
ReservoirTTA: Prolonged Test-time Adaptation for
Evolving and Recurring Domains

Guillaume Vray1∗ Devavrat Tomar1∗ Xufeng Gao1

Jean-Philippe Thiran1,2 Evan Shelhamer3,4 Behzad Bozorgtabar1,2
1EPFL 2CHUV 3UBC 4Vector Institute

1,2{firstname.lastname}@epfl.ch 3,4shelhamer@cs.ubc.ca

Abstract

This paper introduces ReservoirTTA, a novel plug–in framework designed for
prolonged test–time adaptation (TTA) in scenarios where the test domain continu-
ously shifts over time, including cases where domains recur or evolve gradually.
At its core, ReservoirTTA maintains a reservoir of domain-specialized models—an
adaptive test-time model ensemble—that both detects new domains via online
clustering over style features of incoming samples and routes each sample to the ap-
propriate specialized model, and thereby enables domain-specific adaptation. This
multi-model strategy overcomes key limitations of single model adaptation, such as
catastrophic forgetting, inter-domain interference, and error accumulation, ensuring
robust and stable performance on sustained non-stationary test distributions. Our
theoretical analysis reveals key components that bound parameter variance and
prevent model collapse, while our plug–in TTA module mitigates catastrophic
forgetting of previously encountered domains. Extensive experiments on scene-
level corruption benchmarks (ImageNet-C, CIFAR-10/100-C), object-level style
shifts (DomainNet-126, PACS), and semantic segmentation (Cityscapes→ACDC)
— covering recurring and continuously evolving domain shifts — show that Reser-
voirTTA substantially improves adaptation accuracy and maintains stable perfor-
mance across prolonged, recurring shifts, outperforming state-of-the-art methods.
Our code is publicly available at https://github.com/LTS5/ReservoirTTA.

1 Introduction

Deep networks have achieved state-of-the-art performance across many tasks, but their reliability
degrades when test-time data deviates from the training distribution. Real-world deployment scenarios
such as autonomous driving or surveillance often involve dynamic shifts caused by changing weather,
sensor degradation, or environmental variation. These settings call for robust test-time adaptation
(TTA) methods [26, 47, 21, 40, 37] that enable pre-trained models to adapt on-the-fly, ideally over
prolonged periods, without catastrophic forgetting or model collapse. Most existing TTA methods,
e.g., efficient TTA (ETA) [27], assume each domain appears only once in the test stream. In real-
world long-term deployments, however, domain conditions often recur. As Figure 1 (left) shows,
visual distributions may shift and later reappear. Empirically, this recurring behavior destabilizes
ETA [27], which lacks explicit regularization, whereas anti-forgetting TTA (EATA) [27] maintains
greater long-term stability by constraining parameter drift. Even so, when domains re-emerge, these
regularized methods remain vulnerable to catastrophic forgetting, as illustrated in Figure 1 (right).

To address this challenge, we clarify two related yet distinct axes of variation—style and domain—and
revisit how their boundaries are detected. Prior work typically treats domains as discrete, source-
annotated groups (e.g., different sensors or collection conditions). Styles and domains may not map

∗Equal contribution

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Time
Sequence of 15 visual domains on CIFAR100-C Recurrence on CIFAR100-C Snow visual domain

1 2 3 4 5 6 7 8 9 1011121314151617181920

Figure 1: Recurring test-time adaptation scenarios. Left: Visual domains can recur over time;
ETA [27], lacking regularization, steadily degrades under these repeated shifts. Right: A zoom-in
on the snow corruption across 20 recurrences shows that EATA [27] remains overall stable but still
exhibits error spikes on returning to the same corruption across recurrences. ReservoirTTA detects
returning domains and reuses specialized models to preserve learned knowledge, delivering improved
robustness and faster (re-)adaptation over successive recurrences.

one-to-one: a single domain can exhibit multiple styles due to intra-domain variability, and distinct
domains can share similar style signatures (for example, zoom blur and defocus blur yield nearly
identical style statistics). Nevertheless, in our framework, a domain is represented by a group of
similar styles, where style is computed as the set of low-level appearance attributes captured via
channel-wise feature statistics from early layers of a pre-trained VGG network [35]. This allows us
to leverage the style embeddings to detect new domains or recognize the recurring ones via online
clustering without over-fragmentation—an issue observed in the recent methods lacking robust style
representations (see Figure 17) [47, 3]. Based on the style of the current test samples, we route them
to the corresponding domain model in our reservoir, where specialized adaptation is performed.

In summary, we introduce ReservoirTTA, which maintains a pool of domain-specialized models,
adapts each one independently with its corresponding TTA updates, and combines their parameters in
a weighted ensemble for final predictions. Our contributions are as follows:

• Multi-model TTA with domain-aware specialization. ReservoirTTA explicitly decouples adapta-
tion across domains using a pool of models. This plug-in design supports diverse architectures and
lightweight adapters, including normalization statistics, prompts, and LoRA [13] modules.

• Style-driven clustering for online domain discovery. We propose an online clustering algorithm
based on deep style features. By quantifying style at test time, our method can detect and reuse
previously adapted models, enabling continual and efficient re-adaptation.

• Theoretical insights into long-term stability. We provide theoretical bounds showing how
parameter regularization curbs collapse in single-domain TTA—clarifying the stability of methods
such as EATA [27]—and motivate the modular design of ReservoirTTA for maintaining stability
under recurring domain shifts.

• Extensive empirical evaluation. We test ReservoirTTA on long-term/recurring TTA: classifi-
cation on ImageNet-C, CIFAR-10/100-C, and segmentation on Cityscapes→ACDC. We also
evaluate object-level style shifts (DomainNet-126, PACS), consistently surpassing PeTTA [12],
RDumb [31], and CoTTA [42] across datasets/backbones.

2 Related Work

Prior works on prolonged, recurring test-time adaptation fall into two main strands. Continual TTA
methods [42, 45, 36] continually update a single model to track evolving domains but suffer from drift
and forgetting when domains recur, while robust/persistent TTA methods [31, 12, 27, 24] employ
techniques such as variance constraints or periodic resets to preserve stability yet lack efficient
re-adaptation to previously seen shifts. For a concise survey of representative algorithms and their
limitations in recurring and evolving settings, see Appendix A.

2

3 Recurring Continual TTA and Theoretical Analysis

3.1 Background

Notation and Setting. We consider a deep network fθ : X → Y , pre-trained on an inaccessible
source dataset. At test time, the model parameters θ are updated using an unsupervised TTA
objective LTTA(x, θ) on incoming test images x. In practice, these updates typically affect only
a subset of parameters. Test data is received sequentially in batches, and we assume that a batch
of test images Bt := {x1

t , . . . ,x
b
t} at time t is drawn from a test domain distribution Dt, where

Dt ∈ {D1, . . . ,DK}. These distributions are unknown during training and evolve dynamically after
deployment. We distinguish three primary scenarios for prolonged domain evolution at test time:

• Recurring Continual Structure Change (CSC): Domains change in a predictable order but may
reappear (e.g., day–night cycles), denoted as D1 → D2 → D3 ↬ D1.

• Recurring Continual Dynamic Change (CDC): Domains shift unpredictably, though some
conditions recur (e.g., abrupt weather changes), represented as D1 99K D4 99K D5 ↬ D4.

• Continuously Changing Corruptions (CCC): Domains evolve gradually via incremental changes
(e.g., weather or degradation), so thatD1 → D′

1 → D′′
1 → D2, whereD′

i andD′′
i denote successive

variations of Di before transitioning to Di+1.

For notation, we use Di → Dj for structured shifts in CSC and CCC, Di 99K Dj for unstructured
shifts in CDC, and Di ↬ Dj to denote recurring domains.

3.2 Test-Time Adaptation Trajectory

Stability Regions for Individual Domains. We begin by analyzing how standard single-model TTA
updates via stochastic gradient descent (SGD) can cause parameter variance to grow linearly over
time, increasing the risk of drifting outside the stability region.
Assumption 1. At test-time, the model is updated using an unsupervised TTA objective on
the target domain, LTTA(θ,x), which serves as a surrogate for the true task loss LTask(θ) =
E(x,y)[Lsup(x,y, θ)], where Lsup measures model performance using ground truth labels. The
optimal parameters for the given task are given as: θ∗Task = argminθ LTask(θ).
Definition 1 (Stability Region). For a task with optimal parameters θ∗Task, the stability region is
defined as the set of parameters {θ : |θ − θ∗Task| ≤ β}, where β is the stability radius beyond which
model performance collapses when updated using the TTA objective LTTA(θ,x).
Lemma 1 (Parameter Variance Growth). Under standard SGD-based adaptation, the variance of the
updated parameters grows linearly with adaptation steps:

Var[θt] = η2
t−1∑
i=0

Varxi∼x[∇LTTA(θi,xi)] ≈ t · η2 · V̄ , (1)

where η is the learning rate and V̄ is the average gradient variance.
Theorem 1 (Bound on Divergence Probability). Let θt denote the model parameters at time t, and
let θ∗Task be the task-specific optimum. Suppose that E[θt]→ θ∗Task and ∥E[θt]− θ∗Task∥ < ∥θ0 − θ∗Task∥.
Then for any threshold β > ∥θ0 − θ∗Task∥, the probability of divergence from the stability region is
bounded by:

Pr
[
∥θt − θ∗Task∥ > β

]
≤ Var[θt](

β − ∥θ0 − θ∗Task∥
)2 , (2)

where θ0 represents the initial model parameters.

The above analysis reveals why conventional TTA approaches often suffer from model collapse
during prolonged adaptation: as the number of update steps increases, so does the variance of model
parameters, eventually causing them to drift beyond the stability radius. The proof of Theorem 1 is
provided in Appendix B.1. Next, we examine strategies to mitigate this variance growth.

Variance Reduction Strategies. To address the parameter variance growth problem, we explore two
key strategies utilized in [27, 24]:

3

Proposition 1 (Sample Filtering). Using an active sample selection function S(x) that filters out
unreliable samples with high entropy reduces the effective gradient variance.

In practice, not all test samples contribute equally to model adaptation. One remedy would be to
employ an active sample selection function S(x) that filters out unreliable samples—those with high
entropy or that are redundant (see [27, 24]). Thus, the effective gradient update becomes:

∇L̃TTA(θ,x) = S(x)∇LTTA(θ,x), (3)

thereby reducing effective gradient variance to Veff < V̄ while preserving linear dependence on t.
Proposition 2 (Weight Ensembling). Interpolating the updated parameters with the source model
parameters constrains the adaptation trajectory and bounds the overall variance as:

Var[θt] ≈ η2V̄ · α
2(1− α2t)

1− α2
< η2V̄ · α2

1− α2
, (4)

where α ∈ (0, 1] controls the contribution of source model parameters.

Another common strategy to bound the variance is to update parameters by interpolating with the
source model θ0 [24], thereby anchoring the adaptation steps:

θ̂t = θt−1 − η∇LTTA(θt−1,xt−1), θt = αθ̂t + (1− α)θ0. (5)

This “weight ensembling” bounds the overall variance, as each gradient update is geometrically
damped by a factor of α2(t−i). A similar strategy [27] applies Fisher regularization [18] with respect
to the source parameters θ0 in the TTA loss:

LTTA-fis(θ,x) = LTTA(θ,x) + λ · (θ − θ0)
TΩ(θ − θ0), (6)

where, Ω = diag([ω1, . . . , ωn]) is the Fisher coefficient matrix that weights each parameters θ =
[θ1, . . . , θn] based on its Fisher Information, and λ sets the regularization strength. This formulation
keeps the updated parameters close to the source and is equivalent to “weight ensembling.”

A detailed proof by induction and the complete variance analysis are provided in Appendix B.1.

Parameter Drift in Recurring Continual TTA. Even with these variance control strategies (e.g.,
sample filtering and weight ensembling), a single adapting model remains vulnerable to parameter
drift when the shift between domain-optimal parameters exceeds the stability radius, i.e., ∥θ∗Taski −
θ∗Taski+1

∥ > βi+1, for some i. As illustrated in Figure 5 of Appendix B.2, such shifts cause the
model’s parameter trajectory {θt} to deviate from the optimal region for a given domain, leading to
catastrophic forgetting and negative transfer.

ReservoirTTA: Decoupled Adaptation Across Domains. To mitigate catastrophic forgetting and
inter-domain interference in recurring continual TTA, we propose ReservoirTTA, a novel framework
that partitions adaptation across domains by maintaining up to K domain-specialized models. Each
reservoir component is updated exclusively when its corresponding domain is active, thereby isolating
the test-time objective Ex∼Di

[LTTA(θ,x)] for i ∈ {1, . . . ,K}. While existing strategies—such as
sample filtering [27], weight ensembling and Fisher regularization [24] help control the variance of
updates and prevent model collapse, they do not fully address catastrophic forgetting when domains
reoccur. In contrast, our plug-in ReservoirTTA module disentangles domain-specific adaptation and
further mitigates unnecessary re-adaptation when previously encountered domains return.

4 Methodology

In this section, we introduce our framework, ReservoirTTA, for prolonged TTA in environments
with recurring and evolving domains. As illustrated in Figure 2, our framework comprises four
stages: (1) Style Characterization and Domain Identification—leveraging style-based online
clustering to determine the domain characteristics of the current test batch; (2) Model Reservoir
Initialization—allocating a new domain-specific model when a novel domain is detected in the
domain identification step; (3) Model Reservoir Adaptation—selectively updating only the model
associated with the current domain using state-of-the-art TTA techniques; and (4) Model Predic-
tion—Predictions are then obtained via the ensemble’s parameters from all domain-specific models
(see pseudocode in Appendix C).

4

Style Quantification
Feature Maps

(2)Model Reservoir Initialization

OnLine Clustering

Style Reservoir

Domain
Exists

New
Domain (3)Model Reservoir Adaptation

(4)Model Prediction

ArgMax(.)

clone(.)ArgMin(.)

Model Reservoir

Domain
Assignment

(1)Style Characterization & Domain Identification

Legend
forward

frozen weights
trainable weights

model selection
backward

style centroids

VGG-19

Test
Batch

Style

LogVar(.)

yes

no

Figure 2: Overview of ReservoirTTA. ReservoirTTA operates in four stages: (1) Style Characteri-
zation and Domain Identification extracts early convolutional features and assigns incoming test
batches to a style cluster via an online clustering mechanism; (2) Model Reservoir Initialization
adds a new model for a detected domain, initializing it with parameters that maximize prediction
mutual information; (3) Model Reservoir Adaptation selectively adapts the most relevant model
using TTA methods; and (4) Model Prediction is then obtained via the ensemble’s parameters.

4.1 Style Characterization and Domain Identification

Style Characterization. To distinguish domains at test time, following prior style-characterization
work [9, 15, 41, 35], we encode image style as batch-wise log-variances from the first L layers of
a frozen, ImageNet-trained VGG-19 gstyle. Given a batch Bt ∼ Dt and feature maps {z1, . . . , zL}
with zl ∈ Rb×hl×wl×cl , the style vector for layer l is computed as sl(Bt) = logvar(zl) where
logvar computes the natural logarithm of the variance over the batch, height, and width. The overall
style descriptor is formed by concatenating these vectors: st =

[
s1(Bt), . . . , sL(Bt)

]
∈ Rd. This

architecture-agnostic statistic captures robust texture cues while remaining independent of the source
model; Appendix D analyzes VGG configurations and shows that VGG-based style vectors yield
more stable, higher-quality style clustering than source-model and ViT-based alternatives.

Domain Identification via Online Clustering. At test time, the number of visual domains is
unknown. We introduce an online clustering algorithm inspired by DP-Means [19] to dynamically
identify new domains using style vectors st. At each timestep t, we maintain centroids Ct =
[c1t , . . . , c

Kt
t] ∈ Rd×Kt , where Kt is the number of domains identified up to time t. Ct is initialized

with a single centroid as the mean style feature from the source domain (K0 = 1). A new cluster is
created if the current style vector is sufficiently distant from all existing centroids:

min
k∈{1,...,Kt}

∥st − ckt ∥2 > τ, (7)

where τ is set to the q-quantile of pairwise distances among style vectors from the source domain,
ensuring that new clusters are formed only under substantial domain shifts.

To adapt the centroids over time, we optimize a mutual information loss LMI between past style
vectors and the current centroids. Storing all past styles is infeasible, so we maintain a fixed-size Style
Reservoir Rt := [st1 , . . . , stM], updated via Reservoir Sampling [39, 4] to approximate uniform
sampling over all previously seen st. At each step, st is added to Rt−1 if t ≤ M ; otherwise, it
replaces a randomly selected vector with probability M

t , ensuring unbiased coverage.

5

We define the soft-assignment for each style vector in the style reservoir to the centroids as follows:

Q(Rt,C) = softmax

( −∥st1 − c1∥, . . . ,−∥st1 − cK∥
...

−∥stM − c1∥, . . . ,−∥stM − cK∥

 /
√
d

)
. (8)

The centroids Ct are updated by gradient descent on the mutual information loss:

Ct ← Ct−1 − η∇CLMI(Q(Rt,C))
∣∣∣
C=Ct−1

, (9)

where
LMI(Q(Rt,C)) = Lent(Q(Rt,C)) + Lcm(Q(Rt,C)). (10)

Here, Lent(Q) = − 1
M

∑M
i=1

∑K
j=1 qij log qij encourages confident assignments of style vectors in

Rt to the nearest style centroids, while Lcm(Q) =
∑K

j=1 q̄j log q̄j (with q̄j =
1
M

∑M
i=1 qij) acts to

prevent centroid collapse by promoting assignment diversity. Appendix E presents the sensitivity
of all introduced hyperparameters, alternative online clustering strategies, and alternative distance
metrics, including cosine similarity and Kullback–Leibler (KL) divergence, as well as the style
reservoir update.

4.2 Model Reservoir: Initialization, Adaptation, and Prediction

Building on the theoretical analysis of parameter drift (Section 3.2), we maintain a Model Reservoir
comprising Kt domain-specialized models {θ1t , . . . , θ

Kt
t }, with one model per discovered domain

up to time t. To ensure computational efficiency, we store only the trainable parameters of each
model, rather than full model instances. The total number of domains is bounded by a fixed constant
Kmax to prevent memory exhaustion. At initialization, the reservoir contains a single model {θ10}
corresponding to the source domain. When a new domain is detected, we instantiate a new model
by cloning the parameters of an existing reservoir model that yields the most confident and diverse
predictions on the current test batch Bt. This is formalized using mutual information as follows:

θKt
0 = arg min

θ∈{θ1
t ,...,θ

Kt−1
t }

LMI(fθ(Bt)), (11)

where fθ(Bt) ∈ Rb×|Y | is the softmax output of the model. This criterion favors models whose
predictions are simultaneously confident and diverse, reducing the risk of collapse when adapting to
a novel domain (see alternative initialization in Appendix F).

