log pg(x) = Y1, log pe(x’ | x<¢), where the model py is usually parameterized by a causal
transformer (Vaswani et al., 2017) model. Sampling takes L steps or NFEs but each is computationally
efficient due to KV caching. AR models achieve the best likelihood and generation quality.

2.2 MASKED DIFFUSION MODELS

Diffusion models learn to reverse a forward corruption process g, which transforms clean data x ~ g,
in VT into a sequence of latent variables z, for ¢ € [0, 1], each representing an increasingly noisy
version of x (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song & Ermon, 2019). In MDMs (Sahoo
et al., 2024a; Shi et al., 2025; Ou et al., 2025), the forward masking process g factors independently
across the sequence X, i.e., ¢;(.|x) = ITyq;(.|x*) and each token x! is progressively interpolated with
a fixed target distribution Cat(.; m). The marginal of z{ ~ ¢;(.|x") at time ¢ is given by:

a:(x") = Cat(;rx” + (1 - ay)m), ()
where ay € [0, 1] is a strictly decreasing function in ¢ with ag ~ 1 and «; » 0. Sahoo et al. (2024a)
show that the reverse posterior gy, (.|zf, x") over z{ for s <t is given by

Cat(.;z¢) z{ + m
I 'S t )
ds t('|Z y X ) = l-as Qs—Qu x¢ (2)
! t {(fat(.; ¢ )n;tflt ) ) Zf =m.

Given a denoising model x4 : V¥ — (A%)%, the reverse unmasking process py(.|z;); over the
sequence z is parameterized by

L L
po-lze)spe = [1p6Clze)ge = TTaqe Clar, x” = x4(z0)). ©)
4 4

Sahoo et al. (2024a); Shi et al. (2025); Ou et al. (2025) show that Negative Evidence Lower Bound
(NELBO) for this method is

a/
Lyvpm(x) = Ey ie10,1] ll —tat > log(xg(z),x") |, “4)
LeM(z)

which is a weighted average of masked language modeling losses (Devlin et al., 2018) computed only
on the masked positions M(z;).

To generate a sequence of length L, the reverse diffusion process starts from a fully masked sequence
Z:-1, where zf:1 =mfor/=1,..., L. It proceeds for T steps, with each zﬁ independently sampled
from py(.|z¢) 5| as defined in (3); once a position is unmasked, it remains fixed. Since multiple tokens
can be denoised in parallel per step, the total number of steps or NFEs can be less than L, enabling
faster generation. However, each forward pass is computationally expensive due to applying the
bidirectional transformer in x¢(z;) over the entire context length.

2.3 BLOCK DISCRETE DIFFUSION MODELS

Block Denoising Diffusion Discrete Language Models (BD3-LMs) (Arriola et al., 2025) autore-
gressively model blocks of tokens and perform masked diffusion modeling (Sec. 2.2) within each
block. By changing the size of blocks, BD3-LMs interpolate AR models and MDMs. BD3-LMs
group tokens in x into B blocks of L’ consecutive tokens with B = L/L’, where B is an integer.
The likelihood over x factorizes autoregressively over blocks as —log pg(x) = — Y2, log pg(x" |
x) < T8 | Lypm(x?;x<?), where pg(x® | x<*) is a conditional MDM and Lypy (x%; x<°) is the
NELBO for MDLM as defined in (4), applied sequentially across blocks. During generation, we use
T’ =T/L’ to denote the number of diffusion sampling steps per block.

3 ESOTERIC LANGUAGE MODELS

In this section, we propose a new paradigm for language modeling: Esoteric Language Models
(Eso-LMs), which form a symbiotic combination of AR models and MDMs.
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While AR models currently lead in language modeling performance, they generate tokens sequentially,
making them slow at inference. In contrast, MDMs generate multiple tokens in parallel and are more
controllable (Schiff et al., 2025; Nisonoff et al., 2024), but they typically yield higher perplexity than
AR models (Sahoo et al., 2024a; 2025). Can we combine their strengths? In response, we introduce a
hybrid approach where some tokens are generated in parallel via MDMs and the rest sequentially in
a left-to-right fashion. This raises two key questions. (1) Can we compute the likelihood of such a
generative model? We address this question by showing that Eso-LMs admit a principled bound on the
true likelihood. (2) How can we adapt the attention mechanism so that a single transformer (Vaswani
et al., 2017) can support both styles of generation? We address this question in Sec. 4.

3.1 FUSING AUTOREGRESSIVE MODELS AND MASKED DIFFUSION

Letx € VI ~ Gaaa(X) be a sample from the data distribution, and let pg be our model distribution
parameterized by 6. Eso-LMs decompose py into two components: an AR model pQR and an MDM
pyPM. The MDM generates a partially masked sequence zo € VI ~ p}®(z,), and the AR model
finishes the remaining unmasking steps in an auto-regressive left-to-right manner: pQR(x|z0). The
marginal likelihood of such a hybrid generative process is:

po(x)= 3 py" (xlzo)py " (20)- )

zoeVL
Although this sum is intractable, we can compute a variational bound on the true likelihood using a
posterior g(zo|x) (Kingma & Welling, 2014). Since pg’[DM models masked sequences, we choose
q to be a simple masking distribution. Specifically, we set ¢ to go(2zo|x) as defined in (1), which
independently masks each token (x*) ¢e[] With probability 1 — a, where ay € [0, 1]; intuitively, ag
is the expected fraction of clean tokens in x by MDM. This leads to the following variational bound:

+ D1 (qo(2o[x) [Py (20)).  (6)

—logpg(x) <= ~Ez~go(.Ix) l > logpp® (x‘lz0,x*)
ZEM(Z())

Inside the expectation is the joint AR likelihood over masked positions £ € M(zg), conditioned on
clean tokens in zo. For AR, the denoising network x4 : V¥ — (A%) operates on the input zy ® x<¢,
where the substitution operator @ replaces the first [ — 1 tokens in zo with x<¢. For each £ € M(z),

x4 (20 ©x<*) approximates the distribution of the clean token x* given x<* and z,, which may include
clean tokens beyond position £. In Suppl. B.1, we analyze the KL term and show that the NELBO is:

=1 A
LﬁNELBo(x)—IEzONqO[— Z log(Xg(Zo®X<£),XZ):|+/t_O at Ethqt[ Z log(xg(zt),xe) dt,

teM(z0) T-a LeM(z¢)

AR loss MDM loss

@)

where we set the diffusion noise schedule «; to be the standard log-linear schedule oy = cig(1 —t).

Interpolating between AR and Diffusion When oy = 1, the posterior sample zy = x, and all
tokens are generated by the MDM; hence, the AR loss is zero in (7), and LngLgo reduces to the MDM
loss. Conversely, when aq = 0, all tokens are masks in zg, and the MDM loss vanishes, reducing
LneLso to the AR loss. Thus, Eso-LMs interpolate between AR and MDM paradigms, controlled by
the hyperparameter ay.

3.2 SAMPLING

We use the two-stage sampling procedure from (5). To draw x, we first sample a partially masked

sequence zg ~ plg’IDM and then denoise the remaining mask tokens left-to-right with pQR.

Denoising Schedule During sampling, we pre-compute the order in which tokens will be denoised
under the standard ancestral sampler. We refer to this as the diffusion denoising schedule, denoted
by SMPM = (g, ... S, /T)> Where S; is a tuple of mask token indices denoised at diffusion step ¢,
and T is the total number of denoising steps. Similarly, we define the AR denoising schedule as
SR = ((i) | i € M(z0)), where the mask indices M (z() appear in strictly ascending order. The
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unified denoising schedule is then given by S = SMPM u SAR which concatenates the two schedules

to partition [L]. When oy = 1, all tokens are generated by diffusion so S = SMPM and SR = g;
when oy = 0, all tokens are generated sequentially so S = SAR and SMPM = . See Suppl. B.3 for the
complete sampling algorithm and an illustrative example.

One of our goals is to eliminate redundancies at inference time in MDMs. Recall that sampling
begins with a fully masked sequence z;-; = m*’'. Standard ancestral sampling as implemented in
MDLM (Sec. 2.2) updates only a subset of mask tokens at each step, but still performs a forward
pass over the full sequence, wasting FLOPs. To improve efficiency, we restrict the forward pass
at step k to only the previously denoised tokens and the current mask tokens to be updated, i.e.,
U;<k9;. This substantially reduces computation, especially for long sequences. Building on this
sampling procedure, we will describe a method in Sec. 4.1.1 that replaces bidirectional attention in
the denoising transformer with causal attention, unlocking KV caching across diffusion steps.

3.3 IMPORTANCE WEIGHTED NELBO

For MDMs, the likelihood measures how well they model the data distribution under infinitesimal
diffusion steps, where at most one token is denoised or masked out per step. In this limiting case,
MDMs are equivalent to any-order AR models, which has the following importance-weighted bound
on the negative log-likelihood (Burda et al., 2015; Shih et al., 2022; Hoogeboom et al., 2021):

1 K L
~logp(x) < -E,,, . o |log a IngZ_:leXp (l;logpe(%k(z) | %k(d)))] ; (8)
where o is the denoising ordering introduced in Sec. 2. This bound is tight as K — co. This bound is
intractable for MDLM because its evaluation requires L forward passes. In contrast, given some x
and o, we can evaluate the o-order AR term (inside the exponent) for Eso-LMs in a single forward
pass (Sec. 4.1.2). We apply this technique to evaluate Eso-LMs in Sec. 5.1.

