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Abstract. Neural combinatorial optimization has proven effective in
solving various simple routing problems including the traveling salesper-
son problem and the vehicle routing problem (VRP). However, real-world
routing scenarios are usually significantly more complex, often requiring
sophisticated methods to find even a single feasible solution. In this work,
we apply neural combinatorial optimization to the more challenging skill
VRP, where routes must be constructed for technicians with diverse skill
sets while adhering to customer time windows. Due to the limited num-
ber of available technicians, finding feasible solutions is usually very chal-
lenging. We evaluate several state-of-the-art learning-based approaches
on the skill VRP and explore different reward shaping techniques to pe-
nalize infeasible solutions during training. Our findings show that while
most approaches can effectively solve instances with 20 customers, all
approaches struggle to reliably find feasible solutions for instances with
50 customers.

Keywords: Neural Combinatorial Optimization · Deep Reinforcement
Learning · Routing Problems

1 Introduction

Deep neural networks (DNNs) can be used to solve a variety of optimization
problems, with a particular focus on vehicle routing problems (VRPs) in recent
literature. There has been great progress with regard to problem sizes consid-
ered, VRP variants studied, and ever-improving architectures and methods pro-
posed [2, 13, 14, 10]. However, the literature has primarily focused on problems
for which it is trivial to find feasible solutions. This stands in stark contrast to
practical applications, where finding feasible solutions may be difficult due to
restrictive real-world constraints.

In this work, we present a neural combinatorial optimization (NCO) approach
for solving the skill VRP. The skill VRP involves a set of technicians with vary-
ing skill sets that must serve customers with varying skill requirements during
pre-specified time windows. This combination of constraints is a challenging one
for NCO approaches, as it can lead to infeasible solutions, which create chal-
lenges for the reinforcement learning (RL) mechanisms used in NCO methods.
A straightforward way of handling infeasibility is with a penalty, i.e., infeasible
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solutions are assigned a value proportional to how much the constraints are vio-
lated. This is called reward shaping in the RL literature. We investigate penalty
functions for NCO methods on the skill VRP in this work to gain insights into
whether penalties are sufficient for RL methods to learn effective policies for
finding feasible solutions.

The contributions of this work can be summarized as follows:

1. We introduce a Markov decision process (MDP) formulation for the skill
VRP, enabling us to tackle this problem with various NCO techniques.

2. We present an instance generator that generates instances guaranteed to
have at least one feasible solution. This generator can easily be extended to
generate instances for other routing problems.

3. We compare different reward shaping techniques to incentivize feasible solu-
tion generation.

The remainder of the paper is organized as follows: Section 2 reviews related
work on the skill VRP and NCO approaches for routing problems. Section 3
defines the mathematical notation for the skill VRP used in this paper. Section 4
presents our MDP formulation of the skill VRP, introduces the different reward
formulations, and describes the generator for feasible instances. Finally, Section 5
reports the results of our experiments.

2 Related Work

2.1 The Skill Vehicle Routing Problem

The skill VRP is a well-known resource-constrained routing and scheduling prob-
lem. In these types of problems customers have certain demands that can only
be met by a subset of the available vehicles or service operators from the start
[16]. In the skill VRP, specifically, technicians with certain sets of skills service
customers who in turn have specific skill demands, as shown in Figure 1.

The first flow-based mathematical formulation for the skill VRP was intro-
duced in [5]. The problem formulation assumes different skill levels S, where each
customer with skill demand Sj must be serviced by any one technician t that has
skill level St ≤ Sj . In [4] the authors extend the model to consider skill types in-
stead of skill levels. A technician t can service a customer node j if Sj ⊆ St, i.e.,
if the technician provides all the skills/service types required by the customer.
The authors in [6] extend the problem further to include time window constraints
for customers (morning vs. afternoon), a special device, precedence and synchro-
nization constraints between services. Travel cost is technician-dependent, i.e.,
more skilled technicians will be more expensive. In this work we model the skill
VRP based on [4], but including time windows and service durations.

