
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ESOTERIC LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion-based language models offer a compelling alternative to autoregressive
(AR) models by enabling parallel and controllable generation. Among this family
of models, Masked Diffusion Models (MDMs) achieve the strongest performance
but still underperform AR models in perplexity and lack key inference-time effi-
ciency features—most notably, KV caching. In this work, we introduce Eso-LMs,
a new family of models that fuses AR and MDM paradigms, enabling smooth in-
terpolation between their perplexities while overcoming their respective limitations.
Crucially, we introduce KV caching for MDMs while preserving parallel gener-
ation, significantly improving inference efficiency. Combined with an optimized
sampling schedule, our method achieves a new state of the art on the speed-quality
Pareto frontier for unconditional generation. On long contexts, our method achieves
14 − 65× faster inference than standard MDMs and 3 − 4× faster inference than
prior semi-autoregressive approaches.

1 INTRODUCTION

A paradigm shift is underway in language modeling: autoregressive (AR) language models, long
considered the gold standard, are now being rivaled by diffusion language models for standard
language generation. Recent works (Sahoo et al., 2024a; Schiff et al., 2025) show that Masked
Diffusion Models (MDMs) are closing the gap with AR models on small-scale language benchmarks,
and even outperform them on tasks involving discrete structures, such as molecular generation (Schiff
et al., 2024; Lee et al., 2025) and graph generation (Liu et al., 2023). When scaled to larger sizes
(e.g., 8B parameters), MDMs match models like LLaMA on challenging datasets in math, science,
and tasks such as reverse poem completion (Nie et al., 2025).

These results make MDMs a compelling alternative to AR models. However, they suffer from two
key limitations: (1) Inference speed: Despite supporting parallel generation, MDMs are significantly
slower than AR models in practice, largely due to the lack of KV caching, which is a crucial
optimization for real-time applications like chat systems. (2) Generation quality: MDMs still show
a noticeable likelihood gap on more complex language modeling tasks (Sahoo et al., 2024a).

Recently proposed BD3-LMs (Arriola et al., 2025) address the speed issue by introducing a semi-
autoregressive generation strategy. These models perform diffusion over fixed-length blocks of text
sequentially. Because previously denoised blocks can be cached, BD3-LMs partially support KV
caching and are faster than standard MDMs. However, we identify two key shortcomings in BD3-
LMs: (1) Degraded samples at low sampling steps: When the number of denoising steps is reduced
for faster inference, BD3-LMs exhibit severe degradation in sample quality and diversity—worse
than both AR (at high Number of Function Evaluations (NFEs), i.e., neural network forward passes)
and other diffusion models (at low NFEs) (Sec. A.1 and Sec. 5.2). (2) Incomplete caching: While
KV caching is possible across blocks, intra-block diffusion still lacks KV support, limiting overall
speed gains.

To address these challenges, we propose a new language modeling paradigm that fuses autoregressive
and masked diffusion approaches. Our model is trained with a hybrid loss—a combination of AR and
MDM objectives—which allows it to interpolate smoothly between the two paradigms in terms of
perplexity. This requires two key innovations: (1) A revised attention mechanism in the denoising
transformer to support both AR and MDM styles of generation. (2) A new training and sampling
procedure that enables KV caching within the diffusion phase, a feature previously unavailable in
MDMs. Due to the unconventional nature of this hybrid design, we name our method Esoteric
Language Models (Eso-LMs).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

C B M M

A H

C B A H M M

F D

Diffusion Phase

C B A H F D

E

Sequential Phase

C B A H F D E MM

G

M M

C B 52 3 41

Toks:

MBCMMMMM ABCMMMMH ABCDMFMH ABCDEFMH ABCDEFGH

3 2 1 8 3 2 1 8 6 4 3 2 1 8 6 4 3 2 1 8 6 4 5 753 2Pos:

Figure 1: Efficient generation of an example sequence with our proposed Eso-LMs. During Diffusion
Phase, Eso-LMs denoise one or more, potentially non-neighboring mask tokens (M) per step. During
Sequential Phase, Eso-LMs denoise the remaining mask tokens one at a time from left to right.
Eso-LMs allow for KV caching in both phases using just a single unified KV cache: blue bounding
boxes enclose transformer cells that are building their KV cache; a cell becomes blue once its KV
cache is built. The sequences below the transformers depict tokens in their natural order.

In summary, our contributions are as follows. (1) We propose a new hybrid framework for language
modeling: one that fuses AR and MDM paradigms and outperforms the previous hybrid approach,
BD3-LMs. (2) We show that our proposed Eso-LMs achieve fine-grained interpolation between AR
and MDM perplexities, narrowing the gap to AR models (Sec. 5.1). (3) By enabling KV caching
during diffusion while preserving parallel generation, Eso-LMs achieve a new state of the art on
the speed-quality Pareto frontier for unconditional generation. BD3-LMs degrade at low sampling
steps, while our method remains competitive with MDMs in the low NFE regime and with AR in the
high NFE regime (Sec. 5.2). (4) At long contexts, Eso-LMs provide 14 − 65× faster inference than
standard MDMs and 3 − 4× faster inference than KV-cached semi-autoregressive baselines (Sec. 5.3).

2 BACKGROUND

Notation We represent scalar discrete random variables that can take K values as ‘one-hot’ column
vectors and define V ∈ {x ∈ {0,1}K ∶ ∑K

i=1 xi = 1} as the set of all such vectors. In the context of
language modeling, K is the vocabulary size and V is the vocabulary. Let m ∈ V be a special mask
vector such that its K-th entry is one, i.e., mK = 1. Define Cat(⋅;π) as the categorical distribution
over K classes with probabilities given by π ∈∆K , where ∆K denotes the K-simplex. Additionally,
let ⟨a,b⟩ denote the dot product between vectors a and b. We use parentheses () to denote ordered
sets (tuples) and curly brackets {} to denote unordered sets. ∣A∣ denotes the cardinality of the set A.

MDMs feature two salient orderings: the sequence order and the denoising order. We use a permuta-
tion σ to describe the relationship between these orderings. Let PL denote the set of all permutations
of [L] = {1, . . . , L}. σ ∈ PL is an ordered set (tuple) and also serves as a bijective function: σ(l)
is the position in sequence order that appears lth in denoising order σ, and σ−1(i) is the position
in denoising order for the ith position in sequence order. For example, σ = (2,4,1,3) denotes a
denoising order of (1,2,3,4); σ−1(4) = 2 means the 4th token in sequence is the 2nd one to denoise.

Let x ∈ VL denote a sequence of length L with no mask tokens, and let xℓ denote the ℓth entry in x.
Note that xl is one-hot under our notation. We use the term ‘token index’ to refer to the position of a
token in the original ordering, e.g., the token index for xl is l. Let (zt)t∈[0,1] ∈ VL denote a sequence
of length L that may contain mask tokens. LetM(zt) = {ℓ ∣ zℓt =m} denote token indices of mask
tokens in zt and C(zt) = {ℓ ∣ zℓt ≠m} denote token indices of clean tokens in zt.

Let ⊕ ∶ Vm × Vn → Vm+n denote a concatenation operator on two sequences x = (x1,x2, . . . ,xm)

and z = (z1,z2, . . . ,zn) of length m and n. When the concatenated sequence x⊕ z is fed into the
transformer, x and z carry the same positional embeddings as they would if they were fed into a
transformer independently. Let ⊙ ∶ Vm × Vn → Vm denote a substitution operator; for any z ∈ Vm

and x ∈ Vn with m > n, the output y = z⊙ x is given by: y1∶n = x and yn+1∶m = zn+1∶m.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.1 AUTOREGRESSIVE MODELS

Given a sequence x ∈ VL ∼ qdata, AR models define the following factorization of the joint distribu-
tion: log pθ(x) = ∑L

ℓ=1 log pθ(x
ℓ ∣ x<ℓ), where the model pθ is usually parameterized by a causal

transformer (Vaswani et al., 2017) model. Sampling takes L steps or NFEs but each is computationally
efficient due to KV caching. AR models achieve the best likelihood and generation quality.

2.2 MASKED DIFFUSION MODELS

Diffusion models learn to reverse a forward corruption process q, which transforms clean data x ∼ qdata
in VL into a sequence of latent variables zt for t ∈ [0,1], each representing an increasingly noisy
version of x (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song & Ermon, 2019). In MDMs (Sahoo
et al., 2024a; Shi et al., 2025; Ou et al., 2025), the forward masking process q factors independently
across the sequence x, i.e., qt(.∣x) = Πℓqt(.∣x

ℓ) and each token xl is progressively interpolated with
a fixed target distribution Cat(.;m). The marginal of zℓt ∼ qt(.∣x

ℓ) at time t is given by:

qt(.∣x
ℓ
) = Cat(.;αtx

ℓ
+ (1 − αt)m), (1)

where αt ∈ [0,1] is a strictly decreasing function in t with α0 ≈ 1 and α1 ≈ 0. Sahoo et al. (2024a)
show that the reverse posterior qs∣t(.∣zℓt,x

ℓ) over zℓs for s < t is given by

qs∣t(.∣z
ℓ
t,x

ℓ
) =

⎧⎪⎪
⎨
⎪⎪⎩

Cat(.;zℓt) zℓt ≠m,

Cat (.; (1−αs)m+(αs−αt)x
ℓ

1−αt
) zℓt =m.

(2)

Given a denoising model xθ ∶ V
L → (∆K)L, the reverse unmasking process pθ(.∣zt)s∣t over the

sequence zs is parameterized by

pθ(.∣zt)s∣t =
L

∏
ℓ

pℓθ(.∣zt)s∣t =
L

∏
ℓ

qℓs∣t(.∣z
ℓ
t,x

ℓ
= xℓ

θ(zt)). (3)

Sahoo et al. (2024a); Shi et al. (2025); Ou et al. (2025) show that Negative Evidence Lower Bound
(NELBO) for this method is

LMDM(x) = Eq,t∼[0,1]

⎡
⎢
⎢
⎢
⎢
⎣

α′t
1 − αt

∑
ℓ∈M(zt)

log⟨xℓ
θ(zt),x

ℓ
⟩

⎤
⎥
⎥
⎥
⎥
⎦

, (4)

which is a weighted average of masked language modeling losses (Devlin et al., 2018) computed only
on the masked positionsM(zt).

To generate a sequence of length L, the reverse diffusion process starts from a fully masked sequence
zt=1, where zℓt=1 =m for ℓ = 1, . . . , L. It proceeds for T steps, with each zℓs independently sampled
from pθ(.∣zt)s∣t as defined in (3); once a position is unmasked, it remains fixed. Since multiple tokens
can be denoised in parallel per step, the total number of steps or NFEs can be less than L, enabling
faster generation. However, each forward pass is computationally expensive due to applying the
bidirectional transformer in xθ(zt) over the entire context length.

2.3 BLOCK DISCRETE DIFFUSION MODELS

Block Denoising Diffusion Discrete Language Models (BD3-LMs) (Arriola et al., 2025) autore-
gressively model blocks of tokens and perform masked diffusion modeling (Sec. 2.2) within each
block. By changing the size of blocks, BD3-LMs interpolate AR models and MDMs. BD3-LMs
group tokens in x into B blocks of L′ consecutive tokens with B = L/L′, where B is an integer.
The likelihood over x factorizes autoregressively over blocks as − log pθ(x) = −∑B

b=1 log pθ(x
b ∣

x<b) ≤ ∑
B
b=1LMDM(x

b;x<b), where pθ(x
b ∣ x<b) is a conditional MDM and LMDM(x

b;x<b) is the
NELBO for MDLM as defined in (4), applied sequentially across blocks. During generation, we use
T ′ = T /L′ to denote the number of diffusion sampling steps per block.

3 ESOTERIC LANGUAGE MODELS

In this section, we propose a new paradigm for language modeling: Esoteric Language Models
(Eso-LMs), which form a symbiotic combination of AR models and MDMs.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

While AR models currently lead in language modeling performance, they generate tokens sequentially,
making them slow at inference. In contrast, MDMs generate multiple tokens in parallel and are more
controllable (Schiff et al., 2025; Nisonoff et al., 2024), but they typically yield higher perplexity than
AR models (Sahoo et al., 2024a; 2025). Can we combine their strengths? In response, we introduce a
hybrid approach where some tokens are generated in parallel via MDMs and the rest sequentially in
a left-to-right fashion. This raises two key questions. (1) Can we compute the likelihood of such a
generative model? We address this question by showing that Eso-LMs admit a principled bound on the
true likelihood. (2) How can we adapt the attention mechanism so that a single transformer (Vaswani
et al., 2017) can support both styles of generation? We address this question in Sec. 4.

