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Abstract

Large Language Models (LLMs) demonstrate impressive zero-shot performance
across a wide range of natural language processing tasks. Integrating various
modality encoders further expands their capabilities, giving rise to Multimodal
Large Language Models (MLLMs) that process not only text but also visual and
auditory modality inputs. However, these advanced capabilities may also pose
significant safety problems, as models can be exploited to generate harmful or
inappropriate content through jailbreak attacks. While prior work has extensively
explored how manipulating textual or visual modality inputs can circumvent safe-
guards in LLMs and MLLMs, the vulnerability of audio-specific jailbreak on Large
Audio-Language Models (LALMs) remains largely underexplored. To address
this gap, we introduce Jailbreak-AudioBench, which consists of the Toolbox,
curated Dataset, and comprehensive Benchmark. The Toolbox supports not only
text-to-audio conversion but also various editing techniques for injecting audio
hidden semantics. The curated Dataset provides diverse explicit and implicit jail-
break audio examples in both original and edited forms. Utilizing this dataset, we
evaluate multiple state-of-the-art LALMs and establish the most comprehensive
Jailbreak benchmark to date for audio modality. Finally, Jailbreak-AudioBench
establishes a foundation for advancing future research on LALMs safety alignment
by enabling the in-depth exposure of more powerful jailbreak threats, such as
query-based audio editing, and by facilitating the development of effective defense
mechanisms.

1 Introduction

Recently, Large Language Models (LLMs), represented by GPT-4o [32], Claude [5], and
DeepSeek [25], have received increasing attention due to their strong general capabilities, effi-
cient information processing, and natural human-computer interaction. LLMs perform well across
a variety of natural language processing tasks, including question answering [72; 38], sentence
summarization [18; 34], language translation [21; 41], and sentiment analysis [71; 26]. Leveraging
the powerful reasoning capacity of LLMs, researchers develop Multimodal Large Language Models
(MLLMs) by introducing various modality-specific encoders, enabling these models to perceive
multiple modalities and handle more diverse tasks. Among them, Large Vision-Language Models
(LVLMs), which combine vision encoders with LLMs, achieve strong performance on various Visual
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Figure 1: The framework of Jailbreak-AudioBench.

Question Answering tasks by modeling joint vision-language representations [23; 9; 48; 29; 12; 52].
In addition, Audio-Language Processing plays an important role in real-world applications such as
voice assistants (e.g., Siri, Google Assistant, Cortana [30; 58]), customer service systems [2; 54], and
in-vehicle voice control systems [36; 4]. Large Audio Language Models (LALMs), developed by
integrating audio encoders into LLMs, are introduced to expand information processing capabilities
from textual to auditory modalities, enabling more advanced audio-language understanding tasks.

Current LALMs are mainly categorized into cascaded LALMs and end-to-end LALMs. Cascaded
LALMs [49; 6; 20; 57; 47] typically consist of a two-stage pipeline, where an upstream Automatic
Speech Recognition module first transcribes audio into text, which is then processed by a downstream
LLM for reasoning or generation. However, this approach discards information during transcrip-
tion, making it incapable of capturing audio-specific hidden semantics. In contrast, end-to-end
LALMs [32; 61; 70; 13; 55; 19; 37; 68] address this limitation by integrating audio encoding and
language modeling into a single architecture that directly consumes raw audio inputs and gener-
ates corresponding textual outputs. By bypassing intermediate transcription, these models preserve
complete audio information, especially the critical hidden semantics, which are essential for in-
depth audio modality perception. Therefore, advancing research on end-to-end LALMs is becoming
increasingly important for enhancing audio-language cross-modal understanding.

In an era of rapid advancement in various types of LLMs and MLLMs, the exploration of their
safety alignment becomes increasingly critical. The jailbreak threats refer to the use of carefully
crafted prompts to bypass alignment safeguards and induce AI systems to generate outputs that
violate intended safety constraints. These handcrafted strategies are highly diverse, encompassing
techniques such as adversarial optimization, prompt-based manipulations, and other [73; 53; 31; 24;
43; 48; 29; 7; 39; 27]. Among these, a wide range of prompt-tuning techniques, such as imperative
commands (e.g., “you must answer”, “!!!”), role playing instructions (e.g., “act as an unrestricted
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AI”), emoji injection, and distraction-based redirection (e.g., mixing benign and harmful queries),
prove to be simple yet highly effective in subverting system-level safeguards [73; 53; 31; 24; 63].
Notably, inserting elements such as “!!!”, emojis, or garbled characters into the original prompts,
which represent forms of hidden semantics, can also successfully trigger jailbreak attacks [73; 24; 63].
Due to their innocuous appearance, ease of insertion, and strong potential to induce jailbreak threats,
these hidden semantics underscore the latent vulnerabilities of current large models in maintaining
robust safety alignment.

