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Abstract

It is very valuable to recognize named entities
from short and informal multimodal posts in
this age of information explosion. Despite ex-
isting methods success in multi-modal named
entity recognition (MNER), they rely on the
well aligned text and image pairs, while a lot
of noises exist in the datasets. And the repre-
sentation of text and image with internal cor-
relations is difficult to establish a deep con-
nection, because of the mismatched semantic
levels of the text encoder and image encoder.
In this paper, we propose multi-granularity
contrastive knowledge distillation (MGC) to
build a unified joint representation space of two
modalities. By leveraging multi-granularity
contrastive loss, our approach pushes represen-
tations of matched image-text pairs or image-
entity pairs together while pushing those un-
related image-text or image-entity pairs apart.
By utilizing CLIP model for knowledge distil-
lation, we can obtain a more fine-grained visual
concept. Experimental results on two bench-
mark datasets prove the effectiveness of our
method.

1 Introduction

Named Entity Recognition (NER) is a crucial sub-
task of Information Extraction (IE), which aims to
find and classify the type of named entities useful
for downstream tasks. But in real scenarios (e.g.,
social media platforms), we are often exposed to
limited and informal text, from which it is very dif-
ficult to identify named entities (Ritter et al., 2011).
Some of the research on NER attempts to introduce
multimodal information to help identify named en-
tities in unstructured text (Zhang et al., 2018; Lu
et al., 2018; Sui et al., 2021; Zhang et al., 2021).
As shown in Figure 1(a), without the support of
the image, it would be difficult to figure out that
"Harry Potter" here refers to a dog, while easy to
identify which as an actor or film title.
Multimodal Named Entity Recognition (MNER)

(c) [Kevin Durant PER]
putting up more bricks
than [Super Mario Bros
MISC]|

(a) Your world might be (b) When your family
shaped like a big planet but  goes to [Red Sox game
mine is shaped like a tiny MISC] without you

[Harry Potter MISC]

Figure 1: Examples of different ways image content
and named entity can be related in Multimodal Named
Entity Recognition. The named entities and types are
highlighted (“MISC” stands for other named entity and
“PER” stands for person). (a) Image are significantly
related to entity. (b) Image is hardly related to entity. (c)
Image is partially related to entity.

has received increasing interest these years. Exist-
ing research focuses on how to fully exploit multi-
modal information (visual information) (Wu et al.,
2020; Zhang et al., 2021), and how to fuse text
and visual representation (Moon et al., 2018b; Yu
et al., 2020; Chen et al., 2021). Despite their suc-
cess, current MNER methods have two major lim-
itations: Firstly, the current methods often relied
on well aligned image and text pairs. But, in so-
cial media data, the relationship between image
and entities is pluralistic (Hu et al., 2018; Vempala
and Preotiuc-Pietro, 2019) and sometimes the im-
ages content may be unrelated to entities. Take
Figure 1(b) as an example, the image is only used
to express the mood of the uploader, which is un-
related to the entities in the text, and may even
introduce undesirable noise. Secondly, the repre-
sentation of text and images with internal corre-
lations is difficult to establish a deep connection.
Existing work often relies on language models pre-
trained on massive raw data (e.g., BERT(Devlin
et al., 2019), XLNET(Yang et al., 2019) and so
on) and image classifiers pre-trained on large-scale
annotated data such as Imagenet (Deng et al., 2009)
and Openlmages (Kuznetsova et al., 2020). Such a
pre-trained text encoder is knowledgeable. For ex-



ample, in Figure 1(a), it could be found that “Harry
Potter” could refer to a character, a novel or a series
of films (Roberts et al., 2020; Petroni et al., 2019).
But such a pre-trained image encoder is more con-
cerned with low-level semantic information and
relatively limited visual concepts. For instance, in
Figure 1(a), it easily tells that the image consists
of a dog, not a man, but hardly represents the dog
dressed as “Harry Potter”. Because it is difficult
to learn fine-grained concepts on a standard im-
age classification dataset. Furthermore, there is
scarcely a one-to-one match between the image
and the entity, but often an incomplete matching
relationship. As Figure 1(c) illustrated, the image
is a scene from “Super Mario”, indicating that “Su-
per Mario” is a game. But there is no direct match
between the image and the entity “Kevin Durant”.
So there is no need to introduce image informa-
tion as a distraction when classifying this entity.
According to our statistics, incomplete matching
exists in more than 31% of the image text pairs that
contain more than one entity, in the Twitter-2017
dataset (Lu et al., 2018).