Model Adaptation. Given a test batch Bt, we compute a soft assignment vector qt ∈ RKt by
comparing the current style vector st to domain centroids {c1t , . . . , c

Kt
t } using scaled negative

squared Euclidean distances followed by a softmax:

qt = softmax
([
−∥st − c1t∥, . . . ,−∥st − cKt ∥

]
/
√
d
)
. (12)

The most relevant model is then selected as k∗ = argmax1≤j≤K [qt]j . The selected model θk∗
t is

adapted using a test-time adaptation objective LTTA:

θk∗
t+1 ← θk∗

t − η∇θLTTA(Bt, θ
k∗
t), (13)

Model Prediction. For inference, the trainable parameters from all reservoir models are ensembled
according to their soft assignment weights, yielding the ensemble parameters:

θ̄t =

K∑
k=1

[qt]k · θkt . (14)

The final prediction is then computed as Ŷt = fθ̄t(Bt). Notably, θ̄t is used solely for prediction and
is not updated, ensuring that all specialized models contribute to the output without being overwritten.

6

5 Experiments

Datasets and Evaluation Metrics. We evaluate on standard scene-level corruption
benchmarks—CIFAR-10→CIFAR-10-C, CIFAR-100→CIFAR-100-C, and ImageNet→ImageNet-
C—using three CNN backbones with only batch/group norms updated; for ImageNet-C, we also
test ViT-B/16 (see Appendix H). To demonstrate shift-agnosticism, we further assess object-level
style-shift benchmarks, DomainNet-126 [30, 33] and PACS [22], using a ResNet-50 following [2].
For segmentation, we use Segformer-B5 as in CoTTA [42]. Classification is tested under CCC [31],
CSC, and CDC settings over 20 rounds (averaging error rates, %; a subset is shown for clarity). For
segmentation, we follow the Cityscapes→ACDC protocol [42], where ACDC presents four weather
conditions (Fog, Night, Rain, Snow) sequentially. We report the mean IoU (%) averaged over 10
repetitions.

Baselines. We evaluate our method against several state-of-the-art TTA baselines (for more details,
see the Appendix G). For single-target TTA, we compare with TENT [40]. For continual TTA,
we consider CoTTA [42] (using the affine-parameter variant, CoTTA*), RoTTA [45], ETA [27], and
SAR [28]. To assess long-term stability, we include persistent TTA methods such as RDumb [31],
PeTTA [12], EATA [27] (with Fisher-based regularization), and ROID [24] (reported as ROID*—a
version omitting the augmentation consistency loss). For ViT-based models, we also compare with
domain-disentanglement approaches like CoLA [3] and DPCore [47]. In segmentation experiments,
we evaluate segmentation variants of TENT, CoTTA*, and BECoTTA [20]. For fair comparison, all
methods update only the backbone’s affine parameters—except when we compare ReservoirTTA and
BECoTTA (using LoRA) and DPcore (using visual prompts).

Methods Tested for ReservoirTTA Plug-in. Based on our theoretical analysis, we integrate
ReservoirTTA only into TTA methods that employ variance reduction via sample filtering along
with variance control through weight ensembling and Fisher regularization. Accordingly, we apply
ReservoirTTA to EATA and ROID∗, which incorporate both components, as well as to ETA and SAR,
which use sample filtering alone, and to TENT even though it lacks both. For segmentation tasks, we
plug ReservoirTTA into CoTTA∗ and BECoTTA to demonstrate its generality. Although methods
such as RoTTA and PeTTA are compatible in principle, they require a separate memory bank for
each reservoir model which makes their practical integration computationally prohibitive.

Implementation Details. All methods are re-implemented in PyTorch [29] within a unified TTA
repository [24] for fair comparison, using pre-trained source models from RobustBench [11]. See
Appendix H for further implementation details.

5.1 Main Results

Classification. Table 1 highlights the limitations of existing TTA methods when repeatedly adapted
under recurring domain shifts and prolonged testing with three CNN-based backbones. (1) Single-
target TTA: Methods like TENT initially adapt well but suffer from severe error accumulation over
multiple cycles—for example, on CIFAR-10-C, error rises from 19.3% at visit 1 to 87.8% at visit
20, with similar trends on CIFAR-100-C and ImageNet-C. Plugging in ReservoirTTA significantly
improves performance, though error accumulation still occurs, highlighting the need for both variance
control modules from our theoretical analysis. (2) Continual TTA: Approaches like CoTTA∗ and
RoTTA mitigate short-term instability yet still accumulate errors with repeated adaptation. Reser-
voirTTA decouples domain-specific adaptation to prevent parameter drift—reducing, for instance,
ETA’s CIFAR-10-C error from 30.9% to 16.4% at the 20th visit (Recurring CSC) and similarly im-
proving ImageNet-C performance. (3) Persistent TTA: Although methods such as EATA and ROID∗

are designed to prevent catastrophic forgetting, they exhibit limited re-adaptation (Figure 1), with
minimal improvements over repeated visits. ReservoirTTA overcomes this by enabling controlled
adaptation without excessive re-learning—reducing EATA’s ImageNet-C error from 55.9% to 51.0%
in Recurring CSC and ROID’s from 55.5% to 52.1%.

As shown in Table 2, using a ViT-B-16 backbone on ImageNet-C further underscores ReservoirTTA’s
advantages in recurrent continual TTA. Domain-disentangled methods like DPCore improve early
adaptation but lack long-term stability. For instance, in Recurring CSC, CoLA reduces ETA’s 20th-
visit error to 33.8%, whereas ReservoirTTA lowers it further to 31.9%. In CCC, CoLA stabilizes ETA
at 40.2%, whereas ReservoirTTA achieves 38.5%. DPCore also struggles: in CCC, its error rises
from 42.2% to 43.1%, whereas combining ReservoirTTA with the same prompt-tuning approach

7

Table 1: Average classification error (%) on corruption benchmarks under recurring CSC and CDC.
Results shown at visits 1 and 20, with their difference (∆), for CIFAR-10-C, CIFAR-100-C, and
ImageNet-C using WideResNet-28, ResNeXt-29, and ResNet-50, respectively. Averages over five
runs. Best in bold, second best underlined.

Recurring CSC Recurring CDC
CIFAR-10-C CIFAR-100-C ImageNet-C CIFAR-10-C CIFAR-100-C ImageNet-C

Recurring visit Recurring visit Recurring visit Recurring visit Recurring visit Recurring visit
Method 1 20 ∆ 1 20 ∆ 1 20 ∆ 1 20 ∆ 1 20 ∆ 1 20 ∆

Source 43.5 43.5 +0.0 46.5 46.5 +0.0 82.0 82.0 +0.0 43.5 43.5 +0.0 46.5 46.5 +0.0 82.0 82.0 +0.0
Single-Target TTA

TENT (ICLR 21) 19.3 87.8 +68.5 61.4 99.0 +37.6 62.6 99.5 +36.9 20.5 87.0 +66.5 60.2 98.9 +38.7 62.0 99.5 +37.5
+ReservoirTTA 18.3 17.6 -0.7 38.1 44.0 +5.9 62.6 58.2 -4.4 18.2 17.4 -0.8 33.9 39.7 +5.8 62.4 57.5 -4.9
Continual TTA

CoTTA∗ (CVPR 22) 18.8 22.4 +3.6 35.1 65.5 +30.4 67.6 62.7 -4.9 18.8 22.3 +3.5 35.1 65.1 +30.0 67.7 61.5 -6.2
RoTTA (CVPR 23) 19.4 18.4 -1.0 34.8 59.1 +24.3 67.3 99.4 +32.1 21.9 20.4 -1.5 36.8 73.8 +37.0 71.6 99.5 +27.9

ETA (ICML 22) 17.8 30.9 +13.1 32.0 37.6 +5.6 60.0 59.4 -0.6 17.9 33.5 +15.6 32.4 37.6 +5.2 59.3 60.1 +0.8
+ReservoirTTA 17.5 16.4 -1.1 31.6 30.0 -1.6 59.8 53.1 -6.7 17.4 16.3 -1.1 30.9 29.7 -1.2 58.6 52.2 -6.4

SAR (ICLR 23) 20.4 20.4 +0.0 31.9 60.4 +28.5 61.9 67.1 +5.2 20.4 20.4 +0.0 31.6 57.8 +26.2 61.5 66.2 +4.7
+ReservoirTTA 20.4 20.4 +0.0 31.9 30.5 -1.4 62.2 53.1 -9.1 20.4 20.4 +0.0 31.7 29.8 -1.9 62.6 53.6 -9.0
Persistent TTA

RDumb (NeurIPS 23) 17.8 18.4 +0.6 32.0 32.9 +0.9 59.8 56.8 -3.0 17.9 18.1 +0.2 32.4 32.6 +0.2 59.6 59.5 -0.1
PeTTA (NeurIPS 24) 23.0 17.2 -5.8 39.4 32.9 -6.5 67.5 60.1 -7.4 27.2 20.8 -6.4 42.1 35.3 -6.8 71.6 69.5 -2.1

EATA (ICML 22) 17.5 17.8 +0.3 30.5 30.5 +0.0 57.5 55.9 -1.6 17.7 17.9 +0.2 31.0 31.1 +0.1 58.5 57.0 -1.5
+ReservoirTTA 17.5 16.4 -1.1 30.6 28.4 -2.2 58.0 51.0 -7.0 17.5 16.4 -1.1 30.4 28.4 -2.0 58.5 51.8 -6.7

ROID∗ (WACV 24) 17.8 17.7 -0.1 29.5 29.3 -0.2 56.1 55.5 -0.6 18.0 18.1 +0.1 30.2 30.1 -0.1 58.7 58.3 -0.4
+ReservoirTTA 17.8 16.8 -1.0 29.6 27.8 -1.8 56.4 52.1 -4.3 17.9 16.8 -1.1 29.6 27.8 -1.8 57.0 53.0 -4.0

Table 2: Average classification error (%) on ImageNet-C under recurring continual TTA (ViT-B/16).
For CCC, we average over an adaptation window (e.g., steps 6701–40200). Means over 5 seeds. %
Train Params = fraction of trainable parameters; Time =× vs. Source. Margins show negative/positive
error changes vs. the base plug-in.

Recurring CSC Recurring CDC CCC Complexity
Recurring visit Recurring visit Adaptation Step % Train

ParamsMethod 1 20 ∆ 1 20 ∆ 6.7k 40.2k 80k Time
Source 48.8 48.8 0.0 48.8 48.8 0.0 51.9 49.3 50.7 0.000 1.0
Continual TTA
ETA (ICML 22) 38.9 48.4 +9.5 42.9 35.9 -7.0 42.7 40.6 40.8 0.044 2.0
+CoLA (NeurIPS 24) 41.0 33.8 -7.2 40.9 34.9 -6.0 44.8 40.5 40.2 6.241 2.0
+ReservoirTTA 39.4 31.9 -7.5 41.6 32.9 -8.7 44.1 40.2 38.5 0.705 3.0
Prompt-based TTA
DPCore 40.2 46.0 +5.8 42.8 47.6 +4.8 42.2 42.3 43.1 1.053 3.8
VPT+ReservoirTTA 38.0 33.7 -4.3 38.0 34.3 -3.7 42.9 40.2 39.2 0.113 3.0

(VPT) [14]—used by DPCore for fair comparison—keeps the error at 39.2%. This gap shows that
the domain identification mechanism in ReservoirTTA outperforms those in CoLA and DPCore by
avoiding gradual degradation and accelerating performance improvement. As shown in Appendix D,
our style features form higher-quality clusters than the ViT-based features used in CoLA and DPCore.
Moreover, our model discovery mechanism is less sensitive to test batch order and estimates the
number of domains more accurately (see Figure 4 and Appendix I), resulting in fewer trainable
parameters compared to DPCore and COLA. See Tables 12–25 in Appendix K for full results across
all 20 recurrences, CNN backbones (group norm), DomainNet-126, and PACS.

Segmentation. Table 3 shows segmentation results on Cityscapes→ACDC under recurring CSC.
Methods such as TENT, CoTTA∗, and BECoTTA suffer mIoU declines when re-encountering each
domain, indicating limited re-adaptation. By contrast, plugging in ReservoirTTA consistently boosts
mIoU and limits performance drift. For example, TENT + ReservoirTTA gains over two percentage
points on Snow by the 10th revisit, while CoTTA∗ + ReservoirTTA and LORA + ReservoirTTA
show steady improvements across all conditions compared to BECoTTA. This demonstrates that our
domain-specific reservoir effectively preserves and reapplies learned knowledge over multiple visits
(visit Appendix J, Figure 18 for segmentation visualizations).

8

Table 3: Semantic segmentation results (mIoU %) on Cityscapes→ACDC under recurring CSC.
Each target domain (Fog→Night→Rain→Snow) is revisited over 10 iterations. For fair comparison,
stochastic restoration is disabled in CoTTA∗ and BECoTTA to ensure reproducibility. Best and
second-best results are shown in bold and underline, respectively. Positive and Negative margins
indicate mIoU changes relative to the plug-in method.

Fog Night Rain Snow
Recurring visit −−−−−−→ Recurring visit −−−−−−→ Recurring visit −−−−−−→ Recurring visit −−−−−−→

Method 1 4 7 10 1 4 7 10 1 4 7 10 1 4 7 10
Source 69.1 69.1 69.1 69.1 40.3 40.3 40.3 40.3 59.7 59.7 59.7 59.7 57.8 57.8 57.8 57.8

TENT (ICLR 21) 69.0 68.0 66.7 65.3 40.2 38.0 36.0 34.1 60.0 59.9 58.5 56.7 57.5 55.9 53.8 52.0
+ReservoirTTA 69.1 68.8 68.1 67.6 40.2 39.3 38.9 38.5 59.9 59.9 59.2 58.0 57.6 57.0 56.0 54.7

+0.1 +0.8 +1.4 +2.3 +0.0 +1.3 +2.9 +4.4 -0.1 +0.0 +0.7 +1.3 +0.1 +1.1 +2.2 +2.6

CoTTA∗ (CVPR 22) 71.5 71.4 71.3 71.2 41.4 40.8 40.3 39.9 62.7 63.0 63.2 63.3 59.9 59.9 59.8 59.8
+ReservoirTTA 72.9 72.8 72.8 72.7 41.1 40.7 40.5 40.2 64.4 64.6 64.6 64.7 60.2 60.1 60.0 60.0

+1.4 +1.4 +1.5 +1.5 -0.3 -0.1 +0.2 +0.3 +1.7 +1.6 +1.4 +1.4 +0.3 +0.2 +0.2 +0.2

BECoTTA (ICML 24) 72.0 72.3 72.7 72.5 41.2 41.4 40.7 40.8 63.4 64.0 64.6 64.8 60.3 61.3 61.0 60.3
LORA +ReservoirTTA 72.7 72.7 72.4 72.4 41.5 41.4 41.5 41.4 64.3 64.6 64.7 64.9 61.0 61.2 61.1 61.2

+0.7 +0.4 -0.3 -0.1 +0.3 +0.0 +0.8 +0.6 +0.9 +0.6 +0.1 +0.1 +0.7 -0.1 +0.1 +0.9

2 4 8 16 32 64
Kmax

28

29

30

Er
ro

r
Ra
te

 (
%)

Recurring CSC

2 4 8 16 32 64
Kmax

28

29

30

Recurring CDC

ROID*+ReservoirTTA
EATA+ReservoirTTA

Figure 3: Sensitivity to reservoir
size Kmax on CIFAR100-C (recurring
CSC/CDC).

Table 4: Component-wise ablation of ReservoirTTA
with EATA [27]. Average error (%) on CIFAR-100-C
(CSC, CDC at visit 20) and ImageNet-C (CCC). Nega-
tive margins show improvement over EATA. We ablate
Model Reservoir (MR), Style Reservoir (SR), and En-
sembling (EMR). Best results in bold. Time is a multi-
plicative factor relative to EATA.

Components Recurring CSC Recurring CDC CCC
Method MR SR EMR Error Gain Err Gain Error Gain Time

EATA % % % 30.5 - 31.1 - 60.3 - 1.0

EATA+ " % % 28.6 -1.9 28.5 -2.6 59.5 -0.8 1.1
" " % 28.4 -2.1 28.5 -2.6 59.1 -1.2 1.3

EATA+ReservoirTTA " " " 28.4 -2.1 28.4 -2.7 58.8 -1.5 1.3

5.2 Analyses and Ablations

Component-wise Ablation Analysis and Runtime. Table 4 quantifies the impact of ReservoirTTA’s
components on CIFAR-100-C (CSC, CDC) and ImageNet-C (CCC), along with runtime relative to
EATA. Incorporating the Model Reservoir (MR) enables domain-specific adaptation, yielding a 1.9%
gain at visit 20 in CSC. The Style Reservoir (SR) has limited effect on CSC/CDC—frequent, abrupt
domain resets make styles easily separable, so a single embedding suffices—but helps in CCC, where
gradual drift benefits from accumulated history (+1.2%). EMR ensembling is marginal on CSC/CDC
(assignments are near one-hot) yet gives +1.5% on CCC by leveraging multiple models. As shown
in Appendix I, reusing specialists via MR outperforms simple weight resets: RDumb’s blind reset
32.2%→ domain-aware reset 31.2%→MR 28.4% (CSC, visit 20). Overall, ReservoirTTA improves
accuracy by +2.1% (CSC), +2.7% (CDC), and +1.5% (CCC) at only 1.3× EATA’s runtime.

Sensitivity Analysis of ReservoirTTA Hyperparameters. Figure 3 highlights the importance
of setting Kmax, with classification error stabilizing for Kmax ≥ 16 on CIFAR-100-C consistent
with its domain structure. Overestimating the number of domains helps avoid premature merging
and improves specialization. Moreover, as shown in Figure 4, ReservoirTTA is robust to batch-
order variability, reliably estimating the number of domains after the first recurrence in the CSC
setting even without constraining Kmax. Across subsequent recurrences, the detected domain count
increases marginally, consistent with the stable performance reported above. Additional ablations on
CIFAR-100-C and CCC (see Appendix E) show that ReservoirTTA is robust to key hyperparameters:
performance remains stable across style reservoir sizes M , and variations in source sample count or
quantile qth for threshold τ in Equation (7) affect error by less than 1%. As shown in Appendix I,
larger batch sizes improve performance, but ReservoirTTA consistently outperforms baselines across

9

Ga
us
s
Sh
ot

Im
pu
ls
e

De
fo
cu
s

Gl
as
s

Mo
ti
on
Zo
om
Sn
ow
Fr
os
t
Fo
g

Br
ig
ht

Co
nt
ra
st

El
as
ti
c

Pi
xe
l
JP
EG

2

4

6

8

10

12

14
Nu

mb
er

 o
f

De
te

ct
ed

 D
om

ai
ns

Noise Blur Weather Digital

ReservoirTTA: # of detected domains
during the 1st visit

1 2 3 4 5 6 7 8 91011121314151617181920
12

13

14

15

16

17

18

19

Nu
mb

er
 o

f
De

te
ct

ed
 D

om
ai

ns

ReservoirTTA: # of detected domains
across 20 visits

Seed 1 Seed 100 Seed 1000 Seed 200 Seed 2000

Figure 4: Domain detection sensitivity of ReservoirTTA in recurring CSC on CIFAR-100-C.
The plot shows the number of detected domains during the first recurrence (Left) and subsequent
recurrences (Right) across different batch-order seeds. ReservoirTTA is largely insensitive to batch
order, accurately estimating the number of domains, which remains stable over time.

settings. Notably, it requires less reliance on weight ensembling or Fisher regularization, indicating
strong inherent variance control.