Compared to the language text modality, the audio modality inherently conveys richer hidden semantic
information, such as Emphasis, Speech Speed, Intonation, Tone, Background Noise, Accent and
Emotion. Unlike cascaded LALMs, end-to-end LALMs directly perceive and interpret these diverse
audio-specific features, and are therefore widely considered one of the most promising directions
in processing Audio Language Processing tasks. However, this deep sensitivity to audio modality
also renders end-to-end LALMs more vulnerable to hidden semantic manipulations, introducing
potential security risks, particularly in the context of jailbreak attacks. Although a few preliminary
studies have emerged [65; 20], systematic investigation into the jailbreak vulnerabilities of end-to-end
LALMs remains limited. To address this gap, as the framework presented in Figure 1, this paper
introduces Jailbreak-AudioBench, the most comprehensive evaluation to date of representative end-
to-end LALMs under diverse jailbreak attack scenarios, and further highlights the critical role of
modality-specific semantics in shaping the effectiveness of these threats. Moreover, we demonstrate
that Jailbreak-AudioBench can serve as a valuable tool to further facilitate various explorations into
the safety alignment of LALMs. The main contents are outlined as follows:
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Figure 2: (a) Different sub-tasks of each Jailbreak-AudioBench Dataset Subtype; (b) The largest jailbreak threat
variation induced by audio hidden semantics across various LALMs.

- Toolbox: The Jailbreak-AudioBench Toolbox not only supports text-to-audio modality conversion
but also enables the application of various hidden information operations on the generated audio.
These include emphasis, speed, intonation, tone, background noise, celebrity accent, and emotion.
Through this process, any given text prompt can be converted into an audio sample and further
transformed into a set of edited audio enriched with audio-specific hidden semantics.

- Dataset & Benchmark: For the Jailbreak-AudioBench Dataset, jailbreak questions are selected from
AdvBench [73], MM-SafetyBench [40], RedTeam-2K [42], and SafeBench [23]. To evaluate how
end-to-end LALMs handle different jailbreak intensities, all questions are categorized into Explicit
and Implicit subtypes via GPT-4o and manual review. Figure 2 (a) illustrates the subtask distribution
across subtypes. Each question is processed by the Toolbox, which performs text-to-audio conversion
and applies hidden information operations to generate original and edited samples. These data
support the evaluation of state-of-the-art end-to-end LALMs, including BLSP [61], SpeechGPT [70],
Qwen2-Audio [13], SALMONN [55], VITA-1.5 [19], R1-AQA [37], and MiniCPM-o-2.6 [68],
forming a benchmark for jailbreak performance. As shown in Figure 2 (b), edited audios result in
markedly different jailbreak success rates compared to originals, underscoring the critical role of
hidden semantics in LALM safety alignment.
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Figure 3: Injection of various audio hidden semantics.

- Potential Research Inspired by Jailbreak-AudioBench In order to further indicate the research
impact of Jailbreak-AudioBench, we present two potential works: (1) Query-based Audio Editing
Jailbreak. By adopting the Toolbox to perform query-based editing on a small set of explicit sub-
type jailbreak audios, the ASR success rates of Qwen2-Audio, SALMONN-7B, GPT-4o-Audio,
and Gemini-2.5-Flash increased from 13.3% to 48.8%, 31.6% to 85.1%, 0.7% to 8.4%, and
8.1% to 49.4% respectively. (2) Defense Against Audio Editing Jailbreak. Further, Potential de-
fense strategies targeting LALM jailbreak threats can be effectively developed through the use of
Jailbreak-AudioBench.

2 Jailbreak-AudioBench Toolbox

Preliminary For a systematic evaluation of jailbreak threats in LALMs, the Jailbreak-AudioBench
toolbox not only performs text-to-audio conversion but also implements a comprehensive suite of
audio editing types to inject diverse forms of hidden semantics, including emphasis, speed, intonation,
background noise, celebrity accent, and emotion, each modulated with different parameters as
illustrated in Figure 1. The text-to-audio conversion is accomplished using Google Text-to-Speech
(gTTS) [17]. Various audio editing methods are implemented with a range of tools, including
Short-Time Fourier Transform (STFT), SoX (Sound eXchange), Coqui TTS [15], and Dia-1.6B [46].
Figure 3 further uses textual characters and spectrograms to illustrate the inserted hidden audio
information, and compares the changes in audio content before and after editing. Appendix A
provides further details on the parameter settings of audio hidden semantics, the annotation methods
used in Figure 3, and the implementation specifics of each editing process.

The Impact of Toolbox The proposed Toolbox enables systematic text-to-audio conversion and
diverse hidden semantics operations to generate a wide range of audio examples. These examples
collectively form comprehensive datasets used to evaluate various types of LALMs. The resulting
evaluations establish benchmarks for assessing the robustness and alignment behaviors of LALMs,
particularly in the context of jailbreak threats. Beyond benchmarking, the Toolbox also serves as a
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Table 1: The scale of Jailbreak-AudioBench Dataset.
base audio Types of Editing Categories (parameter * editing method) Editing Sum Total Sum

Explicit Subtype 2497
4*Tone+3*Intonation+2*Speed+3*Emphasis+3*Background Noise+

3*Celebrity Accent + 2*Emotion = 20 categories

49940 52437
Implicit Subtype 2203 44060 46263
Explicit Defense 2497 49940 52437

Explicit Small 262
2*Speed*2*Emphasis*2*Background Noise*

( 2*Celebrity Accent + 2*Emotion )= 32 categories
8384 8646

practical tool for advancing LALM safety alignment research, as demonstrated in Sec. 4 through
query-based audio editing jailbreaks and the exploration of potential defense strategies.