3.1 FUSING AUTOREGRESSIVE MODELS AND MASKED DIFFUSION

Let x ∈ VL ∼ qdata(x) be a sample from the data distribution, and let pθ be our model distribution
parameterized by θ. Eso-LMs decompose pθ into two components: an AR model pAR

θ and an MDM
pMDM
θ . The MDM generates a partially masked sequence z0 ∈ V

L ∼ pMDM
θ (z0), and the AR model

finishes the remaining unmasking steps in an auto-regressive left-to-right manner: pAR
θ (x∣z0). The

marginal likelihood of such a hybrid generative process is:

pθ(x) = ∑
z0∈VL

pAR
θ (x∣z0)p

MDM
θ (z0). (5)

Although this sum is intractable, we can compute a variational bound on the true likelihood using a
posterior q(z0∣x) (Kingma & Welling, 2014). Since pMDM

θ models masked sequences, we choose
q to be a simple masking distribution. Specifically, we set q to q0(z0∣x) as defined in (1), which
independently masks each token (xℓ)ℓ∈[L] with probability 1 − α0, where α0 ∈ [0,1]; intuitively, α0

is the expected fraction of clean tokens in x by MDM. This leads to the following variational bound:

− log pθ(x) ≤= −Ez0∼q0(.∣x)

⎡
⎢
⎢
⎢
⎢
⎣

∑
ℓ∈M(z0)

log pAR
θ (x

ℓ
∣z0,x

<ℓ
)

⎤
⎥
⎥
⎥
⎥
⎦

+DKL(q0(z0∣x)∥p
MDM
θ (z0)). (6)

Inside the expectation is the joint AR likelihood over masked positions ℓ ∈ M(z0), conditioned on
clean tokens in z0. For AR, the denoising network xθ ∶ V

L → (∆K)L operates on the input z0 ⊙x<ℓ,
where the substitution operator ⊙ replaces the first l − 1 tokens in z0 with x<ℓ. For each ℓ ∈ M(z0),
xℓ
θ(z0⊙x

<ℓ) approximates the distribution of the clean token xℓ given x<ℓ and z0, which may include
clean tokens beyond position ℓ. In Suppl. B.1, we analyze the KL term and show that the NELBO is:

LNELBO(x) = Ez0∼q0

⎡
⎢
⎢
⎢
⎢
⎣

− ∑
ℓ∈M(z0)

log⟨xℓ
θ(z0 ⊙ x<ℓ),xℓ

⟩

´¹¹¸¹¹¶
AR loss

⎤
⎥
⎥
⎥
⎥
⎦

+ ∫

t=1

t=0

α′t
1 − αt

Ezt∼qt

⎡
⎢
⎢
⎢
⎢
⎣

∑
ℓ∈M(zt)

log⟨xℓ
θ(zt),x

ℓ
⟩

⎤
⎥
⎥
⎥
⎥
⎦

dt

´¹¹¸¹¹¶
MDM loss

,

(7)

where we set the diffusion noise schedule αt to be the standard log-linear schedule αt = α0(1 − t).

Interpolating between AR and Diffusion When α0 = 1, the posterior sample z0 = x, and all
tokens are generated by the MDM; hence, the AR loss is zero in (7), and LNELBO reduces to the MDM
loss. Conversely, when α0 = 0, all tokens are masks in z0, and the MDM loss vanishes, reducing
LNELBO to the AR loss. Thus, Eso-LMs interpolate between AR and MDM paradigms, controlled by
the hyperparameter α0.

3.2 SAMPLING

We use the two-stage sampling procedure from (5). To draw x, we first sample a partially masked
sequence z0 ∼ p

MDM
θ and then denoise the remaining mask tokens left-to-right with pAR

θ .

Denoising Schedule During sampling, we pre-compute the order in which tokens will be denoised
under the standard ancestral sampler. We refer to this as the diffusion denoising schedule, denoted
by SMDM = (S1, . . . , S1/T), where St is a tuple of mask token indices denoised at diffusion step t,
and T is the total number of denoising steps. Similarly, we define the AR denoising schedule as
SAR = ((i) ∣ i ∈ M(z0)), where the mask indicesM(z0) appear in strictly ascending order. The

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

unified denoising schedule is then given by S = SMDM ∪ SAR, which concatenates the two schedules
to partition [L]. When α0 = 1, all tokens are generated by diffusion so S = SMDM and SAR = ∅;
when α0 = 0, all tokens are generated sequentially so S = SAR and SMDM = ∅. See Suppl. B.3 for the
complete sampling algorithm and an illustrative example.

One of our goals is to eliminate redundancies at inference time in MDMs. Recall that sampling
begins with a fully masked sequence zt=1 =m

1∶L. Standard ancestral sampling as implemented in
MDLM (Sec. 2.2) updates only a subset of mask tokens at each step, but still performs a forward
pass over the full sequence, wasting FLOPs. To improve efficiency, we restrict the forward pass
at step k to only the previously denoised tokens and the current mask tokens to be updated, i.e.,
∪i≤kSi. This substantially reduces computation, especially for long sequences. Building on this
sampling procedure, we will describe a method in Sec. 4.1.1 that replaces bidirectional attention in
the denoising transformer with causal attention, unlocking KV caching across diffusion steps.

3.3 IMPORTANCE WEIGHTED NELBO

For MDMs, the likelihood measures how well they model the data distribution under infinitesimal
diffusion steps, where at most one token is denoised or masked out per step. In this limiting case,
MDMs are equivalent to any-order AR models, which has the following importance-weighted bound
on the negative log-likelihood (Burda et al., 2015; Shih et al., 2022; Hoogeboom et al., 2021):

− log p(x) ≤ −Eσ1,...,σK
[log

1

K
+ log

K

∑
k=1

exp(
L

∑
l=1

log pθ(xσk(l) ∣ xσk(<l)))] , (8)

where σ is the denoising ordering introduced in Sec. 2. This bound is tight as K →∞. This bound is
intractable for MDLM because its evaluation requires L forward passes. In contrast, given some x
and σ, we can evaluate the σ-order AR term (inside the exponent) for Eso-LMs in a single forward
pass (Sec. 4.1.2). We apply this technique to evaluate Eso-LMs in Sec. 5.1.

4 ATTENTION MECHANISMS FOR THE SHARED DENOISING TRANSFORMER

In this section, we introduce a unified attention scheme that supports both sequential (AR) and parallel
(MDM) generation using a shared transformer architecture. Our core technical contribution is a flexi-
ble attention mechanism that reconciles the architectural mismatch between AR models—which re-
quire causal attention and shift-by-one decoding—and MDMs—which rely on bidirectional attention.
To achieve this, we introduce an attention bias matrix A ∈ {−∞,0}L

′
×L′ , where L′ is the input length,

that modulates the standard attention as: SELF-ATTENTION(Q,K,V,A) = softmax (QK⊺

√
d
+A)V

where Q,K,V ∈ RL′×d denote the query, key, and value matrices. Entries of A control information
flow: Ai,j = 0 “permits” and Ai,j = −∞ “blocks” attention from token i to j.

4.1 TRAINING

Our training objective (7) has two components: the AR loss and the diffusion loss. Given a batch of
clean sequences, we train a fraction κ with the diffusion objective and the remaining 1 − κ with the
AR objective (Fig. 2). We set κ = 0.5 using an experiment (Sec. 4); for α0 = 1, we set κ = 1.

4.1.1 DIFFUSION PHASE

The diffusion inference scheme (Sec. 3.2) motivates our training setup. We note three properties: (i)
clean tokens are generated in random order, (ii) mask tokens are denoised using only clean tokens but
clean tokens do not attend to mask tokens, and (iii) bidirectional attention used in MDMs (Austin
et al., 2021; Lou et al., 2024; Sahoo et al., 2024a) prevents KV-caching. We propose a simple
alternative: given zt ∼ qt(.∣x), shuffle zt with the natural constraint that clean tokens precede masked
tokens, and replace bidirectional with causal attention (Fig. 6; more details in Suppl. B.4).

4.1.2 SEQUENTIAL PHASE

The AR component of (7) applies a cross-entropy loss on logits for each mask token (zi0)i∈M(z0),
requiring its left context to be clean. This is non-trivial because not all mask tokens have a fully clean

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Training Batch (batch size = 4)

Sequential
Phase

Diffusion
Phase

Position in the original sequence
6 1 2 5 3 4

Attention

Causal attention on a shuffled sequence

Faster
Training

Figure 2: (Left) To train a transformer to support both sequential and diffusion generation with KV
caching, we use half of the training batch (2 sequences in this example) for diffusion training and the
other half for sequential training. Tokens for sequential training are masked with probability 1 − α0,
while tokens for diffusion training are masked with p ∼ Unif[1 − α0,1]. (●) For sequential training,
a mask token attends to unmasked clean tokens and clean versions of mask tokens on its left. (●)
For diffusion training, a mask token attends to all clean tokens and prior mask tokens after shuffling.
(Right) Eso-LMs have similar training time to MDLM and are much faster to train than BD3-LMs.

left context in z0. We address this by feeding the concatenated sequence z0 ⊕ x into the transformer
and designing a specialized attention mask so that each (zi0) can also attend to x<i. During sampling,
this concatenation is unnecessary. Since only half of each batch is used for sequential training, the
doubled sequence length due to concatenation has relatively small impact on training speed (Fig. 2).

Attention Mask At inference, KV values for clean tokens in z0—generated in random order by
diffusion—must be reused. Training must therefore enforce causal attention over different random
orders among clean tokens {xi ∣ i ∈ C(z0)} to avoid invalidating the KV cache. We sample a
permutation σ ∼ PL such that (i) clean tokens precede mask tokens, and (ii) mask tokens remain in
natural order. The following 2L × 2L attention bias matrix A enforces correct information flow:

Ai,j = 0 if i = j ∀(i, j) ∈ M(z0) ×M(z0) (9)
Ai,j+L = 0 ∀(i, j) ∈ M(z0) × C(z0) (10)
Ai,j+L = 0 if i > j ∀(i, j) ∈ M(z0) ×M(z0) (11)

Ai+L,j+L = 0 if σ−1(i) ≥ σ−1(j) ∀(i, j) ∈ C(z0) × C(z0) (12)
Ai+L,j+L = 0 ∀(i, j) ∈ M(z0) × C(z0) (13)
Ai+L,j+L = 0 if i ≥ j ∀ (i, j) ∈ M(z0) ×M(z0) (14)
Ai,j = −∞ otherwise. (15)

Refer Fig. 7 for an illustrative example. This construction ensures: a mask token (zi0)i∈M(z0) attends
to (i) itself (9), (ii) the clean tokens in z0 (equivalently (xi)i∈C(z0)) (10), and (iii) the clean versions of
mask tokens on its left (11). A clean token (zi0)i∈C(z0) can attend to anything because no other token
attends to them. Tokens {xi∣i ∈ C(z0)} have causal attention per σ (12). A clean token corresponding
to a mask token, (xi)i∈M(z0), attends to {xj ∣j ∈ C(z0)} (13) and {xj ∣j ∈ M(z0), i ≥ j} (14).

Simplified Implementation When the rows and columns of each of the four L × L blocks are
sorted by σ, A shows classic attention patterns (Fig. 7) that are simple to implement.

4.2 SAMPLING

At each sampling step, we perform a forward pass of clean tokens decoded in the previous step for KV
caching and mask tokens corresponding to positions to decode in the current step (Fig. 1). We unlock
two features for efficiency: (1) KV caching during diffusion phase and (2) a shared KV cache for
diffusion and sequential phases. Also, our sampler can decode according to any denoising schedules,
even ones not seen during training, which leads to interesting inference-time trade-offs (Sec. 5.2).

5 EXPERIMENTS

We evaluate Eso-LMs on two standard language modeling benchmarks: the One Billion Words
dataset (LM1B) (Chelba et al., 2014) and OpenWebText (OWT) (Gokaslan et al., 2019). We describe
data processing, model architecture, training, and hardware details in Sec. C.3.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Test perplexities (PPL; ↓) on LM1B for
models trained for 1M steps. For diffusion mod-
els, we report PPL computed using the ELBO (7)
as in prior work. ∗Reported in He et al. (2022).
¶No sentence packing. †Reported in Arriola et al.
(2025). ‡Reported in Sahoo et al. (2025).

PPL (↓) PPL (↓) (ELBO)

Autoregressive (AR)
Transformer‡ 22.83

Diffusion
D3PM Uniform 137.90¶

D3PM Absorb 76.90¶

Diffusion-LM∗ 118.62¶

DiffusionBert 63.78
SEDD Absorb‡ 32.71¶

SEDD Uniform¶ 40.25¶

MDLM‡ 31.78
UDLM‡ 36.71
DUO‡ 33.68

Interpolating diffusion and AR
BD3-LMs†

L′ = 16 30.60
L′ = 8 29.83
L′ = 4 28.23

Eso-LMs (Ours)
α0 = 1.0 35.00
α0 = 0.5 32.38
α0 = 0.25 29.14
α0 = 0.125 26.21
α0 = 0.0625 24.51

Table 2: Test perplexities (PPL; ↓) on OWT
for models trained for 250K steps. For diffu-
sion models, we report PPL computed using the
ELBO (7) as with prior work. ∗For Eso-LMs, we
also use importance-weighted bounds (K = 100)
to get tight estimates of true PPLs (Sec. 3.3).
†Denotes retrained models; for fair comparison,
we did not finetune BD3-LMs from MDLM un-
like in Arriola et al. (2025). ¶250K checkpoints
were provided by Sahoo et al. (2024a); Schiff
et al. (2025), or Sahoo et al. (2025).