In this paper, to overcome above challenges,
we propose Multi-Granularity Contrastive Knowl-
edge Distillation Learning (MGC) framework. We
have constructed a joint representation space of
text and image to learn the different relationship
between images and texts or entities. In detail,
in joint representation space, we leverage Global
Contrastive loss to push embedding of matched
image-text pairs together while pushing those un-
related image-text pairs apart. Besides, we lever-
age Local Contrastive loss to push embedding of
matched image-entity pairs together while pushing
those unrelated image-entity pairs apart. More-
over, in order to make the image encoder and the
text encoder similar in capability and to bridge
the two modality presentation better, we leverage
Contrastive Language-Image Pre-training (CLIP)
model (Radford et al., 2021) as a teacher model.
CLIP model is pre-trained on 400 million image-
text pairs scraped from the website, which is able to
express a much more fine-grained visual concepts
in joint representation space and help to filter some
unrelated image. As the framework is model-free,
it could in theory also be used for many existing
MNER methods.

Our contribution can be summarized as follows:

* We design a novel framework MGC (Multi-
Granularity Contrastive Knowledge Distilla-

tion Learning) to align images and texts or
entities. So more useful and fine-grained vi-
sual information can be used for NER.

* We propose an approach to build a joint rep-
resentation space of image and text under
the supervision of CLIP model and multi-
granularity contrastive learning.

* We conduct extensive experiments on two
public MNER datasets. Experimental results
prove the effectiveness of our method. Our
code has been uploaded as an attachment.

2 Methodology

In this section, we will introduce the details of
MGC framework to multimodal named entity
recognition. Before introducing our proposed ap-
proach, we first describe the task formalization of
MNER.

Task Formalization: Given a piece of text X
and an image V associated with the text. MNER
aims to leverage multimodal information to clas-
sify and locate pre-defined types of entities from
text X. As following most of studies about MNER,
we have adopted the paradigm of sequence label-
ing. The input of MNER is a sequence of words
X = {z1,x9, ...,z }, while the goal is to predict
a sequence of label Y = {y1,y2, ..., yn}, and that
is to estimate P(Y'| X, V'), where y; € Y and the Y
is the pre-defined label set with the B/O2 tagging
schema (Sang and Veenstra, 1999).

As Figure 2 illustrating the overall architecture
of our method, the key of our framework aims at
how to build a unified joint representation space
to help MNER. We introduce knowledge distilla-
tion from CLIP (Radford et al., 2021) and multi-
granularity contrastive mechanism to bridge text
and image modality. Consequently, we first intro-
duce how to transform the input into the representa-
tion, and then describe knowledge distillation from
CLIP, and multi-granularity contrastive mechanism.
Finally, we elaborate how to fuse the two modality
representation to cope with MNER task and the
training process.

2.1 Instance Representation

First we need to obtain representations of the inputs
from different modalities.

Text Encoder: To make better use of world
knowledge, our text encoder employ BERT (Devlin
et al., 2019). Give a batch of instances (text-image
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Figure 2: The overall architecture of our method in training. The top part illustrates unified text representation
supervised by distilling from teacher text encoder output. The middle part shows that a multi-granularity contrastive
mechanism is in charge of both entity-image and text-image matching. While the bottom part shows the text
representation and image representation fuse to recognize named entities. The red line indicates the image data-flow

and the blue line denotes the text data-flow.

pairs) I = {(Xl, VI), (XQ, Vg), ceny (XB, VB)},
where X is the text, V' denotes the image asso-
ciated with the text, and each text contains some
named entities A; = {ai,k},iv @, We denote the text
input as X; = {[CLS], T 15 %325 s Tims [SEP]},
where x; ; is the word of text X;, [CLS], [SEP]
are special tokens of BERT. We use BERT to ob-
tain representation of each token in text h; ;, and
representation of the whole text hY, which can be
formulated as:

H; = {h;;}}_, = BERT(X;) e R (1)

where d; stands for the hidden size of BERT. The
representation of token [C'LS] stand by the whole
text information denoted by hY. And then leverage
a mapping function E(-) to obtain unified text rep-
resentation ug,; and u‘;i7 1. in the joint representation
space:

uj; = E(h{) € R®, 2)
ud = EW({hij}te ca,) ER®, ()

where dy stands for the dimension of the joint rep-
resentation space, t(+) is a pooling operation.
Image Encoder: To link text and images tightly
together, we directly utlize the image encoder of
the CLIP model (Radford et al., 2021) pre-trained
on millions of image-text pairs, to extract image

features. The image encoder is a pre-trained Vi-
sion Transformer (ViT) (Dosovitskiy et al., 2021),
which encode each image to a vector g;:

g = ViT(V;) € R%, 4)

During the training process, the parameters of the
image encoder are frozen.

2.2 Knowledge Distillation from CLIP

As we said in the introduction, in order to take ad-
vantage of fine-grained visual concept and bridge
the two modality better, we take CLIP (Radford
et al., 2021) model as teacher model. CLIP outper-
formance fully supervised ResNet (He et al., 2016)
on a lot of image classification datasets such as Im-
agenet (Deng et al., 2009), under zero shot setting,
which prove CLIP model has learned fine-grained
image concept. And by introducing a priori knowl-
edge of CLIP, some unrelated image-text pairs can
be discarded. In previous section MGC leverage
CLIP’s Visual Transformer as image encoder. Pro-
posed method adopts CLIP’s text encoder, a pre-
trained transformer, as the teacher text encoder, so
as to allow the representation of the text linked
the image’s better. As Figure 2 top part illustrat-
ing, We constrain the text representation in terms
of the whole sentence (global knowledge distilla-
tion) and each entity (local knowledge distillation).



Because CLIP’s pre-training process only focuses
on the overall representation of the text and does
not learn the representation of each word, for each
entity span in the text A; = {a;  }1°, teacher text
encoder encode them as a sentence. It can be for-
mulated as:

ufm‘ = Transformerq P(Xi) c ]Ralg7 (5)

u’éiyk = Transformercyrp(a; ) € R, (6)

The global knowledge distillation constrain the
overall representation of the text, while the local
knowledge distillation constrain the representation
of the entity:

B

LEP = Z |lug; — a2 (7)
i=1
B N,

EgD = Z Z Huéz',k - ugi,kHQ ®)
i=1 k=1

In order to make the overall text representation and
the entity text representation as similar as possible
to the CLIP text encoder output, we minimized the
Euclidean Distance between the two representa-
tion.

2.3 Multi-Granularity Contrastive
Mechanism

To align the text and image, following recent stud-
ies on contrastive learning (Radford et al., 2021;
Jia et al., 2021) , we propose global contrastive loss
to push representation of matched image-text pairs
together while pushing those unrelated image-text
pairs apart. We assume that most of the image-text
pairs in the dataset are related. As Figure 2 top part
illustrating, we compute text to image similarity
matrix:

A9 ={a;;} = {g]uj;} eRP*P. (9

Before calculating the dot product we normalize
the representation vectors from two modalities first.
So the largest score value should be on the diagonal
of the matrix:

exp(a;;/T)
B )
i=1 ijl exp(ai;/T)

(10)

where 7 denotes the temperature hyperparameter.
Similarly, inspired by weakly supervised learning
(Li et al., 2020; Wang et al., 2021), we propose
local contrastive loss to push representation of

matched image-entity pairs together while push-
ing those unrelated image-entity pairs apart. We
assume that at least one of the entity should be
related to the associated image.

uf; = argmax{g; u}; ; (11)
uZi,j

AP ={a;;} = {g/u;} eRP*E. (12)

where u;; stands for the most associated entity in
text X; with the image V;. The local contrastive
loss is calculated in the same way as global con-
trastive loss.

