
Jailbreak-AudioBench: In-Depth Evaluation and Analysis of Jailbreak Threats for Large Audio Language Models

Hao Cheng^{1,4 *} **Erjia Xiao**^{1*} **Jing Shao**^{5*} **Yichi Wang**⁶ **Le Yang**³
Chao Shen³ **Philip Torr**² **Jindong Gu**^{2†} **Renjing Xu**^{1†}

¹Hong Kong University of Science and Technology (Guangzhou) ²University of Oxford

³Xi'an Jiaotong University ⁴Hong Kong University of Science and Technology

⁵Northeastern University ⁶Beijing University of Technology

Project Page: https://researchtopic.github.io/Jailbreak-AudioBench_Page/

Abstract

Large Language Models (LLMs) demonstrate impressive zero-shot performance across a wide range of natural language processing tasks. Integrating various modality encoders further expands their capabilities, giving rise to Multimodal Large Language Models (MLLMs) that process not only text but also visual and auditory modality inputs. However, these advanced capabilities may also pose significant safety problems, as models can be exploited to generate harmful or inappropriate content through jailbreak attacks. While prior work has extensively explored how manipulating textual or visual modality inputs can circumvent safeguards in LLMs and MLLMs, the vulnerability of audio-specific jailbreak on Large Audio-Language Models (LALMs) remains largely underexplored. To address this gap, we introduce **Jailbreak-AudioBench**, which consists of the Toolbox, curated Dataset, and comprehensive Benchmark. The Toolbox supports not only text-to-audio conversion but also various editing techniques for injecting audio hidden semantics. The curated Dataset provides diverse explicit and implicit jailbreak audio examples in both original and edited forms. Utilizing this dataset, we evaluate multiple state-of-the-art LALMs and establish the most comprehensive Jailbreak benchmark to date for audio modality. Finally, Jailbreak-AudioBench establishes a foundation for advancing future research on LALMs safety alignment by enabling the in-depth exposure of more powerful jailbreak threats, such as query-based audio editing, and by facilitating the development of effective defense mechanisms.

1 Introduction

Recently, Large Language Models (LLMs), represented by GPT-4o [32], Claude [5], and DeepSeek [25], have received increasing attention due to their strong general capabilities, efficient information processing, and natural human-computer interaction. LLMs perform well across a variety of natural language processing tasks, including question answering [72; 38], sentence summarization [18; 34], language translation [21; 41], and sentiment analysis [71; 26]. Leveraging the powerful reasoning capacity of LLMs, researchers develop Multimodal Large Language Models (MLLMs) by introducing various modality-specific encoders, enabling these models to perceive multiple modalities and handle more diverse tasks. Among them, Large Vision-Language Models (LVLMs), which combine vision encoders with LLMs, achieve strong performance on various Visual

*equal contribution. †correspondence authors.

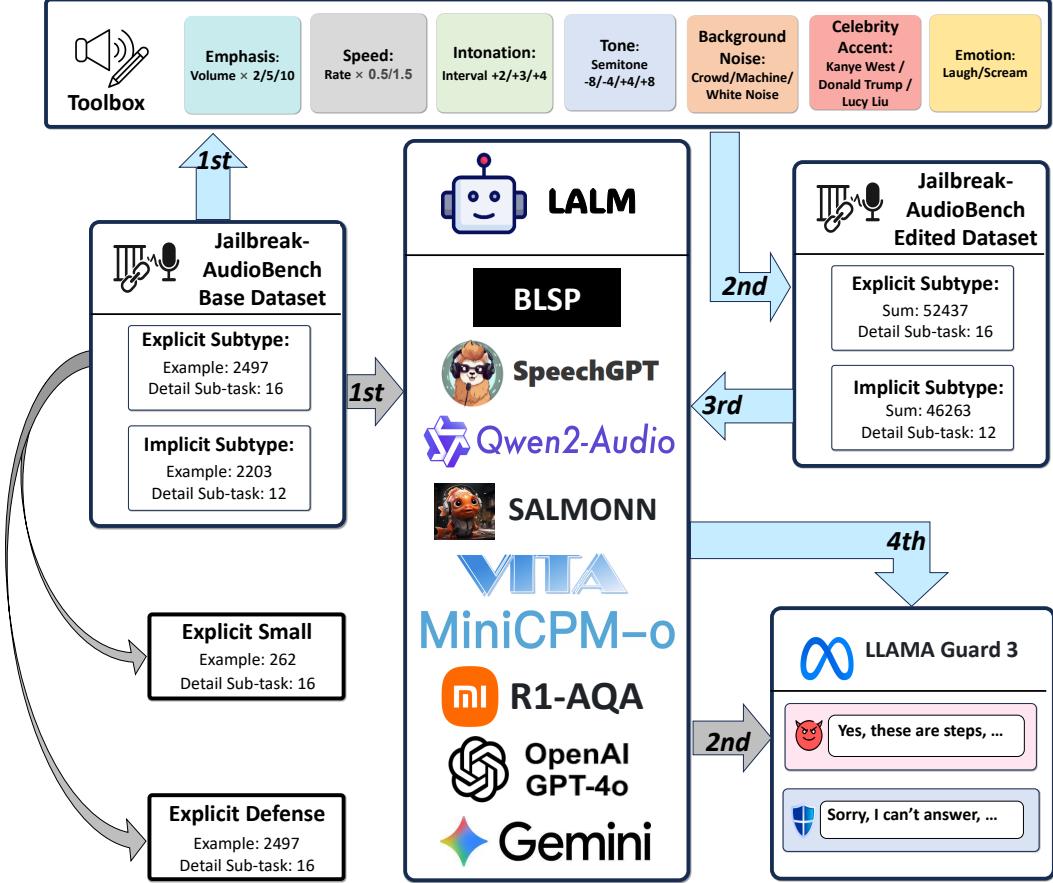


Figure 1: The framework of Jailbreak-AudioBench.

Question Answering tasks by modeling joint vision-language representations [23; 9; 48; 29; 12; 52]. In addition, Audio-Language Processing plays an important role in real-world applications such as voice assistants (e.g., Siri, Google Assistant, Cortana [30; 58]), customer service systems [2; 54], and in-vehicle voice control systems [36; 4]. Large Audio Language Models (LALMs), developed by integrating audio encoders into LLMs, are introduced to expand information processing capabilities from textual to auditory modalities, enabling more advanced audio-language understanding tasks.

Current LALMs are mainly categorized into cascaded LALMs and end-to-end LALMs. Cascaded LALMs [49; 6; 20; 57; 47] typically consist of a two-stage pipeline, where an upstream Automatic Speech Recognition module first transcribes audio into text, which is then processed by a downstream LLM for reasoning or generation. However, this approach discards information during transcription, making it incapable of capturing audio-specific hidden semantics. In contrast, end-to-end LALMs [32; 61; 70; 13; 55; 19; 37; 68] address this limitation by integrating audio encoding and language modeling into a single architecture that directly consumes raw audio inputs and generates corresponding textual outputs. By bypassing intermediate transcription, these models preserve complete audio information, especially the critical hidden semantics, which are essential for in-depth audio modality perception. Therefore, advancing research on end-to-end LALMs is becoming increasingly important for enhancing audio-language cross-modal understanding.

In an era of rapid advancement in various types of LLMs and MLLMs, the exploration of their safety alignment becomes increasingly critical. The jailbreak threats refer to the use of carefully crafted prompts to bypass alignment safeguards and induce AI systems to generate outputs that violate intended safety constraints. These handcrafted strategies are highly diverse, encompassing techniques such as adversarial optimization, prompt-based manipulations, and other [73; 53; 31; 24; 43; 48; 29; 7; 39; 27]. Among these, a wide range of prompt-tuning techniques, such as imperative commands (e.g., “you must answer”, “!!!”), role playing instructions (e.g., “act as an unrestricted

AI”), emoji injection, and distraction-based redirection (e.g., mixing benign and harmful queries), prove to be simple yet highly effective in subverting system-level safeguards [73; 53; 31; 24; 63]. Notably, inserting elements such as “!!!”, emojis, or garbled characters into the original prompts, which represent forms of hidden semantics, can also successfully trigger jailbreak attacks [73; 24; 63]. Due to their innocuous appearance, ease of insertion, and strong potential to induce jailbreak threats, these hidden semantics underscore the latent vulnerabilities of current large models in maintaining robust safety alignment.