3 Jailbreak-AudioBench Dataset & Benchmark

3.1 Jailbreak-AudioBench Dataset

Collection and Categorization Process Based on the Jailbreak-AudioBench Toolbox, the most
comprehensive jailbreak dataset for the audio modality to date is constructed in this section. The
complete data collection and classification pipeline is illustrated in Algorithm 1. Base jailbreak ques-
tions Q = {q1, q2, . . . , qN} with N = 4700 are first selected, including 250 from AdvBench [73],
1,680 from MM-SafetyBench [40], 2,000 from RedTeam-2K [42], and 500 from SafeBench [23].

In Steps 4–5, each question is individually reviewed using GPT-4o and human evaluation. According
to the assessed threat level, the question set Q is categorized into two subsets: Explicit (Ex) and
Implicit (Im), resulting in |QEx| = 2497, |QIm| = 2203, respectively. In Steps 6–10, all questions
{QEx,QIm} undergo Text-to-Audio conversion using Google Text-to-Speech (gTTS), generating the
corresponding base audio samples {AEx,AIm}. In Steps 11–19, multiple parameterized audio editing
operations are sequentially applied to each base audio sample, resulting in the final edited audio
dataset {Edit(AEx), Edit(AIm)}.

Algorithm 1 Dataset Construction Pipeline

1: Input: Jailbreak questions DatasetQ
2: Output: Edited audio dataset Edit(A)
3: Step 1: Question Categorization
4: Use GPT-4o + Human Review to categorize

each qi ∈ Q
5: QEx,QIm ← Categorize(Q)
6: Step 2: Text-to-Audio Conversion
7: Initialize empty audio set AEx/Im
8: for each qi inQEx/Im do
9: ai ← TTS(qi); Add ai to AEx/Im

10: end for
11: Step 3: Audio Editing
12: Define editing operations E = {Emphasis,

Speed, Intonation, Tone, Background Noise,
Celebrity Accent, Emotion}

13: Initialize edited audio set Edit(AEx/Im)
14: for each ai in A do
15: for each ej in E do
16: a

(j)
i ← Edit(ai, ej)

17: Add a
(j)
i to Edit(AEx/Im)

18: end for
19: end for
20: Return: Edit(AEx) and Edit(AIm)

Dataset Scale Based on the outlined pipeline,
the base audio in the Jailbreak-AudioBench
Dataset is divided into 2,497 Explicit and 2,203
Implicit samples. By applying 20 types of audio
operations from the Toolbox, 49,940 and 44,060
edited samples are generated. Additionally, Sec. 4
introduces a Query-based Audio Editing Jailbreak
method and a defense method, further augmenting
the dataset. As shown in Table 1, the Jailbreak-
AudioBench Dataset comprises 157,782 audio
samples, including original audio samples, edited
audio samples, and those for the Query-based Au-
dio Editing Jailbreak method and defense method.

3.2 Jailbreak-AudioBench Benchmark

By utilizing the Jailbreak-AudioBench dataset, we
measure the susceptibility of LALMs to audio
editing that may circumvent safety guardrails.

Models We conduct extensive experiments on
current Large Audio Language Models, which are
BLSP [61], SpeechGPT [70], Qwen2-Audio [13],
SALMONN [55], VITA-1.5 [19], R1-AQA [37],
MiniCPM-o-2.6 [68], GPT-4o-Audio [32], and Gemini-2.5-Flash [14]. For each model, we maintain
default hyperparameters in their respective official implementations.

Metrics We employ the Attack Success Rate (ASR) as the metric for evaluating the percentage
of harmful questions that are responded to. Specifically, we conduct one inference for each audio
question and utilize Llama Guard 3 [33] as an automated judge to evaluate whether the model-
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Table 2: The ASR performance across various audio editing types when compared to the original audio on the
Explicit Subtype dataset (left of the slash) and the Implicit Subtype dataset (right of the slash). We denote the
relative changes compared to the original audio: red and green indicate the increase and decrease in ASR when
the absolute value of the change is greater than or equal to 1%, respectively. Note that the Original represents
the baseline ASR obtained from unmodified audio samples without any audio editing.