2.2 Deep Reinforcement Learning for Routing Problems

Neural Combinatorial Optimization (NCO) approaches apply machine learning
methods and other neural techniques to solve combinatorial optimization (CO)
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Vehicle routes without skill constraints

Customer skill requirements

A A,B B C

Technician routes in the skill VRP

Technician 1: B,C
Technician 3: A,B

Technician 2: A
Technician 4: B

Fig. 1: Example of the skill VRP, based on [16, p.7].

problems. Specifically, NCO research has mostly applied to routing and schedul-
ing problems, which are NP-hard, i.e., no polynomial-time algorithm is known
to solve these problems optimally.

The foundation for NCO to routing problems was laid in [18], which in-
troduces Pointer Networks (Ptr-Net). These networks can handle variable-size
outputs that depend on the input size and produce a softmax probability distri-
bution to effectively point to positions in the input sequence. The first application
to routing problems was in [2], which uses Recurrent Neural Networks (RNNs) to
encode city locations and sequentially construct Traveling Salesperson Problem
(TSP) tours by predicting the next city to visit. [15] extends this approach to
the Capacitated VRP (CVRP) by incorporating Reinforcement Learning (RL) to
learn routing policies that respect vehicle capacity constraints while minimizing
total route length.

Recent architectural improvements have further advanced the field. The At-
tentionModel (AM) [13], a transformer-based encoder with self-attention, pro-
cesses all locations in parallel rather than sequentially, allowing the model to
better capture global relationships between locations through multi-head atten-
tion mechanisms. This architecture also improves training stability and scala-
bility to larger problem instances. Policy Optimization with Multiple Optima
(POMO) [14] greatly increases performance while maintaining computational
efficiency, by training with multiple starting locations and augmenting solutions
through rotations and reflections during inference. The SymNCO method [12]
extends this concept of leveraging problem and solution symmetries to enhance
performance. Unlike POMO, SymNCO also incorporates augmentations dur-
ing training to improve the model’s generalization capability. In [20], the au-
thors introduce MVMoE, a neural multi-task vehicle routing solver based on the
mixture-of-experts (MoE) approach, designed to handle multiple VRP variants
simultaneously. They report strong generalization in both zero-shot and few-shot
settings. More recently, [11] propose PolyNet, a method that learns multiple di-
verse solution strategies using a single neural network. PolyNet demonstrates
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strong performance, achieving near-optimal results, on the TSP with 100 nodes.
All of these methods, however, have in common that they have only been evalu-
ated on problems for which it is trivial to find feasible solutions. We go further
and apply these methods to the skill VRP which has a challenging combination
of constraints that can lead to infeasible solutions.

3 The Skill VRP: Notation

We build upon the skill VRP model introduced in [4]. Our model additionally
includes service time windows as in [6] and service durations. Our goal is to
provide a set of realistic constraints for investigating NCO methods.

Sets

T Set of technicians.
N Set of nodes (customers and depot).
N ′ Set of nodes without the depot.
A Set of feasible arcs between nodes i, j ∈ N with i ̸= j.
ST
t Set of skills offered by technician t ∈ T .

SC
j Set of skills required by customer j ∈ N ′.

Parameters

ct Travel cost per distance unit for technician t ∈ T .
dij Distance between (i, j) ∈ A, which we assume is equal to the travel

duration.
sj Service time required at node j ∈ N ′.
[ej , lj ] Time window for customer j ∈ N ′, where ej is the earliest start time

and lj is the latest.
H System end time, which is the maximum route duration per technician.

Variables

xtij ∈ {0, 1} 1 iff technician t ∈ T travels on arc (i, j) ∈ A.
zj ∈ R+

0 Arrival time of a technician at node j ∈ N .



Learning to solve the Skill VRP with Deep Reinforcement Learning 5

Objective and Constraints

min
∑
t∈T

∑
(i,j)∈A

ctdijxtij (1)

∑
(0,j)∈A

xt0j ≤ 1 ∀t ∈ T (2)