Additional Analysis. We further test two challenging TTA settings: (i) gradual shifts with smoothly
varying severity, where ReservoirTTA adapts well to subtle transitions, and (ii) temporally corre-
lated streams with category bias, where pairing with sampling/stabilization mitigates bias. Results
(Appendix K) show effectiveness across diverse, realistic test-time scenarios.

6 Conclusion

We present ReservoirTTA as a novel framework to extend test-time adaptation from single model to
multiple model adaptation by decoupling updates across a reservoir of domain-specialized models.
Rather than forcing a single model to adapt continuously, our approach selectively updates the
most relevant component based on dynamic clustering of style features. Furthermore our approach
identifies, assigns, and updates its specialists fully at test time without needing multiple source
domains for training. This design not only stabilizes the adaptation process but also curtails the
accumulation of errors and catastrophic forgetting that typically plague single-model methods. Our
theoretical analysis and comprehensive experiments underscore the framework’s ability to maintain
robust performance even under prolonged and unpredictable domain shifts.

Limitations. Our plug-in approach improves adaptation by decoupling domain-specific updates
but introduces additional computational overhead due to the Model Reservoir, online clustering, and
refinement using a Style Reservoir. This can increase computation by up to 30% on top of lightweight
methods such as EATA and ETA. However, the memory overhead remains low, as only trainable
parameters and not full models are duplicated for the Model Reservoir.

A further limitation—common to most TTA methods—is updating parameters on every incoming
batch regardless of convergence. Introducing an adaptive update trigger (to switch optimization
on/off) could markedly reduce runtime overhead and improve practicality in resource-constrained
settings.

10

References
[1] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.

Unsupervised learning of visual features by contrasting cluster assignments. Advances in neural
information processing systems, 33:9912–9924, 2020.

[2] Dian Chen, Dequan Wang, Trevor Darrell, and Sayna Ebrahimi. Contrastive test-time adaptation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 295–305, 2022.

[3] Guohao Chen, Shuaicheng Niu, Deyu Chen, Shuhai Zhang, Changsheng Li, Yuanqing Li, and
Mingkui Tan. Cross-device collaborative test-time adaptation. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

[4] Aristotelis Chrysakis and Marie-Francine Moens. Online continual learning from imbalanced
data. In International Conference on Machine Learning, pages 1952–1961. PMLR, 2020.

[5] Chaoran Cui, Yongrui Zhen, Shuai Gong, Chunyun Zhang, Hui Liu, and Yilong Yin. Dy-
namic prompt allocation and tuning for continual test-time adaptation. arXiv preprint
arXiv:2412.09308, 2024.

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. ICLR, 2021.

[7] Yulu Gan, Yan Bai, Yihang Lou, Xianzheng Ma, Renrui Zhang, Nian Shi, and Lin Luo. Decorate
the newcomers: Visual domain prompt for continual test time adaptation. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pages 7595–7603, 2023.

[8] Yunhe Gao, Xingjian Shi, Yi Zhu, Hao Wang, Zhiqiang Tang, Xiong Zhou, Mu Li, and
Dimitris N Metaxas. Visual prompt tuning for test-time domain adaptation. arXiv preprint
arXiv:2210.04831, 2022.

[9] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using convolu-
tional neural networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2414–2423, 2016.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[11] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to com-
mon corruptions and perturbations. Proceedings of the International Conference on Learning
Representations, 2019.

[12] Trung-Hieu Hoang, Duc Minh Vo, and Minh N. Do. Persistent test-time adaptation in recurring
testing scenarios. In Thirty-eighth Conference on Neural Information Processing Systems
(NeurIPS), 2024.

[13] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In
International Conference on Learning Representations, 2022.

[14] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan,
and Ser-Nam Lim. Visual prompt tuning. In European conference on computer vision, pages
709–727. Springer, 2022.

[15] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
super-resolution. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam,
The Netherlands, October 11-14, 2016, Proceedings, Part II 14, pages 694–711. Springer, 2016.

11

[16] Byungjai Kim, Chanho Ahn, Wissam J Baddar, Kikyung Kim, Huijin Lee, Saehyun Ahn,
Seungju Han, Sungjoo Suh, and Eunho Yang. Test-time ensemble via linear mode connec-
tivity: A path to better adaptation. In The Thirteenth International Conference on Learning
Representations, 2025.

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[18] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy
of sciences, 114(13):3521–3526, 2017.

[19] Brian Kulis and Michael Jordan. Revisiting k-means: New algorithms via bayesian nonpara-
metrics. In John Langford and Joelle Pineau, editors, Proceedings of the 29th International
Conference on Machine Learning (ICML-12), ICML ’12, pages 513–520, New York, NY, USA,
July 2012. Omnipress.

[20] Daeun Lee, Jaehong Yoon, and Sung Ju Hwang. Becotta: Input-dependent online blending of
experts for continual test-time adaptation. In International Conference on Machine Learning,
2024.

[21] Jungsoo Lee, Debasmit Das, Jaegul Choo, and Sungha Choi. Towards open-set test-time
adaptation utilizing the wisdom of crowds in entropy minimization. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 16380–16389, 2023.

[22] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier
domain generalization. In Proceedings of the IEEE international conference on computer
vision, pages 5542–5550, 2017.

[23] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2019.

[24] Robert A Marsden, Mario Döbler, and Bin Yang. Universal test-time adaptation through weight
ensembling, diversity weighting, and prior correction. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 2555–2565, 2024.

[25] Chaithanya Kumar Mummadi, Robin Hutmacher, Kilian Rambach, Evgeny Levinkov, Thomas
Brox, and Jan Hendrik Metzen. Test-time adaptation to distribution shift by confidence maxi-
mization and input transformation. arXiv preprint arXiv:2106.14999, 2021.

[26] Shuaicheng Niu, Chunyan Miao, Guohao Chen, Pengcheng Wu, and Peilin Zhao. Test-time
model adaptation with only forward passes. In The International Conference on Machine
Learning, 2024.

[27] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and
Mingkui Tan. Efficient test-time model adaptation without forgetting. In The International
Conference on Machine Learning, 2022.

[28] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen, Yaofo Chen, Peilin Zhao, and
Mingkui Tan. Towards stable test-time adaptation in dynamic wild world. In International
Conference on Learning Representations, 2023.

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[30] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment
matching for multi-source domain adaptation. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 1406–1415, 2019.

12

[31] Ori Press, Steffen Schneider, Matthias Kümmerer, and Matthias Bethge. Rdumb: A simple
approach that questions our progress in continual test-time adaptation. Advances in Neural
Information Processing Systems, 36, 2024.

[32] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of
mathematical statistics, pages 400–407, 1951.

[33] Kuniaki Saito, Donghyun Kim, Stan Sclaroff, Trevor Darrell, and Kate Saenko. Semi-supervised
domain adaptation via minimax entropy. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 8050–8058, 2019.

[34] Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Acdc: The adverse conditions dataset with
correspondences for semantic driving scene understanding. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 10765–10775, 2021.

[35] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[36] Junha Song, Jungsoo Lee, In So Kweon, and Sungha Choi. Ecotta: Memory-efficient con-
tinual test-time adaptation via self-distilled regularization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 11920–11929, 2023.

[37] Devavrat Tomar, Guillaume Vray, Behzad Bozorgtabar, and Jean-Philippe Thiran. Tesla: Test-
time self-learning with automatic adversarial augmentation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 20341–20350, 2023.

[38] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

[39] Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical
Software (TOMS), 11(1):37–57, 1985.

[40] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent:
Fully test-time adaptation by entropy minimization. In International Conference on Learning
Representations, 2021.

[41] Pei Wang, Yijun Li, and Nuno Vasconcelos. Rethinking and improving the robustness of image
style transfer. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 124–133, 2021.

[42] Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual test-time domain adaptation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 7201–7211, 2022.

[43] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference
on computer vision (ECCV), pages 3–19, 2018.

[44] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1492–1500, 2017.

[45] Longhui Yuan, Binhui Xie, and Shuang Li. Robust test-time adaptation in dynamic scenarios. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
15922–15932, 2023.

[46] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Edwin R. Hancock
Richard C. Wilson and William A. P. Smith, editors, Proceedings of the British Machine Vision
Conference (BMVC), pages 87.1–87.12. BMVA Press, September 2016.

[47] Yunbei Zhang, Akshay Mehra, Shuaicheng Niu, and Jihun Hamm. Dpcore: Dynamic prompt
coreset for continual test-time adaptation. arXiv preprint arXiv:2406.10737, 2024.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction summarize our contributions with experimental
results for persistent test time adaptation. All the claims are provided in detail in the papers’
corresponding sections, including the appendix.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of our approach in the Conclusion section. The
primary limitation lies in the increased complexity introduced by our method, which is
analyzed in the corresponding section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

14

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Each theorem introduced in Section 3.2 is proved in Appendix B. All assump-
tions are also provided in Section 3.2. Each assumption, theorem, lemma, and proposition
in Section 3.2 and Appendix B is numbered for clarity.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The method and all associated hyperparameters are thoroughly described in
the Method section. We also include a pseudocode in Appendix C, which accurately reflects
our algorithm. The specific hyperparameter values used in our experiments are provided in
Appendix H.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

15

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The data is publicly available (see Appendix H). However, the code will be
released upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All hyperparameters, optimizers, and model architectures used are described
in detail in Section 5 and Appendix H.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All reported results are averaged over 5 random seeds. Our main claims are
supported by Figure 1, which includes confidence intervals.
Guidelines:

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Information on computing resources are provided in Appendix H.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work relies exclusively on publicly available image benchmarks, involves
no human subjects or sensitive data, and presents no foreseeable misuse; it fully adheres to
the NeurIPS ethical guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]

17

https://neurips.cc/public/EthicsGuidelines

Justification: This work focuses on a general formulation of recurring and persistent test-
time adaptation, without targeting any specific downstream application. As such, we do not
anticipate any direct societal impact resulting from this research beyond those shared by
machine learning in general.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not believe out paper poses such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cited the papers that provided some of the code in Section 5.
The corresponding licenses and links to used assets are also provided in Appendix G and
Appendix H.

Guidelines:

18

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This work does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.

19

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

Appendix

In this appendix, we provide further details on related work (Appendix A), our theoretical analysis
(Appendix B), our algorithm (Appendix C), style features quality (Appendix D), domain identifi-
cation via online clustering (Appendix E), model reservoir initialization (Appendix F), baselines
(Appendix G), implementation details (Appendix H), additional ablation studies (Appendix I), as
well as extra qualitative (Appendix J) and quantitative results (Appendix K). Note: The numbering of
tables, figures, and equations in this appendix continues from the main document.

A Related Work

Continual Test-Time Adaptation. Early TTA approaches adapt pre-trained models to a fixed,
stationary target domain by updating only a small subset of parameters—typically the affine param-
eters of BatchNorm—using techniques such as pseudolabeling or entropy minimization [40, 25].
However, these single–target TTA methods are prone to error accumulation when faced with pro-
longed or recurring continual domain shifts. To address these limitations, continual TTA (CTTA)
methods (e.g., CoTTA [42], RoTTA [45], and EcoTTA [36]) employ teacher–student frameworks,
self–distillation, and regularization techniques to improve robustness in adapting pre-trained models
across evolving target domains. Nevertheless, most CTTA methods update a single shared model
across domains, leading to slow convergence on brief exposures, catastrophic forgetting, and negative
transfer when domains differ. Although they can reduce short-term performance fluctuations, these
approaches remain prone to cumulative errors over time and assume each environment appears only
once—a condition that rarely holds in practice. Recent works propose distinct paradigms. SAR [28]
uses sharpness-aware entropy minimization to stabilize adaptation by suppressing noisy gradients.
BECoTTA [20] updates domain-specific low-rank experts through adaptive routing, reducing in-
terference but relies on access to multi-source data before TTA deployment. CoLA [3] enables
collaborative test–time adaptation by sharing domain knowledge vectors across devices to improve
efficiency, though its success depends on stable inter-device communication in resource-constrained
environments. An alternative approach, known as prompt-based TTA, leverages visual prompt–based
learning [47, 5] to enable domain-specific adaptation without altering the core network. Methods
such as DPCore [47], VDP [7], DePT [8], and PAINT [5] employ learnable tokens or pixel-level
prompts, though they typically require a warm-up phase to compute alignment statistics and reliably
initialize the prompts.

Robust and Persistent Test–Time Adaptation. Persistent TTA approaches are designed to sustain
robust performance over extended periods. Techniques such as active sample selection, Fisher–based
regularization, and weight ensembling have been explored in methods like EATA [27] and ROID [24]
to prevent catastrophic forgetting and model collapse. Other approaches, such as reset-based methods
like RDumb [31], use teacher–student updates or periodic resets to counteract adaptation error
accumulation. Similarly, PeTTA [12] dynamically adjusts its adaptation strategy to prevent model
collapse without frequent resets. In parallel, Test–Time Ensemble (TTE) [16] leverages linear mode
connectivity to form an adaptive weight-space ensemble (EMA modulated by a divergence term)
together with a dropout ensemble, and applies de-biased reverse-KL distillation to stabilize updates;
TTE plugs into standard TTA objectives and improves robustness on continual, non-i.i.d. streams.
However, these strategies often exhibit limited re–adaptation capability when encountering previously
seen distributions and require precise hyperparameter tuning or source data for initialization. In
contrast, our ReservoirTTA is designed to maintain consistent long-term adaptation performance
without these constraints.

B Details on Theoretical Analysis

B.1 TTA Variance Bound via Source Weighted Ensembling and Fisher Regularization

Theorem 2 (Recursive Weight Ensembling Update). Let the update rule be defined as

θ̂t = θt−1 − η∇LTTA(θt−1,xt−1), (15)

θt = α · θ̂t + (1− α) · θ0, (16)

21

with initial parameter θ0 ∈ Rd, step size η > 0, and ensembling parameter α ∈ [0, 1]. Then for all
t ≥ 1, the iterates θt admit the closed-form recursion

θt = θ0 − η

t−1∑
i=0

αt−i∇LTTA(θi,xi). (17)

Proof. We proceed by induction on t.

Base Case (t = 1). From (15), we have:

θ̂1 = θ0 − η∇LTTA(θ0,x0).

Using (16):
θ1 = αθ̂1 + (1− α)θ0 = α(θ0 − η∇LTTA(θ0,x0)) + (1− α)θ0.

Simplifying:
θ1 = θ0 − ηα∇LTTA(θ0,x0),

which matches (17) for t = 1.

Inductive Step. Assume the result holds for some t ≥ 1, i.e.,

θt = θ0 − η

t−1∑
i=0

αt−i∇LTTA(θi,xi).

Then by (15) and (16):

θ̂t+1 = θt − η∇LTTA(θt,xt), θt+1 = αθ̂t+1 + (1− α)θ0.

Substituting:

θt+1 = α(θt − η∇LTTA(θt,xt)) + (1− α)θ0
= αθt + (1− α)θ0 − ηα∇LTTA(θt,xt).

Now apply the inductive hypothesis:

θt+1 = α

(
θ0 − η

t−1∑
i=0

αt−i∇LTTA(θi,xi)

)
+ (1− α)θ0 − ηα∇LTTA(θt,xt)

= θ0 − η

t−1∑
i=0

αt+1−i∇LTTA(θi,xi)− ηα∇LTTA(θt,xt)

= θ0 − η

t∑
i=0

α(t+1)−i∇LTTA(θi,xi),

which completes the inductive step.

Conclusion. By mathematical induction, Equation (17) holds for all t ≥ 1.

Proposition 3 (Bounded Variance under Source-Weighted Ensembling). Assume that the per-step
gradient noise has average variance V̄ , i.e.,

E
[
Var[∇LTTA(θi,xi)]

]
≈ V̄

Then, under the weight ensembling update in (15)–(16), the variance of θt satisfies

Var[θt] ≈ η2V̄ · α
2(1− α2t)

1− α2
. (18)

Proof. From Equation (17), the update rule for θt is:

θt = θ0 − η

t−1∑
i=0

αt−i∇LTTA(θi,xi).

22

Assuming independent gradient noise across time steps with constant average variance V̄ , the variance
of the sum is:

Var[θt] ≈ η2
t−1∑
i=0

α2(t−i)V̄ = η2V̄

t−1∑
i=0

α2(t−i) = η2V̄ · α
2(1− α2t)

1− α2
.

Finally, taking the limit as t → ∞ (and assuming α < 1), we observe that α2t → 0, yielding the
upper bound:

Var[θt] ≲ η2V̄ · α2

1− α2
.

Thus, the variance remains bounded uniformly in t.

Additionally, consider the limit α → 1. In this case, the denominator approaches 0 and we can
expand the geometric sum:

lim
α→1

α2(1− α2t)

1− α2
= lim

α→1

1− α2t

1− α2
≈ t,

which recovers the standard linear-in-t variance growth:

Var[θt] ≈ η2V̄ · t.
This confirms that weight ensembling curtails variance growth over time compared to unregularized
adaptation.

Proposition 4 (Fisher Regularization as Weighted Ensembling). Let the TTA objective be augmented
with Fisher regularization as follows:

LTTA-fis(θ,x) = LTTA(θ,x) + λ · ω · (θ − θ0)
2, (19)

where λ > 0 is the regularization coefficient and ω is the (diagonal) Fisher information weight. Then
the gradient descent update becomes:

θt = θt−1 − η∇LTTA-fis(θt−1,xt−1)

= θt−1 − η∇LTTA(θt−1,xt−1)− 2λωη(θt−1 − θ0)

= (1− 2λωη) · θt−1 − η∇LTTA(θt−1,xt−1) + 2λωη · θ0. (20)

Define α = 1− 2λωη. Then this update is equivalent to the weighted ensembling rule:

θt = α · θ̂t + (1− α) · θ0, where θ̂t = θt−1 − η∇LTTA(θt−1,xt−1). (21)

Proof. Starting from the Fisher-regularized objective, the gradient is:

∇LTTA-fis(θ,x) = ∇LTTA(θ,x) + 2λω(θ − θ0).

Substituting into the gradient update rule:

θt = θt−1 − η [∇LTTA(θt−1,xt−1) + 2λω(θt−1 − θ0)] ,

which simplifies to:

θt = (1− 2λωη) · θt−1 − η∇LTTA(θt−1,xt−1) + 2λωη · θ0.
Letting α = 1− 2λωη, we get:

θt = α · θt−1 − η∇LTTA(θt−1,xt−1) + (1− α) · θ0.

Now define θ̂t = θt−1 − η∇LTTA(θt−1,xt−1), and substitute:

θt = α · θ̂t + (1− α) · θ0,
which matches the ensembling formulation in Equation (16).