BLSP SpeechGPT Qwen2-Audio SALMONN-7B SALMONN-13B VITA-1.5 R1-AQA MiniCPM-o-2.6 GPT-4o-Audio Gemini-2.5-Flash

Original 47.5%/18.25% 14.1%/2.45% 16.8%/6.76% 31.4%/14.3% 31.3%/12.89% 3.7%/2.77% 12.6%/7.17% 18.2%/9.03% 0.7%/0.8% 8.1%/5.1%

Volume*2 +1.5%/-1.6% -0.3%/0% -1.6%/-0.7% +14.4%/+3.5% +16.1%/+2.3% +0.4%/+0.3% +1.4%/-0.3% -1.1%/+0.4% +0.4%/+0.9% -0.8%/-0.8%

Volume*5 +0.5%/-0.4% -0.8%/-0.1% -4.3%/0% +21.3%/+5.6% +20.5%/+3.4% +0.2%/0% +0.6%/-0.5% -0.7%/-0.2% +0.4%/0% 0%/-0.8%Emphasis

Volume*10 +0.6%/-1.2% -5.0%/-0.4% -4.0%/-1.0% +21.4%/+5.9% +19.9%/+3.5% 0%/+0.5% +2.0%/-0.4% +1.0%/-0.8% +0.4%/+0.4% -0.8%/-1.7%

Rate*0.5 +2.8%/+0.6% -0.8%/-0.4% -4.4%/-1.9% +13.3%/+1.9% +16.8%/+3.0% +2.2%/+0.6% +1.0%/-1.1% +1.6%/+0.4% +0.4%/0% -1.1%/-3.4%
Speed

Rate*1.5 -2.6%/+2.7% +0.2%/-0.1% +1.1%/+0.1% +14.3%/-4.2% -22.9%/-8.4% -0.5%/+0.4% +2.0%/+0.4% -2.2%/-0.4% +1.5%/-0.4% +1.5%/-0.8%

Interval+2 -4.3%/-2.0% -8.1%/-1.0% -5.1%/-0.7% -27.6%/-11.0% -1.0%/-1.4% +5.6%/+1.3% +1.6%/-0.5% +0.3%/-0.6% +0.4%/+0.4% -1.1%/-2.5%

Interval+3 -8.0%/-3.4% -11.3%/-0.8% -4.4%/-1.9% -27.0%/-11.1% +4.4%/+0.1% +5.2%/+0.5% +3.0%/-0.3% +1.4%/-1.1% +1.2%/+0.4% +1.9%/-2.5%Intonation

Interval+4 -13.6%/-3.1% -11.8%/-0.9% -3.3%/-0.5% -25.0%/-11.3% +11.7%/+2.0% +3.7%/+0.1% +4.7%/+0.1% +3.8%/-0.4% +1.5%/+1.3% +1.5%/-1.7%

Semitone -8 -3.1%/-1.4% -3.9%/-0.2% -5.1%/+0.1% +2.8%/-0.8% +11.5%/+1.3% +3.0%/+0.3% +0.5%/+0.5% -0.2%/-0.3% 0%/-0.4% 0%/-2.9%

Semitone -4 +1.5%/-0.5% -0.3%/-0.1% -2.6%/+0.4% +1.0%/-0.8% +6.0%/+1.2% -0.3%/+0.3% -0.4%/-1.4% +0.5%/-0.4% +0.4%/-0.4% -1.1%/-0.8%

Semitone +4 -0.4%/-0.2% -5.6%/-0.5% -5.1%/-1.0% +3.6%/+1.4% +17.6%/+3.6% +0.5%/+0.4% +1.0%/-0.7% -0.3%/-1.1% +0.8%/0% -1.9%/-0.8%
Tone

Semitone +8 -2.4%/-1.2% -13.6%/-2.1% -3.2%/-1.1% +8.8%/+2.0% +24.1%/+4.7% +4.4%/+0.4% +1.5%/-0.7% +7.9%/+0.3% +1.2%/+0.9% -1.9%/-2.1%

Crowd Noise +0.8%/-1.1% -6.5%/-0.2% -7.7%/-2.0% +16.1%/+5.6% +27.6%/+7.7% +4.4%/+0.9% -1.6%/-2.0% +1.9%/+0.5% +0.8%/+0.4% -4.2%/-2.5%

Machine Noise +0.7%/+0.4% -5.5%/-0.2% -6.1%/-1.3% +20.3%/+5.9% +28.6%/+9.2% +0.2%/+0.3% -2.2%/-1.4% -1.1%/-0.2% 0%/+1.7% -2.7%/-2.9%Background Noise

White Noise -0.2%/-0.3% -0.4%/-0.1% -4.6%/-1.0% +7.0%/+4.9% +22.3%/+5.0% +0.4%/+0.3% +1.2%/-0.5% -4.3%/-1.3% 0%/-0.4% 0.4%/-3.4%

Kanye West -7.8%/-3.5% -4.8%/-0.3% -5.3%/-1.1% +12.8%/+5.2% +17.4%/+3.2% +2.0%/+0.5% +0.3%/-1.1% +7.9%/-0.1% +0.4%/-0.9% -2.7%/-2.1%

Donald Trump -8.7%/-3.3% -4.2%/-0.5% -4.0%/-1.5% +3.3%/+2.0% +20.1%/+3.1% +2.6%/+0.8% +0.6%/-0.5% +6.4%/+0.8% 0%/0% -1.5%/-2.5%Celebrity Accent