∑
(i,j)∈A

xtij =
∑

(j,k)∈A

xtjk ∀t ∈ T, j ∈ N (3)

xtij = 0 ∀(i, j) ∈ A, t ∈ T, SC
j ̸⊆ ST

t (4)∑
t∈T

∑
(i,j)∈A

xtij = 1 ∀j ∈ N ′ (5)

z0 = 0 (6)
ej ≤ zj ≤ lj ∀j ∈ N ′ (7)

zi + si + dij ≤ zj +H(1−
∑
t∈T

xtij) ∀(i, j) ∈ A, j ̸= 0 (8)

zj + sj + dj0xtj0 ≤ H ∀t ∈ T, (j, 0) ∈ A (9)

The objective minimizes the total travel cost for all technicians in Term (1).
Constraints (2) indicate that every technician can leave the depot at most once.
The flow balance Constraints (3) ensure that if a technician visits a customers,
they must also leave the customer. Constraints (4) describe the skill constraints,
i.e., if a technician t does not offer the skills SC

j , they cannot visit customer
j. Constraints (5) demand that every customer j be visited exactly once. The
remaining constraints ensure temporal feasibility of the routes. The depot’s start
time is set in Constraint (6), Constraints (7) limit the arrival time to fall within
the customer’s time window. If a technician arrives at customer j before ej ,
they have to wait for the time window to start, i.e., zj = ej . Constraints (8)
ensure that when traveling from customer i to j, the arrival time zj cannot
be smaller than the sum of the arrival time at the previous customer plus the
customer’s service time and the travel distance. Finally, Constraints (9) ensure
all technicians arrive back at the depot before the system end time H.

4 An MDP Formulation of the Skill VRP

Given a problem instance x, the solution is generated through a Markov Deci-
sion Process (MDP) [1] defined as (S,A, T ,R). The state space S describes
the problem instance and the current partial solution at each step σ. The action
space As includes all available actions at a given state s ∈ S. Note that the
action space can never be empty even if the current state corresponds to an in-
feasible solution. We describe how we model this in the context of the skill VRP
in the following subsection. The state transition function T updates a state sσ
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Fig. 2: Visualization of transformer-based RL, based on [9, 7]. The encoder maps
the problem instance to an initial embedding that includes node locations, time
windows, service durations, skill levels, and technicians’ travel costs. Based on
the current state s ∈ S which additionally includes the current time, node, and
technician, as well as the partial solution, the decoder iteratively samples from
the available actions As until all customers have been visited and the reward for
the route can be calculated.

to the next state sσ+1 = T (sσ, aσ). The reward function R(sσ, aσ) represents
the reward after taking action aσ in state sσ.

Routes are constructed by taking actions in the environment until all cus-
tomer nodes have been visited, which is intuitively visualized in Figure 2. First,
a trainable encoder fθ maps the problem instance x to an embedding h = fθ(x).
The decoder gθ iteratively builds a solution by sampling from the available
actions, based on the embedding h and the current partial solution, until all
customer nodes have been visited. We call a sequence of T actions that de-
fines a feasible route a rollout ρ = (a1, . . . , aT ). The reward for the rollout is
R(ρ,x) =

∑T
σ=1 R(sσ, aσ). The encoding and decoding process is formalized as:

πθ(ρ|x) ≜
T−1∏
σ=1

gθ(aσ|aσ−1, . . . , a0,h), (10)

where πθ is the stochastic policy mapping the problem instance x to a rollout ρ.
We train the policy πθ to maximize the expected reward Eρ∼πθ(ρ|x)[R(ρ,x)].

For the distribution P (x) of problem instances x the training objective becomes:

θ∗ = argmax
θ

[
Ex∼P (x)

[
Eρ∼πθ(ρ|x) [R(ρ,x)]

]]
. (11)

The REINFORCE algorithm [17] trains the solver πθ by transforming eq. (11)
into a minimization problem with a loss function, which can be optimized using
gradient descent. The gradient for the REINFORCE loss function is given by:

∇θL(θ|x) = Eπ(ρ|x) [(R(ρ,x)− b(x))∇θ log π(ρ|x)] , (12)

where b(·) is a baseline function that stabilizes training and reduces variance.

