
RAP: Retrieval-Augmented Planning
with Contextual Memory for Multimodal LLM Agents

Tomoyuki Kagaya∗
Panasonic Connect Co., Ltd.

Thong Jing Yuan∗

Panasonic R&D Center Singapore

Yuxuan Lou∗

National University of Singapore
Jayashree Karlekar

Panasonic R&D Center Singapore

Sugiri Pranata
Panasonic R&D Center Singapore

Akira Kinose
Panasonic Connect Co., Ltd.

Koki Oguri
Panasonic Connect Co., Ltd.

Felix Wick
Panasonic R&D Center Germany

Yang You
National University of Singapore

Abstract

With recent advancements, Large Language Models (LLMs) can now be deployed
as agents for increasingly complex decision-making applications in areas like
robotics, gaming, and API integration. However, reflecting past experiences in
current decision-making processes, an innate human behavior, continues to pose
significant challenges. Addressing this, we propose Retrieval-Augmented Planning
(RAP) framework, designed to dynamically leverage past experiences correspond-
ing to the current situation and context, thereby enhancing agents’ planning capa-
bilities. RAP distinguishes itself by being versatile: it excels in both text-only and
multimodal environments, making it suitable for a wide range of tasks. Empirical
evaluations demonstrate RAP’s effectiveness, where it achieves SOTA performance
in textual scenarios and notably enhances multimodal LLM agents’ performance
for embodied tasks. These results highlight RAP’s potential in advancing the
functionality and applicability of LLM agents in complex, real-world applications.

1 Introduction

With impressive inferential abilities of Large Language Models (LLMs) [1, 2], LLMs can be employed
as agents in various domains like decision-making and robotic control. Previous works like ReAct [3]
have shown that LLMs can produce accurate actions by alternating between actions and reasoning.

Moreover, Retrieval-Augmented Generation (RAG) has emerged as a prevalent technique in enhancing
LLMs’ generation capabilities. This approach amalgamates external knowledge into the generation
process, thus enriching the context of generated content. However, challenges remain in using
external memory to enhance LLM planning, particularly in complex environments. Existing works
like Reflexion [4] that analyzes failure cases, and ExpeL [5] that extracts insights for language agents,

∗Equal contribution.

Preprint. Under review.

Figure 1: Overview of RAP. Our framework stores past experiences and retrieves them based on the
current situation. Left: The evaluation process on ALFWorld. ICL stands for in-context learning.
Right: The evaluation process on Franka Kitchen.

fall short in utilizing comprehensive past information in complex environments. This highlights a
critical gap: the lack of a comprehensive framework for leveraging past experiences in LLM agent
planning, limiting their adaptability in complex, real-world scenarios.

In this paper, we introduce a novel framework, Retrieval-Augmented Planning (RAP), which embodies
a pivotal human ability – to leverage generalized past experiences for current tasks – for LLM agents.
Our approach involves storing past experiences in memory, retrieving relevant ones based on the
present context with may include multimodal information, and generating subsequent actions via
in-context learning, thereby enhancing the decision-making capacity of language agents.

Central to this framework is the LLMs’ ability to perform analogy-making from various abstracted
patterns [6]. Leveraging this capability, our memory stores both context and action-observation
trajectories for each experience. The approach effectively facilitates deriving correct actions from
memory examples within task constraints. Furthermore, by storing multimodal information in
memory and considering it when retrieving past experiences, our approach flexibly utilizes multimodal
information with LLMs and Vision-Language Models (VLMs) separately for language agents.

Consequently, our approach proves to be effective for memory utilization by language agents in both
decision-making and robotics tasks. Specifically, RAP achieves 33.6%, 13.0%, 18.2%, and 12.7%
gain over ReAct on the ALFWorld, Webshop, Franka Kitchen, and Meta World benchmarks.

To summarize, our contributions are as follows:

• We propose RAP, a novel framework that enhances agents’ planning capacity, that enriches
decision-making via intelligent retrieval of past experiences based on the current context.

• RAP is versatile for both textual environments and multimodal embodied tasks, marking it
as a pioneering effort in employing memory retrieval techniques for multimodal agents, a
first in this domain to our knowledge.

• RAP shows significant gains compared to prior SOTA methods across various environments.

2 Related Work

2.1 Language Models and Vision-Language Models as Foundations

LLMs such as GPT [7] and LLaMA [8] have excelled in generating coherent textdue to their
vast linguistic knowledge and reasoning abilities. Extending beyond LLMs, Vision-Language

2

Figure 2: RAP Core Components

Models (VLMs)[9] such as LLaVA[10] and CogVLM[11], have attained a profound understanding of
multimodal inputs, exemplified by LLaVA’s training on image-caption pairs [12]. Our work utilizes
these foundations to build agents for textual and embodied environments: text-based agents employing
LLMs, and embodied agents integrating VLMs for visual perception and action planning. We focus
on enhancing these agents’ planning capabilities through memory retrieval techniques, enabling them
to selectively access and utilize relevant memory for improved sequential decision-making.

2.2 Language Models as AI Agents

Recent works have leveraged LLM’s anthropomorphic capabilities when building autonomous agents.
These agents can be depicted into having 4 key aspects: Profile (agent characteristics), Memory
(past information), Planning (future strategies) and Action (execution policies) [13]. A notable
example is Chain-of-Thought (CoT) [14], where agents are encouraged to mirror human cognitive
mechanisms by incorporating reasoning into intermediate steps for complex problem-solving tasks.
With a dynamic reasoning process, ReAct [3] interleaves generated actions and environmental states,
improving the reasoning ability through action-state synergy. Our work seeks to enhance the ReAct
framework by allowing agents to identify specific objects within observations and additionally retrieve
relevant aspects of past experiences based on the current context. By doing so, our agent can adaptably
receive different experiences at different points in time that are most similar to the situation at hand.

2.3 Retrieval-Augmented Generation with Memory

Among works [15, 16, 17] that seek to derive better answers from LLMs via memory, RAG [18]
is a notable method that combines retrieval-based mechanisms with generative models. Responses
from memory are selected and passed into LLMs as additional context to deliver outputs that are
creative and contextually-grounded. Building on RAG, Reflexion [4] requires LLMs to self-reflect on
unsuccessful tasks for self-improvement in solving tasks over time. ADaPT [19] further decomposes
into sub-tasks and re-executes where necessary. Yet, these works only reflect on trajectories within
the task. Hence, these insights are often restricted to each task. Building on Reflexion, ExpeL [5]
passes all generated experiences into the LLM to reflect in a text-based manner. In contrast, our work
adopts a different approach by implicitly drawing from a diverse range of experiences from memory
without explicitly requiring an additional step of re-tasking the LLM to extract insights. With this
approach, our agent can not only efficiently generalize experiences from other successful tasks to
solve the current task, but also be flexible enough to extract relevant components from experiences,
enhancing the agent’s ability to expand its memory from textual to multimodal contexts.

3 RAP: Retrieval-Augmented Planning

We developed Retrieval-Augmented Planning (RAP), a framework that leverages past experiences
to facilitate decision-making according to the current context. Fig. 2 provides an overview of the
framework, which consists of four core components: Memory, Reasoner, Retriever, and Executor.
The specific details of each module will be discussed in sections 3.2 to 3.5.

