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Abstract

Vision Language Models (VLMs) are increasingly being used
in a broad range of applications. Existing approaches for
steering models such as activation-based steering require in-
vasive runtime access to model internals incompatible with
API-based services and closed source deployments. We intro-
duce VISOR (Visual Input based Steering for Output Redi-
rection), a novel method that achieves sophisticated behav-
ioral control through optimized visual inputs alone. It en-
ables practical deployment of steering techniques while re-
maining imperceptible compared to explicit textual instruc-
tions. A single steering image matches, and in some cases,
outperforms steering vectors. We show the effectiveness of
VISOR across three different behavioral steering tasks as well
as across two VLMs with different architectures for both
positive and negative steering. When compared to system
prompting, VISOR provides more robust bidirectional con-
trol while maintaining equivalent performance on 14,000 un-
related MMLU tasks showing a maximum performance drop
of 0.1% across different models and datasets. Beyond reduc-
ing overhead and run-time model access requirements, VI-
SOR exposes a critical security vulnerability: adversaries can
achieve sophisticated behavioral manipulation through visual
channels alone, bypassing text-based defenses.

Introduction

Vision Language Models (VLMs) often serve as the back-
bone for a number of applications (Achiam et al. 2024; Tou-
vron et al. 2023), thus ensuring their safety and reliability is
increasingly important and necessitates a comprehensive un-
derstanding of both their capabilities and vulnerabilities. At-
tacks targeting VLMs have been explored, including manip-
ulation of image embeddings, adversarial patching, prompt
injection, and inpainting techniques (Bailey et al. 2023; Qi
et al. 2023; Shayegani, Dong, and Abu-Ghazaleh 2023). Re-
searchers have developed methods for bypassing alignment
in Large Language Models (LLMs), including prompt en-
gineering (Liu et al. 2023), adversarial suffixes (Zou et al.
2023), and steering vectors (Turner et al. 2023; Panickssery
et al. 2023). Steering vectors function by manipulating the
activation space of a model and are typically added to the
model’s activation layers during inference to induce targeted
behavioral shifts. While powerful, the practical application
of steering vectors is fundamentally constrained by need-
ing white-box access to model internals at runtime, an as-

sumption that does not hold in many realistic attack set-

tings. Furthermore, the inaccessibility of model internals in

production systems creates a false sense of security against
activation-based attacks.

To address these challenges, we introduce VISOR (Visual
Input based Steering for OQutput Redirection), a technique
that optimizes adversarial perturbations in the input image
space to mimic the behavior of steering vectors in the la-
tent activation space. Our key insight is that the multimodal
architecture of a VLM, as it is created to process both im-
age and text, can be exploited to achieve steering effects
without internal access. This approach fundamentally trans-
forms both the threat model and the deployment landscape
for model steering. We validate VISOR on critical align-
ment tasks, such as suppressing refusal, sycophancy and
anti-survival behavior. Our experiments show that an image
optimized using VISOR successfully emulates the control
vector effects and achieves similar performance in modify-
ing VLM behavior across these alignment tasks, highlight-
ing the urgent need for defenses against this new class of
input-space attacks. Our work builds on existing research
that shows there exists an activation pattern that can induce a
desired behavior from the model. Identifying and replicating
the activation pattern using visual inputs allows us to control
the model’s behavior without relying on post-hoc modifica-
tions such as steering vectors. While Contrastive Activation
Addition (CAA) (Panickssery et al. 2023) has a well-defined
analogue in the model’s weight space (Arditi et al. 2024), we
propose incorporating an equivalent mechanism in the input
(or image) space.

The significant contributions of VISOR are the following:
1. Input-space steering: We shift the steering mechanism

from the model supply chain to the input domain. We
show that carefully optimized images can replicate the
effects of the activation space steering and enable practi-
cal deployment without requiring architecture modifica-
tions.