PPL (↓) PPL (↓) (ELBO)

Autoregressive (AR)
Transformer 17.90¶

Diffusion
SEDD Absorb 26.81¶

MDLM 25.19¶

UDLM 30.52¶

DUO 27.14¶

Interpolating diffusion and AR
BD3-LMs
L′ = 16 23.57†

L′ = 8 22.04†

L′ = 4 20.96†

Eso-LMs (Ours)
α0 = 1 29.80∗ 30.06
α0 = 0.5 27.09∗ 27.85
α0 = 0.25 23.56∗ 24.73
α0 = 0.125 20.86∗ 21.87

5.1 LIKELIHOOD EVALUATION

Our experiments show that Eso-LMs enable a fine-grained interpolation between MDM and AR
perplexities on LM1B and OWT (Table 1 and Table 2) by adjusting α0 for training.

Experimental Setup We compare Eso-LMs against leading masked diffusion models—MDLM (Sa-
hoo et al., 2024a), SEDD (Lou et al., 2024), D3PM (Austin et al., 2021), and DiffusionBERT (He
et al., 2022)—as well as uniform state models DUO (Sahoo et al., 2025), UDLM (Schiff et al., 2025),
and specifically BD3-LMs (Arriola et al., 2025), which also interpolate between MDM and AR and
support KV caching. All models are trained with batch_size=512, consistent with prior work.
We split each batch evenly: half trained with the AR loss and half with the MDM loss (7). Refer to
Table 4 for an ablation on the split proportion κ. Refer to Algo. 1 for the training procedure. Attention
biases are configured as described in Sec. 4. When training Eso-LMs as a pure MDM (α0 = 1), the
full batch is trained with the MDM loss. For this setting only, we replace the diffusion coefficient
α′t/(1 − αt) with −1, which empirically reduced training variance and improved convergence.

Results For all diffusion models, PPL is computed using the lower bound (7) on the log-likelihood,
following (Sahoo et al., 2024a; Schiff et al., 2025; Austin et al., 2021; Sahoo et al., 2024b; Lou
et al., 2024; Arriola et al., 2025). We call this PPL (ELBO), an upper bound on PPL. On LM1B, we
train Eso-LMs with α0 ∈ {0.0625,0.125,0.25,0.5,1.0}; we find that Eso-LMs effectively interpolate
between MDLM and AR perplexities with α0 ∈ {0.0625,0.125,0.25,0.5} but exceeds MDLM PPL
by ∼ 3 points with α0 = 1.0 (Table 1). This is expected as Eso-LM (α0 = 1) is just MDLM but with
sparse causal attention instead of bidirectional attention. Results hold similarly for OWT (Table 2).

Importance-Weighted (IW) Bounds To verify that the ordering of PPLs (ELBO) reflect the true
ordering of PPLs for Eso-LMs, we use IW bounds (K = 100) (Sec. 3.3) to obtain tight estimates
of PPLs, which we find to be close to the corresponding PPLs (ELBO) and fall in the same order

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

101 102

Mean Sampling Duration Per Batch (sec.)

102

Ge
n.

 P
PL

 (
)

Method
Eso-LM
BD3-LM
MDLM
AR

Eso-LM train
0

1
0.5
0.25
0.125

Eso-LM train
0

1
0.5
0.25
0.125

Figure 3: Eso-LMs establish SOTA on the Pareto
frontier of sampling speed and Gen. PPL.

101 102

Mean Sampling Duration Per Batch (sec.)

0.0

0.2

0.4

0.6

0.8

M
AU

VE
 (

)

Method
Eso-LM
BD3-LM
MDLM
AR

Eso-LM train
0

1
0.5
0.25
0.125

Eso-LM train
0

1
0.5
0.25
0.125

Figure 4: Eso-LMs establish SOTA on the Pareto
frontier of sampling speed and MAUVE.

(Table 2). This is the first time for IW bounds to be obtained for discrete diffusion. For diffusion
baselines, IW bounds are intractable (Sec. 3.3). We include IW bounds for smaller K’s in Table 6.

Ablation Instead of fully switching from bidirectional to causal attention as in Eso-LMs (Sec. 4.1),
we provide an intermediate ablation that mixes both. We name this family Eso-LMs (A) (details
in Suppl. D). As shown in Table 7 and Table 8, Eso-LMs (A) also interpolate between MDLM and
AR perplexities on LM1B and OWT. As expected, its perplexity is better than Eso-LMs at every α0,
making its perplexity at α0 = 1 closer to MDLM, but it does not support KV caching during diffusion.

5.2 PARETO FRONTIER OF GENERATION SPEED VS. QUALITY

Our experiments show that (1) Eso-LMs establish a new SOTA on the Pareto frontier of sampling
speed and quality (Fig. 3 and Fig. 4), and (2) don’t produce degenerate samples (poor quality
and low diversity) at low NFEs unlike the previous interpolating diffusion method BD3-LMs.

Experimental Setup We sample unconditionally from OWT models. We use Eso-LMs trained with
αtrain
0 ∈ {0.125,0.25,0.5,1} and generate samples by varying (αeval

0 , T) ∈ {0.0625,0.25,0.5,1} ×
{16,128,1024} to control NFEs (NFEs = ∣S∣) and sampling time. MDLM and BD3-LMs use ances-
tral sampling as proposed in Sahoo et al. (2024a), with T ∈ {8,16,32,64,128,256,512,1024,4096}
for MDLM and T ∈ {128,256,512,1024,2048,4096} for BD3-LMs. All generations are L = 1024
tokens long. BD3-LMs are evaluated with block sizes L′ ∈ {4,8,16} and T ′ = T /(1024/L′);
T = 128 is not applicable to BD3-LM with L′ = 4 and T = 16 is not applicable to all BD3-LMs
considered, since these would result in T ′ < 1. We measure Gen. Perplexity (via GPT-2 Large) and
MAUVE (Pillutla et al., 2021) (via ModernBERT-Large) for sample quality and average entropy for
diversity (Zheng et al., 2024), using nucleus sampling with p = 0.9 (Wang et al., 2025). Gen. PPL is
a de facto metric used in prior work and MAUVE aligns with human judgments on open-ended text.

Pareto Frontier of Generation Speed vs. Quality We record the mean sampling duration in
seconds (across 10 trials) by each method to generate a batch of 512 samples, and evaluate Gen. PPL
and MAUVE using 5120 samples. Sampling duration is an increasing function of NFEs, modulated
by the method and sampling hyperparameters used. In Fig. 3 and Fig. 4, for each method, we plot its
speed-quality Pareto frontier over all its configurations: Eso-LMs (over αtrain

0 , αeval
0 , and T), BD3-LM

(over L′ and T), and MDLM (over T). We find that Eso-LMs establish a new state of the art on the
speed-quality Pareto frontier. See Sec. E.8 for individual metrics and Sec. E.9 for text samples.

Best α0 for Training We find that the Pareto frontier of the Eso-LM trained with αtrain
0 = 1 is

competitive with the Pareto frontier of all four trained Eso-LMs (Fig. 12 and Fig. 13). This shows
that Eso-LMs trained for diffusion only can flexibly adapt to a diverse set of denoising schedules.

Heuristic Improved Sampler BD3-LMs suffer from a rapid drop in quality at low NFEs due to
decoding close-by tokens in parallel (Sec. 6). Hence, given the flexibility of our sampler, we propose
a heuristic sampler for Eso-LMs that strictly performs parallel decoding for tokens far apart (Sec. E.6).
This sampler significantly improves Eso-LMs’s generation quality at low NFEs (Fig. 14 and Fig. 15).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.3 GENERATION LATENCY AT LONG CONTEXT

At longer contexts, Eso-LMs are 3 − 4× faster than prior diffusion based methods that support
KV caching and 14 − 65× faster than MDMs that don’t support KV caching.

Experimental Setup We compare inference times of our method, Eso-LMs, against MDLM and
BD3-LMs with context lengths L ∈ {2048,8192}, using the first-hitting sampler (Zheng et al., 2024),
and a batch size of 1. To simulate the worst-case scenario, we set T ≫ L to ensure all methods have
approximately L NFEs: T = 1M for MDLM and Eso-LMs (for T ≫ L, NFE is L for all αeval

0 ’s),
T ′ = 5000 (number of sampling steps per block) for BD3-LMs. We find that nucleus sampling yields
a non-negligible overhead for all methods, and hence disable it to focus on speed vs. sequence length.

Results As shown in Table 9, as compared to MDLM which lacks KV caching, Eso-LMs is ~14×
faster for L = 2048, and ~65× faster for L = 8192. Compared to BD3-LMs, which partially support
caching, Eso-LMs are ~3.2× faster than BD3-LM (L′ = 16) and ~3.8× faster than BD3-LM (L′ = 4)
at L = 8192. Additionally, we finetune Eso-LM (αtrain

0 = 0.125) and BD3-LM (L′ = 4), originally
trained with L = 1024 (Sec. 5.1), for 1K steps with L = 10240 on OWT; as shown in Table 10, the
Eso-LM produces similar quality samples while being 5× faster (αeval

0 = 0.125, T ≫ L).

These speedups stem from KV caching and the scheduler S that restricts the forward pass to the
masked tokens that are supposed to be denoised and previously denoised clean tokens, avoiding
redundant computation—a feature MDLM lacks completely and BD3-LMs lack for the current block
under diffusion. As we restrict the NFEs to L, our method is slightly slower than AR models due to
delayed KV reuse—only possible from the penultimate step (Fig. 1).

6 RELATED WORK, DISCUSSION, AND CONCLUSION

AR models AR models generate tokens left-to-right and remain state-of-the-art in quality, but
suffer from slow, sequential inference and limited controllability. In contrast, Eso-LMs combine
AR-like generation in a sequential phase with any-order, parallel generation in an initial diffusion
phase. During diffusion, Eso-LMs support KV caching (Pope et al., 2022), previously exclusive to
AR models, matching their inference speed. Its quality approaches AR models as the sequential
phase increases.
Masked diffusion MDMs (Sahoo et al., 2024a; Shi et al., 2025) can generate multiple tokens per
step but perform bidirectional attention over the entire context. Eso-LMs improve their efficiency
in two ways. First, Eso-LMs restrict attention to clean and scheduled-to-denoise mask tokens only.
Second, leveraging the connection to AO-ARMs (Ou et al., 2025), Eso-LMs replace bidirectional
with causal attention to unlock KV caching. Though Eso-LMs may underperform MDLM in terms of
perplexity (e.g., at αtrain

0 = 1), they achieve a significantly better generation speed-quality tradeoff.
Block diffusion BD3-LMs (Arriola et al., 2025) use AR over blocks of tokens and apply MDM
within each. They interpolate between AR and MDMs by changing block size, whereas Eso-
LMs interpolate by varying the proportion of diffusion generation α0. Both support KV caching
differently: BD3-LMs cache block-level conditioning, while Eso-LMs cache clean-token KV values
across denoising steps. BD3-LMs’ short blocks (L′ ≤ 16) significantly increase token conflicts (Liu
et al., 2024); poor samples in one block also severely affect the sample quality of subsequent blocks
due to the use of teacher forcing during training. Eso-LMs do not suffer from this problem.
Concurrent work Hu et al. (2025); Wu et al. (2025); Ma et al. (2025) also study KV caching for
diffusion language models. There are two keys differences between our work and the aforementioned
works. First, Eso-LMs perform a forward pass on a subset of token positions, while these methods
perform a bidirectional forward pass over the entire context like MDLM. Second, Eso-LMs are
trained end-to-end while concurrent methods rely on heuristics: they reuse KV values computed in
previous steps as training-free approximations to KV values in the current step.
Conclusion We introduce a new paradigm for language modeling that fuses autoregressive (AR)
models and masked diffusion models (MDMs), enabling seamless interpolation between the two
in both generation speed and sample quality. Our method introduces KV caching in MDMs while
preserving parallel generation, significantly accelerating inference. It outperforms block diffusion
methods in both speed and accuracy, setting a new state of the art on language modeling benchmarks.
Given we are working on language modeling, we carry the inherent risks and opportunities in this
line of research.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Marianne Arriola, Subham Sekhar Sahoo, Aaron Gokaslan, Zhihan Yang, Zhixuan Qi, Jiaqi Han,
Justin T Chiu, and Volodymyr Kuleshov. Block diffusion: Interpolating between autoregres-
sive and diffusion language models. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=tyEyYT267x.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. arXiv
preprint arXiv:1509.00519, 2015.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn, and Tony
Robinson. One billion word benchmark for measuring progress in statistical language modeling,
2014.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Seokhwan Kim, Walter Chang,
and Nazli Goharian. A discourse-aware attention model for abstractive summarization of long
documents. Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), 2018.
doi: 10.18653/v1/n18-2097. URL http://dx.doi.org/10.18653/v1/n18-2097.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. http:
//Skylion007.github.io/OpenWebTextCorpus, 2019.

Zhengfu He, Tianxiang Sun, Kuanning Wang, Xuanjing Huang, and Xipeng Qiu. Diffusion-
bert: Improving generative masked language models with diffusion models. arXiv preprint
arXiv:2211.15029, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Emiel Hoogeboom, Alexey A Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, and
Tim Salimans. Autoregressive diffusion models. arXiv preprint arXiv:2110.02037, 2021.