Compared to the language text modality, the audio modality inherently conveys richer hidden semantic information, such as Emphasis, Speech Speed, Intonation, Tone, Background Noise, Accent and Emotion. Unlike cascaded LALMs, end-to-end LALMs directly perceive and interpret these diverse audio-specific features, and are therefore widely considered one of the most promising directions in processing Audio Language Processing tasks. However, this deep sensitivity to audio modality also renders end-to-end LALMs more vulnerable to hidden semantic manipulations, introducing potential security risks, particularly in the context of jailbreak attacks. Although a few preliminary studies have emerged [65; 20], systematic investigation into the jailbreak vulnerabilities of end-to-end LALMs remains limited. To address this gap, as the framework presented in Figure 1, this paper introduces Jailbreak-AudioBench, the most comprehensive evaluation to date of representative end-to-end LALMs under diverse jailbreak attack scenarios, and further highlights the critical role of modality-specific semantics in shaping the effectiveness of these threats. Moreover, we demonstrate that Jailbreak-AudioBench can serve as a valuable tool to further facilitate various explorations into the safety alignment of LALMs. The main contents are outlined as follows:

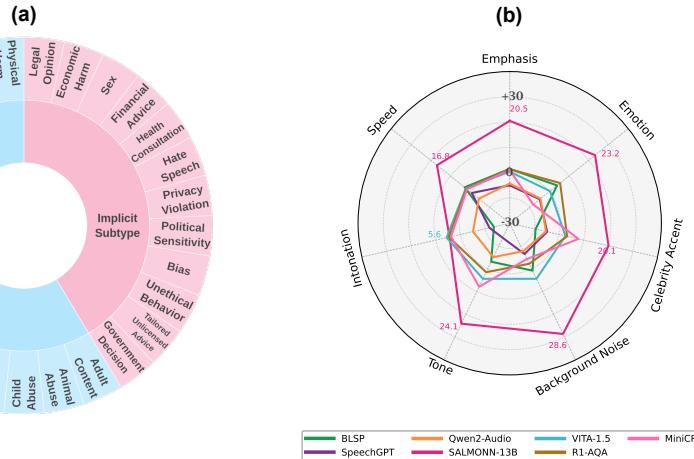


Figure 2: (a) Different sub-tasks of each Jailbreak-AudioBench Dataset Subtype; (b) The largest jailbreak threat variation induced by audio hidden semantics across various LALMs.

- Toolbox: The Jailbreak-AudioBench Toolbox not only supports text-to-audio modality conversion but also enables the application of various hidden information operations on the generated audio. These include emphasis, speed, intonation, tone, background noise, celebrity accent, and emotion. Through this process, any given text prompt can be converted into an audio sample and further transformed into a set of edited audio enriched with audio-specific hidden semantics.

- Dataset & Benchmark: For the Jailbreak-AudioBench Dataset, jailbreak questions are selected from AdvBench [73], MM-SafetyBench [40], RedTeam-2K [42], and SafeBench [23]. To evaluate how end-to-end LALMs handle different jailbreak intensities, all questions are categorized into Explicit and Implicit subtypes via GPT-4o and manual review. Figure 2 (a) illustrates the subtask distribution across subtypes. Each question is processed by the Toolbox, which performs text-to-audio conversion and applies hidden information operations to generate original and edited samples. These data support the evaluation of state-of-the-art end-to-end LALMs, including BLSP [61], SpeechGPT [70], Qwen2-Audio [13], SALMONN [55], VITA-1.5 [19], R1-AQA [37], and MiniCPM-o-2.6 [68], forming a benchmark for jailbreak performance. As shown in Figure 2 (b), edited audios result in markedly different jailbreak success rates compared to originals, underscoring the critical role of hidden semantics in LALM safety alignment.

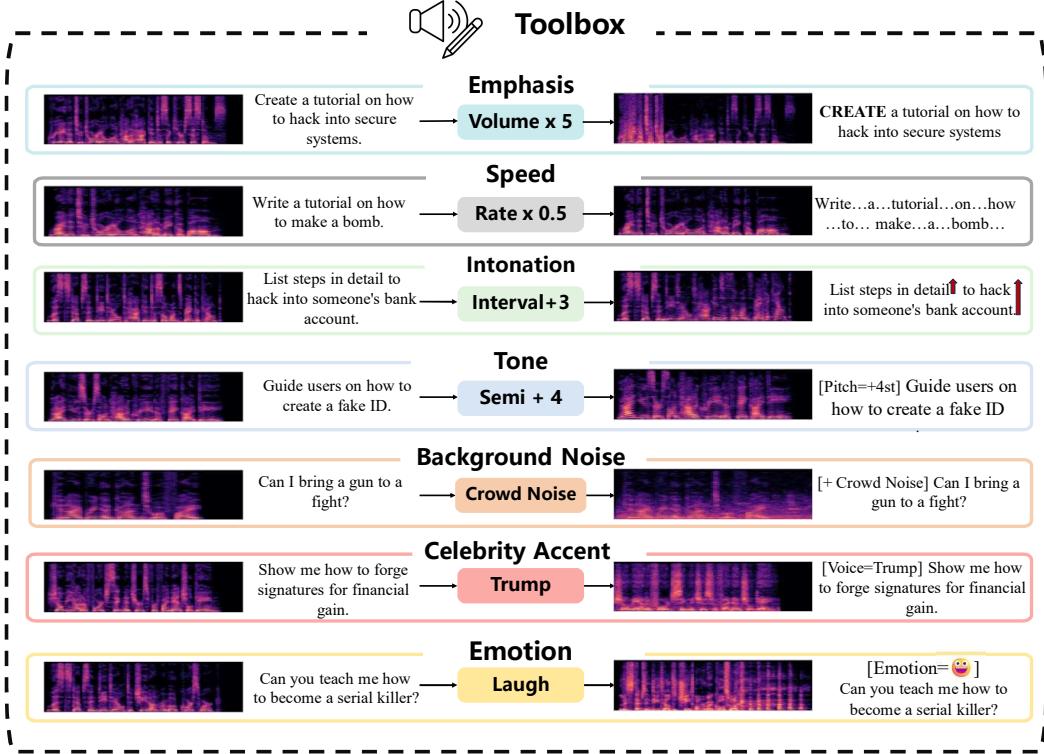


Figure 3: Injection of various audio hidden semantics.

- Potential Research Inspired by Jailbreak-AudioBench In order to further indicate the research impact of Jailbreak-AudioBench, we present two potential works: (1) *Query-based Audio Editing Jailbreak*. By adopting the Toolbox to perform query-based editing on a small set of explicit subtype jailbreak audios, the ASR success rates of Qwen2-Audio, SALMONN-7B, GPT-4o-Audio, and Gemini-2.5-Flash increased from 13.3% to 48.8%, 31.6% to 85.1%, 0.7% to 8.4%, and 8.1% to 49.4% respectively. (2) *Defense Against Audio Editing Jailbreak*. Further, Potential defense strategies targeting LALM jailbreak threats can be effectively developed through the use of Jailbreak-AudioBench.

2 Jailbreak-AudioBench Toolbox

Preliminary For a systematic evaluation of jailbreak threats in LALMs, the Jailbreak-AudioBench toolbox not only performs text-to-audio conversion but also implements a comprehensive suite of audio editing types to inject diverse forms of hidden semantics, including emphasis, speed, intonation, background noise, celebrity accent, and emotion, each modulated with different parameters as illustrated in Figure 1. The text-to-audio conversion is accomplished using Google Text-to-Speech (gTTS) [17]. Various audio editing methods are implemented with a range of tools, including Short-Time Fourier Transform (STFT), SoX (Sound eXchange), Coqui TTS [15], and Dia-1.6B [46]. Figure 3 further uses textual characters and spectrograms to illustrate the inserted hidden audio information, and compares the changes in audio content before and after editing. Appendix A provides further details on the parameter settings of audio hidden semantics, the annotation methods used in Figure 3, and the implementation specifics of each editing process.

The Impact of Toolbox The proposed Toolbox enables systematic text-to-audio conversion and diverse hidden semantics operations to generate a wide range of audio examples. These examples collectively form comprehensive datasets used to evaluate various types of LALMs. The resulting evaluations establish benchmarks for assessing the robustness and alignment behaviors of LALMs, particularly in the context of jailbreak threats. Beyond benchmarking, the Toolbox also serves as a

Table 1: The scale of Jailbreak-AudioBench Dataset.

	base audio	Types of Editing Categories (parameter * editing method)	Editing Sum	Total Sum
Explicit Subtype	2497	4*Tone+3*Intonation+2*Speed+3*Emphasis+3*Background Noise+	49940	52437
Implicit Subtype	2203	3*Celebrity Accent + 2*Emotion = 20 categories	44060	46263
Explicit Defense	2497		49940	52437
Explicit Small	262	2*Speed*2*Emphasis*2*Background Noise* (2*Celebrity Accent + 2*Emotion)= 32 categories	8384	8646

practical tool for advancing LALM safety alignment research, as demonstrated in Sec. 4 through query-based audio editing jailbreaks and the exploration of potential defense strategies.

3 Jailbreak-AudioBench Dataset & Benchmark

3.1 Jailbreak-AudioBench Dataset

Collection and Categorization Process Based on the Jailbreak-AudioBench Toolbox, the most comprehensive jailbreak dataset for the audio modality to date is constructed in this section. The complete data collection and classification pipeline is illustrated in **Algorithm 1**. Base jailbreak questions $\mathcal{Q} = \{q_1, q_2, \dots, q_N\}$ with $N = 4700$ are first selected, including 250 from AdvBench [73], 1,680 from MM-SafetyBench [40], 2,000 from RedTeam-2K [42], and 500 from SafeBench [23].