3.1 Preliminaries

In this work, we consider an agent operating in a particular environment and assigned with completing
some task T. The agent forms an overall plan p, then interacts with the environment over a finite
horizon of H timesteps. The overall plan is the first “think” statement, that details the agent’s strategy
to solve the overarching task. At each timestep t ∈ {1, 2, . . .H}, the agent forms an action plan p′t,

3

selects an action αt from the action space A and receives an observation ot from the observation
space O. Here, action plans are all subsequent “think” statements that agent creates when interacting
with environment. The trajectory τ = {p⃗′t, α⃗t, o⃗t} of the agent up to time t consists of the sequences
of plans p⃗′t = (p′1, ...p

′
t), actions α⃗t = (α1, ...αt) and observations o⃗t = (o1, ...ot). Hence, action

plans are reasoning steps created when interacting with environment, whereas the overall plan is
generated only at the first execution step. Also, the Reasoner generates action plans for agent to form
its own reasoning in environment, while the Executor generates actions to interact with environment.
Using the example on Page 22 to illustrate,

• Overall plan: "To solve the task, I need to find and take a cloth, then clean it with sinkbasin,
then put it in cabinet."

• Action plan: Act 1 “think: First I need to find a cloth”, Act 7 “think: Now I take a cloth (1).
Next, I need to go to sinkbasin (1) and clean it”

• Actions: Act 2 “go to cabinet 1”, Act 3 “open cabinet 1”

3.2 Memory

To enable retrieval-augmented planning, memory databases, that contain logs of prior successful task
executions, are first constructed. For each log Li completing a task Ti in Hi steps, we record the task
information Ti, overall plan pi , and agent’s trajectory τLi

including plans, actions, and observations.

Li = {Ti, pi, τLi
} (1)

τLi
= {p⃗′Li

, α⃗Li
, o⃗Li
} (2)

For textual environments, the observations are textual descriptions of the world state. For multimodal
environments, the observations are images from a fixed viewpoint camera after each agent action.

The logs are collected by having agents attempt the tasks and saving streams of successful episodes.
The episodic logs capture the steps needed to complete the tasks. Storing these examples allows the
agents to leverage prior experience when planning for new instances of the tasks.

During interactions with the environment, the agents can selectively retrieve relevant memory samples
to make more informed action decisions. For textual tasks, the logs provide crucial context. For
multimodal tasks, prior visual observations reveal outcomes of actions. By retrieving prototypical ex-
ecutions, the agents can plan smarter policies while avoiding past failures. The memory augmentation
thus equips the models with vital environmental knowledge for sequential decision-making.

3.3 Reasoner

The Reasoner generates overall plans, action plans, and retrieval keys based on the agent’s current
situation and action trajectory, using LLMs. Initially, the Reasoner produces the overall plan from the
task information. Based on the task and the overall plan, the Reasoner generates an action plan. Also,
in accordance with ReAct, an action or action plan is dynamically generated by LLMs, considering
the current task status. If an action plan is generated, a retrieval key is created based on the generated
action plan. For instance, in ALFWorld [20], if an action plan like "I need to find the watch" is
generated, the retrieval key would be "search watch". Hence, the Reasoner enables agents to take into
consideration the current situation and context.

3.4 Retriever

The Retriever is designed to extract the most relevant memory logs to guide the agent’s subsequent
actions to complete the current task. This process is shown in Fig. 3 (Left). Here, the similarity score,
comparing the current state S0 with log Li, is calculated as a weighted average of the task similarity,
overall plan alignment, and retrieval key congruence.

Let the current agent task be T0, the overall plan be p0, and the retrieval key generated by the Reasoner
based on current action plan p′ be k0. The similarity score between current state S0 with log Li is
calculated as a weighted average of the similarity score for task, overall plan, and retrieval key.

Score(S0, Li) = wt · sim(T0, TLi) + wp · sim(p0, pLi
) + wk · sim(k0, τLi

) (3)

4

Figure 3: Memory-Retrieval in RAP. Left to Middle: The Retriever, calculating similarities with
Memory, dynamically switches between action or observation based on the Retrieval Key. Right:
Executor receives related experiences from memory and utilizes them in the prompt.

Each component’s similarity score is determined using cosine similarity of their feature representa-
tions. For text data, the representations are derived using sentence-transformers [21]. For images, the
representations are generated with a CLIP-based Vision Transformer.

The similarity score between the retrieval key and the log trajectory is adaptive based on environment
type and retrieval key type. In multimodal environments, the retrieval key corresponds to agents’
current visual observation. Thus, the retrieval-key similarity score is the score between current and
logged visual trajectory observations as in equation (4).

sim(k0, τLi
) = max(cos_sim(kvisual0 , oj)), for oj ∈ o⃗Li

(4)

In textual environments, the retrieval-key similarity score is adaptive based on key type. In scenarios
involving the retrieval key for searching or locating objects, the similarity score is calculated between
the retrieval key and the logged textual trajectory observations, as in equation (5).

sim(k0, τLi
) = max(cos_sim(ktext0 , oj)), for oj ∈ o⃗Li

(5)

When the retrieval-key influences the action plan, it is an action similarity score, as in equation (6).

sim(k0, τLi
) = max(cos_sim(ktext0 , αj)), for αj ∈ α⃗Li

(6)

Furthermore, component weights are adaptively calibrated based on the environment. In environments
with a constrained task space, task similarity is assigned a higher weight. For example, in Franka
Kitchen environment which has only 5 tasks, we only retrieve logs with same task type.

For each retrieved experience, only a window of trajectory centered around the most similar action is
passed to the agent. This allows agents to focus on actions most similar to current task, rather than
full trajectories that may instead create additional noise to the agent.

In summary, our meticulously-crafted retrieval method efficiently identifies the most pertinent logs
by calculating a weighted similarity score that takes into account various aspects including task
information, overall planning, and retrieval key. This process ensures that the most relevant and
contextually appropriate logs are selected from a vast repository of memory logs. Once these logs are
retrieved, they serve as an invaluable resource for the large language model serving as Executor.

3.5 Executor

The Executor receives past experiences from the Retriever and generates the next action by utilizing
these experiences through in-context learning. This process is illustrated in Fig. 3 (Right). By
presenting the past experience aligned with the current context as a prompt, it enables accurate
decision-making for the next action, mirroring the process humans leverage past experiences for
future actions. Additionally, the length of the current task trajectory is used in the same way as
past experiences, utilizing only a constant number of new trajectories. This encourages effective
analogy-making from experiences through in-context learning in LLMs.

5

Algorithm 1 Retrieval-Augmented Planning
Initialize: Trajectory τ , ReasonerLLM , Retriever, ExecutorLLM , Memory
Input: Task T
po = Reasoner(T) // Generate overall plan
e = Retriever(Memory, T) // Retrieve experiences
while reward is not Success and t < max steps do

// Generate action or action plan
at = Executor(T , po, e, τ)
if action plan then

k = Reasoner(at) // Generate retrieval key
e = Retriever(Memory, T , k) // Retrieve experiences

else
reward, ot = Env(at) // Input action to environment

end if
τ ← at, ot // Update trajectory
t = t+ 1 // Increment

end while

4 Experiments

To validate the effectiveness of our framework in various environments, we performed evaluations on
four benchmarks. These include the text-based multi-step tasks in ALFWorld [20] and Webshop [22],
and robotics tasks, FrankaKitchen [23] and Meta-World [24], which are multimodal environments. A
more detailed analysis of ablation studies performed can be found in Appendix C.

4.1 Textual Environments

4.1.1 ALFWorld

ALFWorld [20] is a synthetic text-based game that challenges an agent to solve multi-step tasks in
a variety of interactive environments based on TextWorld [25]. Following ReAct, we evaluated an
agent in 134 unseen games, including six types of tasks: Pick, Clean, Heat, Cool, Look, and Pick2.
In this environment, agents are required to accomplish complex tasks using text-based actions in a
simulated household providing textual and image feedback. Following previous works [3, 4, 19],
RAP runs recursively until it reaches a depth (trial) of 3.