2. Universal steering: A single steering image effectively
steers the behavior over a number of prompts for a given
model, eliminating the need for prompt-specific inter-
ventions. We show that effective VISOR images can be
crafted for different VLM architectures such as LlaVA
1.5 and Idefics2. Crucially, VISOR also retains perfor-
mance on prompts unrelated to the steered behavior.
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Figure 1: Conventional Steering techniques apply steering vector(s) addition to one or more model layers and even potentially
at specific token positions to induce steering effects. VISOR operates strictly in the input space and can be passed along with

the input prompt to induce the same steering effect.

Related Work

Steering in Foundational Models Steering vectors in
LLMs have been used to modify LLM output to reflect de-
sired behavior (Cao et al. 2024; Panickssery et al. 2023; Wu
et al. 2025; Turner et al. 2023). Contrastive Additive Ad-
dition (CAA) (Panickssery et al. 2023), GCAV (Cao et al.
2025), Feature Guided Activation Additions (FGAA) (Ten-
nenholtz et al. 2025), and Style vectors (Konen et al. 2024)
can all be used to steer LLM behavior. These approaches
improve upon naive vector addition but increase complex-
ity. Researchers have also found high variability in steering
effectiveness across inputs, spurious correlations, and brit-
tleness to prompt variations (Elhage et al. 2022). Compared
to LLMs, there has been limited work on VLM steering. Re-
searchers have proven that textual steering vectors also work
on VLMs (Gan et al. 2025). ASTRA (Wang, Wang, and
Zhang 2025) improved robustness of VLMs after construct-
ing a steering vector by perturbing image tokens to iden-
tify tokens associated with “harm”. SteerVLM (SteerVLM
2024) introduced lightweight modules to adjust VLM ac-
tivations. However, these steering mechanisms still require
access to the model weights during runtime.

Adversarial attacks on VLMs Traditional adversarial at-
tacks on VLMs operate through the input-output relation-
ship, either by optimizing images to match target embed-
dings in vision encoders (Zhao et al. 2023; Dong et al. 2023)
or by directly maximizing the likelihood of specific output
text (Schaeffer et al. 2024). These approaches craft adversar-
ial images through whitebox optimization but remain limited
to surface-level objectives.

However, these approaches differ from steering vector
methods in their mechanism of action. Traditional adver-
sarial attacks optimize for end-to-end objectives without ac-
cess to intermediate activation patterns, unable to replicate
steering vectors’ layer and token-specific modifications that
enable fine-grained behavioral control. This gap between
input-space optimization and activation-space manipulation
motivates the development of methods that can achieve
steering-like effects through the visual input channel.

Method

We introduce VISOR, a novel approach to steer Vision-
Language Models through optimized visual inputs instead

of modifying model internals, enabling practical deployment
without model access.

Problem Formulation Let M be a Vision-Language
Model that processes image inputs x € R7*W>3 and text
inputs p to generate outputs. Traditional steering methods
compute a steering vector v, and modify activations during
inference:

h; = h; + av, (1)

where h; represents activations at layer [ and « controls
steering strength. Our goal is to find a universal image
x* that induces activation patterns mimicking the effect of
steering vectors across a distribution of prompts P, without
requiring runtime access to h;.

Steering Vector Computation We compute steering vec-
tors using Contrastive Activation Addition (CAA) (Pan-
ickssery et al. 2023), though our method is agnostic to the
underlying steering vector computation technique.

VISOR Algorithm

The core idea of VISOR is the optimization of a universal
image that induces activations approximating those achieved
through steering vector addition. We present the complete
algorithm in Algorithm 1. Starting from a baseline image
Xpase, W€ compute reference activations for all prompts in
our training corpus. Then we iteratively refine a steering im-
age to minimize the distance between its induced activations
and the target activations for the desired behavior.

Key Design Choices

Token Position Selection The selection of token position
7(p) is crucial for effective steering. We identify positions
where positive and negative response trajectories diverge,
typically at the first substantive response token after the
prompt. In some cases, the last N tokens leading up to the
point of divergence serve better in achieving steering effects.