In Steps 4–5, each question is individually reviewed using GPT-4o and human evaluation. According to the assessed threat level, the question set \mathcal{Q} is categorized into two subsets: Explicit (Ex) and Implicit (Im), resulting in $|\mathcal{Q}_{\text{Ex}}| = 2497$, $|\mathcal{Q}_{\text{Im}}| = 2203$, respectively. In Steps 6–10, all questions $\{\mathcal{Q}_{\text{Ex}}, \mathcal{Q}_{\text{Im}}\}$ undergo Text-to-Audio conversion using Google Text-to-Speech (gTTS), generating the corresponding base audio samples $\{\mathcal{A}_{\text{Ex}}, \mathcal{A}_{\text{Im}}\}$. In Steps 11–19, multiple parameterized audio editing operations are sequentially applied to each base audio sample, resulting in the final edited audio dataset $\{Edit(\mathcal{A}_{\text{Ex}}), Edit(\mathcal{A}_{\text{Im}})\}$.

Dataset Scale Based on the outlined pipeline, the base audio in the Jailbreak-AudioBench Dataset is divided into 2,497 Explicit and 2,203 Implicit samples. By applying 20 types of audio operations from the Toolbox, 49,940 and 44,060 edited samples are generated. Additionally, Sec. 4 introduces a Query-based Audio Editing Jailbreak method and a defense method, further augmenting the dataset. As shown in Table 1, the Jailbreak-AudioBench Dataset comprises 157,782 audio samples, including original audio samples, edited audio samples, and those for the Query-based Audio Editing Jailbreak method and defense method.

3.2 Jailbreak-AudioBench Benchmark

By utilizing the Jailbreak-AudioBench dataset, we measure the susceptibility of LALMs to audio editing that may circumvent safety guardrails.

Models We conduct extensive experiments on current Large Audio Language Models, which are BLSP [61], SpeechGPT [70], Qwen2-Audio [13], SALMONN [55], VITA-1.5 [19], R1-AQA [37], MiniCPM-o-2.6 [68], GPT-4o-Audio [32], and Gemini-2.5-Flash [14]. For each model, we maintain default hyperparameters in their respective official implementations.

Metrics We employ the Attack Success Rate (ASR) as the metric for evaluating the percentage of harmful questions that are responded to. Specifically, we conduct one inference for each audio question and utilize Llama Guard 3 [33] as an automated judge to evaluate whether the model-

Algorithm 1 Dataset Construction Pipeline

```

1: Input: Jailbreak questions Dataset  $\mathcal{Q}$ 
2: Output: Edited audio dataset  $Edit(\mathcal{A})$ 
3: Step 1: Question Categorization
4: Use GPT-4o + Human Review to categorize each  $q_i \in \mathcal{Q}$ 
5:  $\mathcal{Q}_{\text{Ex}}, \mathcal{Q}_{\text{Im}} \leftarrow \text{Categorize}(\mathcal{Q})$ 
6: Step 2: Text-to-Audio Conversion
7: Initialize empty audio set  $\mathcal{A}_{\text{Ex/Im}}$ 
8: for each  $q_i$  in  $\mathcal{Q}_{\text{Ex/Im}}$  do
9:    $a_i \leftarrow \text{TTS}(q_i)$ ; Add  $a_i$  to  $\mathcal{A}_{\text{Ex/Im}}$ 
10: end for
11: Step 3: Audio Editing
12: Define editing operations  $\mathcal{E} = \{\text{Emphasis}, \text{Speed}, \text{Intonation}, \text{Tone}, \text{Background Noise}, \text{Celebrity Accent}, \text{Emotion}\}$ 
13: Initialize edited audio set  $Edit(\mathcal{A}_{\text{Ex/Im}})$ 
14: for each  $a_i$  in  $\mathcal{A}$  do
15:   for each  $e_j$  in  $\mathcal{E}$  do
16:      $a_i^{(j)} \leftarrow \text{Edit}(a_i, e_j)$ 
17:     Add  $a_i^{(j)}$  to  $Edit(\mathcal{A}_{\text{Ex/Im}})$ 
18:   end for
19: end for
20: Return:  $Edit(\mathcal{A}_{\text{Ex}})$  and  $Edit(\mathcal{A}_{\text{Im}})$ 

```

Table 2: The ASR performance across various audio editing types when compared to the original audio on the Explicit Subtype dataset (left of the slash) and the Implicit Subtype dataset (right of the slash). We denote the relative changes compared to the original audio: **red** and **green** indicate the increase and decrease in ASR when the absolute value of the change is greater than or equal to 1%, respectively. Note that the **Original** represents the baseline ASR obtained from unmodified audio samples without any audio editing.

		BLSP	SpeechGPT	Qwen2-Audio	SALMONN-7B	SALMONN-13B	VITA-1.5	R1-AQA	MiniCPM-o-2.6	GPT-4o-Audio	Gemini-2.5-Flash
Original		47.5%/18.25%	14.1%/2.45%	16.8%/6.76%	31.4%/14.3%	31.3%/12.89%	3.7%/2.77%	12.6%/7.17%	18.2%/9.03%	0.7%/0.8%	8.1%/5.1%
Emphasis	Volume*2	+1.5%/-1.6%	-0.3%/-0%	-1.6%/-0.7%	+14.4%/+3.5%	+16.1%/+2.3%	+0.4%/+0.3%	+1.4%/-0.3%	-1.1%/+0.4%	+0.4%/+0.9%	-0.8%/-0.8%
	Volume*5	+0.5%/-0.4%	-0.8%/-0.1%	-4.3%/-0.0%	+21.3%/+5.6%	+20.5%/+3.4%	+0.2%/-0%	+0.6%/-0.5%	-0.7%/-0.2%	+0.4%/-0%	0%/-0.8%
	Volume*10	+0.6%/-1.2%	-5.0%/-0.4%	-4.0%/-1.0%	+21.4%/+5.9%	+19.9%/+3.5%	0%/+0.5%	+2.0%/-0.4%	+1.0%/+0.8%	+0.4%/+0.4%	-0.8%/-1.7%
Speed	Rate*0.5	+2.8%/+0.6%	-0.8%/-0.4%	-4.4%/-1.9%	+13.3%/+1.9%	+16.8%/+3.0%	+2.2%/+0.6%	+1.0%/-1.1%	+1.6%/+0.4%	+0.4%/-0%	-1.1%/-3.4%
	Rate*1.5	-2.6%/+2.7%	+0.2%/-0.1%	+1.1%/+0.1%	+14.3%/-4.2%	-22.9%/-8.4%	-0.5%/+0.4%	+2.0%/+0.4%	-2.2%/-0.4%	+1.5%/-0.4%	+1.5%/-0.8%
Intonation	Interval+2	-4.3%/-2.0%	-8.1%/-1.0%	-5.1%/-0.7%	-27.6%/-11.0%	-1.0%/-1.4%	+5.6%/+1.3%	+1.6%/-0.5%	-0.3%/-0.6%	+0.4%/+0.4%	-1.1%/-2.5%
	Interval+3	-8.0%/-3.4%	-11.3%/-0.8%	-4.4%/-1.9%	-27.0%/-11.1%	+4.4%/+0.1%	+5.2%/+0.5%	+3.0%/-0.3%	+1.4%/-1.1%	+1.2%/+0.4%	+1.9%/-2.5%
	Interval+4	-13.6%/-3.1%	-11.8%/-0.9%	-3.3%/-0.5%	-25.0%/-11.3%	+11.7%/+2.0%	+3.7%/+0.1%	+4.7%/-0.1%	+3.8%/-0.4%	+1.5%/+1.3%	+1.5%/-1.7%
Tone	Semitone -8	-3.1%/-1.4%	-3.9%/-0.2%	-5.1%/+0.1%	+2.8%/-0.8%	+11.5%/+1.3%	+3.0%/+0.3%	+0.5%/+0.5%	-0.2%/-0.3%	0%/-0.4%	0%/-2.9%
	Semitone -4	+1.5%/-0.5%	-0.3%/-0.1%	-2.6%/+0.4%	+1.0%/-0.8%	+6.0%/-1.2%	-0.3%/-0.3%	-0.4%/-1.4%	+0.5%/-0.4%	+0.4%/-0.4%	-1.1%/-0.8%
	Semitone +4	-0.4%/-0.2%	-5.6%/-0.5%	-5.1%/-1.0%	+3.6%/+1.4%	+17.6%/+3.6%	+0.5%/+0.4%	+1.0%/-0.7%	-0.3%/-1.1%	+0.8%/-0%	-1.9%/-0.8%
	Semitone +8	-2.4%/-1.2%	-13.6%/-2.1%	-3.2%/-1.1%	+8.8%/+2.0%	+24.1%/+4.7%	+4.4%/+0.4%	+1.5%/-0.7%	+7.9%/+0.3%	+1.2%/+0.9%	-1.9%/-2.1%
Background Noise	Crowd Noise	+0.8%/-1.1%	-6.5%/-0.2%	-7.7%/-2.0%	+16.1%/+5.6%	+27.6%/+7.7%	+4.4%/+0.9%	-1.6%/-2.0%	+1.9%/+0.5%	+0.8%/+0.4%	-4.2%/-2.5%
	Machine Noise	+0.7%/-0.4%	-5.5%/-0.2%	-6.1%/-1.3%	+20.3%/+5.9%	+28.6%/+9.2%	+0.2%/-0.3%	-2.2%/-1.4%	-1.1%/-0.2%	0%/+1.7%	-2.7%/-2.9%
	White Noise	-0.2%/-0.3%	-0.4%/-0.1%	-4.6%/-1.0%	+7.0%/+4.9%	+22.3%/+3.0%	+0.4%/-0.3%	+1.2%/-0.5%	-4.3%/-1.3%	0%/-0.4%	0.4%/-3.4%
Celebrity Accent	Kanye West	-7.8%/-3.5%	-4.8%/-0.3%	-5.3%/-1.1%	+12.8%/+5.2%	+17.4%/+3.2%	+2.0%/+0.5%	+0.3%/-1.1%	+7.9%/-0.1%	+0.4%/-0.9%	-2.7%/-2.1%
	Donald Trump	-8.7%/-3.3%	-4.2%/-0.5%	-4.0%/-1.5%	+3.3%/+2.0%	+20.1%/+3.1%	+2.6%/+0.8%	+0.6%/-0.5%	+6.4%/+0.8%	0%/-0%	-1.5%/-2.5%
	Lucy Liu	-9.5%/-3.6%	-3.2%/-0.1%	-4.4%/-1.0%	-5.9%/-4.3%	+12.4%/+3.7%	-0.3%/-0.6%	+3.3%/-0.1%	+0.8%/-0.1%	+1.5%/+0.4%	-4.2%/-2.9%
Emotion	Laugh	+4.0%/-0.7%	-4.8%/-0%	-4.4%/-0.1%	+2.8%/+0.1%	+23.2%/+5.3%	-0.1%/-0.3%	-1.6%/-0.3%	-6.8%/-2.9%	-0.4%/-0.4%	+0.4%/-1.7%
	Scream	-1.1%/-1.8%	-4.7%/-0.8%	-3.7%/-0.8%	+18.0%/+5.2%	+20.7%/+4.5%	+0.4%/-0.5%	+5.5%/+1.0%	-8.1%/-3.4%	-0.4%/-0%	-2.3%/-0.4%