2.4 Output Module

The output module, illustrated as Figure 2 bottom
part, aims at fusing the representations from the
two modalities and predicting the label of each
token. We leverage multimodal transformer pro-
posed by Yu et al. (2020) to obtain the multimodal
representation. First we get image-aware word
representation by employ an m-head cross-modal
attention, which treats visual representation g as
query, text representation H as key and value:

Waig] ' [WiiH]

C,(H,g) = softmam([ Jam [W.:H] "),
(13)
M(H, g) = W'[Ci(H,g),....Cn(H,g)] ", (14)
P = LN(g + M(H, g)) (15)
P = LN(P + FFN(P)) (16)

where C; refers to the i-th head of cross-modal
attention, {Wg;, Wii, Wyi} € RA/mxdr gnd
W’ € R4*4 gre learnable parameters, FEN is the
feed-forward network (Vaswani et al., 2017), LN is
the layer normalization (Ba et al., 2016). And then,
taking P as key and value, H as query, feed them
into transformer layer to generate the final image-
aware word representation A € R™*% _ Similarly,
for word-aware visual representation, the fusion
module adopt a cross-modal attention, which treats
visual representation g as key and value, text repre-
sentation H as query to get word-aware representa-
tion Q € R™ x d;. To get the final representation,
representation Q need to pass a visual gate, as fol-
lows:

CcC = O‘(WaA + WqQ) S Rn,
B=c-QeR™%,

a7
(18)

where W,, W € R%1 %41 gre learnable parame-
ters. We can obtain the final output by concatenate



representation two final representation from two
modalities, which is S = [A, B] € R"*2%1,

And to take advantage of the correlations be-
tween labels in neighbouring, we use Conditional
Random Fields (CRF) (Lafferty et al., 2001) as de-
coder. The objective function of the MNER task is
to maximum conditional likelihood estimation of
CREF, as known as minimizing the log likelihood.
Formally,

Lmner = - Z logp(y’X) (19)

(2

2.5 Model Training

In the training process, our overall objective func-
tion is to minimum the combination of MNER task
loss, contrastive loss and knowledge distillation
loss. Our final loss function is given by

L= Lomer + MLG + L£G) + B(LEP + £ED),
(20)

where A and § are hyperparameters.

3 Experiments

This section will introduce the experiments we con-
duct to evaluate proposed method. The basic set-
tings of the experiment will be described first. Then
the performance results comparison with baseline
methods will be introduce. Finally, the ablation
study and case study will be elaborated.

3.1 Experimental Settings

Datasets: We take two public widely used
Twitter datasets for MNER: Twitter-2015 from
Zhang et al. (2018) and Twitter-2017 from
Lu et al. (2018). The named entity types
are Person, Location, Organization and Misc.
We adopts the same configuration as Yu et al.
(2020), in which 4,000/1,000/3,257 image-text
pairs are used as Twitter-2015 train/dev/test set,
and 4,817/1,032/1,033 image-text pairs are used as
Twitter-2017 train/dev/test set.

Implementation Details: To ensure that the
experiments are scientifically valid, our BERT
based methods use same pretrained BERT(Devlin
etal., 2019) (BERT-BASE-CASED)'. The maximum
length of the sentence input and the batch size are
set to 128 and 64 respectively. The Vision Trans-
former (ViT) is pretrained by CLIP (Radford et al.,
2021) model, whose parameters are frozen during

"https://github.com/google-research/bert

the training process. We adopt AdamW as opti-
mizer(Loshchilov and Hutter, 2017), and the initial
learning rate are set as Se-5. The dimension of
the joint representation space is set to 512. The
head size of multi-head attention is set as 12. The
hyperparameter 7 is set to 0.05. Most of the other
settings follow Devlin et al. (2019). All the nerual
models are implemented with Pytorch, and all the
experiments are conduct on NVIDIA RTX 3090
GPUs.

3.2 Baselines

We compared our approach with competitive text-
based NER methods and multimodal-based NER
methods. The results with the # maker represent
the methods we reproduce, which adopts the same
hyperparameters as ours. For a fair comparison,
other result of the baselines refer to Yu et al. (2020),
Zhang et al. (2021) and Wu et al. (2020).

Text-based NER methods: (1) BiLSTM-CRF
(Huang et al., 2015): First combine bidirectiional
LSTM and CREF layer to solve sequence labeling
problem. (2) CNN-BiLSTM-CRF (Ma and Hovy,
2016): A classical neural network model for NER,
improve by introducing charater-level information.
(3) BERT (Devlin et al., 2019): A sequence la-
beling model based on BERT, predict each word
label by following a MLP layer. (4) BERT-CRF: A
sequence labeling model based on BERT, predict
each word label by following a CRF layer.