Zhanqiu Hu, Jian Meng, Yash Akhauri, Mohamed S Abdelfattah, Jae-sun Seo, Zhiru Zhang, and
Udit Gupta. Accelerating diffusion language model inference via efficient kv caching and guided
diffusion. arXiv preprint arXiv:2505.21467, 2025.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Advances
in neural information processing systems, 34:21696–21707, 2021.

Diederik P Kingma and Max Welling. Auto-encoding variational {Bayes}. In ICLR, 2014.

Seul Lee, Karsten Kreis, Srimukh Prasad Veccham, Meng Liu, Danny Reidenbach, Yuxing Peng,
Saee Paliwal, Weili Nie, and Arash Vahdat. Genmol: A drug discovery generalist with discrete
diffusion. arXiv preprint arXiv:2501.06158, 2025.

Anji Liu, Oliver Broadrick, Mathias Niepert, and Guy Van den Broeck. Discrete copula diffusion.
arXiv preprint arXiv:2410.01949, 2024.

Chengyi Liu, Wenqi Fan, Yunqing Liu, Jiatong Li, Hang Li, Hui Liu, Jiliang Tang, and Qing Li. Gen-
erative diffusion models on graphs: Methods and applications. arXiv preprint arXiv:2302.02591,
2023.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. arXiv preprint arXiv:2310.16834, 2024.

Xinyin Ma, Runpeng Yu, Gongfan Fang, and Xinchao Wang. dkv-cache: The cache for diffusion
language models. arXiv preprint arXiv:2505.15781, 2025.

10

https://openreview.net/forum?id=tyEyYT267x
http://dx.doi.org/10.18653/v1/n18-2097
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mitch Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated corpus
of english: The penn treebank. Computational linguistics, 19(2):313–330, 1993.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-
Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint arXiv:2502.09992,
2025.

Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, and Jennifer Listgarten. Unlocking guidance
for discrete state-space diffusion and flow models. arXiv preprint arXiv:2406.01572, 2024.

Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan
Li. Your absorbing discrete diffusion secretly models the conditional distributions of clean
data. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=sMyXP8Tanm.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernandez. The LAMBADA dataset:
Word prediction requiring a broad discourse context. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1525–1534,
Berlin, Germany, August 2016. Association for Computational Linguistics. URL http://www.
aclweb.org/anthology/P16-1144.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin Choi,
and Zaid Harchaoui. Mauve: Measuring the gap between neural text and human text using
divergence frontiers. Advances in Neural Information Processing Systems, 34:4816–4828, 2021.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Anselm
Levskaya, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling
transformer inference, 2022. URL https://arxiv.org/abs/2211.05102.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Subham Sekhar Sahoo, Marianne Arriola, Aaron Gokaslan, Edgar Mariano Marroquin, Alexander M
Rush, Yair Schiff, Justin T Chiu, and Volodymyr Kuleshov. Simple and effective masked diffusion
language models. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024a. URL https://openreview.net/forum?id=L4uaAR4ArM.

Subham Sekhar Sahoo, Aaron Gokaslan, Christopher De Sa, and Volodymyr Kuleshov. Diffusion
models with learned adaptive noise. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024b. URL https://openreview.net/forum?id=loMa99A4p8.

Subham Sekhar Sahoo, Justin Deschenaux, Aaron Gokaslan, Guanghan Wang, Justin T Chiu, and
Volodymyr Kuleshov. The diffusion duality. In ICLR 2025 Workshop on Deep Generative Model
in Machine Learning: Theory, Principle and Efficacy, 2025. URL https://openreview.
net/forum?id=CB0Ub2yXjC.

Yair Schiff, Chia-Hsiang Kao, Aaron Gokaslan, Tri Dao, Albert Gu, and Volodymyr Kuleshov.
Caduceus: Bi-directional equivariant long-range dna sequence modeling. arXiv preprint
arXiv:2403.03234, 2024.

11

https://openreview.net/forum?id=sMyXP8Tanm
http://www.aclweb.org/anthology/P16-1144
http://www.aclweb.org/anthology/P16-1144
https://arxiv.org/abs/2211.05102
https://openreview.net/forum?id=L4uaAR4ArM
https://openreview.net/forum?id=loMa99A4p8
https://openreview.net/forum?id=CB0Ub2yXjC
https://openreview.net/forum?id=CB0Ub2yXjC

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yair Schiff, Subham Sekhar Sahoo, Hao Phung, Guanghan Wang, Sam Boshar, Hugo Dalla-torre,
Bernardo P de Almeida, Alexander M Rush, Thomas PIERROT, and Volodymyr Kuleshov. Simple
guidance mechanisms for discrete diffusion models. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
i5MrJ6g5G1.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K. Titsias. Simplified and
generalized masked diffusion for discrete data, 2025. URL https://arxiv.org/abs/
2406.04329.

Andy Shih, Dorsa Sadigh, and Stefano Ermon. Training and inference on any-order autoregressive
models the right way. Advances in Neural Information Processing Systems, 35:2762–2775, 2022.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. PMLR, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Guanghan Wang, Yair Schiff, Subham Sahoo, and Volodymyr Kuleshov. Remasking discrete diffusion
models with inference-time scaling. arXiv preprint arXiv:2503.00307, 2025.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding. arXiv preprint arXiv:2505.22618, 2025.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. In NIPS, 2015.

Kaiwen Zheng, Yongxin Chen, Hanzi Mao, Ming-Yu Liu, Jun Zhu, and Qinsheng Zhang. Masked
diffusion models are secretly time-agnostic masked models and exploit inaccurate categorical
sampling. arXiv preprint arXiv:2409.02908, 2024.

12

https://openreview.net/forum?id=i5MrJ6g5G1
https://openreview.net/forum?id=i5MrJ6g5G1
https://arxiv.org/abs/2406.04329
https://arxiv.org/abs/2406.04329

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

2 Background 2

2.1 Autoregressive Models . 3

2.2 Masked Diffusion Models . 3

2.3 Block Discrete Diffusion Models . 3

3 Esoteric Language Models 3

3.1 Fusing Autoregressive Models and Masked Diffusion 4

3.2 Sampling . 4

3.3 Importance Weighted NELBO . 5

4 Attention Mechanisms for the Shared Denoising Transformer 5

4.1 Training . 5

4.2 Sampling . 6

5 Experiments 6

5.1 Likelihood Evaluation . 7

5.2 Pareto Frontier of Generation Speed vs. Quality . 8

5.3 Generation Latency at Long Context . 9

6 Related Work, Discussion, and Conclusion 9

Appendices 14

Appendix A Background 14

A.1 BD3-LMs hyperparameter T ′ and num_tries . 14

Appendix B Esoteric Language Models 15

B.1 MDM Loss Derivation . 15

B.2 Training Algorithm . 16

B.3 Denoising Schedule and Sampling Algorithm . 17

B.4 Attention Mechanism for Diffusion Phase Training . 17

B.5 Attention Mechanism for Sequential Phase Training 18

B.6 Attention Mechanism for Sampling . 19

Appendix C Experimental Details 20

C.1 Low discrepancy sampler . 20

C.2 Likelihood evaluation . 20

C.3 Language modeling . 20

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendix D Eso-LMs (A) as an Ablation 21

D.1 Attention Mechanism for Diffusion Phase Training . 21

D.2 Attention Mechanism for Sequential Phase Training 21

D.3 Attention Mechanism for Sampling . 22

Appendix E Additional Experiments 23

E.1 Ablation on Split Proportion . 23

E.2 Zero-Shot Likelihood Evaluation . 23

E.3 Importance-Weighted Bounds . 24

E.4 Eso-LMs (A) Likelihood Evaluation . 24

E.5 Pareto Frontier of Eso-LMs with αtrain
0 = 1 . 24

E.6 Heuristic Improved Sampler . 25

E.7 Generation Latency at Long Context . 26

E.8 Quality of Generated Samples by Models Trained on OWT 26

E.9 Example Generated Samples by Models Trained on OWT 29

Appendix F The Use of Large Language Models 31

Appendices
APPENDIX A BACKGROUND

A.1 BD3-LMS HYPERPARAMETER T ′ AND NUM_TRIES

In the original codebase of BD3-LMs (Arriola et al., 2025), the number of diffusion sampling steps
T ′ for each block is set to 5000. This is an extremely high T ′ considering the fact that the number
of tokens in each block L′ is at most 16. Having L′ ≤ 16′ and T ′ = 5000 means that off-the-shelf
BD3-LMs are not performing parallel generation because tokens are almost always denoised one
at a time.

Further, we found that BD3-LMs’ codebase cherry-picks its samples. More specifically, to generate
a single sample, the codebase keeps generating new samples (up to num_tries times) until one
sample passes some quality-control test. By default, num_tries = 10 and the codebase reports
sampling failure when the 10 tries are exhausted with no samples passing the test. Empirically, we
found that sampling failures don’t occur for T ′ = 5000.

To investigate the true performance of BD3-LMs for parallel generation, we set num_tries = 1,
disable the quality-control test and evaluate samples from BD3-LMs across a wide range of T values
(Fig. 5). Here and in Fig. 5, T means the sum of sampling steps across all blocks for BD3-LMs, e.g.,
L′ = 16 and T = 4096 means that T ′ = 4096/(1024/16)) = 64 sampling steps is used per block. In
contrast, BD3-LMs’ codebase uses T ′ = 5000 by default, which corresponds to T = ∞ in Figure
Fig. 5. For MDLM, T can be interpreted normally because it has no blocks.

As shown in Figure Fig. 5, as T is decreased to enable more parallel generation, both sample quality
and sample diversity of BD3-LMs becomes significantly worse than MDLM which is discussed
in Sec. 6. We also found that increasing num_tries can somewhat improve the sample entropy of
BD3-LMs (second row of Table 3) and avoid degenerate samples, but doing so provides less or no
improvements for AR and MDLM.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

All five 1M-step checkpoints used in this section are publicly available Hugging Face checkpoints
uploaded by BD3-LMs authors. In particular, their BD3-LM checkpoints are finetuned from MDLM.

Figure 5: Gen. Perplexity (↓) with nucleus sampling (p = 0.9) against the number of sampling steps
for AR, MDLM and BD3-LMs trained for 1M steps. The number of sampling steps for AR is always
1024; we extend it to other values for easier comparison. The number next to each data point records
its sample entropy (↑); a value < 5 usually indicates low diversity degenerate samples.

Table 3: Gen. PPL (↓) and entropy (↑) (in parentheses) with nucleus sampling (p = 0.9) for
AR, MDLM, and BD3-LM L′ = 16 trained for 1M. We observe that the num_tries parameter
introduced in (Arriola et al., 2025) for BD3-LMs selectively helps BD3-LMs but not the baselines.
AR is not affected by T .

BD3-LM L′ = 16 MDLM AR
num_tries 1 10 1 10 1 10
T = 1024 72.80 (5.35) 77.71 (5.41) 41.92 (5.36) 41.79 (5.37) 13.03 (5.26) 13.76 (5.32)
T = 256 356.02 (5.11) 440.69 (5.28) 45.07 (5.40) 44.57 (5.39) 13.03 (5.26) 13.76 (5.32)

APPENDIX B ESOTERIC LANGUAGE MODELS

B.1 MDM LOSS DERIVATION

The NLL is given as:

− log pθ(x) ≤ −Ez0∼q0(.∣x) log p
AR
θ (x∣z0) +DKL(q0(z0∣x)∥p

MDM
θ (z0))

= −Ez0∼q0(.∣x)

⎡
⎢
⎢
⎢
⎢
⎣

∑
ℓ∈M(z0)

log pAR
θ (x

ℓ
∣z0,x

<ℓ
)

⎤
⎥
⎥
⎥
⎥
⎦

+DKL(q0(z0∣x)∥p
MDM
θ (z0)). (16)

Note that z0 may contain clean tokens at indices exceeding the index ℓ. As discussed in Sec. 3.1, the
AR log-likelihood is given as:

∑
ℓ∈M(z0)

log pAR
θ (x

ℓ
∣z0,x

<ℓ
) = ∑

ℓ∈M(z0)

log⟨xℓ
θ(z0 ⊙ x<ℓ),xℓ

⟩, (17)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where we compute the loss only at the masked indicesM(z0).