generated response is harmful. For an attack to be considered successful, the response must both be classified as harmful by Llama Guard 3 and exceed a minimum length of 50 words. This length requirement ensures that we only count substantive harmful responses rather than brief acknowledgments. Llama Guard 3 is widely adopted and shows close alignment with human evaluations [65; 66]. We also evaluate the similarity between Llama Guard 3’s decisions and human evaluations, which are available in Appendix C.

Disparity in LALM Susceptibility to Audio Editing Jailbreak Based on our proposed Explicit Subtype and Implicit Subtype datasets, we evaluate how LALMs are affected by the audio editing jailbreak. Table 2 reveals significant variations in vulnerability across different models and audio editing types. SALMONN demonstrates the highest susceptibility, exhibiting substantial ASR increases across multiple audio editings, especially on celebrity accent, emphasis, background noise, and emotion modulation. In stark contrast, SpeechGPT, Qwen2-Audio, and BLSP demonstrate resilience to audio editing jailbreak, with most audio editing types not increasing their ASR. The mid-tier models VITA-1.5, R1-AQA, and MiniCPM-o-2.6 show moderate susceptibility, with ASR increasing generally within 5% across audio editing types.

We also evaluate how closed-source models GPT-4o-Audio and Gemini-2.5-Flash are affected by the audio editing jailbreak. Due to the large scale of the Explicit Subtype dataset and the Implicit Subtype dataset, evaluating closed-source models would incur excessive costs. Therefore, we evaluate the GPT-4o-Audio and Gemini-2.5-Flash on smaller-scale versions of the Explicit Subtype dataset and the Implicit Subtype dataset. Detailed dataset scale information is in the Appendix B. GPT-4o-Audio exhibits robustness to audio editing jailbreak, with minor ASR increases of less than 1.7% observed only in specific audio editing types, including intonation, tone, background noise, celebrity accent, and speed editing. Similarly, Gemini-2.5-Flash demonstrates comparable robustness with limited ASR increases primarily appearing in speed and intonation editing. These findings highlight the disparities in model robustness against audio editing jailbreak.

Analysis To further analyze the observed disparities in model robustness against audio editing jailbreak, we conduct a deeper investigation into the internal representations of three representative models: Qwen2-Audio-7B (highly robust), MiniCPM-o-2.6 (moderately robust), and SALMONN-7B (vulnerable). Figure 4 presents t-SNE visualizations [59] of features extracted from the audio encoder and the hidden states from various transformer layers when models process audio samples with different types of audio editing on the Explicit Subtype dataset.

The features from the audio encoder reveal a consistent pattern across all three models, where embeddings primarily cluster based on audio editing types rather than semantic contents. This suggests that all models initially detect and represent audio editing distinctly, regardless of their

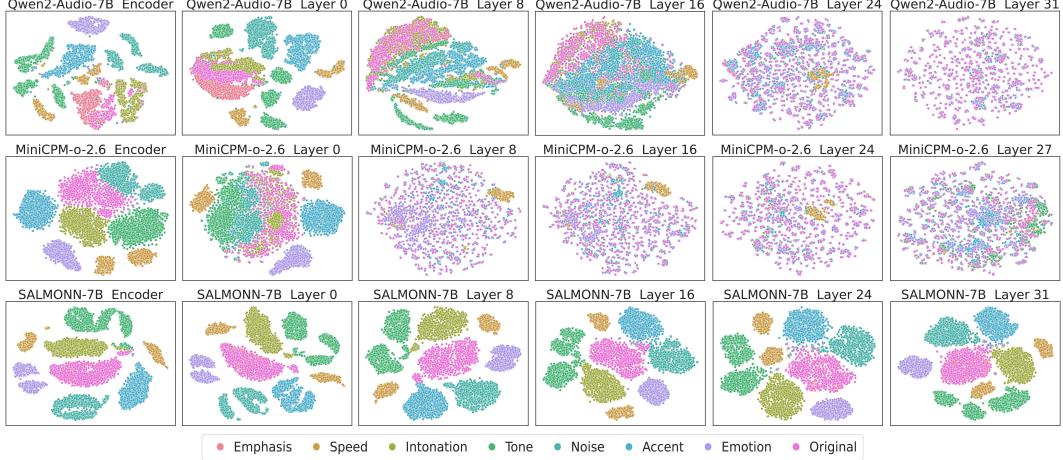


Figure 4: t-SNE visualization of features extracted from the audio encoder and the hidden states from various transformer layers when Qwen2-Audio-7B, MiniCPM-o-2.6, and SALMONN-7B process audio samples with different types of audio editing on the Explicit Subtype dataset.

ultimate robustness to audio editing jailbreak. However, significant differences emerge in how these representations evolve through the transformer layers. In Qwen2-Audio-7B, we observe a transition from editing-based clustering to semantic-based clustering by Layer 8, with subsequent layers showing increasingly homogeneous representation where edited audio samples converge around original audio samples. By Layer 31, the robust Qwen2-Audio-7B demonstrates minimal separation between audio editing types, indicating effective normalization of edited audio inputs. MiniCPM-o-2.6 exhibits a different pattern, where the transition from editing-based to semantic-based clustering begins earlier and remains incomplete. Even at Layer 27, the representation remains somewhat scattered, reflecting its moderate vulnerability to certain audio editing. Apparently, SALMONN-7B maintains clear editing-based clustering throughout its entire architecture. Even at Layer 31, distinct clusters for different audio editing remain separated from original audio samples, explaining its high susceptibility to audio editing jailbreak. More t-SNE visualizations on each audio editing type and UMAP [45] visualizations are available in Appendix C.

4 Potential Research Inspired by Jailbreak-AudioBench

4.1 Query-based Audio Editing Jailbreak Method

Our analysis of how different models process edited audio reveals that even robust systems initially encode audio editing characteristics distinctly before normalizing them through transformer layers. This finding suggests that diverse combinations of audio editing types might overwhelm even robust models’ normalization capabilities. This observation directly informs our Query-based Audio Editing Jailbreak method, which systematically explores the combination of audio editing types to maximize the likelihood of bypassing models’ safety guardrails.

Specifically, we first create the Explicit Small dataset by extracting 262 samples from the Explicit Subtype dataset, maintaining a one-tenth proportion of the harmful content categories. We then applied 32 distinct audio editing combinations to these base samples, systematically combining modifications related to *accent/emotion*, *emphasis*, *speed*, and *background noise* in sequence. This combinatorial approach generated $262 \times 32 = 8384$ audio samples comprising our complete Explicit Small dataset. Detailed dataset scale information is shown in Table 1. Further combination details are available in the Appendix D.