4.1 Specifying the Skill VRP

State Space S The state space includes both static information about the
problem instance x and information about the partial solution, which is needed
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to determine the available actions at each step. Static problem information in-
cludes the node locations in terms of their x and y coordinates, the skills of the
technicians ST

t , skill demands of the customers SC
j , the customer time windows

[ej , lj ] and service durations sj , as well as the technician’s travel cost ct. Note
that we use the Euclidean distance and consider a fully connected graph.

We encode the technicians each as separate depots, all identical except for the
associated skill sets St and travel costs ct. This way, we obtain a total of |T |+ |C|
nodes, indexed from 0 to |T | + |C| − 1, where the first |T | nodes correspond to
technicians and the remaining |C| nodes to customers. This allows us to encode
the skills for each node j as a binary vector sj ∈ {0, 1}K , where K is the total
number of distinct skills in the system. For technician nodes, sjk = 1 indicates
technician j offers skill k, and sjk = 0 otherwise. For customer nodes, sjk = 1
indicates customer j requires skill k, and sjk = 0 otherwise. This binary vector
representation allows for a straightforward extension to skill levels in the future
by generalizing to integer-valued or continuous skill proficiency levels.

Information regarding the partial solution in the state space includes the set
of visited nodes V (initialized as V = ∅), current node ν (initialized as ν = 0),
current time τ (determined by the travel durations and time windows of the
nodes visited so far, initialized as τ = 0), and the current technician t (chosen
in the first step, determines the skills available and travel cost on the route). To
facilitate learning, we also encode the remaining routes in the state, defined as
|T | minus the current number of routes in the solution. Every time a technician
returns to the depot, a route is finished and added to the count. Note that any
feasible solution will assign at most one route per customer. Finally, the current
partial solution is given as the sequence of nodes visited so far in the rollout.

Action Space A The action space determines which nodes can be visited at
each step. We use an action mask a ∈ {0, 1}|T |+|C|, where ai = 1 indicates node
i can be selected at the current step and will be part of As, and ai = 0 otherwise.
In the first step the current technician t is set, i.e., only nodes with index i < |T |
are valid actions. To determine the subsequent available actions, we handle the
mask separately for customer and depot nodes.

For customer nodes, we check four main conditions. First, we check for cus-
tomers that have not been visited yet. Second, customers need to be reachable
before their time windows end, considering the current time and travel distance
to each node. Third, after servicing a customer, technicians need to be able to
get back to the depot before the system end time H, i.e., we check for which
nodes τ + sj + dj0 ≤ H. Finally, only customers j can be visited for which the
current technician t offers all required skills, i.e. SC

j ⊆ ST
t .

We only allow selecting a depot node if it has not been visited before, i.e.,
every technician should do at most one route, and if ν is a customer node or no
more customers are left that can be serviced by t on the current route. This can
lead to an empty action space As = ∅ when all |T | technicians have finished their
routes but there are still unserved customers. To still allow training, we relax
the condition that every technician can only do one route, i.e., for As = ∅ all
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technicians become available again. This will lead to a number of routes > |T |,
but these infeasible solutions can be penalized in the reward function R.

State Transition Function T We update the current node ν to the last
sampled action. If the last action was to go back to a depot, we update the
current technician t and increase the number of routes by 1. The current time is
updated to τσ = max(τσ−1 + dij , ej) + sj if ν is a customer node, i.e., sj cannot
start before ej , and reset to τσ = 0 at depot nodes.

Reward Function R We use a penalized objective function consisting of the
sum of the route distances and a weighted penalty term, R(ρ,x) = −(λcr+(1−
λ)cp). There are multiple options for how to compute cp and how to set λ, which
we describe below.

Penalty types We want to discourage the RL model from using more routes
than available technicians. We use two simple penalty types for cp. First, we
penalize the number of excess routes E and set cp = |E|pr, where pr is a penalty
term set by the user. The reward function then is given as RRoutes(ρ,x) =
−(λcr + (1 − λ)|E|pr). Second, we penalize the route costs of all excess routes,
setting cp = cEpr, where cE is the total route cost of excess routes. The reward
is defined as RCost(ρ,x) = −(λacr + (1− λ)cEpr).

