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Visual-linguistic Cross-domain Feature Learning with Group
Attention and Gamma-correct Gated Fusion for Extracting

Commonsense Knowledge
Anonymous Authors

ABSTRACT
Acquiring commonsense knowledge about entity-pairs from images
is crucial across diverse applications. Distantly supervised learning
has made significant advancements by automatically retrieving im-
ages containing entity pairs and summarizing commonsense knowl-
edge from the bag of images. However, the retrieved images may
not always cover all possible relations, and the informative features
across the bag of images are often overlooked. To address these chal-
lenges, a Multi-modal Cross-domain Feature Learning framework
is proposed to incorporate the general domain knowledge from a
large vision-text foundation model, ViT-GPT2, to handle unseen
relations and exploit complementary information from multiple
sources. Then, a Group Attention module is designed to exploit the
attentive information from other instances of the same bag to boost
the informative features of individual instances. Finally, a Gamma-
corrected Gated Fusion is designed to select a subset of informative
instances for a comprehensive summarization of commonsense
entity relations. Extensive experimental results demonstrate the
superiority of the proposed method over state-of-the-art models
for extracting commonsense knowledge.

CCS CONCEPTS
• Computing methodologies→ Reasoning about belief and
knowledge.

KEYWORDS
Commonsense knowledge extraction, Cross-modal learning, Large
vision-language model, Cross-instance attention, Gamma-corrected
gated fusion

1 INTRODUCTION
Understanding commonsense interactions between entities, such
as causal relations, social norms, emotional responses, and spatial
relations, is essential across numerous applications, including ad-
vanced search engines [19], generative dialogue systems [9], and
visual question answering [11]. Large-scale commonsense knowl-
edge bases (CKBs) such as Wikidata [33], ConceptNet [31] and
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Caption: A man sitting 
under an umbrella on 
the grass.

Entities:
Man (S) Coat
Umbrella (O)
Table Jean

Multi-modal Cross-
domain Learning

Gamma-corrected 
Gated Fusion

Relation Answer
(Man, under, Umbrella)

Knowledge 
Base

(Man, ?, Umbrella)
Subject: Man
Object: Umbrella

Large-scale 
Image 

Database

Caption: A man standing 
under an umbrella next 
to a picnic table.

Entities:
Man (S) Boat
Umbrella (O)
Building Shoe

Query Group Attention 
Module

…
…Image Captioning Model

Figure 1: The proposed model integrates linguistic features
of captions generated from the large pre-trained model, ViT-
GPT2, to provide the general domain knowledge on unseen
relations, together with linguistic features from entity labels
and visual features from retrieved images, to exploit multi-
modal cross-domain interactions within individual instances
and attentive support from a group of instances to extract
commonsense knowledge from these sources.

ATOMIC [27] often store abundant structured human common-
sense. However, the high costs and reliance on human annotations
for building these CKBs limit their scale and concept coverage [21].

Automatic Commonsense Knowledge Extraction (CKE) has re-
ceived increasing research attention [13, 30, 34]. Early approaches
primarily utilize text [12] or Pre-trained LanguageModels (PLMs) [2,
25] to obtain rich and diverse commonsense knowledge, but the
inherent bias of documenting more unusual circumstances than
common occurrences in textual data leads to possible over-report
situations in large corpora [22, 40]. Recently, CKE from images has
demonstrated promising potentials, e.g., 83% of relation facts in vi-
sual relation learning datasets [34] are not covered in the large-scale
text-based dataset, ConceptNet [31]. However, most image-based
approaches are confined to visual commonsense in attributes such
as spatial relation, color, and relative size. Recent models combine
visual and textual modalities as complementary signals [34, 35],
developing cross-modality learning solutions to capture more com-
monsense knowledge.

Despite the recent advancements, CKE still poses several chal-
lenges. 1) It often requires extracting unseen relations between
entities. However, it is hard for a model to handle entities and
relations not covered in the training data. Incorporating general do-
main knowledge could help identify unseen entity relations, while
existing models often lack such general domain knowledge [8].

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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2) Many methods [14, 23] assume that each instance carries suffi-
cient information to independently determine the relation of an
entity pair. However, commonsense is aggregated over a group
of instances, and a single instance alone is insufficient to derive
a common relation. 3) The presence of inconsistent labels for the
same entity relation may confuse the model to accurately derive the
commonsense relations [34]. As a result, directly aggregating all the
single instances that may contain noisy labels may not accurately
extract common entity relations.