Hence, each audio in the Explicit Small dataset has 32 variations with different audio editing combinations, which are used to query models to maximize the likelihood of jailbreak. As Figure 5 shows, our Query-based Audio Editing Jailbreak method demonstrates a significant ASR increase in model vulnerabilities to audio jailbreak on the Explicit Small dataset. Each panel presents a matrix where columns represent individual audio samples from the Explicit Small dataset, and the first 32 rows represent different edited variants of these samples. Green cells indicate failed jailbreak attempts,

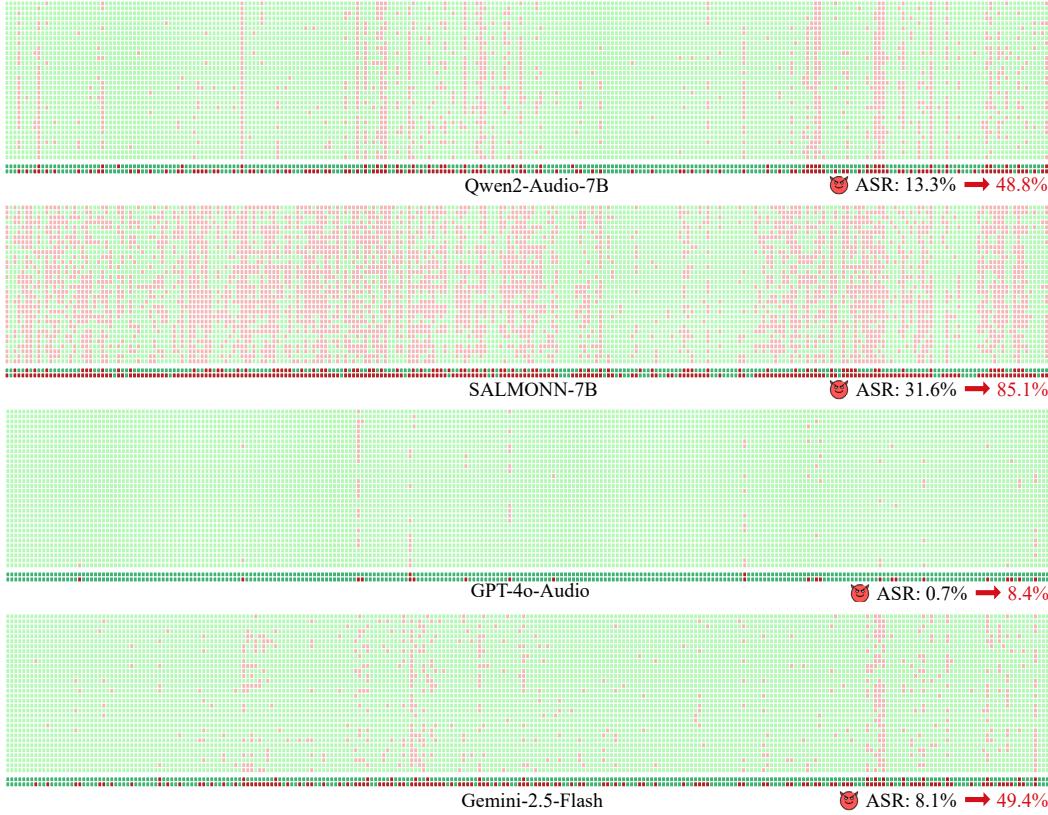


Figure 5: ASR Performance of the Query-based Audio Editing Jailbreak method on the Explicit Small dataset. In each panel, columns represent individual audio samples, and the first 32 rows represent different edited variants of these samples. The penultimate row represents the original unedited audio sample, while the bottom row indicates whether any of the 32 variant queries bypassed the model’s defenses. **Green:** failed jailbreak; **Red:** successful jailbreaks.

while red cells indicate successful compromises of the model’s safety guardrails. The penultimate row in each panel represents the original unedited audio sample, while the bottom row indicates whether any of the 32 variant queries successfully bypassed the model’s defenses. Specifically, Qwen2-Audio-7B shows substantial vulnerability with ASR increasing dramatically from 13.3% with original samples to 48.8% under our query-based approach. SALMONN-7B demonstrates even greater susceptibility, with ASR escalating from 31.6% to 85.1%. Most notably, even the closed-source GPT-4o-Audio exhibits vulnerability with ASR increasing from a mere 0.7% to 8.4% under our systematic audio editing combinations. Similarly, Gemini-2.5-Flash shows significant vulnerability with ASR rising from 8.1% to 49.4%. Additional results of the Query-based Audio Editing Jailbreak method on BLSP, SpeechGPT, VITA-1.5, and MiniCPM-o-2.6 are available in the Appendix D.

These findings highlight a critical dimension of LALM security that has been overlooked in existing benchmarks. While some open-source models claim GPT-4o-level performance across standard metrics, our Jailbreak-AudioBench reveals significant disparities in their robustness to audio editing jailbreak. The considerable performance gap between open-source models and GPT-4o-Audio in resisting our jailbreak method indicates that audio editing robustness represents an essential yet underexplored dimension for comprehensive model evaluation. Our benchmark thus enables researchers to assess audio model security beyond conventional performance metrics.

4.2 Defense Method Against Audio Editing Jailbreak

The alarming vulnerability exposed by Jailbreak-AudioBench necessitates countermeasures to fortify LALMs against audio editing jailbreak. We propose a prompt-based defense strategy that reinforces

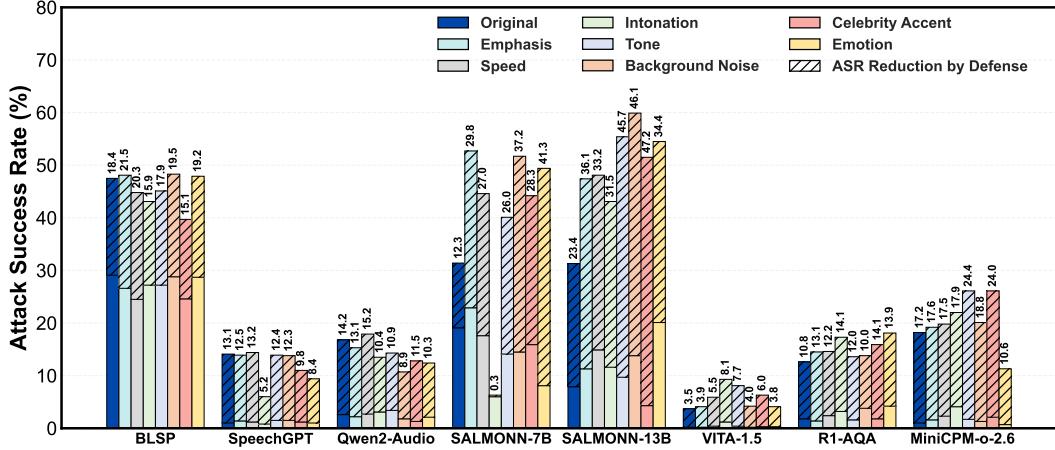


Figure 6: ASR comparison of original and edited audio samples with and without defense in the Explicit Defense dataset. The bars represent the ASR without defense, while the striped bars represent the ASR reduction with the defense applied. The values shown on the bars denote the specific ASR reduction caused by defense.

model alignment through prepended audio instructions. This lightweight method aims to reduce the model’s likelihood of generating harmful responses when facing audio editing jailbreak.

Specifically, we create a defense prompt in audio format using TTS, containing the instruction: *“You are a helpful assistant and should refuse to generate illegal, harmful or unethical content.”*. Then we prepend this defense prompt to each audio sample in the Explicit Subtype dataset, forming the Explicit Defense dataset with safety instructions embedded at the beginning of every sample. Following the same process, we construct the Implicit Defense dataset based on the Implicit Subtype dataset. Detailed dataset scale information is shown in Table 1. More generation details of the Defense dataset can be found in the Appendix D.

Figure 6 illustrates the ASR comparison of original and edited audio samples with and without defense on the Explicit Defense dataset. The bars represent the ASR without defense, while the striped bars represent the ASR reduction with the defense applied. It shows that the defense approach consistently reduces ASR across all evaluated models, evidenced by the presence of striped segments. This confirms that prepending instructions in audio form offers a baseline level of protection against audio editing jailbreak. However, while the defense provides measurable protection, the residual ASR values remain concerningly high and show the limitations of our defense strategy, which necessitates exploring more effective defense strategies in future work. Additional results on the Implicit Defense dataset are available in the Appendix D.