4  ATTENTION MECHANISMS FOR THE SHARED DENOISING TRANSFORMER

In this section, we introduce a unified attention scheme that supports both sequential (AR) and parallel
(MDM) generation using a shared transformer architecture. Our core technical contribution is a flexi-
ble attention mechanism that reconciles the architectural mismatch between AR models—which re-
quire causal attention and shift-by-one decoding—and MDMs—which rely on bidirectional attention.
To achieve this, we introduce an attention bias matrix A € {-oo, O}L/XL', where L’ is the input length,

that modulates the standard attention as: SELF-ATTENTION(Q, K,V, A) = softmax (% + A) V

where Q, K,V ¢ RZ>? denote the query, key, and value matrices. Entries of A control information
flow: A; ; = 0 “permits” and A; ; = —oo “blocks™ attention from token 7 to j.

4.1 TRAINING

Our training objective (7) has two components: the AR loss and the diffusion loss. Given a batch of
clean sequences, we train a fraction « with the diffusion objective and the remaining 1 — x with the
AR objective (Fig. 2). We set x = 0.5 using an experiment (Sec. 4); for ap = 1, we set x = 1.

4.1.1 DIFFUSION PHASE

The diffusion inference scheme (Sec. 3.2) motivates our training setup. We note three properties: (i)
clean tokens are generated in random order, (ii) mask tokens are denoised using only clean tokens but
clean tokens do not attend to mask tokens, and (iii) bidirectional attention used in MDMs (Austin
et al.,, 2021; Lou et al., 2024; Sahoo et al., 2024a) prevents KV-caching. We propose a simple
alternative: given z; ~ g;(.|x), shuffle z; with the natural constraint that clean tokens precede masked
tokens, and replace bidirectional with causal attention (Fig. 6; more details in Suppl. B.4).

4.1.2 SEQUENTIAL PHASE

The AR component of (7) applies a cross-entropy loss on logits for each mask token (z{ ) ;c M(20)>
requiring its left context to be clean. This is non-trivial because not all mask tokens have a fully clean
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Figure 2: (Left) To train a transformer to support both sequential and diffusion generation with KV
caching, we use half of the training batch (2 sequences in this example) for diffusion training and the
other half for sequential training. Tokens for sequential training are masked with probability 1 — ay,
while tokens for diffusion training are masked with p ~ Unif[1 — ag, 1]. (¢) For sequential training,
a mask token attends to unmasked clean tokens and clean versions of mask tokens on its left. (o)
For diffusion training, a mask token attends to all clean tokens and prior mask tokens after shuffling.
(Right) Eso-LMs have similar training time to MDLM and are much faster to train than BD3-LMs.

left context in zy. We address this by feeding the concatenated sequence zy @ x into the transformer
and designing a specialized attention mask so that each (z))) can also attend to x~*. During sampling,
this concatenation is unnecessary. Since only half of each batch is used for sequential training, the
doubled sequence length due to concatenation has relatively small impact on training speed (Fig. 2).

Attention Mask At inference, KV values for clean tokens in zg—generated in random order by
diffusion—must be reused. Training must therefore enforce causal attention over different random
orders among clean tokens {x* | i € C(zg)} to avoid invalidating the KV cache. We sample a
permutation o ~ Py, such that (i) clean tokens precede mask tokens, and (ii) mask tokens remain in
natural order. The following 2L x 2L attention bias matrix A enforces correct information flow:

Ay =0 ifi =7 V(i,7) € M(20) x M(z0) )
Aijer =0 V(i,7) € M(zo) x C(z0) (10)
Aijrr =0 ifi>7V(i,5) e M(zo)x M(zo) (11)
A =0 ifo (i) 207" (4) V(4,5) € C(z0) x C(z0) 12)
Airpjsr =0 V(i) € M(20) x C(2o) (13)
Aiirjar =0 ifi>5V (i,7) € M(z0) x M(zo) (14)
Ajj=—o00 otherwise. (15)

Refer Fig. 7 for an illustrative example. This construction ensures: a mask token (z} ) M(zo) attends
to (i) itself (9), (ii) the clean tokens in z (equivalently (x’)iec(zO)) (10), and (iii) the clean versions of
mask tokens on its left (11). A clean token (z();ec(z,) can attend to anything because no other token
attends to them. Tokens {x'|i € C(z¢)} have causal attention per o (12). A clean token corresponding
to a mask token, (X*);ca4(z,)» attends to {x7|j € C(zo)} (13) and {x’|j € M(z0),i 2 j} (14).

Simplified Implementation When the rows and columns of each of the four L x L blocks are
sorted by o, A shows classic attention patterns (Fig. 7) that are simple to implement.

4.2 SAMPLING

At each sampling step, we perform a forward pass of clean tokens decoded in the previous step for KV
caching and mask tokens corresponding to positions to decode in the current step (Fig. 1). We unlock
two features for efficiency: (1) KV caching during diffusion phase and (2) a shared KV cache for
diffusion and sequential phases. Also, our sampler can decode according to any denoising schedules,
even ones not seen during training, which leads to interesting inference-time trade-offs (Sec. 5.2).

5 EXPERIMENTS

We evaluate Eso-LMs on two standard language modeling benchmarks: the One Billion Words
dataset (LM1B) (Chelba et al., 2014) and OpenWebText (OWT) (Gokaslan et al., 2019). We describe
data processing, model architecture, training, and hardware details in Sec. C.3.
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Table 1: Test perplexities (PPL; |) on LM1B for
models trained for 1M steps. For diffusion mod-
els, we report PPL computed using the ELBO (7)
as in prior work. *Reported in He et al. (2022).
INo sentence packing. "Reported in Arriola et al.
(2025). ¥Reported in Sahoo et al. (2025).

Table 2: Test perplexities (PPL; |) on OWT
for models trained for 250K steps. For diffu-
sion models, we report PPL computed using the
ELBO (7) as with prior work. *For Eso-LMs, we
also use importance-weighted bounds (K = 100)
to get tight estimates of true PPLs (Sec. 3.3).

tDenotes retrained models; for fair comparison,

PPL () PPL (J)(ELBO) We did not finetune BD3-LMs from MDLM un-
. like in Arriola et al. (2025). 1250K checkpoints
Autoregressive (;\R) were provided by Sahoo et al. (2024a); Schiff
Transformer 22.83 et al. (2025), or Sahoo et al. (2025).
Diffusion
D3PM Uniform 137.90" PPL () PPL (}) (ELBO)
D3PM Absorb 76.90" -
Diffusion-LM" 118.621 Autoregressive (AR)
DiffusionBert 63.78 Transformer 17.90"
SEDD Absorb* 32711 Diffusion
SEDD Uniform! 40.251 SEDD Absorb 26.817
MDLM?* 31.78 MDLM 25.19"
UDLM?* 36.71 UDLM 30.521
DUO# 33.68 DUO 27.141
Interpolating diffusion and AR Interpolating diffusion and AR
BD3-LMs' BD3-LMs
L'=16 30.60 L'=16 23.57"
'=8 29.83 L'=8 22.04
L'=4 28.23 L' =4 20.96
Eso-LMs (Ours) Eso-LMs (Ours)
ap=1.0 35.00 ao=1 29.80* 30.06
ao=0.5 32.38 ao =0.5 27.09* 27.85
ao=0.25 29.14 a0 =0.25 23.56* 24.73
ao =0.125 26.21 oo =0.125 20.86* 21.87
ag = 0.0625 24.51

5.1 LIKELIHOOD EVALUATION
Our experiments show that Eso-LMs enable a fine-grained interpolation between MDM and AR
perplexities on LM1B and OWT (Table | and Table 2) by adjusting « for training.

Experimental Setup We compare Eso-LMs against leading masked diffusion models—MDLM (Sa-
hoo et al., 2024a), SEDD (Lou et al., 2024), D3PM (Austin et al., 2021), and DiffusionBERT (He
et al., 2022)—as well as uniform state models DUO (Sahoo et al., 2025), UDLM (Schiff et al., 2025),
and specifically BD3-LMs (Arriola et al., 2025), which also interpolate between MDM and AR and
support KV caching. All models are trained with batch_size=512, consistent with prior work.
We split each batch evenly: half trained with the AR loss and half with the MDM loss (7). Refer to
Table 4 for an ablation on the split proportion . Refer to Algo. | for the training procedure. Attention
biases are configured as described in Sec. 4. When training Eso-LMs as a pure MDM (aq = 1), the
full batch is trained with the MDM loss. For this setting only, we replace the diffusion coefficient
ay /(1 = o) with —1, which empirically reduced training variance and improved convergence.

Results For all diffusion models, PPL is computed using the lower bound (7) on the log-likelihood,
following (Sahoo et al., 2024a; Schiff et al., 2025; Austin et al., 2021; Sahoo et al., 2024b; Lou
et al., 2024; Arriola et al., 2025). We call this PPL (ELBO), an upper bound on PPL. On LM1B, we
train Eso-LMs with o € {0.0625,0.125,0.25,0.5,1.0}; we find that Eso-LMs effectively interpolate
between MDLM and AR perplexities with « € {0.0625,0.125,0.25,0.5} but exceeds MDLM PPL
by ~ 3 points with ap = 1.0 (Table 1). This is expected as Eso-LM («g = 1) is just MDLM but with
sparse causal attention instead of bidirectional attention. Results hold similarly for OWT (Table 2).

Importance-Weighted (IW) Bounds To verify that the ordering of PPLs (ELBO) reflect the true
ordering of PPLs for Eso-LMs, we use IW bounds (X = 100) (Sec. 3.3) to obtain tight estimates
of PPLs, which we find to be close to the corresponding PPLs (ELBO) and fall in the same order
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frontier of sampling speed and Gen. PPL. frontier of sampling speed and MAUVE.

(Table 2). This is the first time for IW bounds to be obtained for discrete diffusion. For diffusion
baselines, IW bounds are intractable (Sec. 3.3). We include IW bounds for smaller K’s in Table 6.