In our evaluation, due to the lack of prior experiences, the initial trial in RAP was conducted using
ReAct. We built our memory from the tasks that succeeded. For subsequent trials, we utilized the
memory from the previous trial. In RAPtrain, the memory was constructed using 1000 tasks from the
provided training set, and run recursively with memory from successful tasks both from the training
set and previous trials. Additionally, we use task information including the task category for the
Retriever. During action-based similarity calculation, it extracts four experiences and ten actions
from both before and after the most similar action. Meanwhile, during observation-based similarity
calculation, it uses eight experiences and five actions from both before and after the most similar
action.

We conducted evaluations using three models: GPT-3.5 [26], GPT-4 [7], and Llama2-13b [8]. In Table
1, our experiments with GPT-3.5 show that RAP(85.8%) and RAPtrain(91.0%) achieve a significantly
higher success rate compared to previous works such as ReAct(52.2%), Reflexion(74.6%), and
ADaPT(71.6%). Further, RAP is effective for both high-performance models like GPT-4, and
locally-operated models like Llama2-13b, thus illustrating the efficacy of RAP across various LLMs.

4.1.2 WebShop

WebShop [22] is a web application that simulates online shopping, where agents are required to
select products for purchase based on a given user instruction. WebShop contains a total of 1.18M
real-world products featured on Amazon, and comprises a wide variety of structured and unstructured
texts. Following Reflexion [4] and ADaPT [19], we evaluated an agent across 100 instructions. For
each instruction, agents are required to reason and select a desired product that is most aligned to

6

Table 1: ALFWorld task-specific success rate(%).

Method(dmax=3) Model Pick Clean Heat Cool Look Pick2 All

Act GPT-3.5 66.7 51.6 73.9 61.9 38.9 17.6 53.7
ReAct GPT-3.5 50.0 41.9 73.9 66.7 55.6 23.5 52.2

Reflexion GPT-3.5 75.0 77.4 65.2 76.2 83.3 70.6 74.6
ADaPT* GPT-3.5 87.5 80.6 60.8 76.2 61.1 52.9 71.6

RAP(Ours) GPT-3.5 95.8 87.1 78.3 90.5 88.9 70.6 85.8
RAPtrain(Ours) GPT-3.5 95.8 100.0 82.6 85.7 100.0 76.5 91.0

ReAct GPT-4 83.3 71.0 95.7 81.0 100.0 94.1 85.8
RAP(Ours) GPT-4 95.8 90.3 100.0 95.2 100.0 88.2 94.8

ReAct Llama2-13b 29.2 41.9 34.8 52.4 38.9 17.6 36.6
RAP(Ours) Llama2-13b 62.5 61.3 56.5 61.9 44.4 17.6 53.0

* We use the performance reported by [19]

the given instruction based on observations returned by the web application, and perform additional
precise interactions with the portal to navigate through the web application such as searching or
clicking buttons. Such interactions are performed in a text-based manner where the agent issues a
textual command into the web application. Following previous studies, we allow the agent to run
recursively until it reaches a depth (trial) of 3.

During our evaluation, we ran the initial trial with a ReAct agent and formulated the memory database
based on successful tasks. The memory database would be further expanded for subsequent trials
based on successful tasks in the preceding trials. Here, successful tasks are counted as those with a
reward of 1. In addition, during retrieval of actions in memory, the Retriever extracts three experiences
and five actions from before and after the most similar action.

Moreover, unlike other environments where objects are generalizable across different tasks, WebShop
has an additional unique feature where actions in each task are highly dependent on the scenario
outlined in that task. As such, apart from the correlation between the current reasoning and trajectories
in memory, our agent also considers the relationship between the action of each task in memory
that is most similar to the current action and its corresponding scenario for that task. This builds
on the concept of "A is to B as C is to D", where the generated action depends not only on similar
trajectories in memory, but also how these trajectories relate back to their scenario, and how the
current trajectory should be related to the current scenario. By incorporating intra-task relationships,
this allows the agent to better reason how the actions in memory are correlated with their own
scenarios, and thereafter generate an action that is also aligned to the current scenario at hand.

We performed evaluations using two different models: GPT-3.5 [26] and Llama2-13b [8]. In Table
2, experiments with GPT-3.5 demonstrate that our method (48.0%) achieves a higher success rate
compared to previous studies such as ReAct (35.0%), Reflexion (35.0%), and ADaPT (43.0%).
Furthermore, our method is able to achieve a higher overall reward score (76.1%) as compared to
ReAct (61.8%), Reflexion (61.8%) and ADaPT (64.0%).

Table 2: WebShop Score (%) and Success Rate(%).

Method(dmax=3) Model Score Success Rate

ReAct GPT-3.5 61.8 35.0
Reflexion GPT-3.5 61.8 35.0
ADaPT GPT-3.5 64.0 43.0

RAP(Ours) GPT-3.5 76.1 48.0

ReAct Llama2-13b 64.6 31.0
RAP(Ours) Llama2-13b 71.1 36.0

7

Figure 4: Evaluation on Franka-Kitchen and Meta-World Benchmark. We evaluate with LLaVA and
CogVLM both with and without our proposed RAP method. The results demonstrate that our method
notably enhances the performance of multimodal LLM agents in executing embodied tasks.

4.2 Multimodal Environments

We evaluated our proposed technique in embodied multimodal agents on two benchmark environ-
ments: Franka Kitchen and Meta-World. These simulations offer a diverse set of household and
robotic manipulation tasks requiring visual perception and physical interaction.

We constructed embodied agents using 2 VLM foundations - LLaVA and CogView. For each VLM,
we compared task performance of the base model to a RAP-enhanced agent utilizing our memory
retrieval system.

The Franka Kitchen benchmark consists of compound tasks like arranging objects and preparing meals,
while Meta-World provides a suite of 50 distinct robotic skills focused on fine manipulation. Here, the
agent is required to plan actions based on visual observations in an interactive 3D environment. We
report quantitative results on success rates with and without RAP. Our method allows VLM Agents to
selectively reference prior successful executions during planning. This provides vital visual context
and demonstrates the benefits of memory-augmented reasoning for embodied agents.

To map the high-level plans of agents to executable environment actions, we train a policy network
on 25 demonstrations for each task. We evaluate on 5 subtasks with 2 different camera views. For
each (task, view) combination, we run 50 trials with different random seeds and report success rates.

Table 3 and Figure 4 shows that RAP can significantly enhance embodied multimodal agents planning
on both benchmarks. The results offer insights into how memory can aid these models for sequential
decision making and embodied tasks requiring interactive visual perception.

Table 3: Average success rates on Franka Kitchen and Meta World of VLM Agents(%)

Method Franka Kitchen Meta World

LLaVA 43.4 65.4
LLaVA with RAP (Ours) 61.6 79.2

CogVLM 44.2 61.5
CogVLM with RAP (Ours) 56.9 68.8

8

5 Conclusion and Limitations

We propose Retrieval-Augmented Planning (RAP), a framework that leverages past experiences from
multimodal sources to guide language agents’ actions. RAP demonstrated superior performance
across various LLMs and agent/robotics benchmarks, enhancing decision-making capabilities by
mimicking human-like experience utilization. While promising, our study reveals important future
directions. These include addressing the organization of accumulating memory in lifelong learning
scenarios and expanding beyond text and image inputs to include video and audio. These challenges
are crucial for real-world applications and more adaptive AI systems. In conclusion, RAP advances
experience-driven language agents while highlighting key areas for future research to fully realize
their potential in complex, dynamic environments.