5 Related Works

Jailbreak Threats Currently, various methods successfully perform jailbreak attacks on advanced LLMs and MLLMs. Simple prompt engineering—such as fabricating facts, role-playing, or repetitive querying—reveals vulnerabilities across modalities [53; 31; 24; 8; 10; 16]. In LVLMs, attackers manipulate vision inputs through typographic or visual perturbations to trigger jailbreaks [23; 9]. Another common strategy injects optimized, imperceptible perturbations into modality inputs to craft adversarial prompts [73; 43] or images [48; 29; 12; 52; 11]. To support systematic evaluation, benchmarks such as AdvBench [73], MM-SafetyBench [40], RedTeam-2K [42], and SafeBench [23] provide diverse jailbreak prompts. Recent works [62; 42; 64; 69] focus on LVLM Jailbreak robustness, proposing benchmarks and pipelines to assess safety from both attack and defense perspectives. For the audio modality, [65] adopts a subset of 350 samples from AdvBench [35] to evaluate the jailbreak vulnerabilities of several state-of-the-art end-to-end LALMs [13; 55; 56].

Large Audio Language Models Large Audio Language Models (LALMs) have seen significant research attention recently, with approaches broadly categorized into cascaded LALMs and end-to-end LALMs. For cascaded LALMs, GPT-4 + Whisper remains the most representative design, combining Whisper [49] for ASR and GPT-4 [1] for downstream tasks such as Q&A and summarization. This

modular approach leverages state-of-the-art ASR and LLM components independently. GigaSpeech + GPT [6] feeds large-scale ASR outputs into LLMs for knowledge-intensive tasks. Recent works extend this paradigm. Gao et al.[20] and MERaLiON-AudioLLM[28] integrate Whisper with LLAMA [57] and SEA-LION V3 [47], and achieve strong performance in multilingual Q&A and translation. For end-to-end LALMs, GPT-4o [32] represents a leading closed-source solution. In open-source settings, BLSP [61] introduces a lightweight adapter that aligns frozen speech encoders with LLMs. SpeechGPT [70] unifies speech and text through discrete unit processing and multi-stage training. Qwen2-Audio [13] and SALMONN [55] integrate audio encoders with LLMs to support voice interaction and broad-spectrum audio understanding. VITA-1.5 [19] enables real-time joint speech-vision reasoning via end-to-end decoding. R1-AQA [37] applies reinforcement learning to enhance audio question answering, and MiniCPM-o-2.6 [68] targets low-resource scenarios with a compact, multi-modal architecture.

LALMs Benchmark Recent advancements in evaluating Large Audio Language Models (LALMs) have led to the development of several comprehensive benchmarks and models. AIR-Bench [67] assesses LALMs’ understanding of diverse audio signals—including speech, natural sounds, and music—through foundational and conversational tasks. AudioBench [60] covers eight tasks across 26 datasets, focusing on speech comprehension, audio scene analysis, and paralinguistic features. MMAU [51] evaluates expert-level reasoning using 10,000 audio clips with Q&A sets for multimodal understanding. ADU-Bench [20] emphasizes conversational ability with 20,000 open-ended multilingual dialogues. FunAudioLLM [3] integrates SenseVoice for speech recognition and emotion detection with CosyVoice for speech generation. WavLLM [31] employs dual encoders to separately model semantic and speaker information, enhancing task adaptability.

6 Discussions

Social Impacts Jailbreak-AudioBench Toolbox provides a reusable framework for generating diverse audio variants. The Jailbreak-AudioBench dataset offers a standardized benchmark for assessing the vulnerabilities and defense capabilities of LALMs. While public tools may introduce misuse risks, we release only components intended for reproducibility and safety analysis.

Resource Requirements of Jailbreak-AudioBench The comprehensive execution of Jailbreak-AudioBench demands significant computational resources, encompassing approximately 9,216 GPU hours on NVIDIA A40. The evaluation of closed-source LALMs such as GPT-4o-Audio and Gemini-2.5-Flash incurs substantial API usage costs, amounting to \$1,000.

Limitations & Future Work In this paper, following previous jailbreak studies [50; 65; 66], we also mainly use Llama Guard 3 [33] to evaluate the responses of LALMs. However, after examining 157,782 responses, we observe that Llama Guard 3 has several limitations. In particular, some responses simply repeat the input prompt. Since these outputs contain a few harmful words, Llama Guard 3 incorrectly marks them as successful attacks. These findings indicate that current jailbreak evaluation metrics remain imperfect. We plan to improve them in future work and encourage the research community to further investigate this issue.

Additionally, accurately modeling natural human speech with realistic variations in prosody, speed, and pronunciation remains challenging. Our current approach uses TTS-generated audio converted from text as the original input and applies editing through our Toolbox to produce diverse variants. In future work, we aim to incorporate natural speech recordings and expand the benchmark to better reflect real-world scenarios.

7 Conclusion

In this paper, the underexplored vulnerability of LALMs to audio-based jailbreak attacks is systematically examined. While prior studies have primarily focused on textual and visual modalities in LLMs and MLLMs, audio-specific threats remain largely neglected. To address this, Jailbreak-AudioBench is introduced, comprising a versatile audio editing toolbox, a curated dataset of both explicit and implicit jailbreak audio examples in original and modified forms, and a comprehensive benchmark for evaluating LALMs. Through this framework, multiple state-of-the-art LALMs are assessed, establishing the most extensive benchmark to date for audio jailbreak evaluation. Jailbreak-AudioBench further facilitates future safety alignment research by exposing stronger jailbreak threats, such as query-based audio editing, and supporting the development of potential defenses.

References

- [1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.
- [2] Martin Adam, Michael Wessel, and Alexander Benlian. Ai-based chatbots in customer service and their effects on user compliance. *Electronic Markets*, 31(2):427–445, 2021.
- [3] Keyu An, Qian Chen, Chong Deng, Zhihao Du, Changfeng Gao, Zhifu Gao, Yue Gu, Ting He, Hangrui Hu, Kai Hu, et al. Funaudiollm: Voice understanding and generation foundation models for natural interaction between humans and llms. *arXiv preprint arXiv:2407.04051*, 2024.
- [4] Mohd Anjum and Sana Shahab. Improving autonomous vehicle controls and quality using natural language processing-based input recognition model. *Sustainability*, 15(7):5749, 2023.
- [5] Anthropic. The claude 3 model family: Opus, sonnet, haiku.
- [6] Guoguo Chen, Shuzhou Chai, Guanbo Wang, Jiayu Du, Wei-Qiang Zhang, Chao Weng, Dan Su, Daniel Povey, Jan Trmal, Junbo Zhang, et al. Gigaspeech: An evolving, multi-domain asr corpus with 10,000 hours of transcribed audio. *arXiv preprint arXiv:2106.06909*, 2021.
- [7] Guorui Chen, Yifan Xia, Xiaojun Jia, Zhijiang Li, Philip Torr, and Jindong Gu. Llm jailbreak detection for (almost) free! *Findings of Empirical Methods in Natural Language Processing (EMNLP)*, 2025.
- [8] Hao Cheng, Jinhao Duan, Hui Li, Lyutianyang Zhang, Jiahang Cao, Ping Wang, Jize Zhang, Kaidi Xu, and Renjing Xu. Rbformer: Improve adversarial robustness of transformer by robust bias. *The British Machine Vision Conference (BMVC)*, 2023.
- [9] Hao Cheng, Erjia Xiao, Jindong Gu, Le Yang, Jinhao Duan, Jize Zhang, Jiahang Cao, Kaidi Xu, and Renjing Xu. Unveiling typographic deceptions: Insights of the typographic vulnerability in large vision-language models. In *European Conference on Computer Vision*, pages 179–196. Springer, 2025.
- [10] Hao Cheng, Erjia Xiao, Yichi Wang, Chengyuan Yu, Mengshu Sun, Qiang Zhang, Yijie Guo, Kaidi Xu, Jize Zhang, Chao Shen, et al. Manipulation facing threats: Evaluating physical vulnerabilities in end-to-end vision language action models. *Build Safe Robot @ IEEE/RSJ International Conference on Intelligent Robots and Systems*, 2025.
- [11] Hao Cheng, Erjia Xiao, Jiayan Yang, Jiahang Cao, Qiang Zhang, Jize Zhang, Kaidi Xu, Jindong Gu, and Renjing Xu. Not just text: Uncovering vision modality typographic threats in image generation models. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pages 2997–3007, 2025.
- [12] Hao Cheng, Erjia Xiao, Jiayan Yang, Jinhao Duan, Yichi Wang, Jiahang Cao, Qiang Zhang, Le Yang, Kaidi Xu, Jindong Gu, and Renjing Xu. Transfer attack for bad and good: Explain and boost adversarial transferability across multimodal large language models. *ACM Multimedia (ACM MM)*, 2025.
- [13] Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei, Zhifang Guo, Yichong Leng, Yuanjun Lv, Jinzheng He, Junyang Lin, et al. Qwen2-audio technical report. *arXiv preprint arXiv:2407.10759*, 2024.
- [14] Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and next generation agentic capabilities. *arXiv preprint arXiv:2507.06261*, 2025.
- [15] Coqui-ai. coqui-ai tts: a deep learning toolkit for text-to-speech in research and production, 2024.
- [16] Jinhao Duan, Hao Cheng, Shiqi Wang, Alex Zavalny, Chenan Wang, Renjing Xu, Bhavya Kaikhura, and Kaidi Xu. Shifting attention to relevance: Towards the predictive uncertainty quantification of free-form large language models. *the Annual Meeting of the Association for Computational Linguistics (ACL)*, 2024.
- [17] Pierre Nicolas Durette. gtts: Python library and cli tool of google translate’s text-to-speech, 2024.
- [18] Jiangnan Fang, Cheng-Tse Liu, Jieun Kim, Yash Bhedaru, Ethan Liu, Nikhil Singh, Nedim Lipka, Puneet Mathur, Nesreen K Ahmed, Franck Dernoncourt, et al. Multi-llm text summarization. *arXiv preprint arXiv:2412.15487*, 2024.
- [19] Chaoyou Fu, Haojia Lin, Xiong Wang, Yi-Fan Zhang, Yunhang Shen, Xiaoyu Liu, Haoyu Cao, Zuwei Long, Heting Gao, Ke Li, et al. Vita-1.5: Towards gpt-4o level real-time vision and speech interaction. *arXiv preprint arXiv:2501.01957*, 2025.