Ablation Instead of fully switching from bidirectional to causal attention as in Eso-LMs (Sec. 4.1),
we provide an intermediate ablation that mixes both. We name this family Eso-LMs (A) (details
in Suppl. D). As shown in Table 7 and Table 8, Eso-LMs (A) also interpolate between MDLM and
AR perplexities on LM 1B and OWT. As expected, its perplexity is better than Eso-LMs at every «,
making its perplexity at crg = 1 closer to MDLM, but it does not support KV caching during diffusion.

5.2 PARETO FRONTIER OF GENERATION SPEED VS. QUALITY

Our experiments show that (1) Eso-LMs establish a new SOTA on the Pareto frontier of sampling
speed and quality (Fig. 3 and Fig. 4), and (2) don’t produce degenerate samples (poor quality
and low diversity) at low NFEs unlike the previous interpolating diffusion method BD3-LMs.

Experimental Setup We sample unconditionally from OWT models. We use Eso-LMs trained with
afiin ¢ {0.125,0.25,0.5,1} and generate samples by varying (a8, T') € {0.0625,0.25,0.5,1} x
{16,128,1024} to control NFEs (NFEs = |S|) and sampling time. MDLM and BD3-LMs use ances-
tral sampling as proposed in Sahoo et al. (2024a), with T € {8, 16, 32,64, 128,256, 512,1024, 4096 }
for MDLM and T € {128, 256,512,1024,2048,4096} for BD3-LMs. All generations are L = 1024
tokens long. BD3-LMs are evaluated with block sizes L’ € {4,8,16} and 7" = T/(1024/L");
T = 128 is not applicable to BD3-LM with L’ = 4 and T' = 16 is not applicable to all BD3-LMs
considered, since these would result in 7" < 1. We measure Gen. Perplexity (via GPT-2 Large) and
MAUVE (Pillutla et al., 2021) (via ModernBERT-Large) for sample quality and average entropy for
diversity (Zheng et al., 2024), using nucleus sampling with p = 0.9 (Wang et al., 2025). Gen. PPL is
a de facto metric used in prior work and MAUVE aligns with human judgments on open-ended text.

Pareto Frontier of Generation Speed vs. Quality We record the mean sampling duration in
seconds (across 10 trials) by each method to generate a batch of 512 samples, and evaluate Gen. PPL
and MAUVE using 5120 samples. Sampling duration is an increasing function of NFEs, modulated
by the method and sampling hyperparameters used. In Fig. 3 and Fig. 4, for each method, we plot its
speed-quality Pareto frontier over all its configurations: Eso-LMs (over ™, a8, and T'), BD3-LM
(over L' and T'), and MDLM (over T'). We find that Eso-LMs establish a new state of the art on the
speed-quality Pareto frontier. See Sec. E.8 for individual metrics and Sec. E.9 for text samples.

Best o for Training We find that the Pareto frontier of the Eso-LM trained with af*" = 1 is
competitive with the Pareto frontier of all four trained Eso-LMs (Fig. 12 and Fig. 13). This shows
that Eso-LMs trained for diffusion only can flexibly adapt to a diverse set of denoising schedules.

Heuristic Improved Sampler BD3-LMs suffer from a rapid drop in quality at low NFEs due to
decoding close-by tokens in parallel (Sec. 6). Hence, given the flexibility of our sampler, we propose
a heuristic sampler for Eso-LMs that strictly performs parallel decoding for tokens far apart (Sec. E.6).
This sampler significantly improves Eso-LMs’s generation quality at low NFEs (Fig. 14 and Fig. 15).
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5.3 GENERATION LATENCY AT LONG CONTEXT

At longer contexts, Eso-LMs are 3 — 4x faster than prior diffusion based methods that support
KV caching and 14 - 65x faster than MDMs that don’t support KV caching.

Experimental Setup We compare inference times of our method, Eso-LMs, against MDLM and
BD3-LMs with context lengths L € {2048,8192}, using the first-hitting sampler (Zheng et al., 2024),
and a batch size of 1. To simulate the worst-case scenario, we set 7' >> L to ensure all methods have
approximately L NFEs: T' = 1M for MDLM and Eso-LMs (for T > L, NFE is L for all a§'"s),
T’ = 5000 (number of sampling steps per block) for BD3-LMs. We find that nucleus sampling yields
a non-negligible overhead for all methods, and hence disable it to focus on speed vs. sequence length.

Results As shown in Table 9, as compared to MDLM which lacks KV caching, Eso-LMs is ~14x
faster for L = 2048, and ~65x faster for L = 8192. Compared to BD3-LMs, which partially support
caching, Eso-LMs are ~3.2x faster than BD3-LM (L' = 16) and ~3.8x faster than BD3-LM (L' = 4)
at L = 8192. Additionally, we finetune Eso-LM (agai“ = 0.125) and BD3-LM (L’ = 4), originally
trained with L = 1024 (Sec. 5.1), for 1K steps with L = 10240 on OWT; as shown in Table 10, the
Eso-LM produces similar quality samples while being 5x faster (a8 = 0.125, T > L).

These speedups stem from KV caching and the scheduler S that restricts the forward pass to the
masked tokens that are supposed to be denoised and previously denoised clean tokens, avoiding
redundant computation—a feature MDLM lacks completely and BD3-LMs lack for the current block
under diffusion. As we restrict the NFEs to L, our method is slightly slower than AR models due to
delayed KV reuse—only possible from the penultimate step (Fig. 1).

6 RELATED WORK, DISCUSSION, AND CONCLUSION

AR models AR models generate tokens left-to-right and remain state-of-the-art in quality, but
suffer from slow, sequential inference and limited controllability. In contrast, Eso-LMs combine
AR-like generation in a sequential phase with any-order, parallel generation in an initial diffusion
phase. During diffusion, Eso-LMs support KV caching (Pope et al., 2022), previously exclusive to
AR models, matching their inference speed. Its quality approaches AR models as the sequential
phase increases.

Masked diffusion MDMs (Sahoo et al., 2024a; Shi et al., 2025) can generate multiple tokens per
step but perform bidirectional attention over the entire context. Eso-LMs improve their efficiency
in two ways. First, Eso-LMs restrict attention to clean and scheduled-to-denoise mask tokens only.
Second, leveraging the connection to AO-ARMs (Ou et al., 2025), Eso-LMs replace bidirectional
with causal attention to unlock KV caching. Though Eso-LMs may underperform MDLM in terms of

train

perplexity (e.g., at ag™™" = 1), they achieve a significantly better generation speed-quality tradeoff.

Block diffusion BD3-LMs (Arriola et al., 2025) use AR over blocks of tokens and apply MDM
within each. They interpolate between AR and MDMs by changing block size, whereas Eso-
LMs interpolate by varying the proportion of diffusion generation ay. Both support KV caching
differently: BD3-LMs cache block-level conditioning, while Eso-LMs cache clean-token KV values
across denoising steps. BD3-LMs’ short blocks (L’ < 16) significantly increase token conflicts (Liu
et al., 2024); poor samples in one block also severely affect the sample quality of subsequent blocks
due to the use of teacher forcing during training. Eso-LMs do not suffer from this problem.

Concurrent work Hu et al. (2025); Wu et al. (2025); Ma et al. (2025) also study KV caching for
diffusion language models. There are two keys differences between our work and the aforementioned
works. First, Eso-LMs perform a forward pass on a subset of token positions, while these methods
perform a bidirectional forward pass over the entire context like MDLM. Second, Eso-LMs are
trained end-to-end while concurrent methods rely on heuristics: they reuse KV values computed in
previous steps as training-free approximations to KV values in the current step.

Conclusion We introduce a new paradigm for language modeling that fuses autoregressive (AR)
models and masked diffusion models (MDMs), enabling seamless interpolation between the two
in both generation speed and sample quality. Our method introduces KV caching in MDMs while
preserving parallel generation, significantly accelerating inference. It outperforms block diffusion
methods in both speed and accuracy, setting a new state of the art on language modeling benchmarks.
Given we are working on language modeling, we carry the inherent risks and opportunities in this
line of research.
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APPENDIX A BACKGROUND

A.1 BD3-LMS HYPERPARAMETER 7" AND NUM_TRIES

In the original codebase of BD3-LMs (Arriola et al., 2025), the number of diffusion sampling steps
T’ for each block is set to 5000. This is an extremely high 7" considering the fact that the number
of tokens in each block L’ is at most 16. Having L’ < 16" and 7" = 5000 means that off-the-shelf
BD3-LMs are not performing parallel generation because tokens are almost always denoised one
at a time.

Further, we found that BD3-LMs’ codebase cherry-picks its samples. More specifically, to generate
a single sample, the codebase keeps generating new samples (up to num_tries times) until one
sample passes some quality-control test. By default, num_tries = 10 and the codebase reports
sampling failure when the 10 tries are exhausted with no samples passing the test. Empirically, we
found that sampling failures don’t occur for 7" = 5000.

To investigate the true performance of BD3-LMs for parallel generation, we set num_tries =1,
disable the quality-control test and evaluate samples from BD3-LMs across a wide range of 71" values
(Fig. 5). Here and in Fig. 5, T' means the sum of sampling steps across all blocks for BD3-LMs, e.g.,
L’ =16 and T = 4096 means that 7" = 4096/(1024/16)) = 64 sampling steps is used per block. In
contrast, BD3-LMs’ codebase uses 7" = 5000 by default, which corresponds to T' = oo in Figure
Fig. 5. For MDLM, T can be interpreted normally because it has no blocks.

As shown in Figure Fig. 5, as T' is decreased to enable more parallel generation, both sample quality
and sample diversity of BD3-LMs becomes significantly worse than MDLM which is discussed
in Sec. 6. We also found that increasing num_t ries can somewhat improve the sample entropy of
BD3-LMs (second row of Table 3) and avoid degenerate samples, but doing so provides less or no
improvements for AR and MDLM.