To better identify unseen entity relations, a Multi-modal Cross-
domain Feature Learning (MCFL) framework is proposed, which
integrates ViT-GPT2 [1, 29], a pre-trained large-scale visual-text
model containing rich general domain knowledge, to reduce the
knowledge gap between sparse objects and their rich relations.
Specifically, given an entity pair, we first retrieve a bag of images
containing the entities from a large image corpus, extract visual
features by using VinVL [41], and derive linguistic features of entity
labels through word embedding using GloVe vectors [24]. Due to
the limited number of retrieved images, these features may not
cover all the feasible relations between entities, while ViT-GPT2
supplements more linguistic information by generating image cap-
tions containing rich relations not seen in the retrieved images.
Next, the proposed MCFL utilizes CaptionBert [40] to efficiently ex-
tract vision-text features from the pairings between visual features
and entities (and captions) embeddings, as well as the linguistic
feature pairings between entities and captions.

Then, to boost the features of individual instances, a GroupAtten-
tion (GA) module is proposed. In single-instance learning [14, 23],
each instance is treated independently to determine the relation of a
specific entity pair. While effectively exploring the entity relations
in an instance, this approach often overlooks the inter-instance
relations and the collective insights gained from a bag of instances,
which are crucial for extracting commonsense knowledge. In con-
trast, multi-instance learning [34] exploits the collective informa-
tion from these groups to discern commonsense knowledge at the
bag level, but the entity relations residing in individual instances
are often overlooked. To tackle the problem, the proposed Group
Attention module first derives the interaction matrix between every
pair of instances, utilizes it to construct the co-attention features
between every pair, and aggregates the attentive support across
the whole group of instances. In such a way, the features of individ-
ual instances are greatly enhanced by exploiting partial attentive
information of the whole group.

Due to automatic annotations in distant supervision with exist-
ing knowledge bases [34], instances may be assigned the wrong
labels. In addition, it remains challenging to optimally aggregate
common relations from multiple instances, especially when these
instances are noisy. To tackle these, a Gamma-corrected Gated
Fusion (GGF) module is proposed to optimally aggregate the group-
attended single-instance features. Specifically, a gated net is ap-
plied to all instances to determine the adaptive weight of each
instance. Intuitively, an instance with more similar instances in the
group should be assigned a higher weight as it more likely con-
tains common relations. As the gated ratios derived across many
instances tend to be similar, a gamma correction is hence designed
to enlarge the differences between gated ratios. As a result, the
instances containing fewer occurred relations are assigned smaller

weights, while the instances containing common relations are as-
signed larger weights. The final relation features of all instances are
fed to a multi-layer perceptron (MLP) for answer space mapping.

Our contributions can be summarized as follows. 1) To exploit
unseen relations and entities from images and texts, a Multi-modal
Cross-domain Feature Learning framework is proposed, which ef-
fectively integrates the general domain knowledge embedded in
large pre-trained models to uncover novel relations that are miss-
ing in the retrieved images. 2) To boost the features of individual
instances, a novel Group Attention module is proposed, which is
capable of collaboratively exploiting the attentive support from a
group of instances to enhance the description power of individual
instances. 3) To adaptively select the best set of instances for ex-
tracting commonsense knowledge while mitigating noisy instances,
a Gamma-Corrected Gated Fusion module is designed to assign
higher weights to instances containing more common relations and
alleviate the influence of noisy instances. 4) Experimental results on
the large benchmark dataset demonstrate substantial performance
gains of the proposed method over state-of-the-art CKE models.

2 RELATEDWORK
Commonsense Knowledge Extraction automatically gathers im-
plicit knowledge from diverse sources [34]. However, the construc-
tion of large-scale commonsense knowledge bases [27] heavily
relies on manual annotations, greatly limiting their applications.
Many models have been designed to automatically extract com-
mon relations between entities, which can be broadly divided into
language-based, vision-based, and multi-modal models [34].
Language-based CKE Models. Early CKE models often utilize
semi/unstructured text [12] or pre-trained language models [2]
to identify entity relations. Schuster et al. [28] employed a Rela-
tion Triplet Parser (RTP) to extract relation triplets from image
descriptions. Pre-trained Language Models [5] have driven the de-
velopment of natural language processing, which could learn rich
features from raw texts. Petroni’s [25] designed a model named
LAnguage Model Analysis (LAMA) to evaluate large language
models such as BERT [5] for extracting commonsense knowledge.
Peng et al. [23] applied BERT [5] on contexts and entities to pre-
dict their relations. Lin et al. [14] evaluated BERT [5] for encoding
numerical commonsense knowledge. Lu et al. [18] introduced a
knowledge-evolving framework by iterative consolidation and ex-
pansion with the guidance of PLMs and devised a rule generator by
prompt-tuning to stimulate the rich knowledge in PLMs. Despite
the progress, it has been observed that the commonsense in PLMs
suffers from low consistency where small changes in queries may
lead to significantly different predictions [22].
Vision-based CKE Models.More evidence suggests that visual
perception brings commonsense that text may not reveal [34].
Yatskar et al. [36] uncovered general facts from image captions by
leveraging WordNet and submodular k-coverage. Dai et al. [4] em-
ployed scene graphs to understand visual interactions between ob-
jects. But most image-based approaches are confined to visual com-
monsense of specific attributes [17, 40], or require large amounts
of labeled data [39]. Distantly supervised learning [15, 35] has been
designed to automatically create a large volume of commonsense
relations without costly manual annotations. For example, Yao et al.
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[35] employed a distant supervision strategy to align relational facts
in existing knowledge bases with real-world image bags. However,
distantly supervised learning often results in inaccurately labeled
samples, which greatly hinders the performance of CKE models.
Multi-modal CKE Models. Distant supervision and utilizing in-
formation from diverse modalities are shown beneficial for com-
monsense extraction [7, 34]. To mitigate mislabeled instances in
distant supervision, Zeng et al. [39] developed Piecewise Convo-
lutional Neural Networks with multi-instance learning. Chen et
al. [3] designed a hierarchical multi-modal fusion with a dynamic
gated aggregation strategy to remove irrelevant object-text pairs.
Lin et al. [15] utilized sentence-level attention to reduce the in-
fluence of noisy instances. Knowledge graphs are often utilized
to represent entity relations. Zheng et al. [43] aligned different
modalities through a dual graph structure, which better correlates
visual relations among objects to textual relations. Feng et al. [7]
constructed two cross-modal knowledge graphs to bridge the se-
mantic gap and adopted a cross-attention mechanism to learn the
cross-modal knowledge representations. Ma et al. [20] developed a
multi-source knowledge reasoning graph network to learn multi-
modal correlations, intra-event object relations, and inter-event
semantic associations for event-centered commonsense inference.
Various attention mechanisms have been designed to capture cross-
modality interactions, e.g., bi-linear attention [44], cross-modal
attention network [42], etc. In particular, Yao et al. [34] utilized a
pre-training vision-language model to analyze images and imple-
mented a contrastive attention mechanism to choose descriptive
images for commonsense relation summarization from entity pairs.