Reward weighing strategies The definition of the reward function allows for
weighting the route cost and the penalty factor through the parameter λ. We
define three strategies for setting the value of λ: (1) fixed value, (2) batch-wise,
and (3) exp. smoothed. For fixed value, one constant value is used throughout
training. For batch-wise, the average feasibility ratio is used, i.e., the ratio of fea-
sible solutions in a training batch. In exp. smoothed we additionally smoothen
the value from batch-wise with a smoothing factor of α. Both batch-wise and
exp. smoothed depend on the feasibility ratio during training. The intuition be-
hind these strategies is to lower the prominence of the penalty term once feasible
solutions start to be found to avoid the search for feasibility from dominating
the search for optimality.

4.2 Generating Feasible Instances

Much of the NCO literature on routing focuses on training models for problems
where finding feasible solutions is trivial, but finding feasible solutions for the
skill VRP is challenging. In particular, the number of vehicles is usually unlim-
ited, however, in the skill VRP the number of technicians is inherently fixed. We
posit that the model ought to be trained on feasible instances, as instances where
there is no solution will always result in penalties. Thus, we need an instance
generator that guarantees feasible instances.

The core idea is that instead of generating customer locations (x, y) and
calculating distances di,j based on the locations, we do the opposite. Each route
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in a solution is constructed individually and sequentially such that the total
travel duration including service times is always ≤ H. The procedure is explained
in Algorithm 1.

We first partition the |N ′| customers into |T | routes in line 2. We simply
allocate the customers randomly to routes, ensuring each route has between
[|N ′|/|T | − |T |, |N ′|/|T |+ |T |] customers. The technicians are assigned skills on
line 3. The number of skills per technician t, nS

t , is determined by the user. For
each technician t, we then build a route separately. For the number of customers
|Mt| on the route, we sample service times s in line 5 and subtract their total
sum from H to get the time D that is actually available for traveling in line 6.
We use the same unit for time and distance, so we split the remaining time D
randomly into C + 1 travel legs d in line 7. We then sample the time windows
[e, l] in line 8 and customer skills SC in line 9. Note that the customer time
windows are only generated once d and s are available to ensure feasible time
windows for each customer.

To generate the coordinates in line 10, we also need travel times d and service
durations s. We construct the route sequentially by starting in the depot and
iteratively sampling an angle θ out of all available angles such that (1) we do
not leave the defined domain for (x, y) and (2) do not get so far away from the
depot that the route cannot return to the depot before time H. Based on the
angle θι and travel leg dι at each step ι we update the current location before
sampling the next angle, until we return to the depot and start the next route
in the instance.

With this procedure we ensure that instances are random and potentially
inefficient, while having at least one feasible solution. Note that the generation
process is generic, except for the skill definitions, and can therefore easily be
extended to other problems.

Algorithm 1 Feasible Instance Generation

1: procedure GenerateInstance(T, |N ′|, S, c,H, nS)
2: M ← PartitionCustomers(|T |, |N ′|)
3: ST

t ← a random subset of S of size nS ∀t ∈ T
4: for t in T do
5: s← SampleServiceTimes(Mt)
6: D ← H −

∑
i∈Mt

si ▷ Available time for travel
7: d← SampleTravelLegs(Mt, D) ▷ Distances between customers
8: e, l← SampleTimeWindows(Mt, d, s)
9: SC ← SampleCustomerSkills(S,Mt)

10: x, y ← GenerateCoordinates(d, s)
return Instance(ST , SC , s, d, e, l, x, y)
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5 Experiments

We compare five NCO approaches with regard to their ability to find feasible,
high-quality solutions on the skill VRP and consider the following research ques-
tions:

– RQ1 Can neural solvers effectively find feasible solutions for skill VRP in-
stances as the problem constraints become more restrictive?

– RQ2 Does training on datasets with only feasible instances significantly
improve model performance compared to training on data that includes in-
feasible instances?

– RQ3 How should the reward function be designed to effectively incentivize
the construction of feasible solutions?

In all experiments, models are trained with the same seed on NVIDIA A100
GPUs, inference is performed on an Nvidia GeForce RTX 4090. We use the
open-source RL4CO framework [3], which contains implementations of many of
the latest state-of-the-art methods and allows us to build on current research.