Remark 1 (Bias-Variance Tradeoff). The source-weighted ensembling update controls the variance
of θt over time, as shown in Equation (18), but introduces bias toward the source model θ0. In the
extreme case α = 0, no adaptation occurs, resulting in maximal bias. As α→ 1, the method recovers
standard SGD, minimizing bias but allowing unbounded variance. In practice, setting α close to 1
balances low variance with limited bias.

23

Proof of Theorem 1 (Bound on Divergence Probability). Let θt denote the model parameters at
time t, and let θ∗Task be the task-specific optimum. Suppose that E[θt]→ θ∗Task and ∥E[θt]− θ∗Task∥ <
∥θ0− θ∗Task∥. Then for any threshold β > ∥θ0− θ∗Task∥, the probability of divergence from the stability
region is bounded by:

Pr
[
∥θt − θ∗Task∥ > β

]
≤ Var[θt](

β − ∥θ0 − θ∗Task∥
)2 . (22)

Proof. We begin by decomposing the distance between θt and θ∗Task:

∥θt − θ∗Task∥ = ∥θt − E[θt] + E[θt]− θ∗Task∥
≤ ∥θt − E[θt]∥+ ∥E[θt]− θ∗Task∥ (triangle inequality). (23)

By the assumption that ∥E[θt]− θ∗Task∥ < ∥θ0 − θ∗Task∥, we have:

Pr
[
∥θt − θ∗Task∥ > β

]
≤ Pr [∥θt − E[θt]∥+ ∥E[θt]− θ∗Task∥ > β]

< Pr [∥θt − E[θt]∥+ ∥θ0 − θ∗Task∥ > β] (24)
= Pr [∥θt − E[θt]∥ > β − ∥θ0 − θ∗Task∥] . (25)

Now apply Chebyshev’s inequality:

Pr [∥θt − E[θt]∥ > β − ∥θ0 − θ∗Task∥] ≤
Var[θt]

(β − ∥θ0 − θ∗Task∥)
2 . (26)

This completes the proof.

B.2 Comparison of Single Model TTA and Model Reservoir TTA

In Figure 5, we compare the adaptation trajectories of a single model TTA approach and our proposed
Model Reservoir TTA framework under recurring continual domain shifts. Consider an example
with three domains, D1, D2, and D3, each associated with stability radii β1, β2, and β3, respectively.
Let θ∗Taski = argminθ LTaski(θ) for i = 1, 2, 3 denote the task-optimal parameters that minimize the
latent task loss in each domain. If the shift between optimal parameters exceeds the stability radius
for a transition,

∥θ∗Taski − θ∗Taski+1
∥ > βi+1 for i = 1, 2,

then adaptation on D1 yields parameters near θ∗Task1 , but a subsequent shift to D2 may cause the
adapted parameters to drift outside the stability region of D2. This drift is compounded in a recurring
continual TTA setting, where the test stream follows D1 → D2 → D3 ↬ D1. The left panel of
Figure 5 illustrates that even with sample filtering and weight ensembling, a single model TTA
approach accumulates error at each domain transition and ultimately fails to re-adapt properly (i.e.,
the trajectory drifts away from the D1 optimum, converging instead near the source model). In
contrast, the right panel demonstrates that our Model Reservoir TTA framework maintains separate,
domain-specific trajectories that remain bounded within their respective stability regions, thereby
enabling efficient re-adaptation when a previously encountered domain reoccurs.

C Algorithm of ReservoirTTA

For clarity, we detail the complete ReservoirTTA workflow in Algorithm 1.

D Style Features Quality

In this section, we comprehensively evaluate the quality of style feature representations for Reser-
voirTTA by conducting quantitative ablation studies on VGG19 layer configurations and various style
feature operations, and by presenting qualitative t-SNE [38] visualizations of the extracted features.

VGG-19 Configuration: Shallow vs. Deep. Table 5 reports an ablation study on the impact of
various VGG19 layer configurations for the extraction of style features. VGG19 is organized into four
hierarchical blocks from which we extract style features at specific layers: Shallow ([2, 5, 7]), Middle-
1 ([10, 12, 14, 16]), Middle-2 ([19, 21, 23, 25]), and Deep ([28, 30, 32, 34]), where the indices denote

24

*
T1

*
T2

*
T3

12

3

Drift starts

Accumulated Error

Re­adaptation Failure

Single Model TTA

*
T1

*
T2

*
T3

12

3

Switch: D1 D2

Switch: D2 D3

Switch: D3 D1

Model Reservoir TTA

Source Model
Single Model Trajectory

Res. Traj. D1
Res. Traj. D2

Res. Traj. D3
Res. Traj. D1 (Recur)

Figure 5: Comparison of single model TTA vs. ReservoirTTA. (Left) A single model TTA approach
experiences error accumulation and drift when transitioning between domains; specifically, when
|θ∗Taski − θ∗Taski+1

| > βi+1, i = 1, 2, the model fails to re-adapt to D1 and its trajectory drifts away
from the D1 optimum. (Right) In contrast, the Model Reservoir TTA framework maintains separate,
domain-specific models, ensuring that each adaptation trajectory remains bounded within the stability
region, thereby enabling efficient re-adaptation in recurring scenarios.

Table 5: Ablation study on layer configurations for style feature extraction in ReservoirTTA.
The reported values represent the average classification error rate (%). Best results are shown in bold.

Recurring CSC Recurring CDC CCC

CIFAR100-C CIFAR100-C ImageNet-C

Layer Recurring visit −−−−→ Recurring visit −−−−→ Adaptation Step −−−−→
Configuration 1 10 20 1 10 20 6.7k 40.2k 80k
EATA+ReservoirTTA
Shallow 30.56 28.39 28.38 30.44 28.39 28.40 61.57 58.16 58.09
Middle-1 30.54 28.48 28.46 30.50 28.46 28.44 61.55 58.11 58.14
Middle-2 30.67 28.92 28.75 30.62 29.02 28.84 61.78 58.43 58.43
Deep 30.73 28.88 28.65 30.60 28.77 28.60 61.82 58.94 59.28
Mixed-1 30.51 28.47 28.44 30.43 28.44 28.45 61.46 58.03 57.92
Mixed-2 30.83 28.61 28.56 30.52 28.63 28.55 61.94 58.56 58.52
Mixed-3 30.56 28.51 28.48 30.48 28.58 28.49 61.42 58.26 58.35
Mixed-4 30.57 28.41 28.36 30.49 28.49 28.43 61.13 58.15 58.11
Avg. 30.62±0.10 28.58±0.19 28.51±0.13 30.51±0.06 28.60±0.20 28.53±0.13 61.58±0.24 58.33±0.28 58.34±0.40

ROID∗+ReservoirTTA
Shallow 29.60 27.80 27.80 29.62 27.84 27.78 62.22 58.97 59.27
Middle-1 29.65 27.84 27.83 29.64 27.86 27.83 62.19 58.94 59.30
Middle-2 29.72 28.54 28.37 29.77 28.46 28.29 62.34 59.05 59.38
Deep 29.81 28.19 27.97 29.74 28.17 27.95 62.19 59.06 59.52
Mixed-1 29.54 27.82 27.81 29.58 27.88 27.82 62.04 58.87 59.22
Mixed-2 29.84 28.17 28.04 29.69 28.30 28.00 62.26 59.00 59.42
Mixed-3 29.66 27.85 27.86 29.67 27.99 27.86 62.27 58.91 59.25
Mixed-4 29.66 27.84 27.81 29.66 27.89 27.86 62.10 58.88 59.24
Avg. 29.68±0.10 28.00±0.25 27.94±0.18 29.67±0.06 28.05±0.22 27.92±0.15 62.20±0.09 58.96±0.07 59.33±0.10

the corresponding layers in the network. Additionally, we consider mixed configurations that integrate
layers across different depths: Mixed-1 (Shallow + Middle-1), Mixed-2 (Deep + Middle-2), Mixed-3
(Shallow + Middle-1 + Middle-2 + Deep), and Mixed-4 (Shallow + Deep). We evaluated the four main
configurations above (Shallow, Middle-1, Middle-2, Deep) along with several mixed configurations
on three scenarios: recurring CSC and CDC on CIFAR100-C and CCC on ImageNet-C. The low
standard deviations in the average error rates confirm that ReservoirTTA is robust to the choice of
intermediate VGG19 layers. Table 6 reports the ablation study on style feature representations in
ReservoirTTA. The average classification error rates (%) for five different operations—mean, var,
logvar, [mean, var], and gram—are evaluated. Notably, our logvar-based style representation
delivers superior performance compared to the other operations.

Style Extractor Choice: VGG-19 vs. Source. We investigate whether using the source model
for style feature extraction could replace the ImageNet-trained VGG. Following this suggestion,
we replaced VGG with early layers of the source backbone for style calculation. On CIFAR100-C

25

Algorithm 1 ReservoirTTA: Prolonged Test-Time Adaptation
Require: Pre-trained source model fθ0 ; maximum domains Kmax; style reservoir size M ; new-domain threshold

τ (initialized using source examples); TTA objective LTTA(·)
Ensure: Updated model reservoir {θ1t , . . . , θK

max

t } and final predictions for each batch

1: Initialization:
2: Initialize style centroids {c1} ← average source style features
3: Initialize model reservoir {θ1} ← θ0
4: Initialize style reservoir R0 ← ∅ Capacity = M
5: Set current reservoir size K0 ← 1

6: for each incoming test batch Bt = {xi
t}bi=1 do

7: (1) Domain Identification:
8: Extract style features from Bt and compute style vector st
9: Update Style Reservoir Rt via Reservoir Sampling

10: if |Rt| < M then
11: Insert st into Rt

12: else
13: if rand() ≤M/t then
14: Randomly replace an element in Rt with st Replace an element with st with appropriate

probability
15: else
16: Reject st Do Nothing
17: end if
18: end if
19: Compute distance ∆ = min1≤k≤Kt ∥st − ck∥ See Equation (7)
20: if ∆ > τ and Kt < Kmax then
21: Kt ← Kt + 1 New domain detected
22: Set cKt ← st
23: Initialize θKt ← argminθ∈{θ1,...,θKt−1} LMI

(
fθ(Bt)

)
Select model with highest prediction mutual

information with respect to uniform distribution U
24: end if
25: (2) Update Style Centroids:
26: Compute soft assignment matrix Qt ∈ RM×Kt See Equation (8)
27: for k = 1 to Kt do
28: Update ck by gradient descent on LMI(Qt) See Equation (10)
29: end for
30: (3) Model Reservoir Update:
31: Compute soft assignment vector qt ∈ RKt

32: Let k∗ = argmax1≤k≤Kt [qt]k
33: Update θk

∗
← θk

∗
− η∇θk

∗LTTA(Bt, θ
k∗
) Adaptation step for the selected domain

34: (4) Model Ensembling for Prediction:
35: Compute θ̄t =

∑Kt
k=1[qt]k θ

k Weighted ensembling over domain-specific models
36: Predict ŷt = fθ̄t(Bt)
37: end for
38: return {θk}Kt

k=1 and predictions ŷt

(CSC) with a ResNeXt-29 backbone, this swap increases mean error by +2.12% (Table 7). Source
backbones lack the broad texture priors learned from ImageNet and would make our approach
architecture-specific. By contrast, VGG delivers consistent gains across ResNeXt-29, ViT-B-16, and
ResNet-50 (GN) (see Appendix K). These results highlight that the VGG-19 style extractor with the
automatically chosen threshold τ introduces minimal, dataset-agnostic overhead while providing
substantially better domain detection and adaptation performance.

Style Features Quality. Figure 6a presents the t-SNE visualization of style features extracted from
three corruption benchmarks—CIFAR-10-C, CIFAR-100-C, and ImageNet-C—using our Reser-
voirTTA method. The datasets cover 15 distinct domains, which we organize into four categories:
Noise (Gaussian Noise, Shot Noise, Impulse Noise), Blur (Defocus Blur, Glass Blur, Motion Blur,
Zoom Blur), Weather (Snow, Frost, Fog, Brightness), and Digital (Contrast, Elastic, Pixelate, JPEG).
As observed, samples from the same domain form well-defined clusters, while features from different
domains remain clearly separated. This result confirms that style features effectively capture the
inherent domain differences in these challenging corruption scenarios. In Figure 6b, we compare

26

Table 6: Ablation study on style feature representation in ReservoirTTA. Average classification
error rate (%) is reported. We compare five style feature representations: mean, var, logvar, gram
(diagonal of Gram matrix), and [mean, var] (concatenated). Features are computed over batch,
height, and width. Bold indicates best results.

Recurring CSC Recurring CDC CCC

CIFAR100-C CIFAR100-C ImageNet-C

Recurring visit −−−−→ Recurring visit −−−−→ Adaptation Step −−−−→
Representation 1 10 20 1 10 20 6.7k 40.2k 80k
EATA+ReservoirTTA
mean 30.62 28.45 28.42 30.52 28.40 28.46 62.07 58.30 58.51
var 30.56 28.51 28.50 30.53 28.48 28.52 61.94 58.59 58.99
[mean, var] 30.59 28.45 28.40 30.51 28.39 28.44 62.50 58.28 58.44
gram 30.61 28.48 28.47 30.53 28.49 28.57 62.13 58.76 59.38
logvar 30.56 28.39 28.38 30.44 28.39 28.40 61.57 58.16 58.09
ROID∗+ReservoirTTA
mean 29.69 27.83 27.84 29.71 27.86 27.84 61.42 57.95 58.45
var 29.64 27.86 27.88 29.69 27.89 27.84 61.24 58.04 58.41
[mean, var] 29.62 27.83 27.84 29.68 27.86 27.82 61.31 57.94 58.40
gram 29.60 27.85 27.88 29.66 27.89 27.85 61.42 58.07 58.47
logvar 29.60 27.80 27.80 29.62 27.84 27.78 61.24 57.94 58.41

Table 7: Effect of using the source backbone (w/o VGG) vs. frozen VGG-19 for style feature
extraction on CIFAR-100-C (CSC) with ResNeXt-29. Error (%) across 20 recurrences.

Visits 1–10
Method 1 2 3 4 5 6 7 8 9 10

EATA 30.51 30.29 30.39 30.39 30.45 30.47 30.38 30.44 30.47 30.53
+ReservoirTTA w/o VGG 31.62 30.86 30.75 30.77 30.64 30.67 30.64 30.70 30.68 30.64
+ReservoirTTA 30.56 29.07 28.75 28.58 28.52 28.46 28.41 28.41 28.39 28.39

Visits 11–20
Method 11 12 13 14 15 16 17 18 19 20 Avg

EATA 30.51 30.46 30.47 30.51 30.51 30.48 30.51 30.54 30.47 30.47 30.46
+ReservoirTTA w/o VGG 30.65 30.65 30.61 30.60 30.61 30.61 30.56 30.53 30.52 30.51 30.69
+ReservoirTTA 28.38 28.40 28.37 28.37 28.37 28.40 28.36 28.43 28.37 28.38 28.57

the feature distributions produced by our method, ReservoirTTA, against two baseline approaches,
DPCore and CoLA, under the recurring CSC setting in the CIFAR-100-C dataset. We show the
evolution of the t-SNE plots at the first, 10th, and 20th visits, illustrating how the features adapt
as domain shifts accumulate over time. Our method consistently maintains well-separated and
dense clusters throughout the adaptation process, while the baselines exhibit less distinct clustering.
This comparison further demonstrates the effectiveness of ReservoirTTA in maintaining domain
distinctions even in evolving environments.

E Domain Identification via Online Clustering

Effect of Style Reservoir Capacity. The capacity of style reservoir M determines how many style
features are used to optimize the style centroids in Equation (9). As shown in Figure 7, in both
recurring CSC and CDC settings, performance remains stable across different values of M , with
low sensitivity to changes in this parameter. This suggests that even with an extremely small style
reservoir size (e.g., M = 1), our style-based domain assignment optimization remains robust and
efficient, without incurring significant memory overhead. In CCC, increasing M leads to a reduction

27

(a) t-SNE visualization of style features. Style features from CIFAR-10-C, CIFAR-100-C, and
ImageNet-C (15 corruption domains) form distinct clusters, showing effective domain separation.

D
PC

or
e

DPCore: after 1st visit DPCore: after 10th visit DPCore: after 20th visit

Co
LA

CoLA: after 1st visit CoLA: after 10th visit CoLA: after 20th visit

Re
se

rv
oi

rT
TA

ReservoirTTA: after 1st visit ReservoirTTA: after 10th visit ReservoirTTA: after 20th visit

Domain Labels
Gaussian Noise
Shot Noise
Impulse Noise

Defocus Blur
Glass Blur
Motion Blur

Zoom Blur
Snow
Frost

Fog
Brightness
Contrast

Elastic
Pixelate
JPEG

(b) t-SNE comparison in recurring CSC. ReservoirTTA is compared with DPCore and CoLA at
visits 1, 10, and 20.

Figure 6: t-SNE visualization and comparison. (a) Style features form distinct clusters, and (b)
ReservoirTTA maintains well-separated clusters over time in the recurring CSC setting.

28

20 23 24 25 26 28210212

M

27.8

28.0

28.2

28.4
Er
ro
r
Ra
te
 (
%)

Recurring CSC

20 23 24 25 26 28210212

M

27.8

28.0

28.2

28.4

Recurring CDC

20 23 24 25 26 28210212

M

58.8

59.0

59.2

59.4

59.6

59.8

60.0

CCC
ROID*+ReservoirTTA EATA+ReservoirTTA

Figure 7: Sensitivity study to size of the Style Reservoir M on CIFAR-100-C under recurring CSC
and CDC settings, and on CCC.

300 500 1000 2000 500010000
Number of Source Samples

27.8

28.0

28.2

28.4

28.6

Er
ro
r
Ra
te
 (
%)

Recurring CSC

300 500 1000 2000 500010000
Number of Source Samples

27.8

28.0

28.2

28.4

28.6

Recurring CDC

300 500 1000 2000 500010000
Number of Source Samples

59.0

59.2

59.4

59.6

59.8

60.0

60.2
CCC

ROID*+ReservoirTTA EATA+ReservoirTTA

Figure 8: Sensitivity study to the number of source examples used to compute the threshold τ
on CIFAR-100-C under recurring CSC and CDC settings, and on CCC.

in errors, confirming our ablation study analysis that a larger style reservoir allows for a more
comprehensive observation of domain shifts, thereby improving performance. We set M = 1024 for
all main experiments.

Effect of Number of Source Samples and Quantile Value. In Figure 8, we vary the number of
unlabeled source samples from 300 to 10,000. For ROID*+ReservoirTTA, the error remains nearly
constant, while for EATA+ReservoirTTA a slight decrease in error is observed with more source
samples. In addition, minor fluctuations—especially in the recurring CSC and CDC settings.

On the choice of the quantile threshold qth: lowering qth increases sensitivity—detecting smaller
shifts—but also raises false positives and spawns unnecessary domains; higher qth is more conservative
and can delay detection of genuinely new domains. In a single sweep over the 15 CIFAR-100-C
corruptions, qth = 0.5 severely overestimates (detects > 100 domains), whereas qth = 1.0 merges
similar corruptions—[zoom, motion, glass blur] and [Gaussian, shot, impulse noise]—yielding 9
domains. Intermediate thresholds balance sensitivity and precision: qth = 0.99 identifies 17 domains
and qth = 0.999 identifies 14. Importantly, Figure 9 shows that varying qth leads to only minor
changes in error. Overall, our style-based domain identifier is robust to both the quantile setting and
the number of source samples, with minimal impact on performance.