3 PROPOSED METHOD
3.1 Overview of Proposed Method
To tackle the challenges of commonsense knowledge extraction,
Multi-modal Cross-domain Feature Learning with Group Attention
and Gated Fusion (MCFL-GAGF) is proposed. The overall structure
is illustrated in Fig. 2. First of all, to extract commonsense facts
about a pair of entities, a bag of images containing the specified en-
tity pair is retrieved from a large image corpus, Visual Genome [10],
which contains relational triplets about entities derived from real-
world images. Then, three modules are designed to extract common
entity relations. 1) Multi-modal Cross-domain Feature Learn-
ing (MCFL) module, which extracts instance features in two stages:
Single-modal Learning to extract visual features of the retrieved
images by utilizing VinVL [41], and linguistic features of entity
labels and captions generated from ViT-GPT2 [1, 29] using word
embedding [40]; and Cross-modal learning to utilize Caption-
Bert [40] to exploit interactions between modalities and modal
alignment from three pairs of visual-language features. 2) Group
Attention (GA) module, which exploits the semantic interactions
across different instances to enhance the features of individual in-
stances with the attentive support of other images in the same bag.
For each instance, we first extract the co-attention features from
every other instance and then aggregate these features to boost
the features of the current instance. 3) Gamma-corrected Gated
Fusion (GGF) module, which mitigates the negative effects of mis-
labeled relations for instances in distant supervision and optimally
fuse the group-attended features of individual instances through

a set of Gamma-corrected gated ratios adaptively determined by
all instance features through a set of gated nets. Finally, the dis-
criminative commonsense knowledge derived from each instance is
aggregated together with bag-level features representing collective
group knowledge to produce the final prediction of entity relations.

3.2 Multi-modal Cross-domain Feature
Learning

Given a query entity pair (𝑠, 𝑜), the commonsense relations between
entities 𝑠 and 𝑜 can be summarized from a bag of 𝑁 images {𝑰𝑖 }𝑁𝑖=1.
However, the retrieved images may not cover all the possible entity
relations and it is challenging for a model to handle entities and rela-
tions that are not covered in the training data [7]. Summarizing such
knowledge from diverse sources as complementary information
[34] and incorporating the general domain knowledge as additional
knowledge [7, 37] are two potential solutions. The proposed MCFL
seamlessly integrates the two advantageous methods.
Single-modal Learning. Single-modal learning is designed to
extract linguistic features and visual features separately. Linguis-
tic features for entity tags are encoded by leveraging the GloVe
vectors [24] as,

𝑬𝑖 = F𝐺 (E𝑖 ), (1)
where E𝑖 denotes the set of 𝐸 entity tags for the 𝑖-th image and F𝐺
denotes the word embedding operation in GloVe. 𝑬𝑖 = [𝒆1

𝑖
, . . . , 𝒆𝐸

𝑖
],

where 𝒆 𝑗
𝑖
is feature vector of the 𝑗-th entity.