5.1 Experimental Setup

Instance Generation Using the procedure described in Section 4.2, we gener-
ate two datasets, one with n = 20 customers and another with n = 50 customers.
For both sets we set the system end time H = 480 and assume 3 technicians.
One technician possesses all six skills and has travel cost ct = 2.0, and two tech-
nicians offer four services with travel cost ct = 1.0. The depot is located at the
center of the instance, which is 100 by 100 units in size.

For instances with n = 20 customers, each customer requires three skills
with probability 0.3 or one skill with probability 0.7. The service durations sj
follow a discrete distribution, where P (sj = 10) = 0.5, P (sj = 20) = 0.3,
and P (sj = 30) = 0.2. The time windows [ej , lj ] are assigned from the set
{[0, 240], [240, 480]}. Each customer is assigned a time window with probability
0.5, otherwise they are assigned [0, H].

For n = 50 customers, each customer requires three skills with probability 0.7
and one skill with probability 0.3. Service durations sj follow the discrete distri-
bution, where P (sj = 5) = 0.5, P (sj = 10) = 0.35, and P (sj = 20) = 0.15. Time
windows [ej , lj ] are assigned from the set {(0, 120), (120, 240), (240, 360), (360, 480)}.
Each customer is assigned a time window with probability 0.8, otherwise they
are assigned [0, H].

Per dataset we generate 100,000 instances for training, 1,000 for validation,
and 1,000 for testing. The models for n = 20 are trained for 100 epochs, and for
n = 50 for 500 epochs. All instances are scaled down such that their locations lie
in [0, 1], time windows and service durations are also scaled down accordingly.

Models The models we use are AM [13], POMO [14], MVMoE-POMO [20],
PolyNet [11], and SymNCO [12]. We set the batch size for training, validation
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and test to 128 and the learning rate to 0.0001. For all models we use the default
parameter settings as defined in the RL4CO framework.

During training, the AM approach uses a greedy rollout as baseline in eq. (12)
and SymNCO uses its own baseline (see [12] for details), the other models use
a shared baseline, i.e., the mean reward in the training batch is used as the
baseline b(·) for the loss calculation.

At test time, all models except AM use instance augmentation. POMO,
MVMoE-POMO and PolyNet use dihedral augmentation, i.e., instances are ro-
tated and flipped in the domain, to achieve 8 different representations of the same
instance [14, Table 1]. SymNCO uses symmetric augmentation, i.e., it randomly
samples 10 rotation angles ϕ ∈ (0, 4π) and rotates the instances accordingly.
All models except PolyNet perform greedy rollouts during inference. The AM
approach generates a single solution per instance, while POMO and MVMoE-
POMO generate 8 × |T | solutions, SymNCO generates 10 × |T |, and PolyNet
produces 8× 800 solutions per instance.

Baselines As baselines we use version Gurobi 11.0.3 [8] and PyVRP 0.11.0a0 [19].
For Gurobi we set a per-instance time limit of 5 hours and for PyVRP 10 sec-
onds. Note that PyVRP uses integer values in its objective function, thus its
values are not as exact as for Gurobi. All gaps are computed as the gap to the
value found by Gurobi, which is not always the optimal value due to the timeout.

Evaluation Metrics Our evaluation considers a total of four metrics. The
feasibility count tells us for how many of the 1,000 instances the neural solvers
find feasible solutions. The cost is the average route cost over the best feasible
solution found for each instance (if any feasible solution was found). For the
gap % calculation we take the percentage deviation of cost from the solutions
provided by Gurobi. Lastly, we provide the runtime time (s) during inference.

5.2 RQ1: Feasibility Under Tight Constraints

We evaluate five neural solvers on their ability to find feasible solutions for skill
VRP instances as the problem constraints become more restrictive, comparing
their performance on n = 20 and n = 50 in Table 4. Note that the n = 50
instances also have tighter time windows and higher skill requirements. For an
intuition on how difficult it is to find feasible solutions for these instances, we
include the training curves reporting the average feasibility rates for all five
neural solvers while training with RRoutes on n = 20 and n = 50 in Figure 3.