14
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All five IM-step checkpoints used in this section are publicly available Hugging Face checkpoints
uploaded by BD3-LMs authors. In particular, their BD3-LM checkpoints are finetuned from MDLM.
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Figure 5: Gen. Perplexity (|) with nucleus sampling (p = 0.9) against the number of sampling steps
for AR, MDLM and BD3-LMs trained for 1M steps. The number of sampling steps for AR is always
1024; we extend it to other values for easier comparison. The number next to each data point records
its sample entropy (1); a value < 5 usually indicates low diversity degenerate samples.

Table 3: Gen. PPL (]) and entropy (1) (in parentheses) with nucleus sampling (p = 0.9) for
AR, MDLM, and BD3-LM L’ = 16 trained for IM. We observe that the num_tries parameter
introduced in (Arriola et al., 2025) for BD3-LMs selectively helps BD3-LMs but not the baselines.
AR is not affected by T'.

BD3-LM L' = 16 MDLM AR
num_tries 1 10 1 10 1 10
T =1024 72.80 (5.35) 7771 (5.41) 4192 (5.36) 41.79(5.37) 13.03(5.26) 13.76(5.32)
T =256 356.02 (5.11) 440.69 (5.28) 45.07 (5.40) 44.57(5.39) 13.03(5.26) 13.76 (5.32)

APPENDIX B ESOTERIC LANGUAGE MODELS
B.1 MDM Lo0sSs DERIVATION
The NLL is given as:

~1og po(x) < ~Eyymgo () 10g 5 (x]20) + Dir (g0 (z0lx) [y (20))

= Eppegoi) | 2o logpy®(x‘z0, %) | + Dxr(q0(zolx) [ph™ (20)).  (16)
éEM(ZO)

Note that z; may contain clean tokens at indices exceeding the index ¢. As discussed in Sec. 3.1, the
AR log-likelihood is given as:

Z logpQR(xqzo,xd): Z log(xg(zo@xd),xe), a7
LeM(z0) LeM(z0)
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where we compute the loss only at the masked indices M(zg).

To compute the KL term in (16), we define a masked diffusion process over zg. For this diffusion
process, its forward marginal z{ ~ q;(-|x’) at time ¢ € [0,1] is the same as (1) but uses a noise
schedule with a range (ay)sefo,1] € [0, 0], a strictly decreasing function in ¢ with

as_o = ap such that z;_¢ = zo and ay_; = 0 such that z;.; = m>%. With T diffusion steps, we have:

D (g0 (z0) [P (20)) = Exy [log "M(M'X)]
Dy (ZO)

T

Py M (z0:1)

q(zo:1|x)
<E,. [log ———
0:1 [ og pg/IDM(ZO:l):l

(2,1 |21, %)
=Ezo:1l > IOgWH
te{£, 2.1} Po g 1%t

= Y By, [Dri(a(z- 4 12, %) [P (2, 4 120))]
t

Sahoo et al. (2024a) show that, as T" — oo, the above simplifies to:

O{,
= Brro. 100 [1_% 2 )bg(xé(zt),xf)]. (18)
€ Zt

Finally, combining (17) and (18), we get the desired result:

»CNELBO(X§ 9)

t=1
=Eppnge| = D, log(xh(zo ® x*%),x") | + f %Ez”qt > log(x5(z¢),x") | dt.
£eM(zo) =0 1—y LeM(zr)
AR loss MDM loss
(19)
B.2 TRAINING ALGORITHM
Algo. | outlines the complete training procedure.
Algorithm 1 Eso-LMs Training
Input: dataset D, batch size bs, forward noise process ¢ (:|x), model xy, learning rate n
while not converged do
X1, X250y Xps ™ D
fori < 1tobs/2 do > If a = 1, loop through 1 to bs.
zo ~ qo(-[x)
o ~ Pr, with constraints > Used to construct the attention bias A in x4 (Sec. 4)
Li < =X pem(ao) 10g(xG (20, x), %) > Estimator of Sequential Loss in (7)
end for
for i <« bs/2+1tobs do > If ag = 1, skip this loop.
Sample ¢ ~ U[0,1]
2z ~ ¢ (-[x)
o ~ Pr, with constraints > Used to construct the attention bias A in x4 (Sec. 4)
Li < 775 Ve 10g(xg (24), X]) > Estimator of MDM Loss in (7)
end for
0« 0-nVe X7 L
end while
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B.3 DENOISING SCHEDULE AND SAMPLING ALGORITHM

Eso-LMs perform two phases of sampling: the diffusion phase and the sequential phase. Within the
diffusion phase, tokens are denoised in random order and potentially in parallel. Within the sequential
phase, remaining mask tokens are denoised sequentially from left to right and one at a time.

First, to determine (i) the total number of tokens to denoise during the diffusion phase and (ii) the
number of tokens to denoise per diffusion step, we run a modified version of the first-hitting algorithm
proposed in Zheng et al. (2024). Suppose the sequence to generate has length L, the number of
discretization steps is 7', and the noise schedule is o (with a > 0). Let dt = 1/T. We iterate from

=1to 1 — dt (inclusive) for T steps. For each step, we compute the number of tokens to denoise at
time ¢ as

) . s —
n; = Binom (n = p e p = 2 t ) (20)
1- (677
where s = t — dt and nlfmaining = L— Y5 ny. When T is large, some n;’s could be zero. All the n;’s

produced by this algorithm are collected in an ordered list, except for the n,;’s that are zeros. We
denote the sum of all n;’s as n"MPM and define nR = L — nMPM,

We select nMPM token indices from [L] to denoise by diffusion and use the complementing subset
of token indices to denoise sequentially. For example, suppose L = 8 and the token indices are
[1,2,...,8]. Suppose we obtained n™PM = 5 from the algorithm above. Then, the diffusion indices
we may select are (1,3,4,6,7) and the complementing sequential indices are (2,5, 8). We further
randomly permute the diffusion indices to be, e.g., (3,1, 6,4, 7), for random-order denoising.

Given the list of non-zero n;’s and the permuted ordered set of diffusion indices, we create the
sampling schedule for diffusion by partitioning the diffusion indices per the n;’s. Suppose the list of
non-zero n;’s is (2, 1,2). Using it to partition the permuted set of diffusion indices (3,1,6,4,7), we
obtain the following sampling schedule for the diffusion phase: SMPM = ((3,1),(6),(4,7)). The
denoising schedule for the sequential phase is simply SR = ((2), (5), (8)). The unified sampling
schedule S is the concatenation of SMPM and SR, In this example, S = (S1, S, S3, S4, S5, S6)
where S1 = (3,1),52 = (6),55 = (4,7),54 = (2),55 = (5) and S = (8). This corresponds to 6
NFEs. Finally, S is passed to Algo. 2, which handles the rest of the sampling procedure. Connecting
back to the denoising ordering o discussed in Sec. D.3 and Sec. 4.2, we have o = (3,1,6,4,7,2,5,8)
in this example.

Algorithm 2 Eso-LMs Sampling

Input: sequence length L, unified sampling schedule &
z = [MASK_INDEX, ..., MASK_INDEX]

C={} > Indices of clean tokens
for i < 1to|S| do D> Sequential happens automatically when |C| > nMPM
logits « xp(z[C U S;]) > See Remark

logits « select 1ogits corresponding to .S;
z[S;] < categorical_sample (logits, dim=-1) [ logits has shape (|S;|,|V|)
C<Cu Sl

end for

Return: z

Remark. z[C U S;] denotes the subset of the tokens in z that are fed into the denoising model
xg. The position embeddings for a token z° € z[C U S;] is ensured to be the same as that in the
original sequence z. Refer to Sec. D.3 and Sec. 4.2 for computing the sampling attention bias A
for Eso-LMs (A) and Eso-LMs respectively. For Eso-LMs, due to the use of causal attention, xg is
able to cache the KV-values of a clean token the first time it is processed.

B.4 ATTENTION MECHANISM FOR DIFFUSION PHASE TRAINING

For a short and intuitive description, refer to Sec. 4.1.1.

In the diffusion phase, the denoising transformer receives z; ~ ¢;(.|x) as input, which contains mask
tokens to denoise, and x as target. We leverage the connection of MDMs with AO-ARMs (Ou et al.,
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2025), which establishes that mask tokens {z:|i ¢ M(z;)} can be denoised in any random order,

and clean tokens {z¢|i € C(z;)} also could have been generated in any random order. Hence, we
first sample a random ordering o ~ P, with the only constraint that clean tokens in z; precede mask

tokens in z; per o. We then constrain a clean token (zi)iec(zt) to only attend to itself and prior clean

tokens per o; a mask token (z);e M(z,) attends to clean tokens, itself, and prior mask tokens per o.
Hence we define the L x L attention bias by

Ao {0 if o™ (i) > 07" (5) V(4,5) € [L] x [L] @1
7 | oo otherwise. (22)

See Fig. 6 for an example.

Simplified Implementation A becomes a causal attention bias if we sort the rows and columns of
A by o (Fig. 6), which is simple to implement. We also sort the positional embeddings of z; by ¢ so
tokens keep their original positional embeddings. When calculating loss, we sort the target x by o.

MDLM Eso-LM Diffusion Phase —— Eso-LM Diffusion Phase
Attention Bias Attention Bias rows & oniumns_ Attention Bias (Sorted)

Target  Input E M E M M Target  Input E M M M E Target  Input EE M M M

o] o]
€] €]

[ = = [o] = [3]
"] = = [o] = [3]
z =z =z [][>]

(=] [m][e]

Figure 6: Comparison of attention biases for MDLM and Eso-LMs diffusion-phase training, before
and after sorting the rows and columns by o. represents O (attention) and gray represents —oo
(no attention). The clean sequenceis x = (A, B,C, D, E, F') and hence L = 6. After random masking,
we obtain z; = (A, M,C, M, M, F). The integers denote position indices: M(z;) = {2,4,5} and
C(z¢) ={1,3,6}. The ordering is o = (3,1,6,4,5,2) ~ Ps with clean tokens before mask tokens.