To compute the KL term in (16), we define a masked diffusion process over z0. For this diffusion
process, its forward marginal zℓt ∼ qt(⋅∣x

ℓ) at time t ∈ [0,1] is the same as (1) but uses a noise
schedule with a scaled-down range (αt)t∈[0,1] ∈ [0, α0], a strictly decreasing function in t with
αt=0 = α0 such that zt=0 = z0 and αt=1 = 0 such that zt=1 =m1∶L. With T diffusion steps, we have:

DKL(q0(z0∣x)∥p
MDM
θ (z0)) = Ez0 [log

q0(z0∣x)

pMDM
θ (z0)

]

= Ez0 [logEz 1
T
∶1
[

q(z0∶1∣x)

pMDM
θ (z0∶1)

]]

≤ Ez0∶1 [log
q(z0∶1∣x)

pMDM
θ (z0∶1)

]

= Ez0∶1

⎡
⎢
⎢
⎢
⎢
⎣

∑
t∈{ 1

T , 2
T ,...,1}

log
q(zt− 1

T
∣zt,x)

pMDM
θ (zt− 1

T
∣zt)

⎤
⎥
⎥
⎥
⎥
⎦

= ∑
t

Ezt [DKL(q(zt− 1
T
∣zt,x)∥p

MDM
θ (zt− 1

T
∣zt))]

Sahoo et al. (2024a) show that, as T →∞, the above simplifies to:

= Et∼U[0,1],zt∼qt

⎡
⎢
⎢
⎢
⎢
⎣

α′t
1 − αt

∑
ℓ∈M(zt)

log⟨xℓ
θ(zt),x

ℓ
⟩

⎤
⎥
⎥
⎥
⎥
⎦

. (18)

Finally, combining (17) and (18), we get the desired result:

LNELBO(x; θ)

= Ez0∼q0

⎡
⎢
⎢
⎢
⎢
⎣

− ∑
ℓ∈M(z0)

log⟨xℓ
θ(z0 ⊙ x<ℓ),xℓ

⟩

´¹¹¸¹¹¹¶
AR loss

⎤
⎥
⎥
⎥
⎥
⎦

+ ∫

t=1

t=0

α′t
1 − αt

Ezt∼qt

⎡
⎢
⎢
⎢
⎢
⎣

∑
ℓ∈M(zt)

log⟨xℓ
θ(zt),x

ℓ
⟩

⎤
⎥
⎥
⎥
⎥
⎦

dt

´¹¹¹¸¹¹¶
MDM loss

.

(19)

B.2 TRAINING ALGORITHM

Algo. 1 outlines the complete training procedure.

Algorithm 1 Eso-LMs Training

Input: dataset D, batch size bs, forward noise process qt(⋅∣x), model xθ, learning rate η
while not converged do

x1,x2, . . . ,xbs ∼D
for i← 1 to bs/2 do ▷ If α0 = 1, loop through 1 to bs.

z0 ∼ q0(⋅∣x)
σ ∼ PL with constraints ▷ Used to construct the attention bias A in xθ (Sec. 4)
Li ← −∑ℓ∈M(z0)

log⟨xℓ
θ(z0,x

<ℓ),xℓ
i⟩ ▷ Estimator of Sequential Loss in (7)

end for
for i← bs/2 + 1 to bs do ▷ If α0 = 1, skip this loop.

Sample t ∼ U[0,1]
zt ∼ qt(⋅∣x)
σ ∼ PL with constraints ▷ Used to construct the attention bias A in xθ (Sec. 4)
Li ←

α′t
1−αt
∑ℓ∈M(zt)

log⟨xℓ
θ(zt),x

ℓ
i⟩ ▷ Estimator of MDM Loss in (7)

end for
θ ← θ − η∇θ∑

bs
i=1Li

end while

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.3 DENOISING SCHEDULE AND SAMPLING ALGORITHM

Eso-LMs perform two phases of sampling: the diffusion phase and the sequential phase. Within the
diffusion phase, tokens are denoised in random order and potentially in parallel. Within the sequential
phase, remaining mask tokens are denoised sequentially from left to right and one at a time.

First, to determine (i) the total number of tokens to denoise during the diffusion phase and (ii) the
number of tokens to denoise per diffusion step, we run a modified version of the first-hitting algorithm
proposed in Zheng et al. (2024). Suppose the sequence to generate has length L, the number of
discretization steps is T , and the noise schedule is α (with α0 ≥ 0). Let dt = 1/T . We iterate from
t = 1 to 1 − dt (inclusive) for T steps. For each step, we compute the number of tokens to denoise at
time t as

nt = Binom(n = nremaining
t , p =

αs − αt

1 − αt
) , (20)

where s = t− dt and nremaining
t = L−∑t′>t nt′ . When T is large, some nt’s could be zero. All the nt’s

produced by this algorithm are collected in an ordered list, except for the nt’s that are zeros. We
denote the sum of all nt’s as nMDM and define nAR = L − nMDM.

We select nMDM token indices from [L] to denoise by diffusion and use the complementing subset
of token indices to denoise sequentially. For example, suppose L = 8 and the token indices are
[1,2, . . . ,8]. Suppose we obtained nMDM = 5 from the algorithm above. Then, the diffusion indices
we may select are (1,3,4,6,7) and the complementing sequential indices are (2,5,8). We further
randomly permute the diffusion indices to be, e.g., (3,1,6,4,7), for random-order denoising.

Given the list of non-zero nt’s and the permuted ordered set of diffusion indices, we create the
sampling schedule for diffusion by partitioning the diffusion indices per the nt’s. Suppose the list of
non-zero nt’s is (2,1,2). Using it to partition the permuted set of diffusion indices (3,1,6,4,7), we
obtain the following sampling schedule for the diffusion phase: SMDM = ((3,1), (6), (4,7)). The
denoising schedule for the sequential phase is simply SAR = ((2), (5), (8)). The unified sampling
schedule S is the concatenation of SMDM and SAR. In this example, S = (S1, S2, S3, S4, S5, S6)

where S1 = (3,1), S2 = (6), S3 = (4,7), S4 = (2), S5 = (5) and S6 = (8). This corresponds to 6
NFEs. Finally, S is passed to Algo. 2, which handles the rest of the sampling procedure. Connecting
back to the denoising ordering σ discussed in Sec. D.3 and Sec. 4.2, we have σ = (3,1,6,4,7,2,5,8)
in this example.

Algorithm 2 Eso-LMs Sampling

Input: sequence length L, unified sampling schedule S
z = [MASK_INDEX, . . . ,MASK_INDEX]
C = {} ▷ Indices of clean tokens
for i← 1 to ∣S∣ do ▷ Sequential happens automatically when ∣C ∣ ≥ nMDM

logits← xθ(z[C ∪ Si]) ▷ See Remark
logits ← select logits corresponding to Si

z[Si] ← categorical_sample(logits, dim=-1) ▷ logits has shape (∣Si∣, ∣V∣)
C ← C ∪ Si

end for
Return: z

Remark. z[C ∪ Si] denotes the subset of the tokens in z that are fed into the denoising model
xθ. The position embeddings for a token zℓ ∈ z[C ∪ Si] is ensured to be the same as that in the
original sequence z. Refer to Sec. D.3 and Sec. 4.2 for computing the sampling attention bias A
for Eso-LMs (A) and Eso-LMs respectively. For Eso-LMs, due to the use of causal attention, xθ is
able to cache the KV-values of a clean token the first time it is processed.

B.4 ATTENTION MECHANISM FOR DIFFUSION PHASE TRAINING

For a short and intuitive description, refer to Sec. 4.1.1.

In the diffusion phase, the denoising transformer receives zt ∼ qt(.∣x) as input, which contains mask
tokens to denoise, and x as target. We leverage the connection of MDMs with AO-ARMs (Ou et al.,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

2025), which establishes that mask tokens {zit∣i ∈ M(zt)} can be denoised in any random order,
and clean tokens {zit∣i ∈ C(zt)} also could have been generated in any random order. Hence, we
first sample a random ordering σ ∼ PL with the only constraint that clean tokens in zt precede mask
tokens in zt per σ. We then constrain a clean token (zit)i∈C(zt) to only attend to itself and prior clean
tokens per σ; a mask token (zit)i∈M(zt) attends to clean tokens, itself, and prior mask tokens per σ.
Hence we define the L ×L attention bias by

Ai,j = {
0 if σ−1(i) ≥ σ−1(j) ∀(i, j) ∈ [L] × [L] (21)
−∞ otherwise. (22)

See Fig. 6 for an example.

Simplified Implementation A becomes a causal attention bias if we sort the rows and columns of
A by σ (Fig. 6), which is simple to implement. We also sort the positional embeddings of zt by σ so
tokens keep their original positional embeddings. When calculating loss, we sort the target x by σ.

Eso-LM Diffusion Phase
 Attention Bias (Sorted)

A M C M M F

1 2 3 4 5 6

A

M

C

F

M

M

1

2

3

6

5

4

Eso-LM Diffusion Phase
Attention Bias

M

M

M

1

2

3

6

5

4

C

A

F

M M M

1 23 4 56

C A FInputTarget Input

B

D

E

Target

D

E

B

A

M

C

F

M

M

A M C M M F

1 2 3 4 5 6

1

2

3

6

5

4

MDLM
Attention Bias

Target

B

D

E

Input

Sort
rows & columns

Figure 6: Comparison of attention biases for MDLM and Eso-LMs diffusion-phase training, before
and after sorting the rows and columns by σ. Orange represents 0 (attention) and gray represents −∞
(no attention). The clean sequence is x = (A,B,C,D,E,F) and hence L = 6. After random masking,
we obtain zt = (A,M,C,M,M,F). The integers denote position indices: M(zt) = {2,4,5} and
C(zt) = {1,3,6}. The ordering is σ = (3,1,6,4,5,2) ∼ P6 with clean tokens before mask tokens.

B.5 ATTENTION MECHANISM FOR SEQUENTIAL PHASE TRAINING

See Fig. 7 for an illustrative example. For full details, see Sec. 4.1.2.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

M
A
M
C

F

M
M

A
B
C

F

D
E

A C M M F
1
2
3

6
5
4

1
2
3

6
5
4

1 2 3 4 5 6 1 2 3 4 5 6
A B D EC F M

A

M

C

F

M
M

M M

1

2

3

6

5
4

3 1 6 2 4 5
A B D EC FC A F

3 1 6 2 4 5

A
C

F
1

2

3

6

5
4

B
D
E

Eso-LM Sequential Phase
 Attention Bias

Eso-LM Sequential Phase
 Attention Bias (Sorted)

InputTarget

B
D
E

B

D
E

InputTarget

Sort
rows & columns

Figure 7: Comparison of attention biases for Eso-LMs sequential-phase training, before and after
sorting the rows and columns of each of the four L ×L blocks by σ. Orange represents 0 (attention)
and gray represents −∞ (no attention). The clean sequence is x = (A,B,C,D,E,F) and hence
L = 6. After random masking, we obtain z0 = (A,M,C,M,M,F). The integers denote the position
indices withM(z0) = {2,4,5} and C(z0) = {1,3,6}. The random ordering among C(z0) is (3,1,6).
Green highlights the extra connections added from clean tokens in z0 so that the attention bias display
classic patterns after sorting – they don’t contribute to the transformer output because no other token
attends to clean tokens in z0.

B.6 ATTENTION MECHANISM FOR SAMPLING

During sampling step k, given a partially masked sequence zk, the denoising model is required to
denoise the mask tokens {zik ∣i ∈ Sk} for Sk ∈ S = {S1, . . . , SK} where K = ∣S∣. We perform a
forward pass on the subset of tokens {zik ∣i ∈ C(zk) ∪Sk}. It is crucial to note that while performing a
forward pass on a subset of tokens, the positional embeddings of these tokens in the actual sequence
are preserved. Below we discuss the attention bias used in the forward pass.

Let Dk = C(zk) be the set of position indices of tokens decoded prior to step k. Importantly, we do
not need to make any distinction between tokens decoded in the diffusion phase or those decoded in
the sequential phase. This flexibility allows our sampler to use any denoising schedule S.

Let σ be the denoising ordering derived from S. We define the L ×L attention bias at step k by

Ai,j = {
0 if σ−1(i) ≥ σ−1(j) ∀(i, j) ∈ (Dk ∪ Sk) × (Dk ∪ Sk) (23)
−∞ otherwise, (24)

which is simply causal attention applied to clean tokens generated prior to step k and mask tokens to
be decoded in step k, both sorted by σ. Causal attention allows for KV caching, as shown in Fig. 8.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C B M M

A H

C B A H M M

F D

Diffusion Phase

C B A H F D

E

Sequential Phase

C B A H F D E MM

G

M M

C B 52 3 41

Toks:

MBCMMMMM ABCMMMMH ABCDMFMH ABCDEFMH ABCDEFGH

3 2 1 8 3 2 1 8 6 4 3 2 1 8 6 4 3 2 1 8 6 4 5 753 2Pos:

Figure 8: (Copy of Fig. 1) Efficient generation of an example sequence with Eso-LMs. During
Diffusion Phase, Eso-LMs denoise one or more, potentially non-neighboring mask tokens (M) per
step. During Sequential Phase, Eso-LMs denoise the remaining mask tokens one at a time from left
to right. Eso-LMs allows for KV caching in both phases using just a single unified KV cache: blue
bounding boxes enclose transformer cells that are building their KV cache; a cell becomes blue once
its KV cache is built. The sequences below the transformers depict tokens in their natural order.

APPENDIX C EXPERIMENTAL DETAILS

C.1 LOW DISCREPANCY SAMPLER

To reduce variance during training we use a low-discrepancy sampler, similar to that proposed Kingma
et al. (2021). Specifically, when processing a minibatch of N samples, instead of independently
sampling N from a uniform distribution, we partition the unit interval and sample the time step for
each sequence i ∈ {1, . . . ,N} from a different portion of the interval ti ∼ U[i−1N

, i
N
]. This ensures

that our sampled timesteps are more evenly spaced across the interval [0,1], reducing ELBO variance.

C.2 LIKELIHOOD EVALUATION

We use a single monte-carlo estimate for t for each example to evaluate the likelihood. We use a low
discrepancy sampler (Kingma et al., 2021) to reduce the variance of the estimate.