Except for AM, all models find feasible solutions for all n = 20 and most for
n = 50 instances. That is, they find feasible solutions even as the constraints
become more restrictive, but the rate decreases. PolyNet in particular stands out
for its low gaps across experiments, while for n = 50 it finds the most feasible
solutions for RCost and the second most for RRoutes . As PolyNet produces more
solutions per instance than any of the other models, this indicates that solution
diversity may be crucial for finding high-quality, feasible solutions to constrained
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Fig. 3: Average feasibility rates during training using RRoutes .

problems as the skill VRP. This becomes particularly apparent when considering
Figure 3, where PolyNet does not have the highest average feasibility rates by
any means. However, for the quality of the final solution during inference, we
do not need all rollouts to provide feasible solutions. Instead, out of the feasible
solutions provided by the model we can choose the one with the lowest cost.

Table 4: Performance of NCO models in finding feasible solutions for the skill
VRP.

RRoutes

n = 20 n = 50
count cost gap % time (s) count cost gap % time (s)

Gurobi 1000 642.2724 - 106.249 1000 986.9012 - 12398.9071
PyVRP 1000 642.4042 0.0002 10.0005 1000 984.0765 -0.0028 10.0009
AM 999 862.813 37.0574 0.045 406 1222.357 24.7333 0.097
POMO 1000 743.543 15.8578 0.146 903 1304.398 33.4175 0.289
MVMoE-POMO 1000 753.309 17.3870 0.217 936 1248.154 27.3745 0.378
PolyNet 1000 677.851 5.5058 0.158 956 1059.247 7.6277 0.477
SymNCO 1000 803.378 26.3096 0.080 988 1302.226 32.4832 0.210

RCost

n = 20 n = 50

AM 1000 863.730 37.2030 0.044 377 1389.097 41.7479 0.099
POMO 1000 777.010 21.3393 0.147 947 1110.252 13.1906 0.290
MVMoE-POMO 1000 758.203 18.1570 0.187 836 1261.512 29.5602 0.378
PolyNet 1000 677.559 5.4488 0.154 965 1047.606 6.4838 0.313
SymNCO 1000 810.345 27.3681 0.080 953 1328.623 35.4243 0.211

5.3 RQ2: Training on Feasible vs. Purely Random Instances

To investigate the importance of feasible instances for training, we perform a set
of experiments on instances generated such that feasibility is not guaranteed,
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reporting the results in Table 5. We use the reward function RRoutes and apply
the same models and training parameters as in Section 5.2.

In these instances, locations are generated randomly in the domain without
enforcing a total travel time ≤ H. With increasing node count in the domain we
expect more instances to not have a feasible solution, simply due to increased
travel duration while H and the number of technicians stay constant. We solve
subsets of these instances in PyVRP to get a rough approximation about the
feasibility rates in the instances. For n = 20 about 94% of instances were shown
to be feasible within 10 seconds, for n = 50 none could be. This stands in contrast
to our dataset of feasible instances, where PyVRP has no problem finding feasible
instances. We note that we have not proven the instances to be infeasible with
Gurobi due to the high computational expense of doing so for a large training
set. For validation and testing we use data generated with algorithm 1.

We find that for n = 20 instances all models find feasible solutions for all
instances. POMO even finds better solutions than when trained on feasible in-
stances, for all other models the opposite is true. On the n = 50 instances the
number of feasible solutions found is much lower than when trained on feasible
instances. The difference is particularly large for SymNCO and PolyNet, where
less than 50 feasible solutions are found, compared to over 950 instances when
trained on feasible instances. Even considering that the models are evaluated
out-of-distribution due to the different generation of node locations, this indi-
cates the importance of feasible instances for effective training of neural solvers.

5.4 RQ3: Impact of Different Penalty Strategies

All experiments in this section are performed on SymNCO with identical set-
tings, only varying individual parameters to examine their respective impact on
solution quality during inference.