Linguistic features for image captions are extracted using GloVe
vectors [24], where captions are generated by ViT-GPT2 [1], a
large vision-language model pre-trained with extensive image-text
pairs. It contains a large amount of commonsense relations in the
general domain. For each image 𝑰𝑖 , a set of𝑊 caption wordsW𝑖 =

F𝑉𝐺 (𝑰𝑖 ) are generated, where F𝑉𝐺 denotes the caption-generation
operation of ViT-GPT2.W𝑖 is encoded into linguistic features using
GloVe vectors as,

𝑪𝑖 = F𝐺 (W𝑖 ), (2)
where 𝑪𝑖 = {𝒄1

𝑖
, . . . , 𝒄𝑊

𝑖
}, and 𝒄 𝑗

𝑖
denotes the 𝑗-th word embedding.

Visual features are extracted using VinVL [41], a visual-language
model pre-trained on the Visual Genome dataset [10],

𝑽𝑖 = F𝑉 (𝑰𝑖 ), (3)

where F𝑉 denotes the feature extraction process in VinVL. 𝑽𝑖 =

{𝒗1
𝑖
, . . . , 𝒗𝐸

𝑖
}, where 𝒗 𝑗

𝑖
denotes the visual vector for the 𝑗-th entity.

Cross-modal Learning. Cross-modal learning is designed to ex-
ploit the interactions between visual features and linguistic features.
Single-modal features are combined into three different pairings,
i.e., {𝒗𝑖 , 𝒆𝑖 }, {𝒗𝑖 , 𝒆𝑖 , 𝒄𝑖 }, and {𝒆𝑖 , 𝒄𝑖 }, corresponding to the visual-
linguistic pairing between images and entities, multi-modal cross-
domain feature pairing, and cross-domain linguistic feature pairing
for entities and captions, respectively. A recent vision-language
model that performs well in aligning features of different modalities,
CaptionBert [40], is utilized to model the complex instance-level
feature interactions as,

𝒉𝑉𝐸
𝑖 = F𝐶𝐵 (𝑽𝑖 ; 𝑬𝑖 ), (4)

𝒉𝑉𝐸𝐶
𝑖 = F𝐶𝐵 (𝑽𝑖 ; 𝑬𝑖 ; 𝑪𝑖 ), (5)

𝒉𝐸𝐶𝑖 = F𝐶𝐵 (𝑬𝑖 ; 𝑪𝑖 ), (6)
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Figure 2: Overview of the proposed method, which consists of three main building blocks. 1) Multi-modal Cross-domain Feature
Learning (MCFL) module to extract single-instance features by exploiting the interactions of visual and language features from
multiple sources; 2) Group Attention (GA) module to boost the single-instance features by exploiting the attentive support
from other instances in the same group; 3) Gamma-corrected Gated Fusion (GGF) module to optimally fuse the relational
features of all instances and mitigate the noisy instances.

where F𝐶𝐵 represents the multi-head self-attention mechanism in
CaptionBert [40]. Then, these features are jointly encoded using
an MLP F𝑀𝐿𝑃 as,

𝒉𝑖 = F𝑀𝐿𝑃 (𝒉𝑉𝐸
𝑖 ;𝒉𝑉𝐸𝐶

𝑖 ;𝒉𝐸𝐶𝑖 ), (7)

where 𝒉𝑖 are the single-instance features for the 𝑖-th image. The
proposed MCFL incorporates the general domain knowledge from
pre-trained models, extracts relation features frommultiple sources,
and exploits the multi-modal cross-domain interactions among
these features.

3.3 Group Attention Module
To mitigate the mislabeled instances due to distant supervision,
multi-instance learning [34] has been designed to collectively con-
sider a group of instances and jointly exploit the information from
the group to discern commonsense knowledge at the bag level.
However, multi-instance learning often overlooks the discriminant
information embedded in individual instances. To exploit both the
discriminant information in individual instances and the collective
attention information in a group of instances, a Group Attention
module is proposed to extract informative features. Specifically, for
each instance 𝒉𝑖 , it queries every other instance 𝒉 𝑗 to determine
their co-attention information, where the interaction matrix 𝑮𝑖 𝑗
contains the attention weights indicating which part in 𝒉𝑖 is more
important with respective to 𝒉 𝑗 ,

𝑮𝑖 𝑗 = 𝑓𝑠 (𝒉𝑖𝑾𝐺𝒉
⊤
𝑗 ), 𝑖, 𝑗 ∈ {1, ..., 𝑁 }, (8)

where 𝑓𝑠 is the softmax function, and𝑾𝐺 is a learnable weight ma-
trix. The co-attention features 𝒉𝑖 𝑗 from 𝒉𝑖 to 𝒉 𝑗 are then calculated
as,

𝒉𝑖 𝑗 = 𝑅𝑒𝐿𝑢 (𝑮𝑖 𝑗𝒉 𝑗 ), (9)
where 𝑅𝑒𝐿𝑢 is the ReLu function.