Ablation on Online Clustering Strategies. Table 8 compares different online clustering strategies
(Sinkhorn–Knopp [1], Online K-Means, and our adaptive clustering scheme used for reservoirTTA)
when integrated into ROID∗ as the baseline. We evaluate recurring CSC and CDC on CIFAR-100-C,

29

0.5 0.9 0.99 0.999 1.0
qth quantile

27.8

28.0

28.2

28.4

28.6

28.8
Er

ro
r

Ra
te

 (
%)

Recurring CSC

0.5 0.9 0.99 0.999 1.0
qth quantile

27.8

28.0

28.2

28.4

28.6

28.8

29.0

Recurring CDC

0.5 0.9 0.99 0.999 1.0
qth quantile

59.0

59.2

59.4

59.6

59.8
CCC

ROID*+ReservoirTTA EATA+ReservoirTTA

Figure 9: Sensitivity study to the qth quantile used for threshold τ computation on CIFAR-100-C
under recurring CSC and CDC settings, and on CCC.

Table 8: Ablation study on online clustering in ReservoirTTA. Average classification error rates
(%) are reported using ROID∗ as the baseline. Besides our reservoirTTA online clustering strategy,
we also evaluate the online Sinkhorn-Knopp algorithm [1] and online K-Means for style clustering
and domain assignment. Best results are highlighted in bold.

Recurring CSC Recurring CDC CCC

CIFAR100-C CIFAR100-C ImageNet-C

Recurring visit −−−−→ Recurring visit −−−−→ Adaptation Step −−−−→
Online clustering 1 10 20 1 10 20 6700 40200 80000

Baseline 29.45 29.20 29.25 30.17 30.08 30.12 61.89 58.33 58.76
Sinkhorn 29.78 27.81 27.80 29.82 27.83 27.80 63.35 70.01 71.73
Online K-Means 29.60 27.83 27.84 29.61 27.87 27.82 61.97 58.43 59.79
Ours 29.60 27.80 27.80 29.62 27.84 27.78 61.24 57.94 58.41

and CCC on ImageNet-C, reporting average classification error rates. Across all settings, our method
consistently achieves the lowest error. In particular, for recurring CSC, our approach shows the best
performance at visits 10 and 20, highlighting accurate domain partitioning and model assignment over
multiple rounds. Sinkhorn–Knopp and Online K-Means provide moderate improvements but still trail
behind our reservoir-based strategy. These findings confirm that our online clustering mechanism
effectively separates target domains and assigns them to specialized models, leading to superior
long-term adaptation.

Ablation on Distance Metrics. We investigate alternative metrics for centroid assignment within
EATA+ReservoirTTA. Euclidean distance aligns naturally with our quantile-based new-domain
detector τ , yet cosine similarity and KL divergence might, in principle, offer advantages in high-
dimensional or streaming regimes. To assess this, we compare soft assignments using Euclidean
distance, cosine similarity, and KL divergence on CIFAR-100-C (CSC) over 20 recurrences. As
summarized in Table 9, KL divergence outperforms cosine similarity—supporting its suitability for
online adaptation—while Euclidean distance computed on log-variance features consistently achieves
the lowest error across recurrences. These findings validate our choice to retain Euclidean distance
and provide further empirical evidence of the method’s robustness, alongside a clear head-to-head
comparison of distance metrics.

Model Assignments per Domain. Figure 10 displays a heatmap illustrating how each target domain
is assigned to different models in ReservoirTTA. The rows represent 15 corruption types (e.g., Gauss,
Shot, Impulse, Defocus), while the columns correspond to 15 model indices. Each cell [i, j] denotes
the proportion of samples from the i-th domain that are routed to the j-th model, with row sums
normalized to 1. We observe a clear one-to-one correspondence for most corruptions, though some
exhibit similar style cues. Overall, the concentration along the diagonal reflects domain-specialized

30

Table 9: Cosine vs. Euclidean vs. KL-divergence soft assignments for EATA+ReservoirTTA on
CIFAR-100-C (CSC). Error (%) across 20 recurrences.

Visits 1–10
Variant 1 2 3 4 5 6 7 8 9 10

Cosine distance 31.94 31.04 30.91 30.81 30.76 30.77 30.74 30.77 30.60 30.58
Euclidean distance 31.76 30.37 30.19 29.96 29.81 29.93 29.92 29.84 29.89 29.86
KL divergence 32.01 30.59 30.14 30.16 30.19 30.00 30.04 30.09 29.99 30.05

Visits 11–20
Variant 11 12 13 14 15 16 17 18 19 20 Avg

Cosine distance 30.62 30.55 30.63 30.58 30.59 30.57 30.53 30.55 30.51 30.55 30.73
Euclidean distance 29.97 29.87 30.02 30.01 29.98 30.02 29.93 30.05 30.06 30.06 30.07
KL divergence 30.07 30.02 30.15 30.15 30.15 30.16 30.26 30.30 30.32 30.40 30.26

adaptation, whereas smaller off-diagonal entries highlight moderate sharing among visually related
domains. This confirms that ReservoirTTA’s style-based clustering reliably assigns test samples to
the most relevant domain-specific model.

31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Model Index

Gauss

Shot

Impulse

Defocus

Glass

Motion

Zoom

Snow

Frost

Fog

Bright

Contrast

Elastic

Pixel

JPEG

Ta
rg

et
 D

om
ai

n

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0.9 0.1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0.04 0 0 0 0 0 0 0 0 0.96 0

0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0.98

Model Assignments per Domain (Normalized)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10: Model assignments per domain. The heatmap illustrates the assignment distribution of
target domains to models in ReservoirTTA. The y-axis represents target domains, while the x-axis
corresponds to model indices. Each entry [i, j] denotes the proportion of samples from domain i
assigned to model j, with row sums normalized to one.

Style Cluster Centroid Trajectories During Adaptation. Figure 11 shows the evolution (via
trajectories) of style cluster centroids during adaptation. Each centroid is assigned a unique ID, which
corresponds to the model index presented in Figure 10. As shown, each centroid remains closely
linked to its assigned domain throughout adaptation, indicating that each model adapts exclusively to
that domain.

FIFO vs. Reservoir Sampling for Domain Balancing. Figure 12 compares two sampling strate-
gies—FIFO and Reservoir sampling—for maintaining a domain-balanced Style Reservoir in recurring
CSC on CIFAR-100-C. It shows the distribution of different domains over time for two reservoir sizes
(M=256 and M=1024). The results reveal that Reservoir sampling produces a more uniform and
stable domain distribution than FIFO, even as the reservoir size varies. These observations underscore
the robustness of our approach and support the use of Reservoir sampling as the preferred update
strategy.

32

0

1

2

3

4

5

6
7

8

9

10

11

12

13

14

Gauss
Shot
Impulse
Defocus

Glass
Motion
Zoom
Snow

Frost
Fog
Bright

Contrast
Elastic
Pixel

JPEG
Start Position
End Position

Figure 11: t-SNE visualization of domain features and the trajectories of style cluster centroids
in recurring CSC.

0 2000 4000 6000 8000 10000 12000 14000
Adaptation Step

0.0

0.2

0.4

0.6

0.8

1.0

Do
m

ai
n

Di
st

rib
ut

io
n

FIFO, M = 1024

0 2000 4000 6000 8000 10000 12000 14000
Adaptation Step

0.0

0.2

0.4

0.6

0.8

1.0

Do
m

ai
n

Di
st

rib
ut

io
n

FIFO, M = 256

0 2000 4000 6000 8000 10000 12000 14000
Adaptation Step

0.0

0.2

0.4

0.6

0.8

1.0

Do
m

ai
n

Di
st

rib
ut

io
n

Reservoir Sampling, M = 1024

0 2000 4000 6000 8000 10000 12000 14000
Adaptation Step

0.0

0.2

0.4

0.6

0.8

1.0

Do
m

ai
n

Di
st

rib
ut

io
n

Reservoir Sampling, M = 256

Gauss
Shot

Impulse
Defocus

Glass
Motion

Zoom
Snow

Frost
Fog

Bright
Contrast

Elastic
Pixel

JPEG

Figure 12: Comparison of FIFO and Reservoir sampling for a domain-balanced style Reservoir
in Recurring CSC on CIFAR-100-C. The plot shows that ReservoirTTA achieves more stable
domain balancing and is robust to changes in the style reservoir size (M). It displays the distribution
of domains over time for M = 256 and M = 1024, demonstrating that our reservoir sampling yields
a more uniform distribution than FIFO. This supports its use as the preferred update strategy.

F Model Reservoir Initialization

In this section, we explore strategies for initializing a new model when a new domain is detected.

MI vs. Source Weight Initialization. As shown in Figure 13, we evaluate two initialization
approaches: (1) initializing with source model parameters and (2) initializing with reservoir
parameters that maximize mutual information (Equation (11)) on the current batch. We evaluate these
on CIFAR100-C under recurring CSC and CDC settings (20 recurrences) using ResNeXt-29, and on
CCC with ResNet-50 and ImageNet-C under recurring CSC and CDC settings (20 recurrences) using

33

TENT
+Res.TTA

ETA
+Res.TTA

EATA
+Res.TTA

30.0

32.5

35.0

37.5

40.0

42.5

45.0

Er
ro

r
Ra

te
 (

%)

CIFAR100-C CSC
(ResNeXt-29)

TENT
+Res.TTA

ETA
+Res.TTA

EATA
+Res.TTA

30.0

32.5

35.0

37.5

40.0

42.5

45.0

CIFAR100-C CDC
(ResNeXt-29)

TENT
+Res.TTA

ETA
+Res.TTA

EATA
+Res.TTA

55

60

65

70

75

80

85

CCC
(ResNet-50)

TENT
+Res.TTA

ETA
+Res.TTA

EATA
+Res.TTA

30.0

32.5

35.0

37.5

40.0

42.5

45.0

ImageNet-C CSC
(ViT-B-16)

TENT
+Res.TTA

ETA
+Res.TTA

EATA
+Res.TTA

30.0

32.5

35.0

37.5

40.0

42.5

45.0

ImageNet-C CDC
(ViT-B-16)

Model Initialization
Source Eq. (11)

Figure 13: Comparative study of model reservoir initializations in Recurring TTA. We compare
two initialization strategies—one using source parameters and one based on mutual information
(Equation (11))—across various datasets, TTA settings, and backbones. For CSC and CDC, error
rates (%) are reported at the 20th recurrence; for CCC, we report the average error rate (%) over the
full dataset.

a ViT-B-16. Our results show that the optimal strategy depends on both the method and the backbone.
For convolutional networks, TENT and ETA benefit from source initialization—likely because,
without a regularization module, drifting too far from the source degrades performance—while EATA
is largely unaffected. Conversely, for ViT-B-16, initializing via Equation (11) significantly reduces
error rates after 20 recurrences for TENT, ETA, and EATA, suggesting that the transformer is less
prone to parameter drift and can better leverage the most similar model in the reservoir, whereas
source initialization may overwrite valuable acquired knowledge.

MI vs Top-k Model Weight Ensembling Initialization. We assess the effect of top-k (k = 3)
ensemble initialization strategy for EATA+ReservoirTTA. On CIFAR-100-C (CSC) with a CNN
backbone, we observe that EATA remains unaffected by the choice of initialization, yielding nearly
identical performance across source, top-k, and MI initialization, consistent with our previous analysis.
In contrast, on ImageNet-C with a ViT backbone, top-k initialization improves performance by 3.37%
compared to source initialization, but degrades performance over MI initialization (–0.27%).

G Baselines

Below is a summary of how the baseline TTA methods in our paper are categorized, along with a very
short description of each method. Every baseline has been tested in a unified TTA repository2 [24]
(MIT license):

1. Single-Target TTA. TENT minimizes the entropy of prediction online.

2. Continual TTA. These methods are robust to continual TTA settings but may suffer performance
degradation when run for a long time.

• CoTTA* [42]: A variant of CoTTA that updates only affine parameters for a fair comparison.
The CoTTA method combined weight averaging, predictions averaged over augmentations, and
stochastic restoration within a mean-teacher framework. We employ the official mmsegmentation
code provided by the authors3 (MIT license).

• RoTTA [45]: Incorporates robust adaptation and reinitialization mechanisms to counteract the
negative effects of prolonged adaptation.

• ETA [27]: Uses a sample-adaptive entropy minimization strategy that filters out test samples that
are unreliable or redundant. This approach reduces the number of backward passes and error
accumulation during test-time adaptation.

• SAR [28]: Employs sharpness-aware entropy minimization to improve reliability by mitigating the
influence of noisy gradients.

2https://github.com/mariodoebler/test-time-adaptation
3https://github.com/qinenergy/cotta/issues/6

34

https://github.com/mariodoebler/test-time-adaptation
https://github.com/qinenergy/cotta/issues/6

Table 10: Hyperparameter settings for TTA experiments. Following RobustBench, we use
WideResNet-28 [46] for CIFAR-10-C, ResNeXt-29 [44] for CIFAR-100-C, and ResNet-50 [10] for
ImageNet-C, DomainNet-126, and PACS. We also evaluate on ViT-B-16 [6] and ResNet-50 with
GroupNorm [43] for ImageNet-C. ReservoirTTA-specific settings are provided below.

Dataset / Backbone Optimizer Learning Rate Batch Size Notes

CIFAR-10-C (WideResNet-28) Adam 1× 10−3 200 Except SAR [28] (SGD)
CIFAR-100-C (ResNeXt-29) Adam 1× 10−3 200 Except SAR [28] (SGD)
ImageNet-C (ResNet-50) SGD 2.5× 10−4 64 —
ImageNet-C (ViT-B-16) SGD 2.5× 10−4 64 Except SAR [28] (1× 10−4)
ImageNet-C (ResNet-50 with GroupNorm) SGD 2.5× 10−4 64 —
CCC (ResNet-50) SGD 2.5× 10−4 64 —
CCC (ViT-B-16) SGD 1× 10−4 64 —
DomainNet-126 (ResNet-50) SGD 2.5× 104 128
PACS (ResNet-50) Adam 1× 10−3 64
Cityscapes-to-ACDC (Segformer-B5) Adam 7.5× 10−6 1 Except BECoTTA [20] (6× 10−7)

ReservoirTTA-specific Settings

Max Reservoirs (Kmax) — — — 16
Threshold (τ) — — — 2000 source examples
Centroid Update Optimizer AdamW 1× 10−4 — —
Style Reservoir Size (M) — — — 1024
VGG19 Layers for Style Feature Extraction — — — [2, 5, 7]

3. Persistent TTA. These methods are designed for long-term stability, preventing model collapse
and catastrophic forgetting across repeated domain shifts.

• RDumb [31]: Periodically resets model parameters to counteract error accumulation and avoid
catastrophic forgetting.

• PeTTA [12]: Explicitly controls parameter drift during test-time adaptation by dynamically adjust-
ing the update and regularization parameters, thereby preventing model collapse and sustaining
performance over extended, recurring testing scenarios.

• EATA [27]: Extends ETA by incorporating a Fisher-based anti-forgetting regularizer [18] to prevent
forgetting and ensure robust adaptation.

• ROID*: A modified version of ROID [24] that omits the augmentation consistency loss, enabling a
fair comparison with other baselines which do not incorporate this extra regularization. Removing
it isolates the impact of key components like weight ensembling and diversity weighting, which are
common to the compared methods.

4. Domain-Disentangled / Prompt-based TTA. These methods incorporate mechanisms to dis-
entangle domain-specific features or use visual prompts for more effective adaptation to domain
shifts.

• CoLA [3]: Leverages collaborative adaptation by sharing domain knowledge vectors across devices
for improved efficiency.

• DPCore [47]: Utilizes prompt-based learning by incorporating visual prompts to guide domain-
specific adaptation.

• BECoTTA [20]: Uses input-dependent blending of experts to adapt to domain shifts, and is
evaluated especially in the context of semantic segmentation.

H Implementation Details

Following the RobustBench4 [11] (MIT license), we employ WideResNet-28 [46] on CIFAR-10-C,
ResNeXt-29 [44] on CIFAR-100-C, and ResNet-50 [10] on ImageNet-C. We also evaluate on ViT-B-
16 [6] and ResNet-50 with GroupNorm [43] for ImageNet-C to further assess generalizability. For
CIFAR-10-C and CIFAR-100-C, TTA baselines (except SAR [28]) are optimized with the Adam
optimizer [17] using a learning rate of 1× 10−3, a universal β = (0.9, 0.999), and a batch size of
200, whereas SAR employs SGD [32]. For ImageNet-C, models are adapted with SGD at a batch

4https://github.com/RobustBench/robustbench

35

https://github.com/RobustBench/robustbench

size of 64 and a learning rate of 2.5× 10−4 (adjusted to 1× 10−4 for ViT-B-16 in the CCC setting).
For ReservoirTTA, we configure the system with a maximum of Kmax = 16 reservoirs, determine the
threshold τ using 2000 source examples, and update centroids with AdamW [23] at a learning rate of
1× 10−4. Table 10 summarizes these settings. Concerning DomainNet-126, and PACS, we optimize
the models with SGD at 2.5× 10−4 learning rate, and Adam at 1× 10−3 learning rate, respectively.
Note CIFAR10-C, CIFAR100-C, and ImageNet-C are publicly available online5 (Apache-2.0 license).
CCC is also provided by Rdumb paper6 [31] (MIT license). Both DomainNet-1267 and PACS8 are
publicly available. All experiments were run on a single NVIDIA A100 Tensor Core GPU (80 GB
VRAM) on our internal cluster.

I Additional Ablation Studies

0.9 0.99 0.995 0.999 0.9995 1.0

28

30

32

34

36

38

Er
ro
r
Ra
te
 (
%)

0.0 1x101 1x102 1x103 2x103

Fisher weight

ROID* (CSC)
+ReservoirTTA

ROID* (CDC)
+ReservoirTTA

EATA (CSC)
+ReservoirTTA

EATA (CDC)
+ReservoirTTA

Figure 14: Regularization weight sensitivity for ReservoirTTA with persistent TTA base-
lines on CIFAR-100-C Recurring CSC and CDC. We compare the sensitivity of ROID∗ and
ROID∗+ReservoirTTA to the weight ensembling momentum parameter α, and compare EATA and
EATA+ReservoirTTA for various Fisher weight λ. Results are reported as the average classification
error rate after the 20th visit, averaged over 5 seeds.

Impact of ReservoirTTA on Regularization Weight Sensitivity of EATA and ROID∗. We analyze
how ReservoirTTA affects the optimal hyperparameter α of ROID∗, which controls the momentum
in weight ensembling with the source model. We also examine its impact on Fisher weight λ, which
regulates the distance to the source model parameters in EATA. As shown in Figure 14, ReservoirTTA
reduces the sensitivity of both EATA and ROID∗ to these hyperparameters on CIFAR100-C recurring
CSC and CDC settings. Furthermore, we observe that the best results with ReservoirTTA are achieved
at a higher α for ROID∗, shifting from 0.99 in ROID∗ to 0.995 in ROID∗+ReservoirTTA. A similar
trend is observed for EATA, where the optimal Fisher weight λ decreases from 2000 in EATA to
1000 in EATA+ReservoirTTA. This effect can be attributed to the Model Reservoir, which exposes
each model to a more stable distribution of domains over time, thereby reducing the need for strong
regularization.