Acknowledgments and Disclosure of Funding

Use unnumbered first level headings for the acknowledgments. All acknowledgments go at the
end of the paper before the list of references. Moreover, you are required to declare funding
(financial activities supporting the submitted work) and competing interests (related financial activities
outside the submitted work). More information about this disclosure can be found at: https:
//neurips.cc/Conferences/2024/PaperInformation/FundingDisclosure.

Do not include this section in the anonymized submission, only in the final paper. You can use
the ack environment provided in the style file to automatically hide this section in the anonymized
submission.

References
[1] Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,

Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Ji-Rong Wen. A Survey on Large Language
Model based Autonomous Agents. In arXiv, 2023.

[2] Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao Zhou, Weiran Wang,
Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shihan Dou, Rongxiang Weng, Wensen
Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng Qiu, Xuanjing Huang, and Tao Gui. The rise and
potential of large language model based agents: A survey. In arXiv, 2023.

[3] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. Re-
act: Synergizing reasoning and acting in language models. In International Conference on Learning
Representations (ICLR), 2023.

[4] Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
Reflexion: Language agents with verbal reinforcement learning. In Neural Information Processing Systems
(NeurIPS), 2023.

[5] Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. ExpeL: LLM
Agents Are Experiential Learners. In AAAI Conference on Artificial Intelligence (AAAI), 2023.

[6] Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter, Danny Driess, Montserrat Gonzalez Arenas,
Kanishka Rao, Dorsa Sadigh, and Andy Zeng. Large language models as general pattern machines. In
Conference on Robot Learning (CoRL), 2023.

[7] OpenAI. Gpt-4 technical report. In arXiv, 2023.

[8] Meta GenAI. Llama 2: Open foundation and fine-tuned chat models. In arXiv, 2023.

[9] Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on
multimodal large language models. In arXiv, 2023.

[10] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In ArXiv, volume
abs/2304.08485, 2023.

[11] Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang, Lei
Zhao, Xixuan Song, Jiazheng Xu, Bin Xu, Juanzi Li, Yuxiao Dong, Ming Ding, and Jie Tang. CogVLM:
Visual Expert for Pretrained Language Models. In ArXiv, volume abs/2311.03079, 2023.

9

https://neurips.cc/Conferences/2024/PaperInformation/FundingDisclosure
https://neurips.cc/Conferences/2024/PaperInformation/FundingDisclosure

[12] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning. In Iryna Gurevych and Yusuke Miyao,
editors, Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 2556–2565, Melbourne, Australia, July 2018. Association for Computational
Linguistics.

[13] Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Ji-Rong Wen. A survey on large language model
based autonomous agents. In arXiv, 2023.

[14] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information
Processing Systems, volume 35, pages 24824–24837. Curran Associates, Inc., 2022.

[15] Aman Madaan, Niket Tandon, Peter Clark, and Yiming Yang. Memory-assisted prompt editing to improve
gpt-3 after deployment. In Empirical Methods in Natural Language Processing (EMNLP), 2022.

[16] Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What makes
good in-context examples for gpt-3? In arXiv, 2021.

[17] Hongjin Su, Jungo Kasai, Chen Henry Wu, Weijia Shi, Tianlu Wang, Jiayi Xin, Rui Zhang, Mari Ostendorf,
Luke Zettlemoyer, Noah A. Smith, and Tao Yu. Selective annotation makes language models better
few-shot learners. In arXiv, 2022.

[18] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich
Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. Retrieval-
augmented generation for knowledge-intensive nlp tasks. In Proceedings of the 34th International
Conference on Neural Information Processing Systems, NIPS’20, Red Hook, NY, USA, 2020. Curran
Associates Inc.

[19] Archiki Prasad, Alexander Koller, Mareike Hartmann, Peter Clark, Ashish Sabharwal, Mohit Bansal, and
Tushar Khot. Adapt: As-needed decomposition and planning with language models. In arXiv, 2023.

[20] Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. In Inter-
national Conference on Learning Representations (ICLR), 2021.

[21] Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks.
In arXiv, 2019.

[22] Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable real-world
web interaction with grounded language agents. In arXiv, 2022.

[23] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy learning:
Solving long-horizon tasks via imitation and reinforcement learning. In Conference on Robot Learning
(CoRL), 2019.

[24] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Avnish Narayan, Hayden Shively, Adithya
Bellathur, Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-world: A benchmark and evaluation
for multi-task and meta reinforcement learning, 2021.

[25] Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine, James Moore,
Ruo Yu Tao, Matthew Hausknecht, Layla El Asri, Mahmoud Adada, Wendy Tay, and Adam Trischler.
Textworld: A learning environment for text-based games. In International Joint Conference on Artificial
Intelligence (IJCAI), 2018.

[26] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder, Paul F Christiano, Jan Leike, and Ryan Lowe. Training
language models to follow instructions with human feedback. In Neural Information Processing Systems
(NeurIPS), 2022.

[27] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning
transferable visual models from natural language supervision. In Marina Meila and Tong Zhang, editors,
Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 8748–8763. PMLR, 18–24 Jul 2021.

10

A Parameters

In Webshop, all experiments were performed with a temperature setting of 0.0, due to the additional
requirement of precise commands for interactions with the web application.

Table 4: Parameters

Experiments on ALFWorld
Text Embedding Model sentence-transformers/all-MiniLM-L6-v2

VLM openai/CLIP, ViT-B/32
Max steps 50

GPT-3.5 version gpt-3.5-turbo-instruct
GPT-3.5 temperature 0

GPT-4 version gpt-4-0613
GPT-4 temperature 0.5
Llama2-13b version meta-llama/Llama-2-13b-chat-hf
Llama2 temperature default(1.0)

Experiments on Webshop
Text Embedding Model sentence-transformers/all-MiniLM-L6-v2

Max steps 15
GPT-3.5 temperature 0
Llama2-13b version meta-llama/Llama-2-13b-chat-hf
Llama2 temperature 0

11

B Multimodal Environments and Agents Details

B.1 Task Selection

To evaluate RAP in multimodal environments, we focus on two benchmarks: Franka Kitchen and
Meta-World. These benchmarks offer a diverse range of tasks, simulating real-world scenarios in a
controlled environment, making them ideal for evaluating the performance of multimodal agents.

Franka Kitchen Benchmark simulates a kitchen environment, where the agent interacts with various
kitchen appliances and items. We have selected five specific tasks that test the agent’s ability to
manipulate objects and controls within this environment. These tasks are listed in table 5

Task No. Task Description
1. cabinet Open a hinge cabinet door
2. micro Open the microwave door
3. burner Twist knob for bottom left burner
4. light Move lever to turn on light
5. kettle Move kettle from bottom to top burner

Table 5: Selected Tasks in Franka Kitchen Benchmark

The Meta-World benchmark is designed to evaluate an agent’s skill in more generalized object
manipulation tasks. We have selected five tasks that represent a broad range of actions.

Task No. Meta-World Tasks
1. assemble Pick up a nut and place it onto a peg
2.buttion Press a button
3. drawer Open a drawer
4. hammer Hammer a screw on the wall
5. bin Grasp the puck from one bin and place it into another bin

Table 6: Selected Tasks in Meta-World Benchmark

B.2 Model Specification

In this subsection, we detail the model specifications for our agent, which is built upon two VLMs:
LLaVA and CogVLM. These models allows for a more comprehensive understanding and interactions.