B.5 ATTENTION MECHANISM FOR SEQUENTIAL PHASE TRAINING

See Fig. 7 for an illustrative example. For full details, see Sec. 4.1.2.
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Eso-LM Sequential Phase Sort Eso-LM Sequential Phase
Attention Bias rows & columns Attention Bias (Sorted)

Target Input E M M M|E| ‘AlB]c|D[E]F] Target Input MM M [c[A[F[B]D[E]
(a][] ] c]
M

g i

L |

OO O

[mojw[n[>[o] 2z 2[n][>]o

[n[m[o]o[w[>][n]=

Figure 7: Comparison of attention biases for Eso-LMs sequential-phase training, before and after
sorting the rows and columns of each of the four L x L blocks by o. represents O (attention)
and gray represents —oo (no attention). The clean sequence is x = (A, B,C, D, E, F') and hence
L = 6. After random masking, we obtain zo = (A, M,C, M, M, F'). The integers denote the position
indices with M (zo) = {2,4,5} and C(zo) = {1, 3,6}. The random ordering among C(zo) is (3, 1,6).
Green highlights the extra connections added from clean tokens in zg so that the attention bias display
classic patterns after sorting — they don’t contribute to the transformer output because no other token
attends to clean tokens in z.

B.6 ATTENTION MECHANISM FOR SAMPLING

During sampling step k, given a partially masked sequence zy, the denoising model is required to
denoise the mask tokens {z|i € S} for S, € S = {S1,..., Sk} where K = |S|. We perform a
forward pass on the subset of tokens {z} |i € C(zj) U S }. Itis crucial to note that while performing a
forward pass on a subset of tokens, the positional embeddings of these tokens in the actual sequence
are preserved. Below we discuss the attention bias used in the forward pass.

Let Dy, = C(z) be the set of position indices of tokens decoded prior to step k. Importantly, we do
not need to make any distinction between tokens decoded in the diffusion phase or those decoded in
the sequential phase. This flexibility allows our sampler to use any denoising schedule S.

Let o be the denoising ordering derived from S. We define the L x L attention bias at step k by

A= {0 if o7 (i) 2 07" (j) ¥(i,4) € (D U Sk) x (Di U Sk) (23)
> —oo otherwise, (24)

which is simply causal attention applied to clean tokens generated prior to step k and mask tokens to
be decoded in step k, both sorted by o. Causal attention allows for KV caching, as shown in Fig. &.

19



Under review as a conference paper at ICLR 2026

®Dm@ﬁu D@EI a(oolo D®DDDDWE@DDDDDDE

0o 0000 o000 ©OOCOOO00 ©OoO0OODOIDD

oo

go 0000 cojdo0o0 O©OG6OGO|CO|0 EIEIEIEIEIEIE]D

—_— ___/ ___/ J
[ ) ( ) ) (ABcoErvH) (ABcDEFeH)
Phase Sequential Phase

Figure 8: (Copy of Fig. 1) Efficient generation of an example sequence with Eso-LMs. During

Phase, Eso-LMs denoise one or more, potentially non-neighboring mask tokens (V1) per
step. During Sequential Phase, Eso-LMs denoise the remaining mask tokens one at a time from left
to right. Eso-LMs allows for KV caching in both phases using just a single unified KV cache: blue
bounding boxes enclose transformer cells that are building their KV cache; a cell becomes blue once
its KV cache is built. The sequences below the transformers depict tokens in their natural order.

APPENDIX C EXPERIMENTAL DETAILS

C.1 LOW DISCREPANCY SAMPLER

To reduce variance during training we use a low-discrepancy sampler, similar to that proposed Kingma
et al. (2021). Specifically, when processing a minibatch of N samples, instead of independently
sampling N from a uniform distribution, we partition the unit interval and sample the time step for
each sequence i € {1,..., N'} from a different portion of the interval ¢; ~ U[ 5}, % ]. This ensures
that our sampled timesteps are more evenly spaced across the interval [0, 1], reducing ELBO variance.

C.2 LIKELIHOOD EVALUATION

We use a single monte-carlo estimate for ¢ for each example to evaluate the likelihood. We use a low
discrepancy sampler (Kingma et al., 2021) to reduce the variance of the estimate.

C.3 LANGUAGE MODELING

We detokenize the One Billion Words dataset following Lou et al. (2024); Sahoo et al. (2024a),
whose code can be found here'. We tokenize the One Billion Words dataset with the
bert-base-uncased tokenizer, following Austin et al. (2021); He et al. (2022). We concatenate
and wrap sequences (also known as sequence packing) to a length of 128 (Raffel et al., 2020). When
wrapping, we add the [CLS] token in-between concatenated sequences. The final preprocessed
sequences also have the [CLS] token as their first and last token. Unlike Sahoo et al. (2024a);
Lou et al. (2024); He et al. (2022), we apply sequence packing to LM 1B, making our setup more
challenging and resulting in higher perplexities given the same model (Table 1).

We tokenize OpenWebText with the GPT2 (Radford et al., 2019) tokenizer. We concatenate and
wrap them to a length of 1,024. When wrapping, we add the eos token in-between concatenated
sequences. Unlike for One Billion Words, the final preprocessed sequences for OpenWebText do not
have special tokens as their first and last token. Since OpenWebText does not have a test split, we
leave the last 100k docs as test.

Eso-LMs shares the same parameterization as our autoregressive baseline, SEDD, MDLM, UDLM,
and DUO: a modified diffusion transformer architecture (Peebles & Xie, 2023) from Lou et al. (2024);
Sahoo et al. (2024a). We use 12 layers, a hidden dimension of 768, 12 attention heads. Eso-LMs
do not use timestep embedding used in uniform diffusion models (SEDD Uniform, UDLM, DUO).
Word embeddings are not tied between the input and output. We train BD3-LMs using the original
code provided by their authors.

"https://github.com/louaaron/Score-Entropy-Discrete-Diffusion/blob/main/data.py
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We use the log-linear noise schedule oy = ag(1 — ). We use the AdamW optimizer with a batch size
of 512, constant learning rate warmup from O to a learning rate of 3e-4 for 2,500 steps. We use a
constant learning rate for 1M steps on One Billion Words and for 250K steps for OpenWebText. We
use a dropout rate of 0.1. We train models on H200 GPUs. On OpenWebText for 250K steps, training
takes ~27 hours when ag = 1 and ~37 hours when oy < 1 due to the additional AR loss. Throughput
is benchmarked on H200 GPUs and latency is benchmarked on A6000 GPUs.

APPENDIX D ES0O-LMS (A) AS AN ABLATION

D.1 ATTENTION MECHANISM FOR DIFFUSION PHASE TRAINING

The denoising transformer receives z; ~ g;(.|x) as input, which contains the mask tokens to denoise,
and x as target. A random ordering o ~ Py, is sampled with the only constraint that clean tokens in
z; precede mask tokens in z; in 0. We define the L x L attention bias by

0 V(i,7) €C(zt) x C(zt) (25)
Aij=130 ifo (@) 20 (§) V(i,5) e M(ze) x [L] (26)
—oco  otherwise. (27)

Clean tokens {z}|i € C(z,)} have bidirectional attention among them (25), while a mask token
(Z)iem(z,) attends to clean tokens, itself and prior mask tokens per o (26). We can ignore the
ordering among clean tokens in ¢ due to the use of bidirectional attention. See Fig. 9 for an example.

Simplified Implementation A becomes a Prefix-LM (Raffel et al., 2020) attention bias if we sort
the rows and columns of A by o (Fig. 6), which is simple to implement.

MDLM Eso-LM (A) Diffusion Phase —— Eso-LM (A) Diffusion Phase
Attention Bias Attention Bias owso e Attention Bias (Sorted)

Target  Input E M @ M M E Target  Input E M @ M M E Target  Input EE M M M

[4] (4]

™ m (4]

[F]

[p] M [p] « m [o] M

E M E M E M

[F] [¥] M
Figure 9: Comparing attention biases for MDLM and Eso-LMs (A) diffusion-phase training, before
and after sorting the rows and columns by o. represents 0 (attention) and gray represents —oo

(no attention). The clean sequence is x = (A, B,C, D, E, F') and hence L = 6. After random masking,
we obtain z; = (A, M,C, M, M, F). The integers denote position indices: M(z;) = {2,4,5} and
C(z¢) ={1,3,6}. 0 =(3,1,6,4,5,2) ~ Pg with clean tokens before mask tokens.

D.2 ATTENTION MECHANISM FOR SEQUENTIAL PHASE TRAINING

The denoising transformer receives the concatenated sequence zg ® x € V& as input, where zg ~
do(.|x) contains the mask tokens to denoise, and x as target. We define the 2L x 2L attention bias by

Aij=0 ifi=35Y(i,5) € M(z0) x M(z0) (28)
Aijir =0 V(i,5) € M(20) x C(20) (29)
Aijer =0 ifi>jv(i,7) € M(zo) x M(20) (30)
Airrjrr =0 V(,7) € C(zo) x C(2zo) (€29)]
Airrjrn =0 V(i,7) € M(z0) xC(20) (32)
Aivrjor =0 ifi>jv(i,7) e M(zo)x M(z0) (33)
A;j =—o0 otherwise. (34)
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See Fig. 10 for an example. This construction ensures that a mask token (z('))Ze M(z0) attends to (i)
itself (28), (ii) the clean tokens {x7]j €C(z0)} (29) and (iii) the clean versions of mask tokens on its
left {x7|j € M(z0),i > j} (30). A clean token (z{);ec(s,) can attend to anything because no other
token attends to them (34). The attention mechanism for tokens in the clean context xg is described
as follows. Tokens {x'|i € C(zo)} have bidirectional attention (31). A clean token corresponding toa
mask token,(x") je a1 (z,) attends to {x7|j € C(zo)} (32) and {x7|j € M(z0),i > j} (3

Simplified Implementation Let o be an ordering such that: (i) clean tokens in z( precede mask
tokens in zg in o and (i1) mask tokens in zg are in natural order in o. The ordering among clean
tokens {x’|i € C(z¢)} can be ignored with bidirectional attention. When the rows and columns of
each of the four L-by-L blocks are sorted by o, A shows classic attention patterns (Fig. 10) that are
simple to implement.