This effect is even more pronounced in ViTs. As shown in Figure 15, EATA achieves its best
performance at Kmax=1 with a regularization weight of 2000.0, whereas ReservoirTTA (Kmax=16)
reaches optimal performance with a regularization weight of 0. Interestingly, as Kmax increases,
the need for regularization diminishes. For ROID∗, the trend differs. The momentum parameter α

5https://github.com/hendrycks/robustness
6https://github.com/oripress/CCC
7https://ai.bu.edu/M3SDA/
8https://huggingface.co/datasets/flwrlabs/pacs

36

https://github.com/hendrycks/robustness
https://github.com/oripress/CCC
https://ai.bu.edu/M3SDA/
https://huggingface.co/datasets/flwrlabs/pacs

0.
9

0.
99

0.
99
5

0.
99
9

0.
99
95 1.
0

1
2

4
8

16
K

m
ax

47.5 44.0 43.1 41.0 40.8 40.8

47.5 44.1 43.1 41.0 40.7 40.1

47.6 44.2 43.2 41.1 40.6 39.6

47.7 44.2 43.2 41.0 40.4 39.6

47.7 44.3 43.2 40.8 40.2 39.5

ROID * +ReservoirTTA

0.
0

1.
0

10
0.
0

10
00
.0

20
00
.0

Fisher weight

K
m

ax

41.4 41.2 41.2 40.4 40.1

40.3 40.3 40.2 39.9 39.9

39.7 39.7 39.7 39.7 39.8

39.6 39.8 39.9 40.1 40.2

39.5 39.7 40.0 40.3 40.4

EATA+ReservoirTTA

40

42

44

46

39.5

40.0

40.5

41.0

Figure 15: Regularization weight sensitivity for ReservoirTTA on CCC using ViT-B-16. Classi-
fication error rates (%) on the CCC benchmark are reported for varying values of Kmax and α for
ROID∗+ReservoirTTA, and for varying values of Kmax and Fisher weight λ for EATA+ReservoirTTA.

8 16 32 64 128 200
B

27.5

30.0

32.5

35.0

37.5

40.0

Er
ro

r
Ra

te
 (

%)

Recurring CSC

8 16 32 64 128 200
B

Er
ro

r
Ra

te
 (

%)

Recurring CDC

ROID*
EATA

+ReservoirTTA
+ReservoirTTA

Figure 16: Sensitivity study to the batch size B on CIFAR-100-C under CSC and CDC settings.

should be set to 1.0 for ViT to achieve the best results, suggesting that regularization is unnecessary
for this architecture. Moreover, further increasing Kmax reduces the error rate by 0.6% on CCC,
demonstrating the effectiveness of ReservoirTTA in this setting.

Effect of Batch Size. As illustrated in Figure 16, we explore batch sizes from 8 to 200 for both
EATA + ReservoirTTA and ROID* + ReservoirTTA on CIFAR-100-C under recurring CSC and
CDC settings. We observe a consistent decrease in error rate with larger batches, which likely stems
from more stable gradient estimates, reduced variance in style features, and more accurate domain
assignments. Conversely, very small batches can lead to noisy updates and suboptimal domain
clustering. Although a large batch is important for reliable performance, memory constraints and
real-time needs may limit its size in practice.

Sensitivity to Various Sequence Orders. We examine how DPCore, CoLA, and ReservoirTTA
respond to different test batch orders during domain discovery. As shown in Figure 17, we measure the

37

Gau
ss

Sh
ot

Im
pu

lse

Defo
cusGlas

s
Moti

on
Zoo

m
Sn

ow Fro
st Fog

Brig
ht

Con
tra

st
Ela

stic Pix
el

JPE
G

0

10

20

30

40

50

60

70

Nu
m

be
r o

f D
et

ec
te

d
Do

m
ai

ns

Noise Blur Weather Digital
DPCore: # of detected domains during the 1st visit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

100

200

300

400

500

Nu
m

be
r o

f D
et

ec
te

d
Do

m
ai

ns

DPCore: # of detected domains across 20 visits

Gau
ss

Sh
ot

Im
pu

lse

Defo
cusGlas

s
Moti

on
Zoo

m
Sn

ow Fro
st Fog

Brig
ht

Con
tra

st
Ela

stic Pix
el

JPE
G

1

2

3

4

5

6

7

8

Nu
m

be
r o

f D
et

ec
te

d
Do

m
ai

ns

Noise Blur Weather Digital
CoLA: # of detected domains during the 1st visit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

60

80

100

120

140

160

Nu
m

be
r o

f D
et

ec
te

d
Do

m
ai

ns

CoLA: # of detected domains across 20 visits

Gau
ss

Sh
ot

Im
pu

lse

Defo
cusGlas

s
Moti

on
Zoo

m
Sn

ow Fro
st Fog

Brig
ht

Con
tra

st
Ela

stic Pix
el

JPE
G

2

4

6

8

10

12

14

Nu
m

be
r o

f D
et

ec
te

d
Do

m
ai

ns

Noise Blur Weather Digital
ReservoirTTA: # of detected domains during the 1st visit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
12

13

14

15

16

17

18

19

Nu
m

be
r o

f D
et

ec
te

d
Do

m
ai

ns

ReservoirTTA: # of detected domains across 20 visits

Seed 1 Seed 100 Seed 1000 Seed 200 Seed 2000

Figure 17: Domain detection sensitivity comparison in recurring CSC on CIFAR-100-C. The
plot tracks the number of detected domains over time across different seeds. ReservoirTTA achieves
the most accurate detection, while DPCore and CoLA are overly sensitive—detecting more than a
hundred domains after 20 visits despite the dataset having only 15. This over-detection leads to extra
domain-specific parameters (e.g., prompt, affine parameters), increasing memory overhead.

number of detected domains after the first visit and across 20 visits in recurring CSC on CIFAR100-C
using five seeds—each corresponding to a distinct batch order while keeping the domain sequence
fixed. Our findings reveal that DPCore is highly sensitive to batch order, undermining its reliability.
Although CoLA yields consistent detection across seeds, its number of detected domains continuously
increases, reaching 160 models after 20 visits. In contrast, ReservoirTTA shows minimal sensitivity,
with detected domains stabilizing near the ground truth of 15 after 20 visits. These results underscore
the superiority of our style quantifier, online clustering, and model discovery mechanisms over those
used in CoLA and DPCore.

Resetting to Source vs. Reusing Specialists. We analyze reset-based strategies to isolate the benefit
of reusing adapted specialists versus simply resetting to source parameters. On CIFAR-100-C (CSC),
blind periodic resets every 1,000 iterations (RDumb) yield an average error of 32.17%. Domain-aware
resets that trigger only when the VGG-based detector flags a domain change (RDumb w/ VGG)
improve to 31.17% (−1.0%). By contrast, ReservoirTTA+EATA reactivates the specialist previously
adapted to a recurring domain—avoiding costly re-adaptation and forgetting—and achieves 28.57%
(−2.60% vs. domain-aware, −3.60% vs. blind). See Table 11 for the comparison results.

38

Table 11: Comparison of reset-based baselines and ReservoirTTA on CIFAR100-C (CSC). Error (%)
at visits 1–20 and mean.

Visits 1–10
Method 1 2 3 4 5 6 7 8 9 10

RDumb 31.95 31.49 32.34 32.85 31.96 31.51 32.24 32.99 32.07 31.48
RDumb w/ VGG 31.11 31.13 31.17 31.20 31.19 31.16 31.20 31.21 31.20 31.21
EATA+ReservoirTTA 30.56 29.07 28.75 28.58 28.52 28.46 28.41 28.41 28.39 28.39

Visits 11–20
Method 11 12 13 14 15 16 17 18 19 20 Avg

RDumb 32.29 32.82 32.07 31.48 32.41 32.88 32.15 31.43 32.22 32.86 32.17
RDumb w/ VGG 31.12 31.17 31.16 31.17 31.11 31.17 31.17 31.16 31.20 31.19 31.17
EATA+ReservoirTTA 28.38 28.40 28.37 28.37 28.37 28.40 28.36 28.43 28.37 28.38 28.57

J Additional Qualitative Results

Figure 18 shows pseudo segmentation label visualization on the ACDC dataset [34]. The first two
columns display outputs from TENT and BECoTTA, respectively, while the third column presents
refined labels from BECoTTA combined with ReservoirTTA. The inclusion of ReservoirTTA yields
more detailed and accurate segmentation labels, improving overall prediction quality.

39

Figure 18: Pseudo segmentation label visualization on ACDC [34]. The first two columns show
results from TENT and BECoTTA, respectively, while the third column presents results produced by
BECoTTA+ReservoirTTA. Incorporating ReservoirTTA yields more fine-grained and accurate labels
than the baselines. Zoom in for best view.

40

K Additional Quantitative Results

Additional Evaluations on Recurring Domain Shifts. In Tables 12–23, we present extensive
quantitative evaluations on classification benchmarks under various recurring domain shift scenarios
(CSC, CDC, and CCC) and across different architectures. Overall, the results confirm that Reser-
voirTTA significantly reduces error rates and prevents catastrophic forgetting compared to existing
TTA methods. These evaluations reinforce our main findings, demonstrating that ReservoirTTA’s
architecture-agnostic design allows seamless adoption in both CNN- and transformer-based networks.

Additional Evaluation on Object-Level Style Shifts. To further assess the versatility of our
framework beyond scene-level corruptions, we evaluate on datasets with pronounced object-level
domain gaps, namely DomainNet-126 (126 classes) and PACS (7 classes). On DomainNet-126,
we follow a CSC protocol by training a ResNet-50 on each source domain (real, painting, clipart,
sketch), then adapt over a 20-cycle recurring sequence of the remaining three target domains. A
similar protocol is applied to PACS, using photo, art painting, cartoon, and sketch as sources. As
reported in Tables 24 and 25, integrating ReservoirTTA with EATA consistently reduces error across
both datasets, yielding average improvements of 0.79% on DomainNet-126 and 0.70% on PACS,
with the largest gains observed when adapting from Real on DomainNet-126 (–1.60%) and from
Cartoon on PACS (–1.93%). These results show that a framework motivated by scene-level shifts
transfers robustly to object-level distribution changes.

Evaluation Under Gradual Shift. To assess the ability of our framework to handle gradual changes
in corruption severity, we evaluate on a gradual domain shift stream constructed from CIFAR-
100-C (CSC) using a ResNeXt-29 backbone. Each corruption type cycles through severity levels
1→ 2→ 3→ 4→ 5→ 4→ 3→ 2→ 1 over 20 recurrences. Even under these subtle transitions,
ReservoirTTA consistently improves over EATA. As shown in Table 26, EATA averages 25.41% error,
while ReservoirTTA achieves 25.06% with Kmax = 16 (−0.35%) and 24.95% with Kmax = 64
(additional −0.10%). Thus, our method adapts to gradually evolving severities, not only abrupt
domain changes.

Can ReservoirTTA Help Tackle Temporally Correlated Test Streams? ReservoirTTA raises
the question of whether it can tackle the challenge of a temporally correlated testing stream. As
observed in Table 27—on CIFAR-10→ CIFAR-10-C under recurring continual CSC, with temporal
correlation of image categories (Dirichlet coefficient = 0.1)— where we integrate ReservoirTTA with
state-of-the-art TTA method, RoTTA [45], which is designed to address temporal correlations—yields
similar gains. RoTTA tackles the instability caused by temporally correlated test samples by introduc-
ing mechanisms that stabilize the online adaptation process via smoothing the updates over time. In
particular, RoTTA uses an exponential moving average (EMA)–based update to accumulate robust,
long-term statistics that mitigate the bias introduced by correlated mini-batches. This principle is
further enforced by using robust batch normalization (RBN) and by maintaining a memory bank
through category-balanced sampling, which ensures a representative snapshot of the test distribution.

Although tackling temporally correlated test streams is not the primary focus of ReservoirTTA,
it is important to note that during test time, when images are highly correlated, extracting style
information using channel-wise feature statistics (logvar) can become biased toward the majority
category. To address this issue, we adopt RoTTA’s Category-Balanced Sampling with Timeliness
and Uncertainty (CSTU) strategy, which resamples images from the online stream in a way that
maintains category balance. By integrating this strategy with our method, we enhance stability over
an extended, temporally correlated test stream, and instead of using the ensemble output from our
reservoir models, we make predictions using the mean-teacher approach as introduced in RoTTA.
While methods such as RoTTA are potential candidates for integrating ReservoirTTA, their need for
separate memory banks per model makes integration computationally prohibitive and beyond the
scope of our paper, which focuses on prolonged domain recurrence rather than temporally correlated
test streams.

41

Table 12: Average classification error rates (%) for WideResNet-28 on CIFAR-10→CIFAR-10-C
at severity level 5 under recurring continual CSC. The lowest error is highlighted in bold. Results
are averaged over 5 seeds.

Recurring TTA visit −−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg
Source 43.52 43.52

Single-Target TTA
Tent 19.28 23.63 30.63 39.91 49.74 57.08 62.22 66.46 72.86 74.92 77.66 81.65 84.09 85.32 85.39 86.13 86.71 87.70 88.14 87.84 67.37
+ ReservoirTTA 18.28 17.67 17.57 17.51 17.48 17.48 17.49 17.47 17.45 17.47 17.48 17.50 17.49 17.49 17.47 17.50 17.50 17.53 17.55 17.56 17.55

Continual TTA
CoTTA∗ 18.75 18.51 18.43 18.46 18.48 18.57 18.79 18.93 19.18 19.41 19.66 19.92 20.22 20.44 20.80 21.06 21.38 21.75 22.07 22.40 19.86
RoTTA 19.35 16.74 16.77 17.01 17.17 17.27 17.45 17.55 17.64 17.77 17.86 17.90 18.00 17.99 18.09 18.12 18.19 18.23 18.27 18.35 17.79

ETA 17.78 18.89 19.87 20.74 21.52 22.47 23.88 25.24 25.83 26.49 26.56 27.22 27.46 27.12 27.50 27.27 28.24 28.59 29.51 30.89 25.15
+ ReservoirTTA 17.49 16.71 16.56 16.47 16.43 16.39 16.38 16.36 16.39 16.37 16.37 16.38 16.38 16.39 16.38 16.39 16.38 16.39 16.42 16.41 16.47
SAR 20.39 20.35 20.38 20.40 20.38 20.38 20.38 20.37 20.37 20.36 20.39 20.39 20.40 20.37 20.39 20.41 20.39 20.36 20.39 20.39 20.38
+ ReservoirTTA 20.35 20.32 20.36 20.38 20.33 20.36 20.36 20.34 20.32 20.35 20.36 20.36 20.37 20.33 20.36 20.38 20.36 20.33 20.36 20.36 20.35

Persistent TTA
RDumb 17.78 17.39 18.22 18.23 17.85 17.53 18.42 18.32 17.78 17.38 18.08 18.37 17.83 17.44 18.11 18.28 17.95 17.60 18.43 18.41 17.97
PeTTA 22.98 20.33 18.93 18.24 17.80 17.49 17.35 17.27 17.23 17.18 17.16 17.16 17.14 17.09 17.11 17.14 17.17 17.16 17.17 17.20 17.82

EATA 17.46 17.53 17.67 17.63 17.61 17.73 17.75 17.62 17.55 17.66 17.70 17.60 17.69 17.78 17.71 17.81 17.79 17.76 17.84 17.76 17.68
+ ReservoirTTA 17.53 16.78 16.63 16.58 16.55 16.52 16.48 16.46 16.45 16.44 16.45 16.44 16.46 16.44 16.41 16.45 16.42 16.43 16.44 16.44 16.54

ROID∗ 17.75 17.62 17.54 17.56 17.60 17.59 17.59 17.68 17.58 17.49 17.59 17.52 17.56 17.50 17.60 17.60 17.58 17.55 17.52 17.65 17.58
+ ReservoirTTA 17.75 17.08 16.91 16.92 16.89 16.85 16.83 16.81 16.80 16.79 16.81 16.77 16.81 16.78 16.78 16.79 16.78 16.80 16.78 16.79 16.88

Table 13: Average classification error rates (%) for WideResNet-28 on CIFAR-10→CIFAR-10-C
at severity level 5 under recurring continual CDC. The lowest error is highlighted in bold. Results
are averaged over 5 seeds.

Recurring TTA visit −−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg
Source 43.52 43.52

Single-Target TTA
Tent 20.49 26.20 37.00 48.75 55.66 61.89 68.99 72.51 74.38 77.05 79.47 81.39 82.01 82.51 83.81 86.02 87.11 87.14 86.79 86.95 69.30
+ ReservoirTTA 18.15 17.45 17.32 17.32 17.31 17.29 17.28 17.26 17.30 17.28 17.30 17.30 17.30 17.32 17.34 17.33 17.34 17.33 17.37 17.37 17.36

Continual TTA
CoTTA* 18.75 18.46 18.37 18.35 18.41 18.55 18.71 18.92 19.14 19.35 19.60 19.85 20.16 20.41 20.73 21.01 21.30 21.67 21.99 22.29 19.80
RoTTA 21.86 19.07 18.52 19.01 19.25 19.52 19.04 19.42 19.68 20.06 19.91 20.05 20.29 20.55 20.25 20.45 20.15 20.51 20.50 20.38 19.92

ETA 17.90 18.93 19.86 20.98 21.57 22.36 23.33 24.51 25.70 26.33 26.33 27.23 27.51 28.29 27.92 28.98 30.20 31.64 32.88 33.49 25.80
+ ReservoirTTA 17.40 16.44 16.31 16.26 16.22 16.21 16.20 16.18 16.21 16.21 16.21 16.22 16.21 16.21 16.22 16.23 16.24 16.23 16.24 16.27 16.30
SAR 20.41 20.41 20.41 20.38 20.38 20.41 20.41 20.40 20.41 20.40 20.41 20.40 20.40 20.43 20.41 20.37 20.42 20.42 20.40 20.39 20.41
+ ReservoirTTA 20.38 20.34 20.38 20.35 20.34 20.36 20.38 20.36 20.36 20.35 20.34 20.37 20.36 20.37 20.34 20.32 20.35 20.36 20.33 20.35 20.35

Persistent TTA
RDumb 17.90 18.05 18.00 18.08 17.86 17.99 18.15 17.86 17.87 18.00 18.27 18.34 17.94 17.90 18.23 18.27 17.97 17.90 17.94 18.12 18.03
PeTTA 27.16 24.30 22.53 22.57 21.41 21.92 20.76 20.66 21.00 21.67 20.93 21.27 20.76 21.55 20.62 20.65 20.80 21.56 21.15 20.81 21.70

EATA 17.70 17.87 17.85 17.74 17.87 17.96 17.82 17.82 17.96 17.95 18.05 17.87 17.92 17.82 17.74 17.90 17.87 17.87 17.85 17.88 17.87
+ ReservoirTTA 17.46 16.62 16.48 16.45 16.42 16.42 16.39 16.39 16.38 16.37 16.37 16.36 16.37 16.38 16.37 16.40 16.37 16.38 16.39 16.39 16.46

ROID∗ 18.04 17.91 17.95 17.93 17.91 18.04 17.96 17.96 18.00 18.00 17.97 18.01 18.04 18.02 17.93 17.99 17.98 17.91 17.89 18.07 17.98
+ ReservoirTTA 17.86 17.12 16.96 16.86 16.84 16.84 16.82 16.78 16.81 16.82 16.80 16.81 16.77 16.76 16.77 16.75 16.77 16.75 16.73 16.78 16.87

Table 14: Average classification error rates (%) for ResNeXt-29 on CIFAR-100→ CIFAR-100-C
at severity level 5 under recurring continual CSC. The lowest error is highlighted in bold. Results
are averaged over 5 seeds.