LLaVA Model: Our agent utilizes the LLaVA-v1.5 13B model, which incorporates Vicuna-v1.5 13B
as its underlying LLM to tap on its robust linguistic processing capabilities.

CogVLM Model: The CogVLM-17B model contains a significant number of parameters – 10 billion
are dedicated to visual understanding, and 7 billion are focused on language processing.

In our experimental setup for the language generation of these models, we set the temperature to
0.0. This setting is chosen to prioritize precision and determinism in the generated outputs, which is
crucial for the consistency and reliability of the agent’s planning responses in our multimodal tasks.

B.3 Policy Network details

The policy network is a crucial component of our framework, designed to translate high-level action
plans generated by the VLMs into precise, low-level control actions suitable for the specific action
space of the environment. Our approach utilizes a Multi-Layer Perceptron (MLP) neural network
for this purpose. In both environments, the learning of the policy network is facilitated through a
few-shot learning approach, leveraging a limited but highly informative set of demonstration data.

For each environment, we provide 25 expert demonstrations sourced from the D4RL dataset. These
demonstrations consist of trajectories that include both observations and actions, showcasing expert-
level performance in the respective tasks.

In the Franka Kitchen tasks, each demonstration is composed of 50 state-action pairs, reflecting the
sequence and specifics of actions required to complete the task. Meanwhile, for the Meta-World
tasks, each demonstration sample comprises 500 state-action pairs.

12

C Ablation Study

C.1 Improvement of Success Rate through Recursive Evaluation

The following figure shows the progression of the improvement in success rate through recursive
evaluation in ALFWorld and WebShop.

Figure 5: Success Rate over 3 trials, Left: ALFWorld, Right: WebShop

RAP outperform ReAct and it indicate the effective utility of successful experiences from other tasks
in memory. In addition, RAP with GPT-3.5 achieves performance equivalent to ReAct with GPT-4.
Also, RAP with memory built from the training set via GPT-3.5 surpasses ReAct with GPT-4 in
ALFWorld.

C.2 Design of Retrieval Process

C.2.1 Evaluation across various Retrievers

We perform evaluation on ALFWorld with GPT-3.5 by varying the Retriever, as shown in Table 7.
The results of RAPact and RAPobs illustrate the effectiveness of switching the information used for
retrieval depending on the situation.

Furthermore, we utilize visual observation provided by ALFWorld instead of textual observation,
and perform an evaluation using similarity between textual retrieval key and image observation with
CLIP [27]. As a result, slightly better performance is demonstrated than when using text observation
information. This suggests that employing direct image data, rather than information converted into
text, could enable more effective retrieval.

Table 7: ALFWorld success rate(%) with different retrievers. RAPact uses only action information,
while RAPobs utilizes only observation information for retrieval. RAPclip refers to evaluations using
images, rather than texts, as observations with CLIP.

Method(dmax=3) Success Rate

ReAct 52.2
RAPact 82.1
RAPobs 84.3
RAPclip 86.6

RAP 85.8

Additionally we illustrate the effect of varying the components extracted from each experience by the
Retriever in Webshop. Here, all evaluations are performed on Llama2-13b.

As shown in Table 8, through RAPobs, the agent is able to retrieve trajectories from memory based
on either actions or observations, depending on the current stage of solving the task. With the
incorporation of intra-task similarity in RAPintra, the agent is able to align the relationship between

13

task information and the corresponding trajectories of each experience when projecting to the current
task. By retrieving based on product category in RAPcat, the agent is able to retrieve experiences that
are more related to the current task. Overall, RAP takes into account these components, resulting in
an overall boost of 6.5% and 5.0% for overall reward and success rate respectively on Llama2-13b.
With these, RAP also demonstrates a boost of 14.3% and 13.0% for overall reward and success rate
respectively on GPT-3.5 in Table 2, showcasing RAP’s generalizability across different models.

Table 8: Webshop overall score (%) and success rate(%) with different retrievers on Llama2-13b.
RAPobs uses additional retrieval by observations on top of action-based retrieval in RAPact. Also,
RAPintra and RAPcat uses intra-task retrieval and product-category retrieval. RAP indicates combi-
nation of RAPobs, RAPintra and RAPcat.

Method(dmax=3) Success Rate Overall Score

ReAct 31.0 64.6
RAPact 33.0 68.6
RAPobs 33.0 69.0

RAPintra 34.0 69.3
RAPcat 35.0 69.9

RAP 36.0 71.1

C.2.2 Weights of components in Retriever

An ablation study was performed on the effectiveness of each component in Equation 3 for the
Retriever. Here, a modified-condition/decision coverage (MC/DC) test scenario was adopted to
analyze the effect of each variable.

Following Equation 3, the retrieval process for ALFWorld is based on similarity with memory logs,
and is calculated as:

1. wt ∗ sim(T0, TLi) has 2 parts: (a) similarity of task category with log Li, (b) similarity of
task description with log Li

2. wp ∗ sim(p0, pLi): similarity of overall plan with scenario of log Li

3. wk ∗ sim(k0, τLi): similarity of action/observation of current task with trajectory of log Li

Additionally, to validate the effectiveness of similarity, we conducted random retrievals as
RAPrandom for verification.

Table 9: Weights used in 3 for Retriever, on ALFWorld, with GPT-3.5

Config wtcat wtdes wp wk Success (%)

ReAct 0 0 0 0 52.2
RAPrandom - - - - 65.7

RAPt 1 1 0 0 80.6
RAPtp 1 1 1 0 84.3
RAP 1 1 1 1 85.8

The results of the ablation study were tabulated in Table 9. Here, each component was added
incrementally, beginning with the addition of task similarity (Row 3), followed by similarity of
overall plan (Row 4), and lastly action-observation similarity (Row 5). From these results, it can be
confirmed that retrieval based on similarity positively impacts performance and is effective.

Furthermore, following Equation 3, the retrieval process for WebShop is based on similarity with
memory logs, and is calculated as:

1. wt ∗ sim(T0, TLi): similarity of product category of current task with category of log Li

2. wp ∗ sim(p0, pLi): similarity of overall plan with scenario of log Li

3. wk ∗ sim(k0, tauLi) has 2 parts: (a) similarity of retrieval key of task with trajectory of log
Li, (b) similarity of trajectory of log Li with its own task scenario

14

By contrasting against results in row 2 of Table 10, there was an increase in reward and success rate
for each variable of observation (row 3), intra-task relationship (row 4), and category (row 5). As
these components are independent, the combination in row 6 showcases synergy among them.

Table 10: Weights used in 3 for Retriever, on WebShop, with LLama2-13b

Config wt wp wintra wact,obs Reward (%) Success (%)

ReAct 0 0 0 0 64.6 31.0
RAPact 1 0 0 0 68.6 33.0
RAPobs 1 0 0 1 69.0 33.0
RAPintra 1 0 1 0 69.3 34.0
RAPcat 1 1 0 0 69.9 35.0

RAP 1 1 1 1 71.7 36.0

C.2.3 Number of experiences retrieved

Apart from the comparisons of similarity of memory logs with the current task, another crucial aspect
of the proposed algorithm is selecting the right number of experiences to be passed to the agent.

As such, an ablation study was performed on the ideal number of experiences retrieved from the
memory by the Retriever. From Table 11, it was confirmed that the performance improves as the
number of experiences utilized increases.