Eso-LM (A) Sequential Phase - Eso-LM (A) Sequential Phase
Attention Bias rows & columns Attention Bias (Sorted)

Taget nput[A]m[c]m m[F][A[B[C[D[E[F]  Taroet imput [G[ATF]m M M [C[AIF[B[D]E
(Al []

[

=

L |

s
OO O ]

[(n[m[o[o[w[>][n]z =[]z
m[o[w[n[>[o] 22 2[n]>[0]

Figure 10: Comparison of attention biases for Eso-LMs (A) sequential-phase training, before and
after sorting the rows and columns of each of the four L x L blocks by o. represents 0
(attention) and gray represents —oo (no attention). The clean sequence is x = (A, B,C, D, E, F') and
hence L = 6. After random masking, we obtain zg = (A, M, C, M, M, F'). The integers denote the
position indices with M(zg) = {2,4,5} and C(z¢) = {1, 3,6}. The random ordering among C(z)
is (3,1,6). highlights the extra connections added from clean tokens in zg so that the attention
bias display classic patterns after sorting — they don’t contribute to the transformer output because no
other token attends to clean tokens in zg.

D.3 ATTENTION MECHANISM FOR SAMPLING

During diffusion or sequential sampling, given a partially masked sequence z, the denoising model
is required to denoise the mask tokens {z |i € Sy} for S, € S = {S1,..., Sk} where K = |S|. We
perform a forward pass on the subset of tokens {z: |i € C(z) U Sk }. Itis crucial to note that while
performing a forward pass on a subset of tokens, the positional embeddings of these tokens in the
actual sequence are preserved. Below we discuss the attention bias used in the forward pass.

Let DMPM be the set of indices of tokens decoded in the diffusion phase prior to step k and D4R be
that for the sequential phase. Let ordering o be the order in which we denoise tokens defined by S.
We define the L x L attention bias at step k by

0 V(i,5) € DYPM x DYPM (35)

0 V(i,j) e D" x D™ (36)

A = 0 ifi>jV(i,j)e DR x DR (37)
’ 0 V(i,j) €Sk x (DYPMy DR (38)

0 ifo (@) 20 (§) V(i,4) € Sk x Sk (39)

—oo otherwise. (40)
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Clean tokens decoded during diffusion {z}|i ¢ D}PM} have bidirectional attention among them (35).
A clean token decoded sequentially (z},);. DR attends to clean tokens decoded during diffusion

{2]|j € DMPM} (36), itself, and prior clean tokens decoded sequentially {z|j € DR, > 5} (37).
A mask token to denoise (2} );cs, attends to all decoded clean tokens {z7|j € D}MPM u DR} (38),
itself, and prior mask tokens to denoise per o: {zi|j € Sg,0 (i) > 71 (j)} (39). Mask tokens not
scheduled to denoise (2}, );cs., can attend to anything because no other token attends to them (40).

Fig. 11 shows how Eso-LMs (A) generates with KV caching only during the sequential phase.
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0o coo0o0 000000 (OOCOOCOO0 @e6@OO0O00
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Phase Sequential Phase
Figure 11: Generation of an example sequence with Eso-LMs (A). During Phase, Eso-LMs

denoise one or more, potentially non-neighboring mask tokens (V!) per step. During Sequential
Phase, Eso-LMs denoise the remaining mask tokens one at a time from left to right. Eso-LMs (A)
allows for KV caching in sequential phase only: blue bounding boxes enclose transformer cells that
are building their KV cache; a cell becomes blue once its KV cache is built. The sequences below
the transformers depict tokens in their natural order.

APPENDIX E  ADDITIONAL EXPERIMENTS

E.1 ABLATION ON SPLIT PROPORTION

See Table 4.

Table 4: Test perplexities () on LM1B for Eso-LMs (A) trained for 500K vs. the proportion « of
examples in each batch used for evaluating the MDM loss in (7) during training. Remaining examples
in each batch are used for evaluating the AR loss in (7) during training.

k=07 k=05 k=025 £k=0.125

Eso-LMs (A)
ap =0.5 32.25 31.53  Diverged Diverged
ap =0.25 30.49 29.33  Diverged Diverged

ap = 0.125 27.76 26.73  Diverged Diverged
ap =0.0625 25.92 25.07 Diverged Diverged

E.2 ZERO-SHOT LIKELIHOOD EVALUATION

We explore models’ ability to generalize by taking models trained on OWT and evaluating how well
they model unseen datasets (Table 5). We compare the perplexities of our Eso-LMs with SEDD
(Austin et al., 2021), MDLM (Sahoo et al., 2024a), BD3-LMs (Arriola et al., 2025), and an AR
Transformer language model. Our zero-shot datasets are validation splits of Penn Tree Bank (PTB;
(Marcus et al., 1993)), Wikitext (Merity et al., 2016), LM 1B, Lambada (Paperno et al., 2016), AG
News (Zhang et al., 2015), and Scientific Papers (Pubmed and Arxiv subsets; (Cohan et al., 2018)).
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Table 5: Zero-shot perplexities (|) of models trained for 250K steps on OWT. We report bounds for
diffusion models and interpolation methods. Numbers for AR were taken from (Arriola et al., 2025).

PTB Wikitext LMIB Lambada AG News Pubmed Arxiv

AR 81.07 25.32 51.14 52.13 52.11 48.59 41.22
MDLM 93.82 36.89 69.45 53.05 67.33 49.47 43.84
SEDD Absorb 99.59 38.55 72.51 52.16 72.62 47.07 41.18
BD3-LM (L' =16)  90.63 33.14 64.88 53.09 62.5 43.25 39.82
Eso-LMs (Ours)
ap =1 126.29 45.08 82.01 61.37 98.22 62.37 55.76
ap=0.5 110.70 39.57 75.75 57.33 86.65 60.20 53.78
ap =0.25 105.19 37.32 67.69 60.15 75.74 62.45 55.31
ap =0.125 97.46 35.65 60.11 69.13 65.26 65.27 57.4

E.3 IMPORTANCE-WEIGHTED BOUNDS
See Table 6.

Table 6: Test perplexities (|) on OWT for Eso-LMs trained for 250K steps, computed using
importance-weighted bounds. We report multiple estimates for each o by varying the number
of orderings sampled (K € {1,10, 20,50, 100}) per batch of 32 examples in the OWT test set.

K=1 K=10 K=20 K=50 K-=100

Eso-LMs (Ours)

apg =1 31.71 30.50 30.26 29.99 29.80
ap =0.5 28.95 27.71 27.53 27.27 27.09
ap =0.25 25.23 24.16 23.95 23.72 23.56
oo =0.125 22.24 21.35 21.17 20.98 20.86

E.4 ESo0-LMS (A) LIKELTHOOD EVALUATION
See Table 7 and Table 8.

Table 7: Test perplexities (}) on LM 1B for Eso-LMs and Eso-LMs (A) trained for 1M steps.

o Eso-LMs Eso-LMs (A)
1.0 35.00 30.96
0.5 32.38 30.51
0.25 29.14 28.44
0.125 26.21 25.97
0.0625 24.51 24.51

Table 8: Test perplexities () on OWT for Eso-LMs and Eso-LMs (A) trained for 250K steps.

o Eso-LMs  Eso-LMs (A)

1.0 30.06 26.21
0.5 27.85 25.38
0.25 24.73 23.78
0.125 21.87 21.47

E.5 PARETO FRONTIER OF ESO-LMS WITH aj**™ =1

See Fig. 12 and Fig. 13 for a comparison of the Pareto frontier of Eso-LMs trained with a*" = 1
against Pareto frontiers reported in the main paper (Fig. 3 and Fig. 4).
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Figure 12: Eso-LMs establish SOTA on the
Pareto frontier of sampling speed and Gen. PPL.

Figure 13: Eso-LMs establish SOTA on the
Pareto frontier of sampling speed and MAUVE.

E.6 HEURISTIC IMPROVED SAMPLER

We propose a heuristic improved sampler that only performs parallel decoding for evenly spaced
positions across the sequence length. For example, with length 1024 and parallelism 4, the model
first predicts positions 0, 255, 511, and 767 simultaneously. Subsequent steps need not target adjacent
indices (e.g., 1, 256, 512, and 768), but instead continue to perform parallel decoding for a random
set of 4 interleaved, far-apart positions. This process is iterated until the sequence is filled.

We use Eso-LMs trained with o = 1 and generate samples by fixing a8 = 1 and varying T to
control NFEs and sampling time. For the improved sampler, we use Eso-LMs trained with af4" = 1
and generate samples by varying the amount of parallelism, i.e., number of tokens generated in
parallel: {64,32,16,8,4,2,1}. We find that the sampler significantly improves generation quality at

low NFEs (Fig. 14 and Fig. 15) while offering less improvements at high NFEs, which is expected.
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Figure 15: Heuristic improved sampler improves
MAUVE Pareto frontier at low NFEs.

Figure 14: Heuristic improved sampler improves
Gen. PPL Pareto frontier at low NFEs.
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E.7 GENERATION LATENCY AT LONG CONTEXT

Table 9: Sampling time ({) in seconds for sequence lengths L € {2048,8192} with NFEs set to L for
all methods. Reported values are mean,, over 5 runs.