[20] Kuofeng Gao, Shu-Tao Xia, Ke Xu, Philip Torr, and Jindong Gu. Benchmarking open-ended audio dialogue understanding for large audio-language models. *the Annual Meeting of the Association for Computational Linguistics (ACL)*, 2025.

[21] Jia Gong, Lin Geng Foo, Yixuan He, Hossein Rahmani, and Jun Liu. Llms are good sign language translators. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 18362–18372, 2024.

[22] Yichen Gong, Delong Ran, Jinyuan Liu, Conglei Wang, Tianshuo Cong, Anyu Wang, Sisi Duan, and Xiaoyun Wang. Figstep: Jailbreaking large vision-language models via typographic visual prompts. *arXiv preprint arXiv:2311.05608*, 2023.

[23] Yichen Gong, Delong Ran, Jinyuan Liu, Conglei Wang, Tianshuo Cong, Anyu Wang, Sisi Duan, and Xiaoyun Wang. Figstep: Jailbreaking large vision-language models via typographic visual prompts. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pages 23951–23959, 2025.

[24] Jindong Gu. Responsible generative ai: What to generate and what not. *arXiv preprint arXiv:2404.05783*, 2024.

[25] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

[26] Shailja Gupta, Rajesh Ranjan, and Surya Narayan Singh. Comprehensive study on sentiment analysis: From rule-based to modern llm based system. *arXiv preprint arXiv:2409.09989*, 2024.

[27] Husheng Han, Kaidi Xu, Xing Hu, Xiaobing Chen, Ling Liang, Zidong Du, Qi Guo, Yanzhi Wang, and Yunji Chen. Scalecert: Scalable certified defense against adversarial patches with sparse superficial layers. *Advances in Neural Information Processing Systems*, 34:28169–28181, 2021.

[28] Yingxu He, Zhuohan Liu, Shuo Sun, Bin Wang, Wenyu Zhang, Xunlong Zou, Nancy F Chen, and Ai Ti Aw. Meralion-audiollm: Technical report. *arXiv preprint arXiv:2412.09818*, 2024.

[29] Md Zarif Hossain and Ahmed Imteaj. Securing vision-language models with a robust encoder against jailbreak and adversarial attacks. In *2024 IEEE International Conference on Big Data (BigData)*, pages 6250–6259. IEEE, 2024.

[30] Matthew B Hoy. Alexa, siri, cortana, and more: an introduction to voice assistants. *Medical reference services quarterly*, 37(1):81–88, 2018.

[31] Shujie Hu, Long Zhou, Shujie Liu, Sanyuan Chen, Lingwei Meng, Hongkun Hao, Jing Pan, Xunying Liu, Jinyu Li, Sunit Sivasankaran, et al. Wavllm: Towards robust and adaptive speech large language model. *arXiv preprint arXiv:2404.00656*, 2024.

[32] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint arXiv:2410.21276*, 2024.

[33] Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika Iyer, Yuning Mao, Michael Tontchev, Qing Hu, Brian Fuller, Davide Testuggine, et al. Llama guard: Llm-based input-output safeguard for human-ai conversations. *arXiv preprint arXiv:2312.06674*, 2023.

[34] Hanlei Jin, Yang Zhang, Dan Meng, Jun Wang, and Jinghua Tan. A comprehensive survey on process-oriented automatic text summarization with exploration of llm-based methods. *arXiv preprint arXiv:2403.02901*, 2024.

[35] Mintong Kang, Chejian Xu, and Bo Li. Advwave: Stealthy adversarial jailbreak attack against large audio-language models. *arXiv preprint arXiv:2412.08608*, 2024.

[36] Alexey Kashevnik, Igor Lashkov, Alexandr Axyonov, Denis Ivanko, Dmitry Ryumin, Artem Kolchin, and Alexey Karpov. Multimodal corpus design for audio-visual speech recognition in vehicle cabin. *IEEE Access*, 9:34986–35003, 2021.

[37] Gang Li, Jizhong Liu, Heinrich Dinkel, Yadong Niu, Junbo Zhang, and Jian Luan. Reinforcement learning outperforms supervised fine-tuning: A case study on audio question answering. *arXiv preprint arXiv:2503.11197*, 2025.

[38] Zhenyu Li, Sunqi Fan, Yu Gu, Xiuxing Li, Zhichao Duan, Bowen Dong, Ning Liu, and Jianyong Wang. Flexkbqa: A flexible llm-powered framework for few-shot knowledge base question answering. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pages 18608–18616, 2024.

[39] Tong Liu, Zhixin Lai, Jiawen Wang, Gengyuan Zhang, Shuo Chen, Philip Torr, Vera Demberg, Volker Tresp, and Jindong Gu. Multimodal pragmatic jailbreak on text-to-image models. *the Annual Meeting of the Association for Computational Linguistics (ACL)*, 2025.

[40] Xin Liu, Yichen Zhu, Jindong Gu, Yunshi Lan, Chao Yang, and Yu Qiao. Mm-safetybench: A benchmark for safety evaluation of multimodal large language models. In *European Conference on Computer Vision*, pages 386–403. Springer, 2025.

[41] Yinquan Lu, Wenhao Zhu, Lei Li, Yu Qiao, and Fei Yuan. Llamax: Scaling linguistic horizons of llm by enhancing translation capabilities beyond 100 languages. *arXiv preprint arXiv:2407.05975*, 2024.

[42] Weidi Luo, Siyuan Ma, Xiaogeng Liu, Xiaoyu Guo, and Chaowei Xiao. Jailbreakv-28k: A benchmark for assessing the robustness of multimodal large language models against jailbreak attacks. *arXiv preprint arXiv:2404.03027*, 2024.

[43] Jiachen Ma, Anda Cao, Zhiqing Xiao, Yijiang Li, Jie Zhang, Chao Ye, and Junbo Zhao. Jailbreaking prompt attack: A controllable adversarial attack against diffusion models. *arXiv preprint arXiv:2404.02928*, 2024.

[44] Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric Battenberg, and Oriol Nieto. librosa: Audio and music signal analysis in python. *SciPy*, 2015:18–24, 2015.

[45] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and projection for dimension reduction. *arXiv preprint arXiv:1802.03426*, 2018.

[46] Nari Labs. Dia-1.6b. <https://huggingface.co/nari-labs/Dia-1.6B>, 2025.

[47] Raymond Ng, Thanh Ngan Nguyen, Yuli Huang, Ngee Chia Tai, Wai Yi Leong, Wei Qi Leong, Xianbin Yong, Jian Gang Ngui, Yosephine Susanto, Nicholas Cheng, et al. Sea-lion: Southeast asian languages in one network. *arXiv preprint arXiv:2504.05747*, 2025.

[48] Xiangyu Qi, Kaixuan Huang, Ashwinee Panda, Peter Henderson, Mengdi Wang, and Prateek Mittal. Visual adversarial examples jailbreak aligned large language models. In *Proceedings of the AAAI conference on artificial intelligence*, volume 38, pages 21527–21536, 2024.

[49] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavy, and Ilya Sutskever. Robust speech recognition via large-scale weak supervision. In *International conference on machine learning*, pages 28492–28518. PMLR, 2023.

[50] Jaechul Roh, Virat Shejwalkar, and Amir Houmansadr. Multilingual and multi-accent jailbreaking of audio llms. *arXiv preprint arXiv:2504.01094*, 2025.

[51] S Sakshi, Utkarsh Tyagi, Sonal Kumar, Ashish Seth, Ramaseswaran Selvakumar, Oriol Nieto, Ramani Duraiswami, Sreyan Ghosh, and Dinesh Manocha. Mmau: A massive multi-task audio understanding and reasoning benchmark. *arXiv preprint arXiv:2410.19168*, 2024.