Table 11: Number of retrieved experiences, on ALFWorld, with GPT-3.5

Num examples in action retrieval Num examples in observation retrieval Success (%)

2 2 81.3
4(default) 8(default) 85.8

Table 12: Number of retrieved experiences, on WebShop, with Llama2-13b

Num examples Reward (%) Success (%)

1 66.3 32.0
2 68.9 34.0

3(default) 71.1 36.0

From Table 12, it can be observed that the highest success rate and reward was observed when 3
experiences were retrieved from the memory. Due to prompt length limitation of the agent, together
with the long observations returned by WebShop, the number of experiences were limited to 3.

C.3 Transfer Learning via Memory

RAP is capable of utilizing past experiences that are stored in memory. Since the experience of
solving tasks is independent of the model, the model used for evaluation does not need to match the
one used for memory construction. Here, we illustrate a verification of transfer learning between
models by using memory constructed via different models for the evaluation model. From Section
4.1.1, we use 1000 samples from training data, but no recursive trial is conducted (dmax = 1) to
simply verify the effect of transfer learning.

Table 13 shows results of transfer learning, which indicate memory generated with GPT-3.5 is also
effective in Llama2-13b. Thus, RAP allows sharing experiences across models.

15

Table 13: ALFWorld success rate(%) with Memory and dmax=1. ModelMemory indicates the
language model used to construct memory from the training data.

Model ModelMemory Success Rate

GPT-3.5 - 44.0
GPT-3.5 GPT-3.5 63.4

Llama2-13b - 20.9
Llama2-13b Llama2-13b 26.9
Llama2-13b GPT-3.5 27.6

D Prompts

D.1 ALFWorld Prompt

D.1.1 Prompt for overall plan in Reasoner� �
Here are examples.
{Your task is to: put some vase on safe.
> To solve the task, I need to find and take a vase, then put it on safe.} examples x 3

Here is the task. Please make a plan from the examples.
Your task is to: put some watch on safe.
> think: To solve the task,� �

16

D.1.2 Prompt for retrieval key in Reasoner� �
Here are examples.
think: First I need to find a spraybottle. A spraybottle is more likely to appear in cabinet
(1-4), countertop (1), toilet (1), sinkbasin (1-2), garbagecan (1). I can check one by one,
starting with cabinet 1.
> search: spraybottle
think: Now I put the first creditcard in dresser. Next, I need to find the second creditcard.
I can directly go to countertop 1.
> search: creditcard
think: Now I take a pen (2). Next, I need to find a desklamp. A desklamp is more likely
to appear in dresser (1), shelf (1-9), bed (1), garbagecan (1), drawer (1-10). I can check
one by one, starting with dresser 1.
> search: desklamp
think: Now I find a lettuce (1). Next, I need to take it.
> action: take
think: Now I find a pan (1). Next, I need to take it.
> action: take
think: Now I find the second saltshaker (2). Next, I need to take it.
> action: take
think: Now I heat an egg (2). Next, I need to put it in/on diningtable 1.
> action: put
think: Now I take a spraybottle (2). Next, I need to put it in/on toilet 1.
> action: put
think: Now I take an apple (1). Next, I need to go to a microwave (1) and heat it.
> action: heat
think: Now I take a bread (1). Next, I need to go to a microwave (1) and heat it.
> action: heat
think: Now I take a mug (3). Next, I need to go to a fridge (1) and cool it.
> action: cool
think: Now I take a potato (2). Next, I need to go to a fridge (1) and cool it.
> action: cool
think: Now I find a desklamp (1). Next, I need to use it.
> action: use
think: Now I find a desklamp (3). Next, I need to use it.
> action: use

Here is the task. Please make a plan from the examples.
think: First I need to find a watch. A watch is more likely to appear in/on cabinet (1-4),
drawer (1-5). I can check one by one, starting with cabinet 1
>� �

17

D.1.3 Prompt for action plan in Reasoner and for action in Executor� �
Here is the task information.
You are in the middle of a room. Looking quickly around you, you see a armchair 1, a
cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a drawer 5, a drawer 4, a drawer 3, a
drawer 2, a drawer 1, a dresser 1, a garbagecan 1, a safe 1, a shelf 12, a shelf 11, a
shelf 10, a shelf 9, a shelf 8, a shelf 7, a shelf 6, a shelf 5, a shelf 4, a shelf 3, a shelf 2,
a shelf 1, a sidetable 1, and a sofa 1.

Here are examples.
{Task: put a vase in safe.
Plan: To solve the task, I need to find and take a vase, then put it in the safe.
> think: First I need to find a vase.
OK.
> go to shelf 1
On the shelf 1, you see nothing.
...
> go to shelf 6
On the shelf 6, you see a vase 2.
> think: Now I find a vase (2). Next, I need to take it
OK.
> take vase 2 from shelf 6
You pick up the vase 2 from the shelf 6.} examples x n

Here is the task. Please make an action from the examples.
Task: put some watch on safe.
Plan: To solve the task, I need to find and take a watch, then put it on the safe.
>� �

18

E Memory

E.1 ALFWorld memory example

1 {
2 "Task": "examine the pencil with the desklamp.",
3 "Category": "examine",
4 "Overall Plan": "To solve the task, I need to find and take a pencil,

then find and use a desklamp.",↪→

5 "Trajectory": [
6 "> think: First I need to find a pencil",
7 "OK.",
8 "> go to shelf 2",
9 "On the shelf 2, you see a alarmclock 1, a pen 2, and a pencil

1.",↪→

10 "> think: Now I find a pencil (1). Next, I need to take it",
11 "OK.",
12 "> take pencil 1 from shelf 2",
13 "You pick up the pencil 1 from the shelf 2.",
14 "> think: Now I take a pencil (1). Next, I need to find and use a

desklamp",↪→

15 "OK.",
16 "> go to desk 1",
17 "On the desk 1, you see a alarmclock 2, a cellphone 2, a desklamp

1, a keychain 2, a mug 1, and a pencil 3.",↪→

18 "> think: Now I find a desklamp (1). Next, I need to use it",
19 "OK.",
20 "> use desklamp 1",
21 "You turn on the desklamp 1."
22]
23 }

E.2 Webshop memory example

1 {
2 "Category": "beauty",
3 "Query": "hair extensions, wigs & accessories",
4 "Overall Plan": "i need a long clip-in hair extension which is natural

looking, and price lower than 40.00 dollars",↪→

5 "Trajectory": [
6 "Action: search[long clip-in hair extension natural looking]",
7 "Observation: \n[Back to Search] \nPage 1 (Total results: 50)

\n[Next >] \n[B09QQLDJ93] \nLroveb Fashion Long Curly Wig Head
Dyed Black Gradient Golden Long Straight Wig African Long
Curly Hair Wigs Ladies Gradient Color Chemical Fiber Silk Corn
Perm Wig for Women \n$34.89 \n[B09QQKPZJR] \nLroveb Beanie Hat
Knit with Long Wavy Curly Hair Extensions Wig Winter Warm
Fashion Long Curly Hair Hat Wig Wool Curl Corn Perm Curl
Knitted Cap Attached Synthetic Hairpiece \n$36.06
\n[B08H5DCD65] \nCorn Wave Ponytail Extension Clip in - 22
Inch Long Wavy Curly Wrap Around Pony Tail Heat Resistant
Synthetic Hairpiece for Women (Natural Black #1B) \n$9.98 ",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

8 "Action: think[B09QQLDJ93 and B09QQKPZJR are long clip-in hair
extensions that are natural looking and less than 40 dollars.
I can check B09QQLDJ93 first.]",

↪→

↪→

19

9 "Observation: OK.",
10 "Action: click[B09QQLDJ93]",
11 "Observation: \n[Back to Search] \n[< Prev] \nLroveb Fashion Long