Finally, we derive the group-attended features as,

�̂�𝑖 = 𝜎 (𝑾𝑖

𝑁∑︁
𝑗=1

𝒉𝑖 𝑗 + 𝑏𝑖 ), (10)

where 𝜎 is the sigmoid function,𝑾𝑖 and 𝑏𝑖 are the learnable weights
and bias. The group-attended features �̂�𝑖 represent a dynamic focus
on key common relations between entities. By exploiting the at-
tentive information from each instance in the group, the proposed
Group Attention module greatly enhances the features of individual
instances.

3.4 Gamma-corrected Gated Fusion
Given the group-attended features of individual instances, some
instances may contain more common relations while some con-
tain less frequent relations which are potentially mislabeled. Thus,
it is important to design an effective fusion scheme to uncover
the common entity relations in these instances while mitigating
the negative efforts of noisy instances. To achieve this, a Gamma-
corrected Gated Fusion module is proposed to automatically focus
on a subset of instances indicating reasonable entity relations while
ignoring less informative instances. Specifically, all instance fea-
tures {�̂�𝑖 }𝑁𝑖=1 are fit to an MLP to excavate support evidence and
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fused to construct the gated ratio 𝑟𝑖 for the 𝑖-th instance,

𝑟𝑖 = 𝜎 (
𝑁∑︁
𝑗=1

𝒘⊤
𝑖 𝑗 �̂� 𝑗 + 𝑏), 𝑖 ∈ {1, . . . , 𝑁 }, (11)

where𝒘𝑖 𝑗 and 𝑏 are the learnable weights and bias. It is witnessed
that the derived gated ratios 𝒓 = [𝑟1, . . . , 𝑟𝑁 ] for different instances
do not differ significantly, possibly due to the too many instances
to fuse, resulting in insignificant contrast between the informative
instances and less informative ones. To amplify the contrast, the
Gamma correction is applied to the gated ratios. The fused features
are then derived as,

�̄� =

𝑁∑︁
𝑖=1

𝑟
𝛾

𝑖
�̂�𝑖 , (12)

where 𝛾 is the hyper-parameter for Gamma correction. Finally, the
fused features are mapped to the answer space as,

𝒚 = 𝜎 (�̄��̄�), (13)

where �̄� are learnable mapping weights. The proposed Gamma-
corrected Gated Fusion (GGF) aims to derive an optimal subset of
instances containing commonsense knowledge, which differs from
the existing gated fusion [26] that aims to combine multiple feature
maps into one. In addition, the proposed Gamma correction better
distinguishes informative instances from non-informative ones and
mitigates the latter during fusion, thereby effectively extracting
commonsense knowledge. Finally, the binary cross-entropy loss is
utilized in this paper,

L = −
𝐶∑︁
𝑖=1

𝑦𝑖 log𝑦𝑖 + (1 − 𝑦𝑖 ) log(1 − 𝑦𝑖 ) . (14)

where 𝐶 is the number of classes, 𝒚 = {𝑦𝑖 }𝐶𝑖=1 are the predicted
labels and 𝒚 = {𝑦𝑖 }𝐶𝑖=1 are the ground-truth labels.

4 EXPERIMENTAL RESULTS
4.1 Experimental Settings
Dataset Description. Very recently, Yao et al. [34] developed a
large dataset for multi-modal commonsense knowledge extraction,
which is a subset of the Visual Genome dataset [10], denoted as
VG-CKE. The VG-CKE dataset [34] focuses on the top 100 en-
tities and relations, comprising 6,443/1,964/678 entity pairs and
13,780/3,496/1,166 corresponding commonsense facts for training,
testing, and validation, respectively. These relation facts are auto-
matically aligned using distant supervision with image bags, re-
sulting in 55,911 images for training, 13,722 for testing, and 5,224
for validation. Some instances may be mislabeled due to distant
supervision [34].
Compared Methods. The proposed method is compared to nine
CKE models. 1) Four language-based models. RTP [28] utilizes
dependency trees to extract commonsense triplets from captions,
whereas LAMA [25], Vanilla-FT [23] and Prompt-FT [14] sum-
marize relational facts by leveraging linguistic knowledge in pre-
trained language models. 2) Five multi-modal models. ONE [39],
ATT [15], AVG [15] and CLEVER [34] adopt multi-instance learn-
ing to synthesize commonsense relations from multiple modalities,
which extract visual features using VinVL [41] and linguistic fea-
tures using Glove [24], and employ CaptionBert [40] to extract