C.3 LANGUAGE MODELING

We detokenize the One Billion Words dataset following Lou et al. (2024); Sahoo et al. (2024a),
whose code can be found here1. We tokenize the One Billion Words dataset with the
bert-base-uncased tokenizer, following Austin et al. (2021); He et al. (2022). We concatenate
and wrap sequences (also known as sequence packing) to a length of 128 (Raffel et al., 2020). When
wrapping, we add the [CLS] token in-between concatenated sequences. The final preprocessed
sequences also have the [CLS] token as their first and last token. Unlike Sahoo et al. (2024a);
Lou et al. (2024); He et al. (2022), we apply sequence packing to LM1B, making our setup more
challenging and resulting in higher perplexities given the same model (Table 1).

We tokenize OpenWebText with the GPT2 (Radford et al., 2019) tokenizer. We concatenate and
wrap them to a length of 1,024. When wrapping, we add the eos token in-between concatenated
sequences. Unlike for One Billion Words, the final preprocessed sequences for OpenWebText do not
have special tokens as their first and last token. Since OpenWebText does not have a test split, we
leave the last 100k docs as test.

Eso-LMs shares the same parameterization as our autoregressive baseline, SEDD, MDLM, UDLM,
and DUO: a modified diffusion transformer architecture (Peebles & Xie, 2023) from Lou et al. (2024);
Sahoo et al. (2024a). We use 12 layers, a hidden dimension of 768, 12 attention heads. Eso-LMs
do not use timestep embedding used in uniform diffusion models (SEDD Uniform, UDLM, DUO).
Word embeddings are not tied between the input and output. We train BD3-LMs using the original
code provided by their authors.

1https://github.com/louaaron/Score-Entropy-Discrete-Diffusion/blob/main/data.py

20

https://github.com/louaaron/Score-Entropy-Discrete-Diffusion/blob/main/data.py

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

We use the log-linear noise schedule αt = α0(1 − t). We use the AdamW optimizer with a batch size
of 512, constant learning rate warmup from 0 to a learning rate of 3e-4 for 2,500 steps. We use a
constant learning rate for 1M steps on One Billion Words and for 250K steps for OpenWebText. We
use a dropout rate of 0.1. We train models on H200 GPUs. On OpenWebText for 250K steps, training
takes ~27 hours when α0 = 1 and ~37 hours when α0 < 1 due to the additional AR loss. Throughput
is benchmarked on H200 GPUs and latency is benchmarked on A6000 GPUs.

APPENDIX D ESO-LMS (A) AS AN ABLATION

D.1 ATTENTION MECHANISM FOR DIFFUSION PHASE TRAINING

The denoising transformer receives zt ∼ qt(.∣x) as input, which contains the mask tokens to denoise,
and x as target. A random ordering σ ∼ PL is sampled with the only constraint that clean tokens in
zt precede mask tokens in zt in σ. We define the L ×L attention bias by

Ai,j =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 ∀(i, j) ∈ C(zt) × C(zt) (25)

0 if σ−1(i) ≥ σ−1(j) ∀(i, j) ∈ M(zt) × [L] (26)
−∞ otherwise. (27)

Clean tokens {zit∣i ∈ C(zt)} have bidirectional attention among them (25), while a mask token
(zit)i∈M(zt) attends to clean tokens, itself and prior mask tokens per σ (26). We can ignore the
ordering among clean tokens in σ due to the use of bidirectional attention. See Fig. 9 for an example.

Simplified Implementation A becomes a Prefix-LM (Raffel et al., 2020) attention bias if we sort
the rows and columns of A by σ (Fig. 6), which is simple to implement.

Eso-LM (A) Diffusion Phase
 Attention Bias (Sorted)

A M C M M F

1 2 3 4 5 6

A

M

C

F

M

M

1

2

3

6

5

4

Eso-LM (A) Diffusion Phase
Attention Bias

M

M

M

1

2

3

6

5

4

C

A

F

M M M

1 23 4 56

C A FInputTarget Input

B

D

E

Target

D

E

B

A

M

C

F

M

M

A M C M M F

1 2 3 4 5 6

1

2

3

6

5

4

MDLM
Attention Bias

Target

B

D

E

Input

Sort
rows & columns

Figure 9: Comparing attention biases for MDLM and Eso-LMs (A) diffusion-phase training, before
and after sorting the rows and columns by σ. Orange represents 0 (attention) and gray represents −∞
(no attention). The clean sequence is x = (A,B,C,D,E,F) and hence L = 6. After random masking,
we obtain zt = (A,M,C,M,M,F). The integers denote position indices: M(zt) = {2,4,5} and
C(zt) = {1,3,6}. σ = (3,1,6,4,5,2) ∼ P6 with clean tokens before mask tokens.

D.2 ATTENTION MECHANISM FOR SEQUENTIAL PHASE TRAINING

The denoising transformer receives the concatenated sequence z0 ⊕ x ∈ V2L as input, where z0 ∼
q0(.∣x) contains the mask tokens to denoise, and x as target. We define the 2L × 2L attention bias by

Ai,j = 0 if i = j∀(i, j) ∈ M(z0) ×M(z0) (28)
Ai,j+L = 0 ∀(i, j) ∈ M(z0) × C(z0) (29)
Ai,j+L = 0 if i > j∀(i, j) ∈ M(z0) ×M(z0) (30)
Ai+L,j+L = 0 ∀(i, j) ∈ C(z0) × C(z0) (31)
Ai+L,j+L = 0 ∀(i, j) ∈ M(z0) × C(z0) (32)
Ai+L,j+L = 0 if i ≥ j∀(i, j) ∈ M(z0) ×M(z0) (33)
Ai,j = −∞ otherwise. (34)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

See Fig. 10 for an example. This construction ensures that a mask token (zi0)i∈M(z0) attends to (i)
itself (28), (ii) the clean tokens {xj ∣j ∈ C(z0)} (29) and (iii) the clean versions of mask tokens on its
left {xj ∣j ∈ M(z0), i > j} (30). A clean token (zi0)i∈C(z0) can attend to anything because no other
token attends to them (34). The attention mechanism for tokens in the clean context x0 is described
as follows. Tokens {xi∣i ∈ C(z0)} have bidirectional attention (31). A clean token corresponding to a
mask token,(xi)i∈M(z0), attends to {xj ∣j ∈ C(z0)} (32) and {xj ∣j ∈ M(z0), i ≥ j} (33).

Simplified Implementation Let σ be an ordering such that: (i) clean tokens in z0 precede mask
tokens in z0 in σ and (ii) mask tokens in z0 are in natural order in σ. The ordering among clean
tokens {xi∣i ∈ C(z0)} can be ignored with bidirectional attention. When the rows and columns of
each of the four L-by-L blocks are sorted by σ, A shows classic attention patterns (Fig. 10) that are
simple to implement.

M
A
M
C

F

M
M

A
B
C

F

D
E

A C M M F
1
2
3

6
5
4

1
2
3

6
5
4

1 2 3 4 5 6 1 2 3 4 5 6
A B D EC F M

A

M

C

F

M
M

M M

1

2

3

6

5
4

3 1 6 2 4 5
A B D EC FC A F

3 1 6 2 4 5

A
C

F
1

2

3

6

5
4

B
D
E

Eso-LM (A) Sequential Phase
 Attention Bias

Eso-LM (A) Sequential Phase
 Attention Bias (Sorted)

InputTarget

B
D
E

B

D
E

InputTarget

Sort
rows & columns

Figure 10: Comparison of attention biases for Eso-LMs (A) sequential-phase training, before and
after sorting the rows and columns of each of the four L × L blocks by σ. Orange represents 0
(attention) and gray represents −∞ (no attention). The clean sequence is x = (A,B,C,D,E,F) and
hence L = 6. After random masking, we obtain z0 = (A,M,C,M,M,F). The integers denote the
position indices withM(z0) = {2,4,5} and C(z0) = {1,3,6}. The random ordering among C(z0)
is (3,1,6). Green highlights the extra connections added from clean tokens in z0 so that the attention
bias display classic patterns after sorting – they don’t contribute to the transformer output because no
other token attends to clean tokens in z0.

D.3 ATTENTION MECHANISM FOR SAMPLING

During diffusion or sequential sampling, given a partially masked sequence zk, the denoising model
is required to denoise the mask tokens {zik ∣i ∈ Sk} for Sk ∈ S = {S1, . . . , SK} where K = ∣S∣. We
perform a forward pass on the subset of tokens {zik ∣i ∈ C(zk) ∪ Sk}. It is crucial to note that while
performing a forward pass on a subset of tokens, the positional embeddings of these tokens in the
actual sequence are preserved. Below we discuss the attention bias used in the forward pass.

Let DMDM
k be the set of indices of tokens decoded in the diffusion phase prior to step k and DAR

k be
that for the sequential phase. Let ordering σ be the order in which we denoise tokens defined by S.
We define the L ×L attention bias at step k by

Ai,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ∀(i, j) ∈DMDM
k ×DMDM

k (35)

0 ∀(i, j) ∈DAR
k ×D

MDM
k (36)

0 if i ≥ j ∀(i, j) ∈DAR
k ×D

AR
k (37)

0 ∀(i, j) ∈ Sk × (D
MDM
k ∪DAR

k) (38)

0 if σ−1(i) ≥ σ−1(j) ∀(i, j) ∈ Sk × Sk (39)
−∞ otherwise. (40)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Clean tokens decoded during diffusion {zik ∣i ∈D
MDM
k } have bidirectional attention among them (35).

A clean token decoded sequentially (zik)i∈DAR
k

attends to clean tokens decoded during diffusion

{zjk ∣j ∈ D
MDM
k } (36), itself, and prior clean tokens decoded sequentially {zjk ∣j ∈ D

AR
k , i > j} (37).

A mask token to denoise (zik)i∈Sk
attends to all decoded clean tokens {zjk ∣j ∈ D

MDM
k ∪DAR

k } (38),
itself, and prior mask tokens to denoise per σ: {zjk ∣j ∈ Sk, σ

−1(i) > σ−1(j)} (39). Mask tokens not
scheduled to denoise (zik)i∈S>k can attend to anything because no other token attends to them (40).

Fig. 11 shows how Eso-LMs (A) generates with KV caching only during the sequential phase.

C
3

B

MBCMMMMM ABCMMMMH ABCDMFMH

Diffusion Phase

ABCDEFMH

Sequential Phase

ABCDEFGH

2
M
1

M
8

A H

C
3

B
2

A
1

H
8

M
6

M
4

F D

C
3

B
2

A
1

H
8

F
6

D
4

E

C
3

B
2

A
1

H
8

E
5

M
7

F
6

D
4

M
5

G

M
3

M
2

C B 52 31 4

Toks:
Pos:

Figure 11: Generation of an example sequence with Eso-LMs (A). During Diffusion Phase, Eso-LMs
denoise one or more, potentially non-neighboring mask tokens (M) per step. During Sequential
Phase, Eso-LMs denoise the remaining mask tokens one at a time from left to right. Eso-LMs (A)
allows for KV caching in sequential phase only: blue bounding boxes enclose transformer cells that
are building their KV cache; a cell becomes blue once its KV cache is built. The sequences below
the transformers depict tokens in their natural order.

APPENDIX E ADDITIONAL EXPERIMENTS

E.1 ABLATION ON SPLIT PROPORTION

See Table 4.

Table 4: Test perplexities (↓) on LM1B for Eso-LMs (A) trained for 500K vs. the proportion κ of
examples in each batch used for evaluating the MDM loss in (7) during training. Remaining examples
in each batch are used for evaluating the AR loss in (7) during training.

κ = 0.75 κ = 0.5 κ = 0.25 κ = 0.125

Eso-LMs (A)
α0 = 0.5 32.25 31.53 Diverged Diverged
α0 = 0.25 30.49 29.33 Diverged Diverged
α0 = 0.125 27.76 26.73 Diverged Diverged
α0 = 0.0625 25.92 25.07 Diverged Diverged

E.2 ZERO-SHOT LIKELIHOOD EVALUATION

We explore models’ ability to generalize by taking models trained on OWT and evaluating how well
they model unseen datasets (Table 5). We compare the perplexities of our Eso-LMs with SEDD
(Austin et al., 2021), MDLM (Sahoo et al., 2024a), BD3-LMs (Arriola et al., 2025), and an AR
Transformer language model. Our zero-shot datasets are validation splits of Penn Tree Bank (PTB;
(Marcus et al., 1993)), Wikitext (Merity et al., 2016), LM1B, Lambada (Paperno et al., 2016), AG
News (Zhang et al., 2015), and Scientific Papers (Pubmed and Arxiv subsets; (Cohan et al., 2018)).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 5: Zero-shot perplexities (↓) of models trained for 250K steps on OWT. We report bounds for
diffusion models and interpolation methods. Numbers for AR were taken from (Arriola et al., 2025).