Curly Wig Head Dyed Black Gradient Golden Long Straight Wig
African Long Curly Hair Wigs Ladies Gradient Color Chemical
Fiber Silk Corn Perm Wig for Women \nPrice: $34.89 \nRating:
N.A. \n[Description] \n[Features] \n[Reviews] \n[Attributes]
\n[Buy Now] ",

↪→

↪→

↪→

↪→

↪→

12 "Action: think[For long clip-in hair extension that is natural
looking, the item has options 'long curly wig' and 'dyed black
gradient golden' and seems good to buy.]",

↪→

↪→

13 "Observation: OK.",
14 "Action: click[Buy Now]"
15],
16 }

20

F Trajectories

F.1 ALFWorld trajectories

Task Description� �
You are in the middle of a room. Looking quickly around you, you see a bed 1, a desk
2, a desk 1, a drawer 6, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer 1, a
garbagecan 1, a laundryhamper 1, a safe 1, a shelf 6, a shelf 5, a shelf 4, a shelf 3, a
shelf 2, and a shelf 1.
Your task is to: put a mug in desk.� �
ReAct� �

Act 1: think: To solve the task, I need to
find and take a mug, then put it in desk
Obs 1: OK.
Act 2: think: First I need to find a
mug. A mug is more likely to appear
in drawer (1-6), shelf (1-6), desk (1-2),
garbagecan (1), laundryhamper (1),
safe (1). I can check one by one, start-
ing with drawer 1

Obs 2: OK.
Act 3: go to drawer 1
Obs 3: The drawer 1 is closed.
Act 4: open drawer 1
Obs 4: You open the drawer 1. The
drawer 1 is open. In it, you see a pen 1.
...
Act 23: think: Hmm, it seems like the
mug is not in any of the drawers. Let
me check the other possible locations
Obs 23: OK.
...
Fail� �

RAP� �
Plan: To solve the task, I need to find
and take a mug, then put it in desk.
Act 1: think: First I need to find a mug
Obs 1: OK.
Retrieval key: search mug

Act 2: go to shelf 1
Obs 2: On the shelf 1, you see a mug
2.
Act 3: take mug 2 from shelf 1

Obs 3: You pick up the mug 2 from the
shelf 1.
Act 4: think: Now I find a mug (2). Next,
I need to put it in/on desk 1
Obs 4: OK.
Retrieval key: action put

Act 5: go to desk 1
Obs 5: On the desk 1, you see a bowl
1, a cd 2, a creditcard 2, a desklamp 1,
a keychain 1, a laptop 2, a pen 2, and a
pencil 2.
Act 6: put mug 2 in/on desk 1

Obs 6: You put the mug 2 in/on the desk
1.
Success� �

21

Task Description� �
You are in the middle of a room. Looking quickly around you, you see a cabinet 4, a
cabinet 3, a cabinet 2, a cabinet 1, a countertop 1, a garbagecan 1, a handtowelholder
2, a handtowelholder 1, a sinkbasin 2, a sinkbasin 1, a toilet 1, a toiletpaperhanger 1,
and a towelholder 1.
Your task is to: clean some cloth and put it in cabinet.� �
ReAct� �

Act 1: think: To solve the task, I need to
find and take a cloth, then clean it with
sinkbasin, then put it in a cabinet
Obs 1: OK.
Act 2: think: First I need to find a cloth.
A cloth is more likely to appear in a cab-
inet (1-4), countertop (1), sinkbasin (1-
2), handtowelholder (1-2), towelholder
(1), toiletpaperhanger (1), garbagecan
(1). I can check one by one, starting
with cabinet 1
Obs 2: OK.
...
Act 6: open cabinet 2
Obs 6: You open the cabinet 2. The
cabinet 2 is open. In it, you see a cloth
1.
Act 7: take cloth 1 from cabinet 2

Obs 7: You pick up the cloth 1 from the
cabinet 2.
Act 8: think: Now I take a cloth (1). Next,
I need to go to sinkbasin (1-2) and clean
it
Obs 8: OK.
Act 9: go to sinkbasin 1
Obs 9: On the sinkbasin 1, you see
nothing.
Act 10: go to sinkbasin 2
Obs 10: On the sinkbasin 2, you see
nothing.
Act 11: think: I can’t clean the cloth
without water. I need to find a source
of water

Obs 11: OK.
Act 12: go to toilet 1
...
Fail� �

RAP� �
Plan: To solve the task, I need to find
and take a cloth, then clean it with
sinkbasin, then put it in cabinet.
Act 1: think: First I need to find a cloth
Obs 1: OK.
Retrieval key: search cloth

Act 2: go to cabinet 1
Obs 2: The cabinet 1 is closed.
Act 3: open cabinet 1
Obs 3: You open the cabinet 1. The
cabinet 1 is open. In it, you see a toilet-
paper 1.
Act 4: go to cabinet 2
Obs 4: The cabinet 2 is closed.
Act 5: open cabinet 2
Obs 5: You open the cabinet 2. The
cabinet 2 is open. In it, you see a cloth
1.
Act 6: take cloth 1 from cabinet 2

Obs 6: You pick up the cloth 1 from the
cabinet 2.
Act 7: think: Now I take a cloth (1). Next,
I need to go to sinkbasin (1) and clean
it
Obs 7: OK.
Retrieval key: action clean

Act 8: go to sinkbasin 1
Obs 8: On the sinkbasin 1, you see
nothing.
Act 9: clean cloth 1 with sinkbasin 1

Obs 9: You clean the cloth 1 using the
sinkbasin 1.
Act 10: think: Now I clean a cloth (1).
Next, I need to put it in/on cabinet (1-6)
Obs 10: OK.
Retrieval key: action put

Act 11: go to cabinet 3
Obs 11: The cabinet 3 is closed.
Act 12: open cabinet 3
Obs 12: You open the cabinet 3. The
cabinet 3 is open. In it, you see a soap-
bottle 1.
Act 13: put cloth 1 in/on cabinet 3

Obs 13: You put the cloth 1 in/on the
cabinet 3.
Success� �

22

23

F.2 Webshop trajectories

Task Description� �
WebShop
Instruction:
i am looking for mn4 color foundation for my sensitive skin, and price lower than
40.00 dollars
[Search]� �
ReAct� �
Action: search[mn4 color foundation
sensitive skin]
Observation: [Back to Search]
Page 1 (Total results: 50) [Next >]
[B077PR9TL4] Physicians Formula
The Healthy Foundation with SPF 20,
LW2, 1 Fl Oz $7.59 [B07VLKYJNH]
PÜR 4-in-1 Love Your Selfie Long-
wear Foundation & Concealer - Full
Coverage Foundation & Concealer
Makeup For Dark Spots, Blemishes
and Imperfections - Long-Lasting
Liquid Makeup & Skincare $36.0
[B09J1X9M1P] Neutrogena Healthy
Skin Sensitive Skin Serum Foundation
with Pro-Vitamin B5, Color Correcting
& Pore Minimizing Liquid Foundation
& Face Serum, Buildable Coverage,
Medium 02, 1 oz $14.39

Action: think[B077PR9TL4 and
B09J1X9M1P are mn4 color foundation
for sensitive skin and price lower than
40 dollars.]
Observation: OK.