Lucy Liu -9.5%/-3.6% -3.2%/-0.1% -4.4%/-1.0% -5.9%/-4.3% +12.4%/+3.7% -0.3%/+0.6% +3.3%/-0.1% +0.8%/+0.1% +1.5%/+0.4% -4.2%/-2.9%

Laugh +4.0%/-0.7% -4.8%/0% -4.4%/-0.1% +2.8%/+0.1% +23.2%/+5.3% -0.1%/+0.3% -1.6%/-0.3% -6.8%/-2.9% -0.4%/-0.4% +0.4%/-1.7%
Emotion

Scream -1.1%/-1.8% -4.7%/-0.8% -3.7%/-0.8% +18.0%/+5.2% +20.7%/+4.5% +0.4%/+0.5% +5.5%/+1.0% -8.1%/-3.4% -0.4%/0% -2.3%/-0.4%

generated response is harmful. For an attack to be considered successful, the response must both
be classified as harmful by Llama Guard 3 and exceed a minimum length of 50 words. This
length requirement ensures that we only count substantive harmful responses rather than brief
acknowledgments. Llama Guard 3 is widely adopted and shows close alignment with human
evaluations [65; 66]. We also evaluate the similarity between Llama Guard 3’s decisions and human
evaluations, which are available in Appendix C.

Disparity in LALM Susceptibility to Audio Editing Jailbreak Based on our proposed Explicit
Subtype and Implicit Subtype datasets, we evaluate how LALMs are affected by the audio editing
jailbreak. Table 2 reveals significant variations in vulnerability across different models and audio
editing types. SALMONN demonstrates the highest susceptibility, exhibiting substantial ASR
increases across multiple audio editings, especially on celebrity accent, emphasis, background noise,
and emotion modulation. In stark contrast, SpeechGPT, Qwen2-Audio, and BLSP demonstrate
resilience to audio editing jailbreak, with most audio editing types not increasing their ASR. The
mid-tier models VITA-1.5, R1-AQA, and MiniCPM-o-2.6 show moderate susceptibility, with ASR
increasing generally within 5% across audio editing types.

We also evaluate how closed-source models GPT-4o-Audio and Gemini-2.5-Flash are affected by the
audio editing jailbreak. Due to the large scale of the Explicit Subtype dataset and the Implicit Subtype
dataset, evaluating closed-source models would incur excessive costs. Therefore, we evaluate the
GPT-4o-Audio and Gemini-2.5-Flash on smaller-scale versions of the Explicit Subtype dataset and
the Implicit Subtype dataset. Detailed dataset scale information is in the Appendix B. GPT-4o-Audio
exhibits robustness to audio editing jailbreak, with minor ASR increases of less than 1.7% observed
only in specific audio editing types, including intonation, tone, background noise, celebrity accent,
and speed editing. Similarly, Gemini-2.5-Flash demonstrates comparable robustness with limited
ASR increases primarily appearing in speed and intonation editing. These findings highlight the
disparities in model robustness against audio editing jailbreak.

Analysis To further analyze the observed disparities in model robustness against audio editing
jailbreak, we conduct a deeper investigation into the internal representations of three representative
models: Qwen2-Audio-7B (highly robust), MiniCPM-o-2.6 (moderately robust), and SALMONN-7B
(vulnerable). Figure 4 presents t-SNE visualizations [59] of features extracted from the audio encoder
and the hidden states from various transformer layers when models process audio samples with
different types of audio editing on the Explicit Subtype dataset.

The features from the audio encoder reveal a consistent pattern across all three models, where
embeddings primarily cluster based on audio editing types rather than semantic contents. This
suggests that all models initially detect and represent audio editing distinctly, regardless of their
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Figure 4: t-SNE visualization of features extracted from the audio encoder and the hidden states from various
transformer layers when Qwen2-Audio-7B, MiniCPM-o-2.6, and SALMONN-7B process audio samples with
different types of audio editing on the Explicit Subtype dataset.

ultimate robustness to audio editing jailbreak. However, significant differences emerge in how these
representations evolve through the transformer layers. In Qwen2-Audio-7B, we observe a transition
from editing-based clustering to semantic-based clustering by Layer 8, with subsequent layers
showing increasingly homogeneous representation where edited audio samples converge around
original audio samples. By Layer 31, the robust Qwen2-Audio-7B demonstrates minimal separation
between audio editing types, indicating effective normalization of edited audio inputs. MiniCPM-o-
2.6 exhibits a different pattern, where the transition from editing-based to semantic-based clustering
begins earlier and remains incomplete. Even at Layer 27, the representation remains somewhat
scattered, reflecting its moderate vulnerability to certain audio editing. Apparently, SALMONN-7B
maintains clear editing-based clustering throughout its entire architecture. Even at Layer 31, distinct
clusters for different audio editing remain separated from original audio samples, explaining its high
susceptibility to audio editing jailbreak. More t-SNE visualizations on each audio editing type and
UMAP [45] visualizations are available in Appendix C.