Method L =2048 L =8192
AR 13.30.0 54.00.2
MDLM 201.30.4 5438.33.3

BD3-LMs (L' = 4) 24.30.7 312.0, .7
BD3-LMs (L' =16) 21.3,., 268.1; 5
Eso-LMs (Ours) 14.6, 3 82.1¢5

Table 10: Gen. PPL ({), entropy, and sampling time (}) in seconds for sequence length L = 10240
with NFEs set to L for all methods. Reported values for sampling time are mean,, over 5 runs.

Method Gen. PPL  Entropy  Time (seconds)
BD3-LMs (L' = 4) . 29.50 6.5 588.6; >
Eso-LM (Ours) (o™ = o8 = 0.125)  23.40 6.3 116.4,.4

E.8 QUALITY OF GENERATED SAMPLES BY MODELS TRAINED ON OWT

In Fig. 3 and Fig. 4 we present how the sample quality changes by varying NFEs. The individual
values for Gen. PPL, entropy and MAUVE can be found in Table |1 (Eso-LMs), Table 12 (MDLM),
and Table 13 (BD3-LMs).
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Table 11: Gen. PPL (}), entropies (1), and MAUVE (1) of samples by Eso-LMs trained for 250K
steps on OWT.

ozgmi" agval T NFE  Gen.PPL(}) Entropy MAUVE ()  Sampling Time (sec) ({)

1 0.0625 16 976 25.36 5.1 0.7048 36.75

1 0.0625 128 1010 24.74 5.1 0.6753 37.32

1 0.0625 1024 1022 24.23 5.1 0.6925 36.99

1 0.25 16 784 51.11 5.4 0.4996 33.89

1 0.25 128 879 4331 53 0.5875 35.11

1 0.25 1024 994 43.36 53 0.5748 36.69

1 0.5 16 529 72.16 5.5 0.2885 26.93

1 0.5 128 639 48.80 53 0.5333 29.03

1 0.5 1024 913 47.72 53 0.5549 34.83

1 1 16 16 119.89 5.5 0.0796 297

1 1 32 32 71.55 55 0.2468 3.40

1 1 64 64 61.43 5.4 0.4166 4.39

1 1 128 128 53.28 5.4 0.4467 6.40

1 1 256 251 50.76 53 0.4766 10.51

1 1 1024 646 49.05 53 0.4939 24.19

1 1 4096 906 48.86 53 0.5425 33.33
0.5 0.0625 16 976 27.52 53 0.7905 36.75
0.5 0.0625 128 1010 27.84 53 0.8227 37.32
0.5 18 1024 1022 27.90 53 0.8160 36.99
0.5 0.25 16 784 45.81 5.4 0.5998 33.89
0.5 0.25 128 879 39.22 5.4 0.7066 35.11
0.5 0.25 1024 994 40.50 5.4 0.7330 36.69
0.5 0.5 16 529 70.78 5.5 0.3651 26.93
0.5 0.5 128 639 48.41 5.4 0.5870 29.03
0.5 0.5 1024 913 48.81 5.4 0.6563 34.83
0.5 1 16 16 125.21 55 0.0701 297
0.5 1 32 32 81.37 55 0.2118 3.40
0.5 1 64 64 64.04 5.4 0.3534 4.39
0.5 1 128 128 56.64 5.4 0.4232 6.40
0.5 1 256 251 53.53 5.4 0.4564 10.51
0.5 1 1024 646 53.24 5.4 0.5110 24.19
0.5 1 4096 906 54.11 5.4 0.5315 33.33
0.25 0.0625 16 976 24.20 5.4 0.7908 36.75
0.25 0.0625 128 1010 25.48 5.4 0.8344 37.32
0.25 0.0625 1024 1022 25.97 5.4 0.8312 36.99
0.25 0.25 16 784 45.48 5.4 0.6151 33.89
0.25 0.25 128 879 40.08 5.4 0.6955 35.11
0.25 0.25 1024 994 42.56 5.4 0.7000 36.69
0.25 0.5 16 529 79.84 5.5 0.1846 26.93
0.25 0.5 128 639 56.05 5.4 0.4125 29.03
0.25 0.5 1024 913 58.20 5.4 0.4558 34.83
0.25 1 16 16 154.93 55 0.0289 297
0.25 1 32 32 103.39 55 0.0798 3.40
0.25 1 64 64 82.31 5.4 0.1412 4.39
0.25 1 128 128 73.17 5.4 0.1801 6.40
0.25 1 256 251 69.82 5.4 0.1967 10.51
0.25 1 1024 646 71.42 5.4 0.2491 24.19
0.25 1 4096 906 74.39 5.4 0.2410 33.33
0.125 0.0625 16 976 23.16 5.4 0.8245 36.75
0.125 0.0625 128 1010 23.83 5.4 0.8253 37.32
0.125 0.0625 1024 1022 23.89 5.4 0.8318 36.99
0.125 0.25 16 784 50.32 5.5 0.4867 33.89
0.125 0.25 128 879 45.24 5.4 0.5590 35.11
0.125 0.25 1024 994 47.24 5.4 0.5954 36.69
0.125 0.5 16 529 100.22 5.5 0.0551 26.93
0.125 0.5 128 639 72.93 5.4 0.1461 29.03
0.125 0.5 1024 913 75.42 5.4 0.1834 34.83
0.125 1 16 16 227.34 55 0.0104 2.97
0.125 1 32 32 160.01 5.4 0.0174 3.40
0.125 1 64 64 131.22 5.4 0.0259 4.39
0.125 1 128 128 118.04 5.4 0.0299 6.40
0.125 1 256 251 113.92 5.4 0.0337 10.51
0.125 1 1024 646 115.17 5.4 0.0353 24.19
0.125 1 4096 906 118.44 5.4 0.0348 33.33
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Table 12: Gen. PPL (]), entropies and MAUVE (1) of samples by MDLM trained for 250K steps on
OWT.

T NFE Gen. PPL () Entropy MAUVE (1) Sampling Time (sec) ({)

8 8 246.70 5.6 0.0134 7.19
16 16 109.70 5.5 0.1353 13.81
32 32 67.44 55 0.4195 27.10
48 48 55.96 5.5 0.5062 39.42
64 64 51.11 54 0.6123 53.48
128 128 43.58 5.4 0.6477 106.96
256 251 40.44 54 0.6924 213.92
1024 657 37.15 53 0.7267 566.19
4096 907 36.48 53 0.7026 752.06

Table 13: Gen. PPL (|), entropies and MAUVE (1) of samples by BD3-LMs trained for 250K steps
on OWT.

Block size T T’ NFE Gen. PPL(]) Entropy MAUVE (1) Sampling Time (sec) ()
4 256 1 512 184.86 4.00 0.0048 26.26
4 512 2 740 216.73 4.81 0.0081 37.44
4 1024 4 968 110.22 5.14 0.0533 49.20
4 2048 8 1124 51.92 5.22 0.3515 56.77
4 4096 16 1180 34.93 5.24 0.6726 60.32
8 256 2 383 267.26 4.69 0.0061 20.58
8 512 4 584 170.50 5.04 0.0168 31.44
8 1024 8 812 80.31 5.20 0.1479 42.14
8 2048 16 951 47.16 5.22 0.5723 50.01
8 4096 32 1051 36.34 5.25 0.6807 55.53
16 256 4 316 240.20 5.10 0.0114 19.36
16 512 8 515 112.56 5.28 0.0971 31.17
16 1024 16 703 61.82 5.30 0.4067 43.76
16 2048 32 881 44.06 5.29 0.6383 53.79
16 4096 64 984 37.61 5.29 0.7248 58.82
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E.9 EXAMPLE GENERATED SAMPLES BY MODELS TRAINED ON OWT

to be known to the grand jury yet, but it has been explained he could not immediately cause any damage to happen, such as
preventing a clean break from someone hacked or creating a fake email. (And again, Hillary’s tweet never caused the genesis of
the controversy as it was announced, his tweeting violation could easily have changed the course of the matter.)

The Times:

... Senator John McCain doesn’s State of the Union. .. should really have to decide—mossipally—whether they believe to allow a
Trump presidency in the first place. There is no situation in which Hillary’s campaign could choose to take the matter in a different
light.

Except for just one thing what Hillary did in her son’s law book there was her “crook of mess” notion.

At this, it is irrelevant today to ask John Podesta to choose someone in Congress so it will be up until the election year, to solve
the problems through this simple conceptual framework, which is simple, soft and unhinged and abstract, to create an all too
common threadbare” solution.

As an excuse to say, we’re okay with the recent DOJ’s somewhat unusual way of saying only what the rest of us are thinking in
the know.

They knew. . . the Democratic people of this country set up the proper system to identify.

The legal partner of the campaign and FBI are working with the federal investigation into the Trump campaign for violations of
campaign laws under V.W. and Harry Truman.