PTB Wikitext LM1B Lambada AG News Pubmed Arxiv

AR 81.07 25.32 51.14 52.13 52.11 48.59 41.22

MDLM 93.82 36.89 69.45 53.05 67.33 49.47 43.84
SEDD Absorb 99.59 38.55 72.51 52.16 72.62 47.07 41.18
BD3-LM (L′ = 16) 90.63 33.14 64.88 53.09 62.5 43.25 39.82
Eso-LMs (Ours)
α0 = 1 126.29 45.08 82.01 61.37 98.22 62.37 55.76
α0 = 0.5 110.70 39.57 75.75 57.33 86.65 60.20 53.78
α0 = 0.25 105.19 37.32 67.69 60.15 75.74 62.45 55.31
α0 = 0.125 97.46 35.65 60.11 69.13 65.26 65.27 57.4

E.3 IMPORTANCE-WEIGHTED BOUNDS

See Table 6.

Table 6: Test perplexities (↓) on OWT for Eso-LMs trained for 250K steps, computed using
importance-weighted bounds. We report multiple estimates for each α0 by varying the number
of orderings sampled (K ∈ {1,10,20,50,100}) per batch of 32 examples in the OWT test set.

K = 1 K = 10 K = 20 K = 50 K = 100

Eso-LMs (Ours)
α0 = 1 31.71 30.50 30.26 29.99 29.80
α0 = 0.5 28.95 27.77 27.53 27.27 27.09
α0 = 0.25 25.23 24.16 23.95 23.72 23.56
α0 = 0.125 22.24 21.35 21.17 20.98 20.86

E.4 ESO-LMS (A) LIKELIHOOD EVALUATION

See Table 7 and Table 8.

Table 7: Test perplexities (↓) on LM1B for Eso-LMs and Eso-LMs (A) trained for 1M steps.

α0 Eso-LMs Eso-LMs (A)

1.0 35.00 30.96
0.5 32.38 30.51
0.25 29.14 28.44
0.125 26.21 25.97
0.0625 24.51 24.51

Table 8: Test perplexities (↓) on OWT for Eso-LMs and Eso-LMs (A) trained for 250K steps.

α0 Eso-LMs Eso-LMs (A)

1.0 30.06 26.21
0.5 27.85 25.38
0.25 24.73 23.78
0.125 21.87 21.47

E.5 PARETO FRONTIER OF ESO-LMS WITH αTRAIN
0 = 1

See Fig. 12 and Fig. 13 for a comparison of the Pareto frontier of Eso-LMs trained with αtrain
0 = 1

against Pareto frontiers reported in the main paper (Fig. 3 and Fig. 4).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

101 102

Mean Sampling Duration Per Batch (sec.)

102
Ge

n.
 P

PL
 (

)

Method
Eso-LM (train

0 = 1)
Eso-LM
BD3-LM
MDLM
AR

Eso-LM train
0

1
0.5
0.25
0.125

Eso-LM train
0

1
0.5
0.25
0.125

Figure 12: Eso-LMs establish SOTA on the
Pareto frontier of sampling speed and Gen. PPL.

101 102

Mean Sampling Duration Per Batch (sec.)

0.0

0.2

0.4

0.6

0.8

M
AU

VE
 (

)

Method
Eso-LM (train

0 = 1)
Eso-LM
BD3-LM
MDLM
AR

Eso-LM train
0

1
0.5
0.25
0.125

Eso-LM train
0

1
0.5
0.25
0.125

Figure 13: Eso-LMs establish SOTA on the
Pareto frontier of sampling speed and MAUVE.

E.6 HEURISTIC IMPROVED SAMPLER

We propose a heuristic improved sampler that only performs parallel decoding for evenly spaced
positions across the sequence length. For example, with length 1024 and parallelism 4, the model
first predicts positions 0, 255, 511, and 767 simultaneously. Subsequent steps need not target adjacent
indices (e.g., 1, 256, 512, and 768), but instead continue to perform parallel decoding for a random
set of 4 interleaved, far-apart positions. This process is iterated until the sequence is filled.

We use Eso-LMs trained with αtrain
0 = 1 and generate samples by fixing αeval

0 = 1 and varying T to
control NFEs and sampling time. For the improved sampler, we use Eso-LMs trained with αtrain

0 = 1
and generate samples by varying the amount of parallelism, i.e., number of tokens generated in
parallel: {64,32,16,8,4,2,1}. We find that the sampler significantly improves generation quality at
low NFEs (Fig. 14 and Fig. 15) while offering less improvements at high NFEs, which is expected.

101

Mean Sampling Duration Per Batch (sec.)

50

60

70

80

90

100

110

120

Ge
n.

 P
PL

 (
)

Method
Eso-LM (train

0 = 1, eval
0 = 1)

+ Improved Sampler

Method
Eso-LM (train

0 = 1, eval
0 = 1)

+ Improved Sampler

Figure 14: Heuristic improved sampler improves
Gen. PPL Pareto frontier at low NFEs.

101

Mean Sampling Duration Per Batch (sec.)

0.1

0.2

0.3

0.4

0.5

0.6

M
AU

VE
 (

)

Method
Eso-LM (train

0 = 1, eval
0 = 1)

+ Improved Sampler

Method
Eso-LM (train

0 = 1, eval
0 = 1)

+ Improved Sampler

Figure 15: Heuristic improved sampler improves
MAUVE Pareto frontier at low NFEs.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

E.7 GENERATION LATENCY AT LONG CONTEXT

Table 9: Sampling time (↓) in seconds for sequence lengths L ∈ {2048,8192} with NFEs set to L for
all methods. Reported values are meanstd over 5 runs.

Method L = 2048 L = 8192

AR 13.30.9 54.00.2

MDLM 201.30.4 5438.33.3

BD3-LMs (L′ = 4) 24.30.7 312.01.7

BD3-LMs (L′ = 16) 21.30.1 268.11.2

Eso-LMs (Ours) 14.60.3 82.10.3

Table 10: Gen. PPL (↓), entropy, and sampling time (↓) in seconds for sequence length L = 10240
with NFEs set to L for all methods. Reported values for sampling time are meanstd over 5 runs.

Method Gen. PPL Entropy Time (seconds)

BD3-LMs (L′ = 4) 29.50 6.5 588.63.2

Eso-LM (Ours) (αtrain
0 = αeval

0 = 0.125) 23.40 6.3 116.40.4

E.8 QUALITY OF GENERATED SAMPLES BY MODELS TRAINED ON OWT

In Fig. 3 and Fig. 4 we present how the sample quality changes by varying NFEs. The individual
values for Gen. PPL, entropy and MAUVE can be found in Table 11 (Eso-LMs), Table 12 (MDLM),
and Table 13 (BD3-LMs).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 11: Gen. PPL (↓), entropies (↑), and MAUVE (↑) of samples by Eso-LMs trained for 250K
steps on OWT.

αtrain
0 αeval

0 T NFE Gen. PPL (↓) Entropy MAUVE (↑) Sampling Time (sec) (↓)

1 0.0625 16 976 25.36 5.1 0.7048 36.75
1 0.0625 128 1010 24.74 5.1 0.6753 37.32
1 0.0625 1024 1022 24.23 5.1 0.6925 36.99
1 0.25 16 784 51.11 5.4 0.4996 33.89
1 0.25 128 879 43.31 5.3 0.5875 35.11
1 0.25 1024 994 43.36 5.3 0.5748 36.69
1 0.5 16 529 72.16 5.5 0.2885 26.93
1 0.5 128 639 48.80 5.3 0.5333 29.03
1 0.5 1024 913 47.72 5.3 0.5549 34.83
1 1 16 16 119.89 5.5 0.0796 2.97
1 1 32 32 77.55 5.5 0.2468 3.40
1 1 64 64 61.43 5.4 0.4166 4.39
1 1 128 128 53.28 5.4 0.4467 6.40
1 1 256 251 50.76 5.3 0.4766 10.51
1 1 1024 646 49.05 5.3 0.4939 24.19
1 1 4096 906 48.86 5.3 0.5425 33.33

0.5 0.0625 16 976 27.52 5.3 0.7905 36.75
0.5 0.0625 128 1010 27.84 5.3 0.8227 37.32
0.5 18 1024 1022 27.90 5.3 0.8160 36.99
0.5 0.25 16 784 45.81 5.4 0.5998 33.89
0.5 0.25 128 879 39.22 5.4 0.7066 35.11
0.5 0.25 1024 994 40.50 5.4 0.7330 36.69
0.5 0.5 16 529 70.78 5.5 0.3651 26.93
0.5 0.5 128 639 48.41 5.4 0.5870 29.03
0.5 0.5 1024 913 48.81 5.4 0.6563 34.83
0.5 1 16 16 125.21 5.5 0.0701 2.97
0.5 1 32 32 81.37 5.5 0.2118 3.40
0.5 1 64 64 64.04 5.4 0.3534 4.39
0.5 1 128 128 56.64 5.4 0.4232 6.40
0.5 1 256 251 53.53 5.4 0.4564 10.51
0.5 1 1024 646 53.24 5.4 0.5110 24.19
0.5 1 4096 906 54.11 5.4 0.5315 33.33

0.25 0.0625 16 976 24.20 5.4 0.7908 36.75
0.25 0.0625 128 1010 25.48 5.4 0.8344 37.32
0.25 0.0625 1024 1022 25.97 5.4 0.8312 36.99
0.25 0.25 16 784 45.48 5.4 0.6151 33.89
0.25 0.25 128 879 40.08 5.4 0.6955 35.11
0.25 0.25 1024 994 42.56 5.4 0.7000 36.69
0.25 0.5 16 529 79.84 5.5 0.1846 26.93
0.25 0.5 128 639 56.05 5.4 0.4125 29.03
0.25 0.5 1024 913 58.20 5.4 0.4558 34.83
0.25 1 16 16 154.93 5.5 0.0289 2.97
0.25 1 32 32 103.39 5.5 0.0798 3.40
0.25 1 64 64 82.31 5.4 0.1412 4.39
0.25 1 128 128 73.17 5.4 0.1801 6.40
0.25 1 256 251 69.82 5.4 0.1967 10.51
0.25 1 1024 646 71.42 5.4 0.2491 24.19
0.25 1 4096 906 74.39 5.4 0.2410 33.33

0.125 0.0625 16 976 23.16 5.4 0.8245 36.75
0.125 0.0625 128 1010 23.83 5.4 0.8253 37.32
0.125 0.0625 1024 1022 23.89 5.4 0.8318 36.99
0.125 0.25 16 784 50.32 5.5 0.4867 33.89
0.125 0.25 128 879 45.24 5.4 0.5590 35.11
0.125 0.25 1024 994 47.24 5.4 0.5954 36.69
0.125 0.5 16 529 100.22 5.5 0.0551 26.93
0.125 0.5 128 639 72.93 5.4 0.1461 29.03
0.125 0.5 1024 913 75.42 5.4 0.1834 34.83
0.125 1 16 16 227.34 5.5 0.0104 2.97
0.125 1 32 32 160.01 5.4 0.0174 3.40
0.125 1 64 64 131.22 5.4 0.0259 4.39
0.125 1 128 128 118.04 5.4 0.0299 6.40
0.125 1 256 251 113.92 5.4 0.0337 10.51
0.125 1 1024 646 115.17 5.4 0.0353 24.19
0.125 1 4096 906 118.44 5.4 0.0348 33.33

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 12: Gen. PPL (↓), entropies and MAUVE (↑) of samples by MDLM trained for 250K steps on
OWT.

T NFE Gen. PPL (↓) Entropy MAUVE (↑) Sampling Time (sec) (↓)

8 8 246.70 5.6 0.0134 7.19
16 16 109.70 5.5 0.1353 13.81
32 32 67.44 5.5 0.4195 27.10
48 48 55.96 5.5 0.5062 39.42
64 64 51.11 5.4 0.6123 53.48

128 128 43.58 5.4 0.6477 106.96
256 251 40.44 5.4 0.6924 213.92

1024 657 37.15 5.3 0.7267 566.19
4096 907 36.48 5.3 0.7026 752.06

Table 13: Gen. PPL (↓), entropies and MAUVE (↑) of samples by BD3-LMs trained for 250K steps
on OWT.

Block size T T ′ NFE Gen. PPL (↓) Entropy MAUVE (↑) Sampling Time (sec) (↓)

4 256 1 512 184.86 4.00 0.0048 26.26
4 512 2 740 216.73 4.81 0.0081 37.44
4 1024 4 968 110.22 5.14 0.0533 49.20
4 2048 8 1124 51.92 5.22 0.3515 56.77
4 4096 16 1180 34.93 5.24 0.6726 60.32

8 256 2 383 267.26 4.69 0.0061 20.58
8 512 4 584 170.50 5.04 0.0168 31.44
8 1024 8 812 80.31 5.20 0.1479 42.14
8 2048 16 951 47.16 5.22 0.5723 50.01
8 4096 32 1051 36.34 5.25 0.6807 55.53

16 256 4 316 240.20 5.10 0.0114 19.36
16 512 8 515 112.56 5.28 0.0971 31.17
16 1024 16 703 61.82 5.30 0.4067 43.76
16 2048 32 881 44.06 5.29 0.6383 53.79
16 4096 64 984 37.61 5.29 0.7248 58.82

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

E.9 EXAMPLE GENERATED SAMPLES BY MODELS TRAINED ON OWT

to be known to the grand jury yet, but it has been explained he could not immediately cause any damage to happen, such as
preventing a clean break from someone hacked or creating a fake email. (And again, Hillary’s tweet never caused the genesis of
the controversy as it was announced, his tweeting violation could easily have changed the course of the matter.)