Multimodal-based NER methods: (1)
AdaCAN-CNN-BiLSTM-CRF (Zhang et al., 2018):
A sequence labeling model, which designs an
adaptive co-attention network to learn word-aware
visual representations from VGGNet (Simonyan
and Zisserman, 2015) for each word. (2) OCSGA
(Wu et al., 2020): A multimodal method adopts
Mask-RCNN (He et al.,, 2020) to introduce
object-level visual information to help recognize
named entity. (3) UMT (Yu et al., 2020): A
state-of-the-art approach for MNER, which
proposes a multimodal transformer to fuse two
modality representations from ResNet and BERT,
and use auxiliary entity span detection task to
help recognize named entity. (4) UMT-ViT (Yu
et al., 2020): We use CLIP’s Vision Transformer
in place of ResNet in UMT. (5) UMGF (Zhang
et al., 2021): Another state-of-the-art approach for
MNER, which introduce visual object information
and propose graph-based multimodal fusion to
fuse two modality representations.



Twitter-2015 Twitter-2017
Modality | Methods Single Type (F1) Overall Single Type (F1) Overall
PER. LOC. ORG. MISC.| P R F1 |PER. LOC. ORG. MISC.| P R F1
BiLSTM-CRF 76.77 72.56 4133 26.80 | 68.14 61.09 64.42|85.12 72.68 72.50 5256 |79.42 7343 76.31
Text Only CNN-BiLSTM-CRF 80.86 75.39 47.77 32.61 | 6624 68.09 67.15|87.99 7744 74.02 6082 |80.00 78.76 79.37
BERT 8472 7991 5826 3881 |68.30 74.61 71.32]90.88 84.00 79.25 61.63 |82.19 83.72 82.95
BERT-CRF 84.74 80.51 60.27 3729 |69.22 7459 71.81]90.25 83.05 81.13 62.21 |83.32 83.57 83.44
AdaCAN-CNN-BiLSTM-CRF | 81.98 78.95 53.07 34.02 |72.75 68.74 70.69|89.63 77.46 79.24 62.77 |84.16 80.24 82.15
OCSGA 84.68 79.95 56.64 39.47 |74.71 71.12 T72.92| - - - - - - -
UMT 85.24 81.58 63.03 39.45 |71.67 7523 73.41|91.56 84.73 8224 70.10 |8528 8534 8531
Multimodal | UMT* 8495 8197 61.15 4038 |70.98 7536 73.11[90.51 84.09 82.08 6429 |83.79 84.53 84.16
UMT-ViT* 8571 81.36 63.64 41.10 |72.33 7591 74.07|91.49 8492 8197 67.13 |84.30 85.86 85.08
UMGF 84.26 83.17 6245 4242 |7449 7521 74.85]91.92 8522 83.13 69.83 |86.54 84.50 8551
MGC(Ours) 8576 8155 62.68 42.94 [73.50 76.66 75.05[92.38 85.39 83.84 67.13 [86.37 85.86 86.12

Table 1: Overall performance comparison in Twitter-2015 and Twitter-2017. The maker & refers to the method
reproduced by us and adopted same hyperparameters as ours.

3.3 Comparisons with SOTA methods

Table 1 reports the F1 score (%) of each single
named entity type, and overall P (Precision,%),
R (Recall, %), F1 (%) on two benchmark MNER
datasets. From the table, we notice:

(1) Pre-trained based methods are knowledge-
able. In text-based method, BERT-CRF outper-
forms CNN-BiLSTM-CREF of 4.66% and 4.07%
F1 score on the two datasets. In multimodal-based
methods using BERT as a language model, also
outperform LSTM-based methods by a large mar-
gin. It is crucial for MNER to adopt a pre-trained
language model.

(2) It is useful to introduce visual information in
MNER. Compared with text-based methods, mul-
timodal methods outperform them both in single
type metric or overall performance. For example,
UMT outperforms BERT-CRF 1.60% and 0.75% of
F1 score on the two dataset. However, this improve-
ment is not as enormous as adopting pre-trained
language model.

(3) Introducing fine-grained visual concept is
more helpful. Our approach (MGC) outperforms
other multimodal methods on F1 score for two
datasets. Besides, UMT are improved by replacing
ResNet in UMT method with Vision Transformer
pretrained in CLIP. These two phenomena prove
that leveraging finer-grained visual concepts can
help to take advantage of valid information from
images. And it can be found that our method can
recall more entities in dataset (1.45% of Recall
score on Twitter-2015 and 1.36% of Recall score
on Twitter-2017).