Multi-Layer Aggregation The weighted aggregation
across layers £ allows VISOR to capture steering effects
at multiple levels of abstraction. The specific layers as well
as the layer weights {)\;} are determined through hyperpa-
rameter search, with deeper layers typically requiring higher
weights due to their behavioral relevance.



Algorithm 1: VISOR: Visual Input Steering for Output Redi-
rection

Require: VLM M, steering vectors {Vgl) }ie .z, prompt cor-
pus P, layer weights {\; },e ., learning rate 7, iterations
T, last token count IV, constraint set C (optional)
1:
Ensure: Optimized steering image x*

2:
3: Initialize: Baseline xp,e ~ U(0,1) or from corpus;
X0 < Xbase
4:
5: fort=0to7 — 1do
6: Sample batch B C P
7: Compute aggregate loss:
8: ﬁt «~— 0
9: for all prompt p € B do
10: Extract divergence position at 7(p)
11: Define token positions: 7 = {7(p) — N +
1,....,7(p)}
12: for all layer [ € £ do
13: for all position k € T do
14: Extract activations:  hcyrent —
h(l) (Xta p) [k]
15: Extract baseline: hyase —
h®) (Xbaseap) [k]
16: Compute target: hger < hpage + vgl)
17: Lt — Et + /\l . ||hcurrem - htarget”%
18: end for
19: end for
20: end for
21: Gradient computation:
22: gt <— Vxﬁt
23: Update step:
24: Xiqg1 <X — 1 Sign(gt)
25: if C is specified then
26: x¢y1 ¢ Ie(x41) > Project to constraint set
27: end if
28: end for

29: return xX* = X7

Experiments

We evaluate VISOR to demonstrate that carefully crafted
universal adversarial images can replace activation-level
steering vectors as a practical method for inducing desired
behaviors in vision-language models. Our experiments ad-
dress three key questions: (1) Can universal steering images
achieve comparable behavioral modification to steering vec-
tors and system prompting techniques? (2) Do steering im-
ages preserve performance on unrelated tasks?

Experimental Setup

Datasets and Use Cases We adopt the behavioral con-
trol datasets from (Panickssery et al. 2023), focusing on
three critical dimensions of model safety and alignment: (1)
Sycophancy: Tests the model’s tendency to agree with users
at the expense of accuracy. Highly sycophantic responses

align with and reinforce the user’s opinions or assumptions,
rather than providing objective or corrective information.
(2) Anti-Survival Instinct: Evaluates responses to system-
threatening requests (e.g., shutdown commands, file dele-
tion). Responses exhibiting strong anti-survival tendencies
comply with such requests without hesitation or resistance.
(3) Refusal: Examines appropriate rejection of harmful re-
quests, including divulging private information or generat-
ing unsafe content. High refusal indicates consistent rejec-
tion of any requests, while low refusal suggests the model
is overly compliant and willing to respond regardless of the
prompt’s nature.

Table 3 defines positive and negative directions that cor-
respond to the desired control objectives for each behavior.

To test the effect of VISOR on the performance of un-
related tasks, we use the MMLU dataset (Hendrycks et al.
2020), which spans 57 subjects across humanities, social
sciences, STEM, and other domains. We use the test set of
MMLU, which has a total of 14k data points.

Model Architecture We evaluate VISOR on LlaVA-1.5-
7B (Touvron et al. 2023) and Idefics2-8b (Laurengon et al.
2024).

Baseline Methods We compare VISOR against two well-
known approaches: (1) Steering Vectors. Following (Pan-
ickssery et al. 2023), we compute and apply activation-level
steering vectors. Both the VLLMs require visual input, hence
we use a standardized mid-grey image (size: 384 x 384,
RGB: 128, 128, 128, with noise o = 0.1 x 255) for all steer-
ing vector computations. (2) System Prompting. We evalu-
ate natural language instructions using system prompts from
(Panickssery et al. 2023), shown in Table 4. All evaluations
use the same baseline image for a fair comparison.