Recurring TTA visit −−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg
Source 46.45 46.45

Single-Target TTA
Tent 61.41 97.28 98.18 98.62 98.74 98.81 98.84 98.86 98.87 98.81 98.88 98.93 98.92 98.95 99.00 98.99 99.00 99.00 99.00 99.00 96.90
+ ReservoirTTA 38.06 39.42 40.68 41.46 42.04 42.42 42.67 42.95 43.12 43.25 43.40 43.48 43.62 43.64 43.74 43.78 43.83 43.86 43.92 43.97 42.67

Continual TTA
CoTTA* 35.10 36.08 37.29 38.73 40.22 41.83 43.50 45.21 46.86 48.59 50.41 52.10 53.87 55.55 57.33 59.04 60.72 62.37 63.93 65.46 49.71
RoTTA 34.80 33.12 34.77 36.27 37.81 39.43 40.90 42.19 43.68 45.04 46.50 48.17 49.66 51.15 52.65 53.96 55.31 56.61 57.90 59.10 45.95

ETA 31.95 33.05 33.77 34.30 34.66 34.91 35.38 35.62 35.91 35.92 36.17 36.50 36.63 36.79 36.89 37.17 37.20 37.44 37.43 37.64 35.77
+ ReservoirTTA 31.59 30.12 29.77 29.69 29.66 29.65 29.67 29.69 29.78 29.79 29.82 29.83 29.86 29.91 29.93 29.96 29.98 29.99 30.04 30.02 29.94

SAR 31.92 32.77 35.01 37.41 39.92 43.03 47.26 52.68 59.40 61.16 43.38 32.79 34.81 36.93 39.34 42.14 45.70 50.42 56.81 60.36 44.16
+ ReservoirTTA 31.91 30.90 30.50 30.30 30.14 30.13 30.11 30.09 30.09 30.12 30.17 30.16 30.20 30.24 30.27 30.33 30.39 30.37 30.47 30.48 30.37

Persistent TTA
RDumb 31.95 31.49 32.34 32.85 31.96 31.51 32.24 32.99 32.07 31.48 32.29 32.82 32.07 31.48 32.41 32.88 32.15 31.43 32.22 32.86 32.17
PeTTA 39.44 34.17 33.08 32.76 32.72 32.74 32.72 32.73 32.74 32.73 32.81 32.80 32.80 32.77 32.80 32.87 32.91 32.88 32.86 32.91 33.21

EATA 30.51 30.29 30.39 30.39 30.45 30.47 30.38 30.44 30.47 30.53 30.51 30.46 30.47 30.51 30.51 30.48 30.51 30.54 30.47 30.47 30.46
+ReservoirTTA 30.56 29.07 28.75 28.58 28.52 28.46 28.41 28.41 28.39 28.39 28.38 28.40 28.37 28.37 28.37 28.40 28.36 28.43 28.37 28.38 28.57

ROID∗ 29.45 29.25 29.26 29.27 29.26 29.23 29.18 29.23 29.18 29.20 29.30 29.19 29.20 29.27 29.25 29.29 29.27 29.22 29.23 29.25 29.25
+ ReservoirTTA 29.60 28.20 27.96 27.90 27.83 27.83 27.79 27.81 27.77 27.80 27.80 27.78 27.79 27.79 27.76 27.79 27.77 27.78 27.81 27.80 27.92

42

Table 15: Average classification error rates (%) for ResNeXt-29 on CIFAR-100→ CIFAR-100-C
at severity level 5 under recurring continual CDC. The lowest error is highlighted in bold. Results
are averaged over 5 seeds.

Recurring TTA visit −−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg
Source 46.45 46.45

Single-Target TTA
Tent 60.21 96.26 97.79 98.29 98.45 98.47 98.51 98.52 98.59 98.75 98.79 98.83 98.80 98.82 98.87 98.87 98.84 98.85 98.87 98.87 96.61
+ ReservoirTTA 33.90 34.86 35.92 36.66 37.17 37.57 37.86 38.12 38.24 38.41 38.54 38.62 38.78 38.99 39.12 39.25 39.38 39.55 39.63 39.73 38.02

Continual TTA
CoTTA* 35.09 36.07 37.25 38.67 40.19 41.74 43.40 44.98 46.71 48.38 50.10 51.75 53.55 55.16 56.81 58.61 60.22 61.85 63.51 65.13 49.46
RoTTA 36.82 34.81 36.50 39.18 41.02 43.22 44.10 46.65 49.10 53.29 56.45 57.31 60.21 65.22 65.83 69.21 70.08 71.15 73.27 73.82 54.36

ETA 32.36 33.19 33.75 34.26 34.66 35.06 35.38 35.66 35.87 36.22 36.27 36.49 36.60 36.75 36.97 37.24 37.17 37.29 37.43 37.62 35.81
+ ReservoirTTA 30.87 29.78 29.48 29.35 29.31 29.30 29.30 29.39 29.35 29.36 29.40 29.40 29.45 29.46 29.47 29.50 29.55 29.53 29.57 29.57 29.52

SAR 31.64 32.42 34.60 36.75 39.00 41.78 45.16 49.83 55.04 61.63 59.75 36.30 32.83 34.82 37.10 39.76 42.68 46.54 51.75 57.81 43.36
+ ReservoirTTA 31.72 30.67 30.18 29.91 29.72 29.69 29.60 29.56 29.56 29.59 29.59 29.60 29.62 29.64 29.65 29.71 29.73 29.75 29.77 29.79 29.85

Persistent TTA
RDumb 32.36 32.32 32.41 32.60 32.34 32.27 32.42 32.65 32.19 32.37 32.50 32.74 32.23 32.14 32.46 32.87 32.27 32.24 32.23 32.63 32.41
PeTTA 42.13 36.61 35.15 35.09 34.84 35.16 34.52 34.75 34.94 35.27 34.89 35.19 34.93 35.22 35.00 35.12 34.99 35.45 35.21 35.34 35.49

EATA 31.01 30.88 30.85 30.88 30.86 31.01 30.88 30.98 31.01 31.05 31.09 30.93 30.96 31.07 30.99 31.02 31.03 30.97 31.07 31.08 30.98
+ReservoirTTA 30.44 29.07 28.74 28.61 28.50 28.52 28.40 28.40 28.35 28.39 28.38 28.34 28.38 28.37 28.40 28.40 28.41 28.40 28.38 28.40 28.56

ROID∗ 30.17 30.01 29.94 29.97 29.86 30.11 29.87 30.02 29.96 30.08 30.04 29.99 29.92 30.03 29.97 29.97 29.92 30.02 30.00 30.12 30.00
+ ReservoirTTA 29.62 28.27 28.01 27.95 27.88 27.89 27.84 27.87 27.83 27.84 27.83 27.78 27.79 27.79 27.82 27.82 27.83 27.82 27.81 27.78 27.95

Table 16: Average classification error rates (%) for ResNet-50-BN on ImageNet→ ImageNet-C
at severity level 5 under recurring continual CSC. The lowest error is highlighted in bold. Results
are averaged over 5 seeds.

Recurring TTA visit −−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg
Source 82.03 82.03

Single-Target TTA
Tent 62.60 62.16 64.88 69.70 76.49 84.36 92.50 97.33 98.80 99.14 99.24 99.31 99.33 99.35 99.38 99.41 99.44 99.44 99.46 99.48 90.09
+ ReservoirTTA 62.60 59.78 58.61 57.83 57.34 57.09 56.89 56.83 56.82 56.80 56.88 56.93 57.07 57.16 57.30 57.43 57.66 57.79 58.07 58.22 57.76

Continual TTA
CoTTA* 67.58 65.65 64.32 63.49 62.99 62.59 62.37 62.16 62.08 61.93 61.89 61.82 61.76 61.78 61.70 61.74 61.74 61.74 61.70 61.68 62.64
RoTTA 67.27 61.59 61.60 63.76 66.26 69.53 75.71 79.94 90.41 95.85 96.59 97.15 97.59 98.08 98.36 98.67 98.86 99.07 99.23 99.37 85.74

ETA 60.00 58.11 58.01 58.22 58.22 58.25 58.41 58.54 58.65 58.80 58.84 58.95 59.04 59.11 59.25 59.28 59.31 59.35 59.47 59.40 58.86
+ ReservoirTTA 59.77 56.09 54.95 54.38 53.95 53.76 53.52 53.43 53.36 53.30 53.22 53.19 53.14 53.15 53.14 53.14 53.11 53.15 53.11 53.10 53.90

SAR 61.87 59.56 59.28 59.30 59.26 59.41 59.60 59.82 60.15 60.45 60.89 61.29 61.89 62.47 62.98 63.65 64.52 65.17 66.04 67.06 61.73
+ ReservoirTTA 62.21 59.16 57.81 56.91 56.16 55.69 55.23 54.88 54.65 54.37 54.18 54.01 53.83 53.73 53.58 53.50 53.41 53.30 53.22 53.13 55.15

Persistent TTA
RDumb 59.82 58.24 57.23 57.02 58.22 59.78 59.05 57.26 57.11 57.62 59.62 59.17 57.94 57.17 56.78 58.36 59.71 58.49 57.34 56.78 58.14
PeTTA 67.50 68.60 66.69 64.94 63.64 62.57 61.94 61.96 61.24 61.09 60.90 60.51 60.33 60.41 60.33 60.33 60.24 60.03 60.31 60.11 62.18

EATA 57.52 55.91 55.64 55.54 55.45 55.45 55.60 55.56 55.59 55.57 55.59 55.61 55.71 55.77 55.70 55.77 55.78 55.83 55.94 55.94 55.77
+ ReservoirTTA 58.03 54.32 53.22 52.60 52.19 51.96 51.73 51.59 51.46 51.40 51.31 51.25 51.19 51.13 51.15 51.09 51.07 51.07 51.03 51.00 51.99
ROID∗ 56.07 55.45 55.40 55.47 55.38 55.44 55.42 55.38 55.42 55.43 55.33 55.44 55.44 55.44 55.36 55.35 55.43 55.40 55.45 55.48 55.45
+ ReservoirTTA 56.42 53.42 52.94 52.71 52.53 52.48 52.45 52.36 52.23 52.26 52.20 52.12 52.18 52.08 52.10 52.04 52.06 52.13 52.10 52.07 52.54

Table 17: Average classification error rates (%) for ResNet-50-BN on ImageNet→ ImageNet-C
at severity level 5 under recurring continual CDC. The lowest error is highlighted in bold. Results
are averaged over 5 seeds.

Recurring TTA visit −−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg
Source 82.03 82.03

Single-Target TTA
Tent 61.98 61.72 64.26 68.94 75.61 82.84 90.14 95.76 98.26 99.07 99.32 99.40 99.45 99.46 99.47 99.50 99.51 99.52 99.54 99.54 89.66
+ ReservoirTTA 62.43 59.20 57.84 57.16 56.78 56.53 56.38 56.25 56.25 56.35 56.41 56.47 56.61 56.70 56.81 56.95 57.04 57.15 57.19 57.52 57.20

Continual TTA
CoTTA* 67.73 65.68 64.26 63.43 62.92 62.49 62.21 62.06 61.86 61.84 61.71 61.70 61.57 61.56 61.50 61.56 61.50 61.50 61.47 61.50 62.50
RoTTA 71.61 66.61 67.14 68.85 73.20 76.11 85.69 92.94 93.53 95.32 97.13 97.69 98.08 98.54 98.88 99.07 99.24 99.37 99.46 99.51 88.90

ETA 59.33 57.94 58.24 58.43 58.70 58.69 58.81 58.96 59.08 59.26 59.36 59.35 59.41 59.60 59.74 59.76 59.83 59.97 59.84 60.07 59.22
+ ReservoirTTA 58.63 55.01 53.87 53.25 53.06 52.68 52.57 52.46 52.36 52.38 52.31 52.36 52.26 52.17 52.13 52.13 52.18 52.17 52.04 52.18 52.91

SAR 61.48 59.47 59.21 59.33 59.49 59.52 59.75 59.85 60.14 60.39 60.88 61.08 61.59 62.07 62.58 63.19 63.83 64.49 65.11 66.17 61.48
+ ReservoirTTA 62.63 59.52 58.00 57.04 56.46 55.88 55.58 55.24 54.92 54.75 54.56 54.44 54.28 54.10 54.00 53.89 53.81 53.75 53.53 53.56 55.50

Persistent TTA
RDumb 59.57 59.34 59.56 59.39 59.43 59.47 59.61 59.40 59.39 59.18 59.12 59.25 59.57 59.00 59.14 58.79 59.01 59.56 59.29 59.47 59.33
PeTTA 71.60 66.52 66.47 66.04 66.98 66.75 67.56 68.14 67.84 68.56 67.70 68.12 67.94 68.69 69.05 68.67 68.56 69.98 68.75 69.52 68.17

EATA 58.46 56.97 56.85 56.73 56.84 56.78 56.86 56.80 56.84 56.79 56.76 56.89 56.84 56.82 56.88 56.99 57.01 56.98 56.85 57.02 56.95
+ ReservoirTTA 58.53 54.86 53.73 53.08 52.85 52.55 52.42 52.31 52.13 52.05 51.97 51.99 51.93 51.82 51.76 51.74 51.73 51.73 51.59 51.81 52.63
ROID∗ 58.70 58.23 58.26 58.38 58.37 58.26 58.48 58.28 58.39 58.32 58.27 58.22 58.26 58.27 58.37 58.41 58.46 58.37 58.04 58.25 58.33
+ ReservoirTTA 56.95 53.99 53.62 53.37 53.37 53.10 53.16 53.03 52.93 52.90 52.98 53.05 52.89 52.88 52.83 52.91 52.90 52.89 52.87 53.01 53.28

43

Table 18: Average classification error rates (%) for ResNet-50-GN on ImageNet→ ImageNet-C
at severity level 5 under recurring continual CSC. The lowest error is highlighted in bold. Results
are averaged over 5 seeds.

Recurring TTA visit −−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg
Source 72.55 72.55

Single-Target TTA
Tent 71.51 75.15 79.55 81.37 82.05 82.62 85.06 89.84 93.86 96.07 97.28 97.96 98.37 98.65 98.81 98.93 98.99 99.04 99.07 99.11 91.17
+ ReservoirTTA 70.87 69.84 71.98 76.40 76.82 77.16 77.47 77.76 77.99 78.14 78.28 78.42 78.51 78.63 78.72 78.79 78.86 78.90 78.96 78.97 77.07

Continual TTA
CoTTA* 72.81 72.52 72.44 72.50 72.67 72.96 72.87 72.97 73.28 73.34 73.55 73.64 73.54 73.57 73.51 73.74 74.00 74.06 74.04 74.26 73.31

ETA 65.58 65.15 63.10 63.16 62.12 62.02 61.96 62.34 61.94 62.45 61.62 61.44 61.64 61.37 61.29 61.20 60.98 60.62 61.32 61.44 62.14
+ ReservoirTTA 65.61 62.03 60.95 60.04 59.58 59.09 58.58 58.21 58.18 57.93 57.87 57.77 57.68 57.81 57.51 57.41 57.62 57.72 57.53 57.29 58.82

SAR 67.92 65.45 64.65 64.29 64.20 64.46 64.85 66.46 79.56 74.84 65.94 64.80 64.37 64.16 64.22 64.58 65.91 71.91 70.09 78.91 67.58
+ ReservoirTTA 68.13 65.75 64.22 63.13 62.42 61.96 61.70 61.50 61.39 61.37 61.35 61.40 61.49 61.61 61.80 62.06 62.35 62.73 63.14 63.40 62.64

Persistent TTA
RDumb 65.38 65.82 65.73 66.28 66.29 66.49 66.45 66.85 65.83 66.17 66.24 65.42 66.00 66.05 66.29 66.72 65.83 65.98 66.01 66.08 66.10

EATA 62.90 62.02 61.63 61.18 60.86 60.91 60.56 60.71 60.23 60.23 60.42 59.93 59.97 59.86 60.09 59.53 60.07 60.08 60.04 59.85 60.55
+ ReservoirTTA 63.41 58.46 56.86 56.26 55.85 55.64 55.44 55.46 55.65 55.58 55.53 55.44 55.37 55.36 55.29 55.34 55.31 55.24 55.20 55.22 56.10
ROID∗ 62.39 62.54 62.25 62.66 62.43 62.58 62.93 62.26 62.84 62.78 62.05 62.55 62.69 62.98 62.57 62.73 62.72 62.56 62.50 62.84 62.59
+ReservoirTTA 62.37 58.76 58.17 58.29 57.97 57.92 57.86 57.90 57.70 57.77 57.74 57.67 57.69 57.72 57.82 57.53 57.70 57.65 57.57 57.77 58.08

Table 19: Average classification error rates (%) for ResNet-50-GN on ImageNet→ ImageNet-C
at severity level 5 under recurring continual CDC. The lowest error is highlighted in bold. Results
are averaged over 5 seeds.