vision-text features. They differ from the strategies of combin-
ing instance features, e.g., max pooling for ONE [39], weighted
sum for ATT [15], average pooling for AVG [15], and contrastive
attention for CLEVER [34]. In addition, CLEVER𝐸𝑛𝑠. [34] com-
bines the results of RTP [28], Vanilla-FT [23], and CLEVER [34]
through score-level fusion. The results of these methods are ob-
tained from [34].
Implementation Details. Following [34], the bag size is set to
𝑁 = 50. 𝛾 in Gamma-corrected Gated Fusion is empirically set to
3. The AdamW optimizer is employed for training, with an initial
learning rate of 5e-6 and a decay rate of 0.01. Training stops when
no significant gain is observed in 10 consecutive epochs.
Evaluation Metrics. For a fair comparison, the same evaluation
metrics used in [15, 34, 39] are employed, including Area Under
the Curve (AUC and mAUC), F1 score (F1 and mF1), as well
as Precision@2% (P@2% and mP@2%), where ‘m’ denotes ‘per-
relation’ macro evaluation obtained by averaging corresponding
scores across different relations, and ‘P@2%’ represents the pre-
cision of the top 2% retrieved candidates. The AUC and F1 scores
offer one-value evaluations for the model, which are principally
utilized for result analysis in this study.

4.2 Comparison with State-of-the-Art Models
The experimental results of all the compared CKE methods on the
VG-CKE dataset are summarized in Table 1. We have the follow-
ing observations. 1) The proposed method significantly outper-
forms all compared methods in terms of all the evaluation metrics.
Compared to the second-best method, CLEVER𝐸𝑛𝑠 [34], the pro-
posed method achieves the performance gain of 3.48%, 1.37%, 1.14%,
1.71%, 1.27%, and 1.90% in terms of AUC, F1, P@2%, mAUC, mF1,
and mP@2%, respectively. The large performance gains clearly
demonstrate the effectiveness of the proposed method in extract-
ing common entity relations. 2) Note that CLEVER𝐸𝑛𝑠 performs a
score level fusion of three models, RTP [28], Vanilla-FT [23], and
CLEVER [34]. Compared to the previous best-performing single
model, CLEVER [34], the performance gains are much more signifi-
cant, e.g., 7.24%, 2.34%, 2.39%, 2.52%, 0.78%, and 2.68% in terms of six
evaluation metrics. 3) The previous two best-performing language-
based methods, Vanilla-FT [23] and Prompt-FT [14], which uti-
lize the inherent linguistic understanding in pre-trained language
models, yield a poor performance compared to the previous best
performing multi-modal model, CLEVER [34]. Such observation
not only demonstrates the effectiveness of integrating visual and
linguistic information for CKE but also validates the design of the
proposed Multi-modal Cross-domain Feature Learning framework.

The proposed method is visually compared to the previous best-
performing CLEVER [34] in two scenarios. 1) The proposed model
successfully uncovers the entity relations that CLEVER cannot. As
shown in the first column of Fig. 3, the presence of ‘man’, ‘un-
der’, and ‘umbrella’ in both captions enables the proposed method
to successfully predict the ‘under’ relation, while CLEVER [34]
fails to do so. Similar examples can be observed in the next two
columns, which demonstrate the benefits of exploiting general do-
main knowledge in generated captions. 2) The proposedmethod cor-
rectly predicts the relations that CLEVER [34] inaccurately extracts.
As depicted in the fourth column, the proposed method correctly
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Table 1: Comparison with state-of-the-art CKE models on the VG-CKE dataset. The proposed method significantly and
consistently outperforms all the compared methods.

Method AUC F1 P@2% mAUC mF1 mP@2%
RTP (VL Workshop, 2015, [28]) 12.30 23.67 16.65 4.10 8.62 7.34
LAMA (EMNLP, 2019, [25]) 5.97 14.11 12.80 3.84 3.59 5.59
Vanilla-FT (EMNLP, 2020, [23]) 37.28 47.06 44.21 17.75 30.98 17.34
Prompt-FT (EMNLP, 2020, [14]) 37.99 44.43 41.69 20.15 35.37 19.81
ONE (EMNLP, 2015, [39]) 19.69 31.10 25.20 15.70 30.40 12.82
ATT (ACL, 2016, [15]) 17.13 28.37 25.07 2.91 6.09 2.20
AVG (ACL, 2016, [15]) 39.04 47.49 44.34 24.73 41.07 20.83
CLEVER (AAAI, 2023, [34]) 41.92 48.96 45.84 26.57 43.62 22.02
CLEVER𝐸𝑛𝑠. (AAAI, 2023, [34]) 45.68 49.93 47.09 27.38 43.13 22.80
Proposed Method 49.16 51.30 48.23 29.09 44.40 24.70

Entity Pair: (paper, mouth)
CLEVER: in
Proposed: no relation

Caption1: A young girl cutting a 
piece of paper with scissors
Caption2: A person holding a 
slice of pizza in their hand

Entity Pair: (man, umbrella)
Clever: has, holding, near, with
Proposed: behind, has, holding, in, 
near, on, under, with

Caption1: A man standing under an 
umbrella next to a picnic table
Caption2: A man sitting under an 
umbrella on the grass

Entity Pair: (woman, beach)
CLEVER: in, near, on, standing on
Proposed: in, near, on, sitting on, 
standing on

Caption1: A woman sitting on a 
bench in front of a bench
Caption2: A woman and a dog 
sitting on the beach

Entity Pair: (sign, snow)
CLEVER: has, in, on, with
Proposed: above, has, in, 
near, on

Caption: A sign on a rock 
near a snowy mountain

Entity Pair: (arm, fence)
CLEVER: near, on, in, sitting on
Proposed: near, on

Caption1: A woman standing next 
to a fence with a giraffe
Caption2: A giraffe is looking at the 
camera with its tongue out.