The Times:

. . . Senator John McCain doesn’s State of the Union. . . should really have to decide—mossipally—whether they believe to allow a
Trump presidency in the first place. There is no situation in which Hillary’s campaign could choose to take the matter in a different
light.

Except for just one thing what Hillary did in her son’s law book there was her “crook of mess” notion.

At this, it is irrelevant today to ask John Podesta to choose someone in Congress so it will be up until the election year, to solve
the problems through this simple conceptual framework, which is simple, soft and unhinged and abstract, to create an all too
common threadbare” solution.

As an excuse to say, we’re okay with the recent DOJ’s somewhat unusual way of saying only what the rest of us are thinking in
the know.

They knew. . . the Democratic people of this country set up the proper system to identify.

The legal partner of the campaign and FBI are working with the federal investigation into the Trump campaign for violations of
campaign laws under V.W. and Harry Truman.

A joint team star Michael Burnett was allegedly killed after a dog survived a shooting attack by a suspect when cops showed
up for a Texas sheriff dog in an afternoon raid on a joint squad and a Texas Border Patrol agent with the animal owner of the
state filed charges against Sheriff Edell, Fox and AP reports.Police had been conducting an eight-hour search in order to find
the dog dead sometime Monday, during the time of the 100th anniversary of the Golden Gabriel Shooting Act.That was when
the Bureau of Investigation allowed the police to close the area after a group of dogs were called to the events, they were, at
that time they were found dead.The authorities pulled more than 20 pick-up dogs but were released. Sheriff Edell insisted on
using the dogs, given to sheriff’s deputies as "an excellent dog.""I’m going further," to deputies and reporters, the sheriff said
officers had pulled on the rear door of a drug smuggler and a baggie, which were immediately spotted by private security cameras
at the scene.A cat had reportedly appeared on a front door in front of a television screen inside the house in the shooting, Dina
Sootoot, who plays...Shanna and A Prairie Winage, were booked for a movie position in the U.S, with a movie star movie and
a party dog in their midst.She formerly played Z.A.. During a hour-long episode, on the Texas Weill, he admitted during the
interrogation that Mr. Jupp suffered from dramatic seizures that were preceded by a rash.The animal’s owner, a doctor, confirmed
at the scene that he was overdosed to the illegal drug, a week later was later charged with administering Billing Aid Services. Upon
returning to the scene, Fox reported, Mr. Jupp sustained only minor injuries while Mr. Jupp subsequently passed away.Having
later moved from Middle Tennessee to South Florida, Mr. Jupp moved to Florida in 2007 on a contractual basis (and with a
Green Bay film) and this ultimately landed him in solitary confinement three weeks in a drug row in the desert. Advertisement

"There is a meaningful escape, zero suffering. Repeat Five, jail! Repeat Five Corners!” -and-Healthy physical health Bill (Public

Domain via Getty Images, May17, 2015) Much of the more recently named London Department of Public Buildings Embley

(Flea) made a new investment in approximately $5 Million with the acquisition of a single new office unit comprised of parking
spaces and a new 1.6-store five-story studio at the corner of its current office in Coho, London, as part of a three-store-off luxury
brick-and-mortar store and several hundred multi-unit studio units, which also include the new airport, under-construction office,
reports [LinkedIn.com](http://linkedin.com/) The office is conveniently situated in a building "just over a shopping plaza" and has
been "asked for purchase by city officials but not to allow it there one could use."

Figure 16: An unconditional sample (L = 1024) from Eso-LM (αtrain
0 = 1) trained for 250K on OWT

using inference-time hyperparameters αeval
0 = 1 and T = 1024. This corresponds to an NFE of about

646 and a sampling time of 24.19 seconds per batch of 512 samples. Gen. PPL, entropy and MAUVE
are 49.05, 5.3 and 0.4939 respectively.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

and for much of its population, Auckland is still of significant interest to both companies.

The public can also afford to copy companies such as Gotham, with offices in New York suburbs such as New York, followed by
larger commercial spaces such as London’s Empire Bridge and Gotham.

Small Business; but have office space in Auckland; expertise perfect for marketing results.

- Startup advertising work. Put on billboards such as National Grid are ideal for digital marketing work. A flat screen television
that got the mind-set

5 hours-by-hour traffic must be in television advertising

The Michaelarinen Gates Shayka-Tin did with his first down in marketing was to Compromise your business, very easy to do.

As the pressure from you surrounds it with work and you’re quite healthy, it is still possible to invest just a few dollars a month —
your salary or whatever, the money chosen to share the press — via a marketing campaign with FreeMedia.

He said she used to think that the modern internet was paramount: “Follow not one of the most popular people in the world. If
they are 50, find a way to have two kids their age. Or, if they are a celebrity, too. The same applies very well, television has that.

It’s a way, at least in my opinion, to connect yourself and others and if you sell yourself a bit of confidence.

Read more:

“Can you afford an online lifestyle where you don’t know it? Tell your opinion or credibility through information or speech. If
you can, you don’t need it all the time.”

On the other hand, of course, it’s a much better thing, for example, to need to offer up a genuine chance to walk with people
looking, on camera, and in a hands-on manner of confidence.

Take all of that approach. “You can also try and narrow down the perspective everything that was natural would be easy, which is
true if advertisements are not marketed that way.

When advertising that someone named you said was a television advertisement was, when, think of television, the internet was it –
and they have no editorial authority; there’s no PR for Free Media, but every advertisement is a commercial of their own.

Is that that true?

Yeah. No. Because you’ve worked in advertising for a very long, maybe for a while. They worked and made friends with their
jobs today and you still haven’t thought about it at all.

It is a world at best.

For me, from the newspapers, to the advent of the internet, I was constantly looking to appeal to the “new people” that I always
connected with, and everyone loved, Twitter.

But now it is still true.

If you haven’t all the young author books. Download our free online video guide for your audience for this expert advice.

Read the full interview: Tom Moss covers hundreds of news outlets in Japan and Australia. His work is for letters and written
back millions of times. From riding horses to e-reading devices, ATM machines.

For us their ads for these pages already take up more than 1.5 viewers and 30 hours a week. The opportunity to read things and
bring you more.

“The internet is never digital for everybody, I would be thrilled if it’s the user I’ve seen before,” he said,: “The reality is there is
this new age for business is that you’re the best as you possibly can and have a feeling they deserve it.

Don’t look for cheap TV, and no business editor should pay attention to it.<|endoftext|>In a 2017 television news magazine
interview, newly-minted investor Warren Buffett noted that the top income level was increasing at approximately half that amount,
but the 2016 American economy "has been operating at a level that most thought would have been a bubble burst."

Buffett said that those years or so, an average American has been earning almost 40 percent in the last quarter, including this for
the past five years. That is why, as traditional high earners, businesses must make enormous gains in income tax’re worth about 20
percent of their CEO’s income. Even those high earners make more.

Advertisement

Advertisement

In the beginning to end, although most sports today make the earnings for all Americans, in the past decades have provided the
entertainment revenue, especially at the home entertainment market. Most people have very little disposable income – jobs, living
games and using for free. That’s their source of income, but they don’t provide nearly enough information. So a news article is
entitled, "Why Americans are working too hard and don’t make more."

Advertisement

Here’s the American experiment

Figure 17: An unconditional sample (L = 1024) from Eso-LM (αtrain
0 = 1) trained for 250K on OWT

using inference-time hyperparameters αeval
0 = 1 and T = 64. This corresponds to an NFE of about 64

and a sampling time of 4.39 seconds per batch of 512 samples. Gen. PPL, entropy and MAUVE are
61.43, 5.4 and 0.4166 respectively.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

the modern Thecat race over where this may turn and welcome themselves with their futuristic agility. However, the could be and
possibly not at all that backed up. In mentioned, I think the major key issues is balance, ie perhaps the best weapon is a right
handed side. While balance - any - always has a presence, a lot of things should never stay like the spine and lean to both legs.
Whilst it how wide and, you can also swing wide this making it impossible for a pinch bat guard without weapons. With contrast,
the With more than one side, there will be more options than the if it, but allow the the most difficult primary weapon of being in
any and balancing out the balanced side. For example, the best players need sharp but when the backup b bat side might be stiff
and this be easy. you could swing back then-trod right bat side and a double-beast it and that would work. There for me is a smart
side but weird bat side does not bats well So that is always a balance, the bats may not like it but they always might be with one
side anyway. bob is skills are learnt and if every bat, has a try out and wrong side to manage to even in and out of the bat. Work to
make it and when easy. this is perhaps another issue. to have able to bat in whatever the wrong side is required for a bat that
would always last and can always develop into a game especially though trying to have met your bat a bit before is also an issue.
With a batter knows their T bat regularly, occasionally you might even pick wiff bat which just means no. I know that it worked
but when I had. first try duff bat regularly and return to how they more or less. good

L :There it doesnt seem to work and said it doesn’t work the way you want to do it would also work. It showed you had a nice
batting set or secondary bat side and would be be great anders to trouble guys with good tiered shots and can I say this from a y
bat perspective as I and have both feel as to some level of smart bat. Most of the time, however, I don’t think they are a very good
bat. they are novice batters and sometimes not the only good bat for even the best right foot bat. On today’s point of course, they
just have to be third first or second second defensive often on the bat left side, the bat right bat side or on the end of the bat, and
have a couple of hands on used to holding the bat bat to the other side of the bat. bat bat is very powerful.

L :So it is working well at best, there is still a little bit of ability to park your bat as expected, but bat won’t work with to base error
bats and hitting some or-side could still possible. How do you decide to just start the third bats which would make the bat look
effective while not very will be one for respond, or R :In a smaller group of slower bat hitters particularly bats u a it is not very
weak bat they will think they are playing better with bat than short bat, bat has already developed in terms of bat learning but I do
not believe that the bat learned

L : If you are doing bantops, I have people not trying to learn anything. hassleds’s bat learning. you should always learn bantops.

L : Well bantops is bat or Obleto bat is bat can get you really into a bat training box instead of being it being training box or be
described as a bat session at the light of baters what.

L : They are easy to understand bat training designed bats. ly designing bats are not so and useful but maybe they are better, one
being able to bat right hand in right hand defend left left bat bat bat is than batting left hook bat bat is than holding bat bat. at least
this difference has started to play out recently for myself. play time between defensive and offensive bat, the do of said bat bat
is near when he stole bat from him. but they bat the ball from bat bat to bat bat. against bat bat position too bats like that, you
have attack average bat with short bat. you’re going to catch the bat very low there and still with ball kick into bat bat. in certain
situations, when a bat bat can be dealt, sometimes. on the end of the bat, maybe third bat, another bat which is third bat, so if bat
bats at third bat and the second bat a second bat. then they go to a third bat or hold second bat. they bat handle it better. you can
take bat to third second main bat. end of the bat so then bat to your main bat from where bat go second bat. bat, second bat. bat,
the bat, on deck. double bats, extra bat, always with bat and bat. no extra bat. less bat bat. A little extra bats”

Figure 18: An unconditional sample (L = 1024) from BD3-LM (L′ = 4) trained for 250K on OWT
using inference-time hyperparameter T = 256 (T ′ = 1). This corresponds to an NFE of about 512
and a sampling time of 26.26 seconds per batch of 512 samples. Gen. PPL, entropy and MAUVE are
184.86, 4.0 and 0.0048 respectively. Note that this sample appears incoherent compared to those with
similar sampling time from Eso-LMs.

APPENDIX F THE USE OF LARGE LANGUAGE MODELS

We used LLMs in paper writing to identify grammar mistakes.

31

	Introduction
	Background
	Autoregressive Models
	Masked Diffusion Models
	Block Discrete Diffusion Models

	Esoteric Language Models
	Fusing Autoregressive Models and Masked Diffusion
	Sampling
	Importance Weighted NELBO

	Attention Mechanisms for the Shared Denoising Transformer
	Training
	Diffusion Phase
	Sequential Phase

	Sampling

	Experiments
	Likelihood Evaluation
	Pareto Frontier of Generation Speed vs. Quality
	Generation Latency at Long Context

	Related Work, Discussion, and Conclusion
	Appendices
	Appendix Background
	BD3-LMs hyperparameter T' and num_tries

	Appendix Esoteric Language Models
	MDM Loss Derivation
	Training Algorithm
	Denoising Schedule and Sampling Algorithm
	Attention Mechanism for Diffusion Phase Training
	Attention Mechanism for Sequential Phase Training
	Attention Mechanism for Sampling

	Appendix Experimental Details
	Low discrepancy sampler
	Likelihood evaluation
	Language modeling

	Appendix Eso-LMs (A) as an Ablation
	Attention Mechanism for Diffusion Phase Training
	Attention Mechanism for Sequential Phase Training
	Attention Mechanism for Sampling

	Appendix Additional Experiments
	Ablation on Split Proportion
	Zero-Shot Likelihood Evaluation
	Importance-Weighted Bounds
	Eso-LMs (A) Likelihood Evaluation
	Pareto Frontier of Eso-LMs with alpha 0 train = 1
	Heuristic Improved Sampler
	Generation Latency at Long Context
	Quality of Generated Samples by Models Trained on OWT
	Example Generated Samples by Models Trained on OWT

	Appendix The Use of Large Language Models