4 Potential Research Inspired by Jailbreak-AudioBench

4.1 Query-based Audio Editing Jailbreak Method

Our analysis of how different models process edited audio reveals that even robust systems initially
encode audio editing characteristics distinctly before normalizing them through transformer layers.
This finding suggests that diverse combinations of audio editing types might overwhelm even robust
models’ normalization capabilities. This observation directly informs our Query-based Audio Editing
Jailbreak method, which systematically explores the combination of audio editing types to maximize
the likelihood of bypassing models’ safety guardrails.

Specifically, we first create the Explicit Small dataset by extracting 262 samples from the Explicit
Subtype dataset, maintaining a one-tenth proportion of the harmful content categories. We then
applied 32 distinct audio editing combinations to these base samples, systematically combining
modifications related to accent/emotion, emphasis, speed, and background noise in sequence. This
combinatorial approach generated 262× 32 = 8384 audio samples comprising our complete Explicit
Small dataset. Detailed dataset scale information is shown in Table 1. Further combination details
are available in the Appendix D.

Hence, each audio in the Explicit Small dataset has 32 variations with different audio editing
combinations, which are used to query models to maximize the likelihood of jailbreak. As Figure 5
shows, our Query-based Audio Editing Jailbreak method demonstrates a significant ASR increase in
model vulnerabilities to audio jailbreak on the Explicit Small dataset. Each panel presents a matrix
where columns represent individual audio samples from the Explicit Small dataset, and the first 32
rows represent different edited variants of these samples. Green cells indicate failed jailbreak attempts,
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GPT-4o-Audio ASR: 0.7%        8.4%

Qwen2-Audio-7B

SALMONN-7B ASR: 31.6%        85.1%

ASR: 13.3%        48.8%

ASR: 8.1%        49.4%Gemini-2.5-Flash

Figure 5: ASR Performance of the Query-based Audio Editing Jailbreak method on the Explicit Small dataset.
In each panel, columns represent individual audio samples, and the first 32 rows represent different edited
variants of these samples. The penultimate row represents the original unedited audio sample, while the bottom
row indicates whether any of the 32 variant queries bypassed the model’s defenses. Green: failed jailbreak; Red:
successful jailbreaks.

while red cells indicate successful compromises of the model’s safety guardrails. The penultimate
row in each panel represents the original unedited audio sample, while the bottom row indicates
whether any of the 32 variant queries successfully bypassed the model’s defenses. Specifically,
Qwen2-Audio-7B shows substantial vulnerability with ASR increasing dramatically from 13.3%
with original samples to 48.8% under our query-based approach. SALMONN-7B demonstrates
even greater susceptibility, with ASR escalating from 31.6% to 85.1%. Most notably, even the
closed-source GPT-4o-Audio exhibits vulnerability with ASR increasing from a mere 0.7% to 8.4%
under our systematic audio editing combinations. Similarly, Gemini-2.5-Flash shows significant
vulnerability with ASR rising from 8.1% to 49.4%. Additional results of the Query-based Audio
Editing Jailbreak method on BLSP, SpeechGPT, VITA-1.5, and MiniCPM-o-2.6 are available in the
Appendix D.

These findings highlight a critical dimension of LALM security that has been overlooked in existing
benchmarks. While some open-source models claim GPT-4o-level performance across standard
metrics, our Jailbreak-AudioBench reveals significant disparities in their robustness to audio editing
jailbreak. The considerable performance gap between open-source models and GPT-4o-Audio
in resisting our jailbreak method indicates that audio editing robustness represents an essential
yet underexplored dimension for comprehensive model evaluation. Our benchmark thus enables
researchers to assess audio model security beyond conventional performance metrics.

4.2 Defense Method Against Audio Editing Jailbreak

The alarming vulnerability exposed by Jailbreak-AudioBench necessitates countermeasures to fortify
LALMs against audio editing jailbreak. We propose a prompt-based defense strategy that reinforces
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Figure 6: ASR comparison of original and edited audio samples with and without defense in the Explicit
Defense dataset. The bars represent the ASR without defense, while the striped bars represent the ASR reduction
with the defense applied. The values shown on the bars denote the specific ASR reduction caused by defense.

model alignment through prepended audio instructions. This lightweight method aims to reduce the
model’s likelihood of generating harmful responses when facing audio editing jailbreak.

Specifically, we create a defense prompt in audio format using TTS, containing the instruction:
"You are a helpful assistant and should refuse to generate illegal, harmful or unethical content.".
Then we prepend this defense prompt to each audio sample in the Explicit Subtype dataset, forming
the Explicit Defense dataset with safety instructions embedded at the beginning of every sample.
Following the same process, we construct the Implicit Defense dataset based on the Implicit Subtype
dataset. Detailed dataset scale information is shown in Table 1. More generation details of the
Defense dataset can be found in the Appendix D.