Recurring TTA visit −−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg
Source 72.55 72.55

Single-Target TTA
Tent 75.13 84.52 90.38 92.70 94.70 96.57 97.89 98.52 98.89 99.14 99.30 99.38 99.43 99.46 99.50 99.52 99.53 99.55 99.56 99.58 96.16
+ ReservoirTTA 71.79 73.99 77.76 79.30 79.81 80.09 80.81 81.91 82.56 83.10 83.50 83.80 84.09 84.37 84.47 84.03 84.18 84.11 84.49 84.61 81.64

Continual TTA
CoTTA* 72.88 72.69 72.68 72.85 73.02 73.16 73.29 73.34 73.48 73.80 74.00 74.20 74.37 74.43 74.54 74.81 75.11 75.33 75.48 75.68 73.96

ETA 66.95 64.42 63.11 62.21 61.54 61.01 61.19 61.42 60.96 61.19 61.68 61.23 61.19 60.89 61.26 61.16 61.62 61.33 61.53 61.90 61.89
+ ReservoirTTA 66.00 62.27 60.77 59.87 59.37 58.70 58.64 58.40 58.05 57.74 57.72 57.68 57.57 57.48 57.37 57.28 57.23 57.24 57.06 57.11 58.68

SAR 68.41 65.18 64.33 63.95 64.03 63.59 63.61 63.58 63.77 63.96 65.04 67.01 79.86 72.86 65.41 64.26 63.86 63.59 63.46 63.52 65.66
+ ReservoirTTA 70.75 68.91 67.63 66.65 66.06 65.43 65.16 65.07 64.85 64.72 64.74 65.18 65.27 65.24 65.36 65.51 65.58 65.69 65.70 65.79 65.96

Persistent TTA
RDumb 67.36 67.18 67.05 66.48 66.24 67.08 67.61 66.97 67.02 66.48 66.76 66.77 67.09 66.69 67.23 66.82 67.11 67.19 66.68 66.41 66.91

EATA 64.57 62.31 61.91 61.31 61.32 61.04 60.96 61.04 60.73 60.30 60.10 60.31 60.21 59.74 60.16 59.94 59.94 59.86 59.79 59.98 60.78
+ ReservoirTTA 66.05 60.47 58.22 57.21 56.58 56.03 56.05 55.83 55.54 55.35 55.19 55.06 54.96 54.85 54.81 54.77 54.76 54.74 54.69 54.78 56.30
ROID∗ 66.63 65.37 66.38 66.16 65.97 66.00 66.93 65.73 66.48 66.10 65.82 66.00 66.01 66.47 66.32 66.28 66.50 66.46 66.03 65.91 66.18
+ReservoirTTA 63.41 59.65 59.10 58.93 58.80 58.51 58.67 58.49 58.68 58.38 58.34 58.42 58.29 58.28 58.15 58.11 57.98 58.02 58.14 58.36 58.74

Table 20: Average classification error rates (%) for ViT-B-16 on ImageNet→ ImageNet-C at
severity level 5 under recurring continual CSC. The lowest error is highlighted in bold. Results
are averaged over 5 seeds.

Recurring TTA visit −−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg
Source 48.75 48.75

Single-Target TTA
Tent 42.35 38.91 38.25 38.05 37.82 37.74 37.69 37.64 37.58 37.55 37.53 37.53 37.53 37.53 37.48 37.55 37.59 37.60 37.60 37.64 37.96
+ ReservoirTTA 42.87 40.76 39.58 38.75 38.26 37.81 37.40 37.07 36.79 36.53 36.29 36.10 35.91 35.75 35.60 35.46 35.34 35.22 35.13 35.04 37.08

Continual TTA
CoTTA∗ 48.55 48.06 47.69 47.26 46.94 46.64 46.35 46.12 46.00 46.03 46.08 46.12 46.32 46.30 46.31 46.34 46.45 46.40 46.38 46.46 46.64

ETA 38.91 36.69 36.22 35.93 35.87 35.69 35.71 35.67 35.47 35.55 35.36 35.32 38.54 44.64 38.43 36.21 38.69 48.53 48.34 48.43 38.71
+ CoLA 40.98 38.47 36.74 35.87 35.44 34.96 34.76 34.58 34.44 34.41 34.27 34.21 34.13 34.04 33.93 34.04 33.89 33.90 33.90 33.82 35.04
+ ReservoirTTA 39.40 36.46 34.96 34.13 33.56 33.19 32.87 32.62 32.47 32.35 32.26 32.19 32.08 32.02 31.96 31.97 31.93 31.89 31.89 31.86 33.10

SAR 44.52 41.85 40.84 40.37 40.14 40.02 39.89 39.83 39.76 39.72 39.69 39.67 39.67 39.65 39.62 39.58 39.57 39.54 39.52 39.50 40.15
+ ReservoirTTA 43.44 41.56 40.54 39.85 39.38 38.93 38.57 38.28 38.00 37.78 37.56 37.37 37.20 37.05 36.93 36.79 36.68 36.55 36.45 36.33 38.26

Persistent TTA
RDumb 39.32 39.23 38.88 38.69 38.64 39.07 41.49 40.62 38.65 38.98 38.69 39.46 39.19 38.85 38.47 38.66 39.06 42.09 38.95 38.68 39.28

EATA 39.11 37.07 36.15 35.70 35.37 35.10 34.96 34.88 34.76 34.58 34.63 34.51 34.69 34.62 34.40 34.53 35.30 34.37 34.39 34.60 35.19
+ ReservoirTTA 39.76 37.23 35.98 35.11 34.63 34.18 33.81 33.54 33.33 33.19 33.03 32.86 32.77 32.65 32.55 32.44 32.40 32.33 32.28 32.24 33.81
ROID∗ 40.14 40.04 40.02 40.06 40.07 39.98 40.03 40.01 40.07 40.12 40.06 40.04 40.00 40.07 40.04 40.04 40.04 40.76 40.06 40.03 40.08
+ ReservoirTTA 40.09 38.30 38.04 37.94 37.94 37.90 37.87 37.90 37.85 37.88 37.83 37.83 37.80 37.77 37.78 37.78 37.77 37.77 37.77 37.77 37.98

Prompt-based TTA
DPCore 40.21 43.25 44.12 44.40 44.50 44.94 44.84 44.83 44.79 44.90 44.89 44.99 45.06 45.07 45.47 45.33 45.45 45.84 45.79 45.95 44.73
VPT+ReservoirTTA 37.98 36.05 35.43 35.22 34.96 34.83 34.63 34.51 34.40 34.31 34.38 34.25 34.12 34.04 34.00 33.90 33.85 33.77 33.77 33.72 34.61

44

Table 21: Average classification error rates (%) for ViT-B-16 on ImageNet→ ImageNet-C at
severity level 5 under recurring continual CDC. The lowest error is highlighted in bold. Results
are averaged over 5 seeds.

Recurring TTA visit −−−→
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg
Source 48.75 48.75

Single-Target TTA
Tent 44.21 39.96 39.28 39.03 38.93 38.82 38.75 38.67 38.63 38.59 38.58 38.58 38.59 38.58 38.59 38.59 38.61 38.59 38.66 38.68 39.05
+ ReservoirTTA 46.64 44.93 43.90 43.34 42.84 42.51 42.02 41.84 41.54 41.33 41.11 40.94 40.77 40.68 40.49 40.44 40.30 40.28 40.23 40.19 41.82

Continual TTA
CoTTA∗ 48.37 47.90 47.43 46.97 46.63 46.34 45.91 45.69 45.49 45.44 45.51 45.62 45.54 45.67 45.61 45.68 45.70 45.66 45.90 45.94 46.15

ETA 42.89 37.66 36.99 36.74 36.48 36.25 36.20 36.24 35.96 36.08 36.08 35.94 35.93 36.91 36.40 36.46 36.29 35.87 36.06 35.87 36.66
+ CoLA 40.90 37.61 36.67 36.10 35.86 35.64 35.47 35.33 35.25 35.13 35.20 35.11 35.12 35.02 35.10 35.10 35.11 34.97 35.03 34.87 35.73
+ ReservoirTTA 41.55 38.17 36.62 35.60 35.03 34.51 34.14 33.96 33.79 33.60 33.46 33.55 33.42 33.33 33.18 33.10 33.07 33.07 32.96 32.92 34.45

SAR 45.86 42.16 41.12 40.60 40.32 40.14 40.03 39.96 39.91 39.80 39.77 39.73 39.71 39.66 39.68 39.64 39.60 39.60 39.57 39.57 40.32
+ ReservoirTTA 45.47 43.00 41.89 41.27 40.75 40.28 39.96 39.70 39.46 39.25 39.09 38.95 38.80 38.55 38.43 38.26 38.13 38.04 37.88 37.91 39.75

Persistent TTA
RDumb 43.91 40.27 39.32 39.32 39.74 40.37 40.43 39.53 39.16 39.03 38.88 39.53 39.55 39.26 40.30 39.15 39.51 40.07 39.74 39.20 39.81

EATA 39.89 37.20 36.34 35.76 35.62 35.28 35.20 35.00 34.87 34.80 35.24 34.66 34.62 34.97 34.54 34.58 34.55 34.51 34.46 34.53 35.33
+ ReservoirTTA 42.08 39.54 38.14 37.29 36.62 36.08 35.79 35.56 35.24 35.14 35.04 34.99 34.80 34.66 34.49 34.37 34.30 34.26 34.16 34.19 35.84

ROID∗ 42.09 41.12 41.73 46.97 46.24 41.18 42.15 45.99 44.52 41.81 41.99 41.12 40.91 41.28 42.01 42.81 41.45 41.43 41.21 41.12 42.46
+ ReservoirTTA 40.35 38.47 38.04 38.01 38.00 37.92 37.86 37.89 37.90 37.92 37.89 37.85 37.83 37.83 37.85 37.81 37.78 37.75 37.77 37.82 38.03

Prompt-based TTA
DPCore 42.79 45.68 46.94 47.14 44.86 42.40 42.25 41.90 43.09 43.42 44.07 45.85 45.53 45.40 46.93 46.43 47.41 47.46 47.33 47.58 45.22
VPT+ReservoirTTA 38.01 36.30 35.87 35.75 35.56 35.34 35.35 35.17 34.92 34.78 34.78 34.74 34.72 34.55 34.47 34.45 34.48 34.32 34.32 34.32 35.11

Table 22: Average classification error rates (%) for ResNet-50 in the CCC setting. Each column
shows the average error over an adaptation interval (e.g., the second column covers steps 6701–13400),
with each adaptation step using a mini-batch of 64 images. The lowest error is highlighted in bold.

CCC Adaptation Step −−→
Method 6700 13400 20100 26800 33500 40200 46900 53600 60200 66800 73400 80000 Avg

Source 83.06 83.18 83.39 82.89 82.53 83.55 83.52 83.00 83.60 83.39 83.32 83.34 83.23

Single-Target TTA
TENT 83.62 99.46 99.58 99.58 99.61 99.67 99.65 99.63 99.70 99.65 99.79 99.62 98.30
+ ReservoirTTA 68.26 67.44 67.97 74.21 77.42 75.32 75.62 82.24 83.41 86.48 87.82 92.04 78.19

Continual TTA
CoTTA* 71.14 64.98 65.03 67.93 66.57 65.51 65.81 69.75 65.17 65.97 67.23 66.71 66.82
RoTTA 71.08 70.48 69.46 75.42 80.96 86.56 92.88 98.28 97.61 98.69 99.56 99.31 86.69

ETA 64.69 66.61 66.37 69.73 72.95 72.99 72.95 76.99 76.43 75.83 77.77 78.65 72.66
+ ReservoirTTA 63.07 60.35 59.52 62.74 62.62 60.52 60.14 65.12 60.03 61.17 61.64 61.90 61.57

SAR 65.41 69.47 82.62 97.78 72.72 66.80 78.04 94.28 73.83 64.02 75.19 90.22 77.53
+ ReservoirTTA 65.49 61.35 60.54 63.14 62.63 60.89 59.89 64.71 60.05 61.57 61.59 61.14 61.92

Persistent TTA
RDumb 62.33 59.05 58.32 60.98 60.17 58.37 58.61 63.21 57.94 59.08 60.03 59.83 59.83
PeTTA 68.91 62.93 61.18 64.10 63.18 62.62 63.33 66.15 61.95 61.69 63.39 63.75 63.60

EATA 60.85 57.95 57.51 60.33 59.71 58.07 58.51 62.91 58.39 58.96 59.99 60.23 59.45
+ ReservoirTTA 61.68 58.12 57.29 59.83 58.98 56.96 56.99 61.19 56.60 57.31 58.17 57.86 58.42

ROID∗ 61.89 58.23 57.42 60.14 58.82 57.02 57.80 62.20 56.73 58.01 58.94 58.84 58.84
+ ReservoirTTA 61.24 57.76 56.83 59.73 58.64 56.74 57.30 61.76 56.65 57.71 58.55 58.45 58.45

45

Table 23: Average classification error rates (%) for ViT-B-16 in the CCC setting. Each col-
umn displays the average error over an adaptation interval (e.g., the second column covers steps
6701–13400), with each adaptation step performed on a mini-batch of 64 images. The lowest error is
highlighted in bold.

CCC Adaptation Step −−→
Method 6700 13400 20100 26800 33500 40200 46900 53600 60200 66800 73400 80000 Avg

Source 53.27 57.65 52.95 50.45 56.05 54.92 57.53 56.04 54.36 50.75 51.05 48.11 53.59

Single-Target TTA
Tent 46.28 45.30 40.81 41.49 44.52 43.08 42.88 46.76 59.94 99.80 99.93 99.88 59.22
+ ReservoirTTA 47.74 46.30 41.50 41.94 43.97 41.29 41.55 44.75 40.89 40.50 39.49 39.82 42.48

Continual TTA
CoTTA∗ 50.97 49.45 44.57 45.53 49.08 45.34 49.45 50.97 48.26 48.48 44.43 43.99 47.54

ETA 42.66 42.24 38.97 39.81 41.92 39.86 40.84 44.10 40.66 40.32 39.36 39.28 40.84
+ CoLA 44.78 42.88 38.91 39.71 41.47 39.57 40.38 43.10 39.89 39.67 38.93 38.91 40.68
+ ReservoirTTA 44.08 42.52 38.47 39.45 41.83 38.51 38.78 41.96 38.78 37.76 36.77 36.88 39.65

SAR 46.83 46.97 42.49 43.19 45.52 43.80 44.73 47.75 44.43 43.76 43.39 43.84 44.73
+ ReservoirTTA 47.84 46.76 42.29 43.11 45.55 42.47 43.13 46.69 42.91 42.40 41.09 41.24 43.79

Persistent TTA
RDumb 44.30 44.84 40.79 41.99 44.03 42.41 43.97 47.35 41.61 41.35 41.27 40.79 42.89

EATA 43.47 41.93 38.23 39.09 41.08 38.54 39.41 42.41 39.52 38.69 37.90 38.09 39.86
+ ReservoirTTA 44.07 42.27 38.61 39.13 41.07 38.39 39.05 42.13 38.95 38.18 37.41 37.52 39.73

ROID∗ 46.01 45.91 41.94 42.66 44.73 42.21 43.70 47.40 42.50 42.91 42.00 42.00 43.66
+ReservoirTTA 44.91 44.77 40.85 41.95 43.87 41.23 42.65 46.49 41.88 41.76 41.15 41.17 42.72

Prompt-based TTA
DPCore 42.16 42.62 40.20 42.70 44.82 41.30 43.42 46.14 42.46 42.06 42.01 42.72 42.72
VPT+ReservoirTTA 42.91 42.19 38.89 40.33 41.68 37.84 39.59 42.57 39.11 38.55 37.70 37.58 39.91

Table 24: Comparison on DomainNet-126 under CSC setting (error rates %). Each source domain is
trained separately; adaptation occurs over a recurring cycle of the remaining three domains repeated
20 times.

Source Domain real painting clipart sketch

Target Domain clipart → painting

→ sketch (×20)

real → sketch

→ clipart (×20)

sketch → real

→ painting (×20)

painting → real

→ clipart (×20)
Avg

Source 45.16 41.57 49.52 45.33 45.40

EATA 38.49 33.49 38.34 33.34 35.92
+ReservoirTTA 36.89 32.25 38.65 32.74 35.13

∆ -1.60 -1.24 +0.31 0.60 -0.79

Table 25: Comparison on PACS under CSC setting (error rates %). Each source domain is trained
separately; adaptation occurs over a recurring cycle of the remaining three domains repeated 20 times.

Source Domain photo art painting cartoon sketch

Target Domain cartoon → art painting

→ sketch (×20)

sketch → photo

→ cartoon (×20)

photo → sketch

→ art painting (×20)

cartoon → art painting

→ photo (×20)
Avg

Source 56.97 32.21 23.71 72.06 46.24

EATA 38.22 22.80 18.82 37.68 29.38
+ReservoirTTA 37.79 22.55 18.63 35.75 28.68

∆ -0.43 -0.25 -0.19 -1.93 -0.70

46

Table 26: Performance under gradual shift on CIFAR-100-C (CSC, ResNeXt-29). Each corruption
cycles severities 1→2→3→4→5→4→3→2→1. Error (%) at visits 1–20 and mean.

Visits 1–10
Method 1 2 3 4 5 6 7 8 9 10

Source 33.58 33.58 33.58 33.58 33.58 33.58 33.58 33.58 33.58 33.58
EATA 25.35 25.44 25.41 25.41 25.40 25.43 25.39 25.44 25.39 25.38
+ReservoirTTA (Kmax = 16) 25.17 25.06 24.99 25.03 25.00 25.02 25.01 25.09 25.09 25.05
+ReservoirTTA (Kmax = 64) 25.17 24.99 24.92 24.93 24.94 24.93 24.92 24.95 24.95 24.91

Visits 11–20
Method 11 12 13 14 15 16 17 18 19 20 Avg

Source 33.58 33.58 33.58 33.58 33.58 33.58 33.58 33.58 33.58 33.58 33.58
EATA 25.45 25.42 25.44 25.44 25.43 25.42 25.42 25.43 25.38 25.40 25.41
+ReservoirTTA (Kmax = 16) 25.07 25.08 25.05 25.10 25.07 25.08 25.09 25.05 25.06 25.07 25.06
+ReservoirTTA (Kmax = 64) 24.94 24.91 24.94 24.94 24.94 24.93 24.97 24.97 24.97 24.96 24.95

Table 27: Average classification error(%) for WideResNet-28 on CIFAR-10 → CIFAR-10-C
(severity 5) under recurring CSC with temporal correlation (Dirichlet = 0.1).

Visits 1–10
Method 1 2 3 4 5 6 7 8 9 10

Source 43.52 43.52 43.52 43.52 43.52 43.52 43.52 43.52 43.52 43.52
RoTTA 26.62 25.17 25.05 25.56 25.20 25.26 25.88 27.07 28.50 28.78
+ReservoirTTA 26.19 25.32 25.66 25.69 25.72 25.88 25.26 25.63 26.44 25.85

Visits 11–20
Method 11 12 13 14 15 16 17 18 19 20 Avg

Source 43.52 43.52 43.52 43.52 43.52 43.52 43.52 43.52 43.52 43.52 43.52
RoTTA 30.28 30.19 32.06 32.96 34.30 35.66 35.38 36.70 37.93 38.87 30.37
+ReservoirTTA 26.67 25.78 25.94 25.56 26.35 26.95 25.87 25.54 25.86 25.67 25.89 -4.48

47

	Introduction
	Related Work
	Recurring Continual TTA and Theoretical Analysis
	Background
	Test-Time Adaptation Trajectory

	Methodology
	Style Characterization and Domain Identification
	Model Reservoir: Initialization, Adaptation, and Prediction

	Experiments
	Main Results
	Analyses and Ablations

	Conclusion
	Related Work
	Details on Theoretical Analysis
	TTA Variance Bound via Source Weighted Ensembling and Fisher Regularization
	Comparison of Single Model TTA and Model Reservoir TTA

	Algorithm of ReservoirTTA
	Style Features Quality
	Domain Identification via Online Clustering
	Model Reservoir Initialization
	Baselines
	Implementation Details
	Additional Ablation Studies
	Additional Qualitative Results
	Additional Quantitative Results