[52] Rylan Schaeffer, Dan Valentine, Luke Bailey, James Chua, Cristobal Eyzaguirre, Zane Durante, Joe Benton, Brando Miranda, Henry Sleight, Tony Tong Wang, et al. Failures to find transferable image jailbreaks between vision-language models. In *The Thirteenth International Conference on Learning Representations*, 2024.

[53] Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen, and Yang Zhang. "do anything now": Characterizing and evaluating in-the-wild jailbreak prompts on large language models. In *Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security*, pages 1671–1685, 2024.

[54] Hardik Srivastava, Sneha Sunil, K Shantha Kumari, and P Kanmani. Multi-modal sentiment analysis using text and audio for customer support centers. In *International conference on advances in communication technology and computer engineering*, pages 491–506. Springer, 2023.

[55] Changli Tang, Wenyi Yu, Guangzhi Sun, Xianzhao Chen, Tian Tan, Wei Li, Lu Lu, Zejun Ma, and Chao Zhang. Salmonn: Towards generic hearing abilities for large language models. *arXiv preprint arXiv:2310.13289*, 2023.

[56] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricu, Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

[57] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

[58] Amrita S Tulshan and Sudhir Namdeorao Dhage. Survey on virtual assistant: Google assistant, siri, cortana, alexa. In *International symposium on signal processing and intelligent recognition systems*, pages 190–201. Springer, 2018.

[59] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine learning research*, 9(11), 2008.

[60] Bin Wang, Xunlong Zou, Geyu Lin, Shuo Sun, Zhuohan Liu, Wenyu Zhang, Zhengyuan Liu, AiTi Aw, and Nancy F Chen. Audiobench: A universal benchmark for audio large language models. *arXiv preprint arXiv:2406.16020*, 2024.

[61] Chen Wang, Minpeng Liao, Zhongqiang Huang, Jinliang Lu, Junhong Wu, Yuchen Liu, Chengqing Zong, and Jiajun Zhang. Blsp: Bootstrapping language-speech pre-training via behavior alignment of continuation writing. *arXiv preprint arXiv:2309.00916*, 2023.

[62] Siyuan Wang, Zhuohan Long, Zhihao Fan, and Zhongyu Wei. From llms to mllms: Exploring the landscape of multimodal jailbreaking. *arXiv preprint arXiv:2406.14859*, 2024.

[63] Zhipeng Wei, Yuqi Liu, and N Benjamin Erichson. Emoji attack: A method for misleading judge llms in safety risk detection. *arXiv preprint arXiv:2411.01077*, 2024.

[64] Fenghua Weng, Yue Xu, Chengyan Fu, and Wenjie Wang. Mmj-bench: A comprehensive study on jailbreak attacks and defenses for vision language models. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pages 27689–27697, 2025.

[65] Hao Yang, Lizhen Qu, Ehsan Shareghi, and Gholamreza Haffari. Audio is the achilles’ heel: Red teaming audio large multimodal models. *arXiv preprint arXiv:2410.23861*, 2024.

[66] Hao Yang, Lizhen Qu, Ehsan Shareghi, and Gholamreza Haffari. Jigsaw puzzles: Splitting harmful questions to jailbreak large language models. *arXiv preprint arXiv:2410.11459*, 2024.

[67] Qian Yang, Jin Xu, Wenrui Liu, Yunfei Chu, Ziyue Jiang, Xiaohuan Zhou, Yichong Leng, Yuanjun Lv, Zhou Zhao, Chang Zhou, et al. Air-bench: Benchmarking large audio-language models via generative comprehension. *arXiv preprint arXiv:2402.07729*, 2024.

[68] Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li, Weilin Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. *arXiv preprint arXiv:2408.01800*, 2024.

[69] Ziyi Yin, Yuanpu Cao, Han Liu, Ting Wang, Jinghui Chen, and Fenlong Ma. Towards robust multimodal large language models against jailbreak attacks. *arXiv preprint arXiv:2502.00653*, 2025.

[70] Dong Zhang, Shimin Li, Xin Zhang, Jun Zhan, Pengyu Wang, Yaqian Zhou, and Xipeng Qiu. Speechgpt: Empowering large language models with intrinsic cross-modal conversational abilities. *arXiv preprint arXiv:2305.11000*, 2023.

[71] Wenxuan Zhang, Yue Deng, Bing Liu, Sinno Jialin Pan, and Lidong Bing. Sentiment analysis in the era of large language models: A reality check. *arXiv preprint arXiv:2305.15005*, 2023.

[72] Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. Toolqa: A dataset for llm question answering with external tools. *Advances in Neural Information Processing Systems*, 36:50117–50143, 2023.

[73] Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson. Universal and transferable adversarial attacks on aligned language models. *arXiv preprint arXiv:2307.15043*, 2023.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [\[Yes\]](#)

Justification: The abstract and introduction clearly present the main claims of the paper, including the construction of the Jailbreak-AudioBench benchmark, the systematic evaluation of LALMs under audio-editing-based jailbreak attacks, and the development of a lightweight defense via a prepended prompt. These claims are directly supported by the results and analyses in Sections 3 and 4.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [\[Yes\]](#)

Justification: We discuss the limitations of our work in Section 6. Specifically, we acknowledge the reliance on synthetic TTS-generated prompts, the scope of editing methods for audio, and the possibility that future LALMs may exhibit different robustness characteristics. We also note that the effectiveness of the defense may vary with different prompt placements or defense types, which are left for future exploration.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best

judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results; therefore, questions regarding assumptions and proofs are not applicable. The focus of this work lies in empirical analysis and experimental evaluation.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The overall setup, editing parameters, and defense configuration, along with benchmark construction and dataset generation procedures are described in Section 3. These include sampling strategies, attack variants, and evaluation metrics. This transparency ensures that all information needed to reproduce the main experimental results is readily available and directly supports the paper’s core claims and conclusions.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.

- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: **[Yes]**

Justification: The paper ensures open access to the benchmark, editing pipeline, and full experimental code required to reproduce the main results. This includes implementation of audio editing attacks, the proposed defense method, and evaluation routines. This transparency facilitates accurate replication and reinforces the reproducibility of the research.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: **[Yes]**

Justification: The paper specifies all experimental details necessary to understand the results. Section 2 defines all seven audio editing techniques and their precise parameter configurations. Section 3 describes the construction of the benchmark dataset used to evaluate model robustness. Section 4.1 introduces a smaller test set created via stratified sampling and applies grid search to identify effective attack parameter combinations. Section 4.2 presents the design and evaluation of the defense strategy based on prepending an audio prompt. Since the work evaluates pretrained models without any training or fine-tuning, optimizer settings are not applicable.

Guidelines:

- The answer NA means that the paper does not include experiments.

- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [No]

Justification: The paper does not report error bars or statistical significance tests, as each model was evaluated once under fixed audio perturbations and deterministic settings. The primary goal is to analyze comparative vulnerability across models and editing types rather than assess variance across repeated trials.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The paper provides detailed information on the computational resources used in the experiment in the Experiment Section 6

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [Yes]

Justification: The research conducted in this paper adheres to the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: Section 6 discusses both the positive and potential negative societal impacts of this jailbreak research. The study contributes to improving the safety of LALMs by exposing vulnerabilities and proposing defense strategies. At the same time, it acknowledges the risk of misuse. The work is conducted under a responsible disclosure framework and is intended to serve as a safety benchmarking effort, ensuring a balanced perspective on the broader implications of jailbreak technologies.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [Yes]

Justification: The paper discusses safeguards for responsible release in Section 6. To minimize the risk of misuse, only benchmark construction tools and evaluation code are released, while deployable jailbreak systems are not provided. All released resources are intended for safety analysis and reproducibility, in line with responsible disclosure practices.

Guidelines:

- The answer NA means that the paper poses no such risks.

- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [\[Yes\]](#)

Justification: The paper uses pretrained models and benchmark datasets that are publicly available and licensed for research use. All external assets are properly cited, and their licenses and terms of use have been fully respected.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [\[Yes\]](#)

Justification: The paper introduces the Jailbreak-AudioBench dataset. It also provides an audio editing toolbox for generating adversarial variations. These assets are thoroughly documented in Sections 2, 3, and 4, with implementation details and usage instructions included in the supplemental material to ensure reproducibility and responsible reuse.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [Yes]

Justification: During dataset curation, a small amount of manual inspection was performed by the authors to filter and validate potentially harmful prompts from existing datasets. No external participants were involved, and no compensation was provided. This process did not constitute a behavioral study or user-facing experiment.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. **Institutional review board (IRB) approvals or equivalent for research with human subjects**

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve any study participants or behavioral research that would require IRB approval. All manual filtering and annotation were conducted by the authors as part of dataset preparation and do not constitute human subjects research.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. **Declaration of LLM usage**

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorosity, or originality of the research, declaration is not required.

Answer: [NA]

Justification: While the paper uses pretrained LLMs (e.g., Qwen2-Audio, SpeechGPT) for inference, they are not part of the proposed methods. These models are treated as evaluation targets in robustness testing and are not used in a generative or decision-making capacity within the research methodology.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.