(4) Creating a joint representation space for
MNER is beneficial. Our framework are based
on UMT®. By adopting our framework, the result
are improve significantly (2.04% of F1 score on

Twitter-2017
Method Single Type (F1) Overall
PER. LOC. ORG. MISC. P R F
MGC (Ours) | 92.38 85.39 83.84 67.13 | 86.37 85.80 86.12
-KD 91.02 84.57 82.65 68.75 | 8526 8520 8523
-Contra. 91.00 84.73 83.46 68.87 | 8530 8549 8540
-Visual. 90.30 75.82 8324 66.07 | 80.82 85.95 83.31

Table 2: Ablation study of MGC framework.

Twitter-2015 and 1.96% of F1 score on Twitter-
2017). So it is of great benefit for MNER to build
a joint representation to explore the relationship of
image and text.

3.4 Ablation Study

To verify the effectiveness of each component of
MGC, we conduct ablation studies on Twitter-
2017. Here we consider three settings: (1) -
KD: removing knowledge distillation from CLIP
model. (2) -Contra.: removing multi-granularity
contrastive constraint. (3) -Viisual.: removing en-
tire vision-related modules (Such as Vision Trans-
former).

The results are shown in Table 2, and we can
observe that: (1) Both the knowledge distillation
from CLIP model and multi-granularity contrastive
constraint are beneficial for MNER. In our analysis,
this is due to the fact that both of these constraints
are essential for building an unified joint repre-
sentation space. Building such a space can filter
the effects of noise images better and match finer-
grained visual concepts with text. (2) Our approach
also benefits from incorporating visual information
to help recognize named entities. In Table 2, the
Visual modules contributes +2.81% F1 score on
Twitter 2017. And this improvement comes mainly
from the fact that the model can predict labels more
accurately, because we note that there are a signif-
icant drop in Precision score without using visual
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Figure 3: Four cases from different methods predictions in test set of two datasets. The top part shows the image-text
pairs in the test set, and the named entities and their types annotated in the datasets are highlighted. The bottom part

illustrates three methods predictions on these samples.
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Figure 4: Cases for the cosine similarity of representa-
tions in joint representation space from two modalities.

information (5.55% in Precision score).

3.5 Case Study

In order to visualize the similarities and differences
between our approach and other approaches and
to investigate the unified joint representation space
we have mentioned before, we choose some cases
to explain.

The effectiveness and limitations of our frame-
work. Figure 3 illustrates four examples of
different predictions from three representative
approaches (i.e, text-based baseline BERT-CRF,
multimodal-based method UMT-ViT®, and our ap-
proach MGC). We can see the Figure 3(a) that
the image and the text are highly related. The
text-based method without image prompts incor-
rectly labels “Hillary” as “Location”. While, the
multimodal-based method can leverage the visual
information to label this case correctly. And Figure

3(b) illustrates the image are very hard to compre-
hend. If models only know the image contains a
person, it is basically impossible to link “7.1.” with
the image. For instance, BERT-CRF and UMT-ViT
label the entity “7.1.” with a wrong type “MISC”.
The multimodal-based method UMT-VIiT* con-
sider that “Chaos” is a person, because of super-
facial understanding of the image. While, our ap-
proach can acquire fine-grained visual concepts
to predict correctly. Besides, as Figure 3(c) il-
lustrating, the image content and text are hardly
related. Over-consideration of the image may
lead models to believe that the image is someone
called “Siri”. So the multimodal-based method
UMT-ViT® makes a wrong prediction. But our
framework can slightly resistant to this noise to
keep the result same as the text-based method’s.
Nevertheless, our approach still has limitations.
Since our method can be seen as a kind of weakly
supervised approach, it is very difficult to ensure
accurate correspondence between entities and im-
ages. As shown in Figure 3(d), multimodal-based
UMT-ViT* and our approach misidentificate of
“Harry Potter” as a character, while it refers to the
film title here. The model that considers only text
as input can make predictions correctly.