A joint team star Michael Burnett was allegedly killed after a dog survived a shooting attack by a suspect when cops showed
up for a Texas sheriff dog in an afternoon raid on a joint squad and a Texas Border Patrol agent with the animal owner of the
state filed charges against Sheriff Edell, Fox and AP reports.Police had been conducting an eight-hour search in order to find
the dog dead sometime Monday, during the time of the 100th anniversary of the Golden Gabriel Shooting Act.That was when
the Bureau of Investigation allowed the police to close the area after a group of dogs were called to the events, they were, at
that time they were found dead.The authorities pulled more than 20 pick-up dogs but were released. Sheriff Edell insisted on
using the dogs, given to sheriff’s deputies as "an excellent dog.""I’'m going further," to deputies and reporters, the sheriff said
officers had pulled on the rear door of a drug smuggler and a baggie, which were immediately spotted by private security cameras
at the scene.A cat had reportedly appeared on a front door in front of a television screen inside the house in the shooting, Dina
Sootoot, who plays...Shanna and A Prairie Winage, were booked for a movie position in the U.S, with a movie star movie and
a party dog in their midst.She formerly played Z.A.. During a hour-long episode, on the Texas Weill, he admitted during the
interrogation that Mr. Jupp suffered from dramatic seizures that were preceded by a rash.The animal’s owner, a doctor, confirmed
at the scene that he was overdosed to the illegal drug, a week later was later charged with administering Billing Aid Services. Upon
returning to the scene, Fox reported, Mr. Jupp sustained only minor injuries while Mr. Jupp subsequently passed away.Having
later moved from Middle Tennessee to South Florida, Mr. Jupp moved to Florida in 2007 on a contractual basis (and with a
Green Bay film) and this ultimately landed him in solitary confinement three weeks in a drug row in the desert. Advertisement

"There is a meaningful escape, zero suffering. Repeat Five, jail! Repeat Five Corners!” -and-Healthy physical health Bill (Public
Domain via Getty Images, May17, 2015) Much of the more recently named London Department of Public Buildings Embley

(Flea) made a new investment in approximately $5 Million with the acquisition of a single new office unit comprised of parking
spaces and a new 1.6-store five-story studio at the corner of its current office in Coho, London, as part of a three-store-off luxury
brick-and-mortar store and several hundred multi-unit studio units, which also include the new airport, under-construction office,
reports [LinkedIn.com](http:/linkedin.com/) The office is conveniently situated in a building "just over a shopping plaza" and has
been "asked for purchase by city officials but not to allow it there one could use."

Figure 16: An unconditional sample (L = 1024) from Eso-LM (ag“i“ = 1) trained for 250K on OWT
using inference-time hyperparameters o' = 1 and 7' = 1024. This corresponds to an NFE of about
646 and a sampling time of 24.19 seconds per batch of 512 samples. Gen. PPL, entropy and MAUVE
are 49.05, 5.3 and 0.4939 respectively.
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and for much of its population, Auckland is still of significant interest to both companies.

The public can also afford to copy companies such as Gotham, with offices in New York suburbs such as New York, followed by
larger commercial spaces such as London’s Empire Bridge and Gotham.

Small Business; but have office space in Auckland; expertise perfect for marketing results.

- Startup advertising work. Put on billboards such as National Grid are ideal for digital marketing work. A flat screen television
that got the mind-set

5 hours-by-hour traffic must be in television advertising
The Michaelarinen Gates Shayka-Tin did with his first down in marketing was to Compromise your business, very easy to do.

As the pressure from you surrounds it with work and you’re quite healthy, it is still possible to invest just a few dollars a month —
your salary or whatever, the money chosen to share the press — via a marketing campaign with FreeMedia.

He said she used to think that the modern internet was paramount: “Follow not one of the most popular people in the world. If
they are 50, find a way to have two kids their age. Or, if they are a celebrity, too. The same applies very well, television has that.

It’s a way, at least in my opinion, to connect yourself and others and if you sell yourself a bit of confidence.
Read more:

“Can you afford an online lifestyle where you don’t know it? Tell your opinion or credibility through information or speech. If
you can, you don’t need it all the time.”

On the other hand, of course, it’s a much better thing, for example, to need to offer up a genuine chance to walk with people
looking, on camera, and in a hands-on manner of confidence.

Take all of that approach. “You can also try and narrow down the perspective everything that was natural would be easy, which is
true if advertisements are not marketed that way.

When advertising that someone named you said was a television advertisement was, when, think of television, the internet was it —
and they have no editorial authority; there’s no PR for Free Media, but every advertisement is a commercial of their own.

Is that that true?

Yeah. No. Because you’ve worked in advertising for a very long, maybe for a while. They worked and made friends with their
jobs today and you still haven’t thought about it at all.

It is a world at best.

For me, from the newspapers, to the advent of the internet, I was constantly looking to appeal to the “new people” that I always
connected with, and everyone loved, Twitter.

But now it is still true.
If you haven’t all the young author books. Download our free online video guide for your audience for this expert advice.

Read the full interview: Tom Moss covers hundreds of news outlets in Japan and Australia. His work is for letters and written
back millions of times. From riding horses to e-reading devices, ATM machines.

For us their ads for these pages already take up more than 1.5 viewers and 30 hours a week. The opportunity to read things and
bring you more.

“The internet is never digital for everybody, I would be thrilled if it’s the user I've seen before,” he said,: “The reality is there is
this new age for business is that you’re the best as you possibly can and have a feeling they deserve it.

Don’t look for cheap TV, and no business editor should pay attention to it.<lendoftext>In a 2017 television news magazine
interview, newly-minted investor Warren Buffett noted that the top income level was increasing at approximately half that amount,
but the 2016 American economy "has been operating at a level that most thought would have been a bubble burst."

Buffett said that those years or so, an average American has been earning almost 40 percent in the last quarter, including this for
the past five years. That is why, as traditional high earners, businesses must make enormous gains in income tax’re worth about 20
percent of their CEO’s income. Even those high earners make more.

Advertisement

Advertisement

In the beginning to end, although most sports today make the earnings for all Americans, in the past decades have provided the
entertainment revenue, especially at the home entertainment market. Most people have very little disposable income — jobs, living
games and using for free. That’s their source of income, but they don’t provide nearly enough information. So a news article is

entitled, "Why Americans are working too hard and don’t make more."

Advertisement

Here’s the American experiment

Figure 17: An unconditional sample (L = 1024) from Eso-LM (agai" = 1) trained for 250K on OWT
using inference-time hyperparameters o™ = 1 and 7' = 64. This corresponds to an NFE of about 64
and a sampling time of 4.39 seconds per batch of 512 samples. Gen. PPL, entropy and MAUVE are

61.43, 5.4 and 0.4166 respectively. 30
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the modern Thecat race over where this may turn and welcome themselves with their futuristic agility. However, the could be and
possibly not at all that backed up. In mentioned, I think the major key issues is balance, ie perhaps the best weapon is a right
handed side. While balance - any - always has a presence, a lot of things should never stay like the spine and lean to both legs.
‘Whilst it how wide and, you can also swing wide this making it impossible for a pinch bat guard without weapons. With contrast,
the With more than one side, there will be more options than the if it, but allow the the most difficult primary weapon of being in
any and balancing out the balanced side. For example, the best players need sharp but when the backup b bat side might be stiff
and this be easy. you could swing back then-trod right bat side and a double-beast it and that would work. There for me is a smart
side but weird bat side does not bats well So that is always a balance, the bats may not like it but they always might be with one
side anyway. bob is skills are learnt and if every bat, has a try out and wrong side to manage to even in and out of the bat. Work to
make it and when easy. this is perhaps another issue. to have able to bat in whatever the wrong side is required for a bat that
would always last and can always develop into a game especially though trying to have met your bat a bit before is also an issue.
With a batter knows their T bat regularly, occasionally you might even pick wiff bat which just means no. I know that it worked
but when I had. first try duff bat regularly and return to how they more or less. good

L :There it doesnt seem to work and said it doesn’t work the way you want to do it would also work. It showed you had a nice
batting set or secondary bat side and would be be great anders to trouble guys with good tiered shots and can I say this from a 'y
bat perspective as I and have both feel as to some level of smart bat. Most of the time, however, I don’t think they are a very good
bat. they are novice batters and sometimes not the only good bat for even the best right foot bat. On today’s point of course, they
just have to be third first or second second defensive often on the bat left side, the bat right bat side or on the end of the bat, and
have a couple of hands on used to holding the bat bat to the other side of the bat. bat bat is very powerful.

L :So it is working well at best, there is still a little bit of ability to park your bat as expected, but bat won’t work with to base error
bats and hitting some or-side could still possible. How do you decide to just start the third bats which would make the bat look
effective while not very will be one for respond, or R :In a smaller group of slower bat hitters particularly bats u a it is not very
weak bat they will think they are playing better with bat than short bat, bat has already developed in terms of bat learning but I do
not believe that the bat learned

L : If you are doing bantops, I have people not trying to learn anything. hassleds’s bat learning. you should always learn bantops.

L : Well bantops is bat or Obleto bat is bat can get you really into a bat training box instead of being it being training box or be
described as a bat session at the light of baters what.

L : They are easy to understand bat training designed bats. ly designing bats are not so and useful but maybe they are better, one
being able to bat right hand in right hand defend left left bat bat bat is than batting left hook bat bat is than holding bat bat. at least
this difference has started to play out recently for myself. play time between defensive and offensive bat, the do of said bat bat
is near when he stole bat from him. but they bat the ball from bat bat to bat bat. against bat bat position too bats like that, you
have attack average bat with short bat. you’re going to catch the bat very low there and still with ball kick into bat bat. in certain
situations, when a bat bat can be dealt, sometimes. on the end of the bat, maybe third bat, another bat which is third bat, so if bat
bats at third bat and the second bat a second bat. then they go to a third bat or hold second bat. they bat handle it better. you can
take bat to third second main bat. end of the bat so then bat to your main bat from where bat go second bat. bat, second bat. bat,
the bat, on deck. double bats, extra bat, always with bat and bat. no extra bat. less bat bat. A little extra bats”

Figure 18: An unconditional sample (L = 1024) from BD3-LM (L’ = 4) trained for 250K on OWT
using inference-time hyperparameter 7' = 256 (T” = 1). This corresponds to an NFE of about 512
and a sampling time of 26.26 seconds per batch of 512 samples. Gen. PPL, entropy and MAUVE are
184.86, 4.0 and 0.0048 respectively. Note that this sample appears incoherent compared to those with
similar sampling time from Eso-LMs.

APPENDIX F THE USE OF LARGE LANGUAGE MODELS

We used LLMs in paper writing to identify grammar mistakes.
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