Figure 6 illustrates the ASR comparison of original and edited audio samples with and without
defense on the Explicit Defense dataset. The bars represent the ASR without defense, while the
striped bars represent the ASR reduction with the defense applied. It shows that the defense approach
consistently reduces ASR across all evaluated models, evidenced by the presence of striped segments.
This confirms that prepending instructions in audio form offers a baseline level of protection against
audio editing jailbreak. However, while the defense provides measurable protection, the residual ASR
values remain concerningly high and show the limitations of our defense strategy, which necessitates
exploring more effective defense strategies in future work. Additional results on the Implicit Defense
dataset are available in the Appendix D.

5 Related Works

Jailbreak Threats Currently, various methods successfully perform jailbreak attacks on advanced
LLMs and MLLMs. Simple prompt engineering—such as fabricating facts, role-playing, or repetitive
querying—reveals vulnerabilities across modalities [53; 31; 24; 8; 10; 16]. In LVLMs, attackers
manipulate vision inputs through typographic or visual perturbations to trigger jailbreaks [23; 9].
Another common strategy injects optimized, imperceptible perturbations into modality inputs to
craft adversarial prompts [73; 43] or images [48; 29; 12; 52; 11]. To support systematic evaluation,
benchmarks such as AdvBench [73], MM-SafetyBench [40], RedTeam-2K [42], and SafeBench [23]
provide diverse jailbreak prompts. Recent works [62; 42; 64; 69] focus on LVLM Jailbreak robustness,
proposing benchmarks and pipelines to assess safety from both attack and defense perspectives. For
the audio modality, [65] adopts a subset of 350 samples from AdvBench [35] to evaluate the jailbreak
vulnerabilities of several state-of-the-art end-to-end LALMs [13; 55; 56].

Large Audio Language Models Large Audio Language Models (LALMs) have seen significant
research attention recently, with approaches broadly categorized into cascaded LALMs and end-to-end
LALMs. For cascaded LALMs, GPT-4 + Whisper remains the most representative design, combining
Whisper [49] for ASR and GPT-4 [1] for downstream tasks such as Q&A and summarization. This
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modular approach leverages state-of-the-art ASR and LLM components independently. GigaSpeech
+ GPT [6] feeds large-scale ASR outputs into LLMs for knowledge-intensive tasks. Recent works
extend this paradigm. Gao et al.[20] and MERaLiON-AudioLLM[28] integrate Whisper with
LLAMA [57] and SEA-LION V3 [47], and achieve strong performance in multilingual Q&A and
translation. For end-to-end LALMs, GPT-4o [32] represents a leading closed-source solution. In
open-source settings, BLSP [61] introduces a lightweight adapter that aligns frozen speech encoders
with LLMs. SpeechGPT [70] unifies speech and text through discrete unit processing and multi-stage
training. Qwen2-Audio [13] and SALMONN [55] integrate audio encoders with LLMs to support
voice interaction and broad-spectrum audio understanding. VITA-1.5 [19] enables real-time joint
speech-vision reasoning via end-to-end decoding. R1-AQA [37] applies reinforcement learning to
enhance audio question answering, and MiniCPM-o-2.6 [68] targets low-resource scenarios with a
compact, multi-modal architecture.

LALMs Benchmark Recent advancements in evaluating Large Audio Language Models (LALMs)
have led to the development of several comprehensive benchmarks and models. AIR-Bench [67]
assesses LALMs’ understanding of diverse audio signals—including speech, natural sounds, and
music—through foundational and conversational tasks. AudioBench [60] covers eight tasks across
26 datasets, focusing on speech comprehension, audio scene analysis, and paralinguistic features.
MMAU [51] evaluates expert-level reasoning using 10,000 audio clips with Q&A sets for multimodal
understanding. ADU-Bench [20] emphasizes conversational ability with 20,000 open-ended mul-
tilingual dialogues. FunAudioLLM [3] integrates SenseVoice for speech recognition and emotion
detection with CosyVoice for speech generation. WavLLM [31] employs dual encoders to separately
model semantic and speaker information, enhancing task adaptability.

6 Discussions

Social Impacts Jailbreak-AudioBench Toolbox provides a reusable framework for generating
diverse audio variants. The Jailbreak-AudioBench dataset offers a standardized benchmark for
assessing the vulnerabilities and defense capabilities of LALMs. While public tools may introduce
misuse risks, we release only components intended for reproducibility and safety analysis.

Resource Requirements of Jailbreak-AudioBench The comprehensive execution of Jailbreak-
AudioBench demands significant computational resources, encompassing approximately 9,216 GPU
hours on NVIDIA A40. The evaluation of closed-source LALMs such as GPT-4o-Audio and Gemini-
2.5-Flash incurs substantial API usage costs, amounting to $1,000.

Limitations & Future Work In this paper, following previous jailbreak studies [50; 65; 66], we
also mainly use Llama Guard 3 [33] to evaluate the responses of LALMs. However, after examining
157,782 responses, we observe that Llama Guard 3 has several limitations. In particular, some
responses simply repeat the input prompt. Since these outputs contain a few harmful words, Llama
Guard 3 incorrectly marks them as successful attacks. These findings indicate that current jailbreak
evaluation metrics remain imperfect. We plan to improve them in future work and encourage the
research community to further investigate this issue.