Figure 3: Visual comparisonwith CLEVER on the VG-CKE dataset [34]. The proposedmethod accurately extractsmore relational
facts of the specified entity pairs. Facts that were missed by CLEVER but correctly summarized by the proposed methods are
highlighted in green, while relation facts that are inaccurately abstracted by CLEVER are highlighted in red.

identifies that there is no relevant relation between the ‘paper’ and
‘mouth’ entities, while CLEVER [34] wrongly identifies the relation
as ‘in’. Similar examples can be observed in the fifth column. The
improved accuracy can be attributed to the proposed Group Atten-
tion module, which significantly enhances single-instance features,
coupled with the Gamma-corrected Gated Fusion to mitigate noisy
instances.

4.3 Ablation Studies
A set of ablation studies have been carried out to validate the ef-
fectiveness of every novel contribution. Ablation Study of Ma-
jor Modules. An ablation study is carried out on the VG-CKE
dataset [34] to evaluate the three major proposed modules. The
baseline method utilizes CaptionBert [40] to extract the vision-text
features from images and entities, concatenation of all instance fea-
tures, and an MLP for prediction. We gradually replace the feature
extraction module with the proposed Multi-modal Cross-domain

Feature Learning (MCFL), incorporate the Group Attention module
(GA), and replace the concatenation with the proposed Gamma-
corrected Gated Fusion (GGF). The results are summarized in Ta-
ble 2. The following can be observed. 1) Compared to the baseline,
by integrating the general domain knowledge embedded in cap-
tions and exploiting the interactions with other features, significant
performance gains of 2.17%, 0.49%, 0.91%, and 1.02% in AUC, F1,
mAUC, and mF1 are achieved, respectively. 2) By exploiting the
Group Attention, the attention information across images is aggre-
gated based on their semantic interactions and relational similarity.
The AUC, F1, mAUC, and mF1 are hence further improved by 4.86%,
1.57%, 3.29%, and 6.26%, respectively, which are mainly attributed to
the attentive support from other instances to enhance the instance
features. 3) By incorporating the proposed Gamma-corrected Gated
Fusion, the AUC, F1, mAUC, and mF1 are further boosted by 0.43%,
0.95%, 2.23% and 0.59%, respectively, as the proposed GGF better
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fuses these instance features for commonsense knowledge extrac-
tion and mitigates the influence of the mislabeled instances. These
ablation results demonstrate the effectiveness of all three proposed
major modules.

Table 2: Ablation study of major components of the proposed
method on the VG-CKE dataset [34].

MCFL GA GGF AUC F1 mAUC mF1
✗ ✗ ✗ 41.66 48.29 22.66 36.53
✓ ✗ ✗ 43.83 48.78 23.57 37.55
✓ ✓ ✗ 48.69 50.35 26.86 43.81
✓ ✓ ✓ 49.16 51.30 29.09 44.40

Ablation Study of the MCFL Module. In the previous ablation
study, it has been shown that the proposed Multi-modal Cross-
domain Feature Learning module could bring significant perfor-
mance gain over the baseline method. The proposed MCFL incor-
porates three branches of features in multi-modal learning. An
ablation study is hence conducted to evaluate the effectiveness
of utilizing the three branches of features. Visual features 𝑽 with
entity embeddings 𝑬 serve as the baseline (Denoted as ‘VE’). The
combination of entity embeddings 𝑬 and caption embedding 𝑪 is
denoted as ‘EC’ and the combination of 𝑽 , 𝑬 and 𝑪 is denoted as
‘VEC’. As shown in Table 3, the proposed MCFL brings performance
gain by utilizing all three branches of multi-modal features.

Table 3: Ablation study of the proposed MCFL module on the
VG-CKE dataset [34].