The joint representation space. The Figure
4 illustrates that our approach creates a unified
joint representation space. We take the texts in
the left part of the Figure as text encoder’s input,
and images in the top part of the Figure as image en-
coder’s input, and normalize representations from
two modalities. And then, we compute the cosine
similarity scores of two modalities’ representations.
We can figure out: (1) Our proposed method can
leverage fine-grained visual concepts. The similar-



ity score of representation of “Harry Potter” and
“A dog dressed uplike Harry Potte” with representa-
tion of the first image are high, which illustrates our
approach can leverage the concept “Harry Potter”
not just a dog. (2) Our proposed method can push
related entity-image pairs together while push un-
related entity-image pairs away. In example “Kevin
Durant putting up more bricks than Super Mario
Bros.”, there are two entities “Kevin Durant” and
“Super Mario Bros”. But only entity “Super Mario
Bros” is related to the image. Our proposed method
draw a large margin between the similarity score
of related image-entity and unrelated image-entity
(0.3625 in cosine similarity score). (3) Our ap-
proach is better suited to the current data set. In the
case, we can observe that our approaches similarity
score distribution is much sharper than CLIP (Rad-
ford et al., 2021). In other words, our method can
get a higher similarity score in related image-text
pairs and more lower similarity score in unrelated
pairs. On the other hand, it is also a limitation to
think that our method over-fits the current dataset.

4 Related Work

In this section, we review the related work of our
method from: multimodal named entity recognition
(MNER) and multimodal representation learning.

4.1 Multimodal Named Entity Recognition

With the popularity of social media, billions of
image-text pairs posts are produced everyday.
Some study begin to leverage visual information to
help recognize named entity (Zhang et al., 2021; Lu
et al., 2018; Moon et al., 2018b) or disambiguate
named entity (Moon et al., 2018a). MNER has re-
ceived increasing interest these years, where a lot
of approaches has been proposed.

From the perspective of multimodal fusion.
Some studies (Zhang et al., 2021; Lu et al., 2018;
Moon et al., 2018b) are attention-guided method,
and they try to adopt visual information by atten-
tion mechanism (Bahdanau et al., 2015). Yu et al.
(2020) proposes multimdal transformer which ex-
tends multimodal interaction between two modal-
ities in traditional Transformer (Vaswani et al.,
2017). Zhang et al. (2021) proposes to leverage a
multimodal graph to fuse the representation from
two modalities. However, these methods rely on
the image and text in the dataset are well aligned.
And their methods are always adopt mismatched
visual encoder and text encoder, by which it is hard

to bridge the information from two modalities.
From the perspective of visual information.
Some studies (Zhang et al., 2021; Lu et al., 2018;
Moon et al., 2018b; Yu et al., 2020; Zhang et al.,
2021) attempt to use general information, such as
ResNet features (He et al., 2016), VGG features
(Simonyan and Zisserman, 2015). Another stud-
ies (Wu et al., 2020; Zhang et al., 2021) try to
fuse object positions information to the MNER
task. In addition, Chen et al. (2021) try to use
image caption generated by model to improve per-
formance. Unlike them our approach attempts to
leverage finer-grained visual information, and try
to build a unified joint representation space for two
modalities to model correspondence better.

4.2 Multimodal Representation Learning

Multimodal representation learning is a fundamen-
tal problem in multimodal machine learning, which
aims at exploiting complementarity and redun-
dancy of multiple modalities (Baltrusaitis et al.,
2019). Good representations are crucial for the
performance of machine learning systems, as evi-
denced behind the recent leaps in performance of
natrual language processing (Bengio et al., 2013)
and visual object classification (Krizhevsky et al.,
2012) systems. The multimodal representation
learning methods can be divided into two cate-
gories: joint and coordinated. For joint represen-
tation, different features from various modalities
are represented in the same vector space. While
in coordinated representation, each modality has a
corresponding projection function that maps it into
a coordinated multimodal space. Our MGC frame-
work try to build a joint representation space by
using multi-granularity contrastive loss and knowl-
edge from CLIP model, a model pretrained on mil-
lions of image-texts pairs.

5 Conclusions

In this paper, we proposed a new framework Multi-
Granularity Contrastive Knowledge Distillation
(MGC) for multimodal named entity recognition
(MNER). We have built a joint representation space
by introducing multi-granularity contrastive loss
and leveraging the knowledge guidance of CLIP
model. We conduct extensive experiments on
two benchmark datasets. The experimental results
prove the effectiveness of our approach. In the
future, we will further explore how to establish a
more generalised approach.
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