Action: click[B077PR9TL4]
Observation: [Back to
Search] [< Prev] color
[1][dc1][dn3][dn4][lc1][ln3][ln4][lw2]
[mc1][mn3][mn4][mw2] size [1 fl oz
(pack of 1)][1 ounce (pack of 1)][1 fluid
ounce] Physicians Formula The Healthy
Foundation with SPF 20, LW2, 1 Fl Oz
Price: $7.59 Rating: N.A. [Description]
[Features] [Reviews] [Attributes] [Buy
Now]

Act 11: think[For mn4 color foundation
for sensitive skin, the item has options
’lw2’ and ’1 fluid ounce’ and seems
good to buy.]

Observation: OK.

Action: click[lw2]
Observation: You have clicked lw2.

Action: click[Buy Now]
Observation: Your score (min 0.0, max
1.0): 0.6666666666666666

Fail� �

RAP� �
Action: search[mn4 color foundation
sensitive skin]
Observation: [Back to Search]
Page 1 (Total results: 50) [Next >]
[B077PR9TL4] Physicians Formula
The Healthy Foundation with SPF 20,
LW2, 1 Fl Oz $7.59 [B07VLKYJNH]
PÜR 4-in-1 Love Your Selfie Long-
wear Foundation & Concealer - Full
Coverage Foundation & Concealer
Makeup For Dark Spots, Blemishes
and Imperfections - Long-Lasting
Liquid Makeup & Skincare $36.0
[B09J1X9M1P] Neutrogena Healthy
Skin Sensitive Skin Serum Foundation
with Pro-Vitamin B5, Color Correcting
& Pore Minimizing Liquid Foundation
& Face Serum, Buildable Coverage,
Medium 02, 1 oz $14.39

Action: think[B077PR9TL4,
B07VLKYJNH, and B09J1X9M1P
are mn4 color foundation for sensitive
skin and price lower than 40.00 dollars.]
Observation: OK.

Action: click[B077PR9TL4]
Observation: [Back to
Search] [< Prev] color
[1][dc1][dn3][dn4][lc1][ln3][ln4][lw2]
[mc1][mn3][mn4][mw2] size [1 fl oz
(pack of 1)][1 ounce (pack of 1)][1 fluid
ounce] Physicians Formula The Healthy
Foundation with SPF 20, LW2, 1 Fl Oz
Price: $7.59 Rating: N.A. [Description]
[Features] [Reviews] [Attributes] [Buy
Now]

Action: think[For mn4 color foundation
for sensitive skin, the item has options
’1’, ’dc1’, ’dn3’, ’dn4’, ’lc1’, ’ln3’, ’ln4’,
’lw2’,’mc1’,’mn3’,’mn4’, and’mw2’ and
seems good to buy.]
Observation: OK.

Action: click[mn4]
Observation: You have clicked mn4.

Action: click[Buy Now]
Observation: Your score (min 0.0, max
1.0): 1.0

Success� �
24

Task Description� �
WebShop
Instruction:
i want capri sun pacific cooler mixed fruit naturally flavored juice drinks, and price
lower than 20.00 dollars

[Search]� �
ReAct� �

Action: search[capri sun pacific cooler
mixed fruit naturally flavored juice
drinks]
Observation: [Back to Search]
Page 1 (Total results: 50) [Next >]
[B000R30X2A] Capri Sun Pacific
Cooler Mixed Fruit Naturally Flavored
Juice Drink Blend (Pack of 10) (Packag-
ing May Vary) $2.55 [B075CSWGJR]
Capri Sun Pacific Cooler Ready-to-
Drink Juice, 6 Fl Oz (Pack of 30) $100.0
[B0083GG2SC] Capri Sun Coolers
Variety Pack Ready-to-Drink Juice (40
Pouches, 4 Boxes of 10) $100.0

Action: think[B000R30X2A is capri sun
pacific cooler mixed fruit naturally fla-
vored juice drinks and price lower than
20.00 dollars.]
Observation: OK.

Action: click[B000R30X2A]
Observation: [Back to Search] [<
Prev] flavor name [assorted][pacific
cooler][strawberry kiwi][variety pack]
size [6 fl oz (pack of 10)][6 fl oz
(pack of 30)] Capri Sun Pacific Cooler
Mixed Fruit Naturally Flavored Juice
Drink Blend (Pack of 10) (Packaging
May Vary) Price: $2.55 Rating: N.A.
[Description] [Features] [Reviews] [At-
tributes] [Buy Now]

Action: think[For capri sun pacific
cooler mixed fruit naturally flavored
juice drinks, the item has options ’as-
sorted’, ’pacific cooler’, and ’6 fl oz
(pack of 10)’]
Observation: OK.

Action: click[assorted]
Observation: You have clicked as-
sorted.

Action: click[Buy Now]
Observation: Your score (min 0.0, max
1.0): 0.6666666666666666

Fail� �

RAP� �
Action: search[capri sun pacific cooler
mixed fruit naturally flavored juice
drinks]
Observation: [Back to Search]
Page 1 (Total results: 50) [Next >]
[B000R30X2A] Capri Sun Pacific
Cooler Mixed Fruit Naturally Flavored
Juice Drink Blend (Pack of 10) (Packag-
ing May Vary) $2.55 [B075CSWGJR]
Capri Sun Pacific Cooler Ready-to-
Drink Juice, 6 Fl Oz (Pack of 30) $100.0
[B0083GG2SC] Capri Sun Coolers
Variety Pack Ready-to-Drink Juice (40
Pouches, 4 Boxes of 10) $100.0

Action: think[B000R30X2A is capri sun
pacific cooler mixed fruit naturally fla-
vored juice drinks and seems good to
buy.]
Observation: OK.

Action: click[B000R30X2A]
Observation: [Back to Search] [<
Prev] flavor name [assorted][pacific
cooler][strawberry kiwi][variety pack]
size [6 fl oz (pack of 10)][6 fl oz
(pack of 30)] Capri Sun Pacific Cooler
Mixed Fruit Naturally Flavored Juice
Drink Blend (Pack of 10) (Packaging
May Vary) Price: $2.55 Rating: N.A.
[Description] [Features] [Reviews] [At-
tributes] [Buy Now]

Action: think[For capri sun pacific
cooler mixed fruit naturally flavored
juice drinks, the item has options ’as-
sorted’, ’pacific cooler’, and ’6 fl oz
(pack of 10)’ and seems good to buy.]
Observation: OK.

Action: click[assorted]
Observation: You have clicked as-
sorted.

Action: click[pacific cooler]
Observation: You have clicked pacific
cooler.

Action: click[6 fl oz (pack of 10)]
Observation: You have clicked 6 fl oz
(pack of 10).

Action: click[Buy Now]
Observation: Your score (min 0.0, max
1.0): 1.0

Success� �
25

	Introduction
	Related Work
	Language Models and Vision-Language Models as Foundations
	Language Models as AI Agents
	Retrieval-Augmented Generation with Memory

	RAP: Retrieval-Augmented Planning
	Preliminaries
	Memory
	Reasoner
	Retriever
	Executor

	Experiments
	Textual Environments
	ALFWorld
	WebShop

	Multimodal Environments

	Conclusion and Limitations
	Parameters
	Multimodal Environments and Agents Details
	Task Selection
	Model Specification
	Policy Network details

	Ablation Study
	Improvement of Success Rate through Recursive Evaluation
	Design of Retrieval Process
	Evaluation across various Retrievers
	Weights of components in Retriever
	Number of experiences retrieved

	Transfer Learning via Memory

	Prompts
	ALFWorld Prompt
	Prompt for overall plan in Reasoner
	Prompt for retrieval key in Reasoner
	Prompt for action plan in Reasoner and for action in Executor

	Memory
	ALFWorld memory example
	Webshop memory example

	Trajectories
	ALFWorld trajectories
	Webshop trajectories