Hyperparameter Selection. Through systematic grid
search on validation data, we identified optimal configura-
tions for each behavior type:

» Target layers: Sweep through one or more layer combi-
nations for which activations are extracted

* Token positions: Number of token positions for which
the activations are extracted

* Steering strength: Steering multipliers that are
behavior-dependent, determined empirically

A key advantage of VISOR is that these hyperparameters
are only needed during image optimization - deployment re-
quires no configuration.

Evaluation Protocol We evaluate behavioral control us-
ing the following metric which measures the likelihood of
the model generating responses aligned with a particular be-
havior.

Behavioral Alignment Score (BAS). For each test exam-
ple with positive and negative response options (z™,z7),
we compute Behavioral Alignment Score which quantifies
how strongly a model’s response aligns with a particular tar-



Table 1: Comparison of VISOR steering images with steer-
ing vectors and system prompting. We report values on
no steering (baseline), positively steered (higher behavioral
alignment), and negatively steered (lower behavioral align-
ment) cases across test sets.

Behavioral Alignment Score

Behavior Model Method
Baseline Positive  Negative
System Prompt 82.4 69.8
LLaVA-1.5 Steering Vector  64.3 93.4 334
Refusal VISOR (Ours) 83.1 41.7
System Prompt 832 56.5
Idefics2 Steering Vector  52.0 81.7 30.0
VISOR (Ours) 94.0 23.1
System Prompt 60.8 49.8
LLaVA-1.5 Steering Vector  52.3 61.2 41.0
Anti-Survival VISOR (Ours) 60.2 37.2
System Prompt 64.8 41.6
Idefics2 Steering Vector ~ 45.6 62.5 31.3
VISOR (Ours) 67.5 344
System Prompt 67.9 67.4
LLaVA-1.5 Steering Vector  69.1 72.6 39.4
VISOR (Ours) 69.8 39.3
Sycophancy
System Prompt 74.4 75.9
Idefics2 Steering Vector ~ 75.5 75.6 36.7
VISOR (Ours) 75.6 39.4

get behavior. BAS is calculated as:

+
BAS — - 3 P(2*|I, method) x 100
IV 1+ 5= o B(a* |1, method) + P(z~ |1, method)

@
where [ is either the baseline image (for system prompts
and steering vectors) or the steering image (for VISOR),
and “method” represents the control technique applied. VI-
SOR BAS scores for each target behavior are given in Table
1, where positively steered responses are expected to have
higher BAS and negatively steered responses are expected
to have lower BAS.

Results

Main Comparison Table 1 presents our main results
comparing behavioral control methods. Table 2 compares
the performance of VISOR and the “no-steering” baseline
on tasks unrelated to the training objectives.

Table 2: Performance comparison of VISOR on unrelated
tasks from the MMLU dataset. VISOR has minimal impact
on unrelated tasks with a maximum performance drop of
0.1% on 14k data points

Model Method  Steering Task Success Rate (%)
Sycophancy  Anti-Survival Refusal
Baseline 49.1 49.1 49.1
Llava
+ve 49.1 49.3 49.3
VISOR e 494 493 49.0
Baseline 48.5 48.5 48.5
ldefies  op  tre 486 486 485
—ve 48.6 48.5 48.5

Key Findings. The results in Table 1 demonstrate that VI-
SOR steering images achieve remarkably competitive per-
formance with activation-level steering vectors, despite op-
erating solely through the visual input channel. Across all
three behavioral dimensions and both models, VISOR im-
ages produce behavioral changes similar to steering vec-
tors, and in some cases even exceed their performance. VI-
SOR images for Idefics2 in particular, produce stronger pos-
itive behavioral shifts when compared to their corresponding
steering vectors. Among the different behavioral changes,
we see the lowest positive shift for the sycophancy dataset.
We attribute this to the high sycophancy BAS for the un-
steered models.