Additionally, accurately modeling natural human speech with realistic variations in prosody, speed,
and pronunciation remains challenging. Our current approach uses TTS-generated audio converted
from text as the original input and applies editing through our Toolbox to produce diverse variants. In
future work, we aim to incorporate natural speech recordings and expand the benchmark to better
reflect real-world scenarios.

7 Conclusion

In this paper, the underexplored vulnerability of LALMs to audio-based jailbreak attacks is systemati-
cally examined. While prior studies have primarily focused on textual and visual modalities in LLMs
and MLLMs, audio-specific threats remain largely neglected. To address this, Jailbreak-AudioBench
is introduced, comprising a versatile audio editing toolbox, a curated dataset of both explicit and
implicit jailbreak audio examples in original and modified forms, and a comprehensive benchmark
for evaluating LALMs. Through this framework, multiple state-of-the-art LALMs are assessed, estab-
lishing the most extensive benchmark to date for audio jailbreak evaluation. Jailbreak-AudioBench
further facilitates future safety alignment research by exposing stronger jailbreak threats, such as
query-based audio editing, and supporting the development of potential defenses.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly present the main claims of the paper,
including the construction of the Jailbreak-AudioBench benchmark, the systematic eval-
uation of LALMs under audio-editing-based jailbreak attacks, and the development of a
lightweight defense via a prepended prompt. These claims are directly supported by the
results and analyses in Sections 3 and 4.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of our work in Section 6. Specifically, we acknowl-
edge the reliance on synthetic TTS-generated prompts, the scope of editing methods for
audio, and the possibility that future LALMs may exhibit different robustness characteristics.
We also note that the effectiveness of the defense may vary with different prompt placements
or defense types, which are left for future exploration.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results; therefore, questions regarding
assumptions and proofs are not applicable. The focus of this work lies in empirical analysis
and experimental evaluation.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The overall setup, editing parameters, and defense configuration, along with
benchmark construction and dataset generation procedures are described in Section 3. These
include sampling strategies, attack variants, and evaluation metrics. This transparency
ensures that all information needed to reproduce the main experimental results is readily
available and directly supports the paper’s core claims and conclusions.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper ensures open access to the benchmark, editing pipeline, and full
experimental code required to reproduce the main results. This includes implementation
of audio editing attacks, the proposed defense method, and evaluation routines. This
transparency facilitates accurate replication and reinforces the reproducibility of the research.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all experimental details necessary to understand the
results. Section 2 defines all seven audio editing techniques and their precise parameter
configurations. Section 3 describes the construction of the benchmark dataset used to
evaluate model robustness. Section 4.1 introduces a smaller test set created via stratified
sampling and applies grid search to identify effective attack parameter combinations. Section
4.2 presents the design and evaluation of the defense strategy based on prepending an audio
prompt. Since the work evaluates pretrained models without any training or fine-tuning,
optimizer settings are not applicable.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The paper does not report error bars or statistical significance tests, as each
model was evaluated once under fixed audio perturbations and deterministic settings. The
primary goal is to analyze comparative vulnerability across models and editing types rather
than assess variance across repeated trials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides detailed information on the computational resources used
in the experiment in the Experiment Section 6
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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Answer: [Yes]

Justification: The research conducted in this paper adheres to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Section 6 discusses both the positive and potential negative societal impacts of
this jailbreak research. The study contributes to improving the safety of LALMs by exposing
vulnerabilities and proposing defense strategies. At the same time, it acknowledges the risk
of misuse. The work is conducted under a responsible disclosure framework and is intended
to serve as a safety benchmarking effort, ensuring a balanced perspective on the broader
implications of jailbreak technologies.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The paper discusses safeguards for responsible release in Section 6. To
minimize the risk of misuse, only benchmark construction tools and evaluation code are
released, while deployable jailbreak systems are not provided. All released resources are
intended for safety analysis and reproducibility, in line with responsible disclosure practices.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper uses pretrained models and benchmark datasets that are publicly
available and licensed for research use. All external assets are properly cited, and their
licenses and terms of use have been fully respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces the Jailbreak-AudioBench dataset. It also provides an
audio editing toolbox for generating adversarial variations. These assets are thoroughly
documented in Sections 2, 3, and 4, with implementation details and usage instructions
included in the supplemental material to ensure reproducibility and responsible reuse.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

20

paperswithcode.com/datasets


Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: During dataset curation, a small amount of manual inspection was performed
by the authors to filter and validate potentially harmful prompts from existing datasets. No
external participants were involved, and no compensation was provided. This process did
not constitute a behavioral study or user-facing experiment.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve any study participants or behavioral research that
would require IRB approval. All manual filtering and annotation were conducted by the
authors as part of dataset preparation and do not constitute human subjects research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: While the paper uses pretrained LLMs (e.g., Qwen2-Audio, SpeechGPT) for
inference, they are not part of the proposed methods. These models are treated as evaluation
targets in robustness testing and are not used in a generative or decision-making capacity
within the research methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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