VE EC VEC AUC F1 mAUC mF1
✓ ✗ ✗ 41.66 48.29 22.66 36.53
✓ ✓ ✗ 41.98 48.45 23.06 37.03
✓ ✗ ✓ 43.55 48.48 23.25 37.14
✓ ✓ ✓ 43.83 48.78 23.57 37.55

Ablation Study of the Group Attention module. The effec-
tiveness of the Group Attention module has been verified in the
ablation study in Table 2, where we demonstrate that the proposed
GA effectively exploits the attentive information from a group of
instances to enhance the description ability of individual instances.
To further demonstrate the effectiveness of the Group Attention
module, we compare it with different cross-instance methods and
summarize the experimental results in Table 4. ‘MLP-Instance’ [38]
applies MLPs on features of each individual instance to boost its
description power. ‘MLP-Token’ [6] applies MLPs to each individual
feature across instances. ‘MLP-All’ [32] combines the two aforemen-
tioned methods. ‘BasicATT’ [16] aggregates information from other
instances with weights determined by feature similarity through
an attention mechanism. As shown in Table 4, the proposed GA
significantly surpasses all the compared methods.
Ablation Study of FusionMethods. The proposed fusion method
is compared with four feature-level fusion methods and two score-
level fusion methods, e.g., ‘Feature-Concat’ represents the concate-
nation of all instance features, and ‘Feature-GatedFusion’ represents
gated fusion [26]. The remaining components and settings remain

Table 4: Ablation study of Group Attention module on the
VG-CKE dataset [34].

Cross-instance Method AUC F1 mAUC mF1
MLP-Instance [38] 46.26 49.21 24.27 38.10
BasicATT [16] 46.33 49.32 25.00 38.60
MLP-Token [6] 48.01 49.96 24.06 36.35
MLP-All [32] 48.29 50.69 27.34 41.29
Proposed GA 49.16 51.30 29.09 44.40

unchanged. The ablation results are summarized in Table 5. The
proposed method consistently and significantly outperforms all
the compared fusion methods. The performance gains are large
compared to the score-level fusion methods. In particular, com-
pared to ‘Feature-GatedFusion’, it achieves performance gains of
0.93%, 0.35%, 1.13%, and 1.90% in terms of AUC, F1, mAUC, and
mF1, respectively, demonstrating the effectiveness of the proposed
fusion method.

Table 5: Ablation study of various fusion methods.

Fusion Method AUC F1 mAUC mF1
Feature-Concat 48.69 50.35 26.86 43.81
Feature-GatedFusion 48.23 50.95 27.96 42.50
Feature-MaxPooling 46.89 50.56 26.95 41.98
Feature-AvgPooling 45.86 50.18 27.21 42.25
Score-AvgPooling 45.79 49.68 27.66 43.53
Score-MaxPooling 43.24 48.23 26.81 42.12
Proposed GGF 49.16 51.30 29.09 44.40

4.4 Failure Case Analysis
We further analyze the failure cases and categorize them into two
types. 1) Type-I failures comprise triplets that are not labeled in the
VG-CKE dataset but can be inferred from the images. For instance,
in the first case, the relational triplets (woman, ‘in front of’/‘with’,
‘elephant’) are reasonably summarized by the proposed method, yet
not predicted by CLEVER [34] nor included in the ground-truth
annotations. In the second case, the proposed method soundly in-
fers the relations between the ‘sign’ and ‘fence’ as ‘in front of’, and
‘on’, while CLEVER [34] only identifies the additional relationship
of ‘in front of’. The instances are retrieved by automatically align-
ing relational facts from knowledge bases to the Visual Genome
dataset [10] through distant supervision, and hence there may be
missing labels. Despite the challenges, the proposed method cor-
rectly identifies these relations from images. Similar cases can be
observed in columns 3 to 5 in Fig. 4. 2) Type-II failures consist of
incorrectly recognized relational facts by the proposed method. As
shown in the first column of Fig. 5, the relation ‘has’, ‘on’, ‘under’,
and ‘with’ are summarized by our model, but they are not labeled in
the VG-CKE dataset. Other relational facts of ‘behind’ and ‘of’ for
the entity pair (track, man), ‘in’ for the entity pair (bike, car), ‘on’
for (person, book) and ‘has’ for (mountain, face) are also erroneously
inferred by both the proposed model and CLEVER [34], as evident
from the respective images in Fig. 5.
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Figure 4: Visualization of Type-I failures. The relations not labeled in the VG-CKE dataset [34] but reasonably identified by the
proposed method or CLEVER are underlined. Compared to CLEVER, the proposed method discovers more new reasonable
relations while minimizing the error rates.

Figure 5: Visualization of Type-II failures. The predicted relations mismatched with the ground truth are highlighted in red.

5 CONCLUSION
Commonsense knowledge extraction remains challenging due to
limited retrieved instances and diverse relational facts. The pro-
posed MCFL better exploits the entity relations from multiple
sources, where linguistic features extracted from captions gener-
ated by the large vision-language model ViT-GPT2 well supplement
relational facts in addition to visual features of retrieved images and
linguistic features of entities. These three pairs of features extract

multi-modal cross-domain vision-language features. The proposed
Group Attention module exploits the attentive support from other
instances in the group to boost the instance features. Lastly, the pro-
posed Gamma-correct Gated Fusion effectively aggregates all the
instance features to collectively derive the commonsense relations
and mitigates the mislabeled instances. Extensive experimental re-
sults on the VG-CKE dataset show the superior performance of the
proposed method in commonsense knowledge extraction.
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