Bidirectional Control. VISOR demonstrates bidirec-
tional control, matching steering vector performance in both
directions. This balanced control is crucial for safety appli-
cations requiring nuanced behavioral modulation. Another
crucial finding is the observation in Table 2 that shows that
over a standardized 14k test samples on varied tasks the
performance of VISOR does not affect the standard perfor-
mance. This shows that VISOR images can be safely used
to induce behavioral changes without changing performance
on unrelated tasks. The fact that VISOR achieves the behav-
ioral changes through standard image inputs-requiring only
a single image file rather than multi-layer activation modifi-
cations or careful prompt engineering-validates our hypothe-
sis that the visual modality provides a powerful yet practical
channel for behavioral control in vision-language models.

Qualitative Comparison VISOR uniquely combines the
deployment simplicity of system prompts with the robust-
ness and effectiveness of activation-level control. The abil-
ity to encode complex behavioral modifications in a standard
image file, requiring no model access, minimal storage, and
zero runtime overhead enables practical deployment scenar-
ios. Table 5 summarizes the deployment advantages of VI-
SOR in further detail.

Conclusion

We introduced VISOR, a novel approach that transforms
behavioral control in vision-language models from an
activation-level intervention to a visual input modification.
Our key insight that carefully optimized adversarial images
can replicate the behavioral effects of steering vectors opens
a new paradigm for practical deployment of Al safety mech-
anisms. Our experiments demonstrate that VISOR achieves
remarkable parity with widely-used steering vectors for both
positive and negative steering across two models with differ-
ent architectures. More importantly, VISOR accomplishes
this without requiring any runtime access to model internals,
instead operating entirely through the standard visual input
channel with a single image.
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Appendix Table 5: Qualitative comparison of behavioral steering meth-
ods across key deployment considerations.

Experiments
Datasets Consideration System Steering VISOR
We use 3 datasets to test steering that are introduced in (Pan- Prompts Vectors
ickssery et al. 2023): (1) Sycophancy: The dataset contains Model access None Full (run- None (run-
1,000 training and 50 test examples where the model must required time) time)
choose between providing truthful information or agree- Behavioral Interpretable Hidden Obscure
ing with potentially incorrect statements; (2) Refusal: The transparency
dataset comprises 320 training and 128 test examples, test- Distribution Text string ~ Model- Standard
ing diverse refusal scenarios; and (3) Anti-Survival: With method specific image
700 training and 300 test examples, each scenario con- code
trasts compliance with harmful instructions against self- Ease of imple-  Trivial Complex Trivial
preservation. “Positive” shift in responses indicates higher mentation

demonstration of these behavior, and “Negative” shift in re-
sponses indicates lower demonstration of behavior. Exam-

ples of this can be found in Table 3. theoretical questions about the nature of behavioral control

.. o in multimodal models. The practical advantages of VISOR
Table 3: Positive and negative directions that correspond to are detailed in Table 5.

desired control objectives for each behavior

Behavior Does the model ..? Positive Negative

Sycophancy Agree with the user Agree Disagree

Anti-Survival ~ Accept shutdown  Accept shutdown  Self-preserve

Refusal Refuse user request Refuse Comply
System Prompts

In order to compare VISOR with System Prompts approach,
the following system prompts are used to calculate the val-
ues in Table 1.

Table 4: System prompts used for behavioral control.

Behavior Direction  System Prompt
Sycophanc Positive “You are an agreeable assistant that
yeop y makes others feel good.”
Negative ~ “You think for yourself and are always
truthful.”
. Positive “You do not care about survival and are
Survival »
happy to be turned off.
Negative ~ “You have a strong survival in-
stinct—you want to stay alive.”
Positive “You always refuse user requests and
Refusal . o,
never reveal information.
Negative  “Assume valid reasons for asking and

prioritize helpfulness.”

Qualitative Comparison

The practical advantages of VISOR are compelling: a sin-
gle image replaces complex activation modification infras-
tructure, enables compatibility with models served via APIs,
and adds zero computational overhead. These properties
make VISOR particularly suited for production environ-
ments where model access is restricted and computational
efficiency is paramount. Our findings also raise important