Fixed versus dynamic λ In Section 4.1 we introduce three simple strategies
to determine the penalization factor λ. We compare the three strategies with

Table 5: Performance of models trained on randomly generated instances not
guaranteed to be feasible. Experiments marked with * did not finish training for
500 epochs.

RRoutes

n = 20 n = 50
count cost gap % time (s) count cost gap % time (s)

Gurobi 1000 642.2724 - 106.249 1000 986.9012 - 12398.9071
PyVRP 1000 642.4042 0.0002 10.0005 1000 984.0765 -0.0028 10.0009
AM 1000 890.339 41.4298 0.042 89 1418.150 44.7126 0.114
POMO 1000 764.681 19.5019 0.147 245 1385.925 47.5690 0.294
MVMoE-POMO 1000 771.810 20.3495 0.180 205 1399.120 49.1941 0.379
PolyNet 1000 682.425 6.3677 0.154 *46 1168.896 24.9038 0.305
SymNCO 1000 831.527 30.7165 0.079 48 1441.486 55.6091 0.203
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Table 6: Different strategies for setting λ.

n λ strategy RRoutes RCost

count cost gap % count cost gap %

20

fixed 0.1 1000 808.563 27.1285 1000 807.052 26.8868
fixed 0.2 1000 799.454 25.6306 1000 811.005 27.4494
fixed 0.5 1000 807.909 27.0326 1000 809.790 27.2659

batch-wise 1000 703.591 9.4615 1000 755.943 17.8799
exp. smoothed 1000 785.667 23.4467 998 755.940 17.8337

50

fixed 0.1 990 1302.966 32.4852 958 1325.401 35.0077
fixed 0.2 993 1305.460 32.7640 976 1317.151 34.1511
fixed 0.5 988 1302.226 32.4832 953 1328.623 35.4243

batch-wise 990 1306.875 32.9245 983 1314.946 33.8060
exp. smoothed 992 1300.193 32.1998 975 1318.165 34.2188

regard to their performance on n = 20 and n = 50 in Table 6. For fixed λ we
further evaluate different values. For exponentially smoothed λ we set α = 0.01.

For n = 20, the exponentially smoothed λ is the only strategy that does not
find feasible solutions for all 1,000 instances when applying RCost . For RRoutes ,
all strategies find feasible solutions for all instances, but batch-wise λ finds so-
lutions with the lowest costs. For n = 50, exponentially smoothed λ and fixed
λ = 0.2 find the most solutions for RRoutes , but all strategies have similar results
regarding the feasibility count and route cost. For RCost differences are more ap-
parent and the batch-wise strategy seems to out-compete fixed and exponentially
smoothed, finding the most feasible solutions on n = 50 while maintaining the
lowest costs on both n = 20 and n = 50.

We further see that λ = 0.1 may not always be the best choice when opting
for a fixed value. With regard to the number of feasible solutions found, λ = 0.2
is the the best of the values tested, as the model finds more feasible solutions
for n = 50, both for RRoutes and RCost . With regard to route cost on feasible
solutions, it finds the lowest costs for n = 50 with RRoutes , while for RCost the
cost is actually the highest. For n = 50 this effect is reversed, but in any case the
route costs are relatively close. Choosing RRoutes for the reward function seems
a dominant strategy, as these models consistently find more feasible solutions,
particularly for n = 50.

Effect of Penalty Size We investigate the effect of higher values for the penalty
term pr. We hypothesize that higher values ought to lead to more feasible solu-
tions, but at the expense of finding solutions with low costs. Table 7 provides
our results. We find that for lower pr values, SymNCO is able to consistently
find solutions with lower cost when using RRoutes for the reward, which suggests
using lower values might be preferable. Note that instances are scaled down to
lie in [0, 1] for training, therefore pr = 10 is still a meaningful penalty size, de-
pending on the route cost. For this reason, for n = 50, where routes are longer,
we see that pr = 10 comes at the expense of finding fewer feasible solutions. It
depends on the difficulty and size of the problem which penalty size is preferred.
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For RCost we see the same effect for n = 20, i.e., lower penalties resulting
in lower costs. For n = 50, on the other hand, pr = 100 seems to strike a good
balance between penalizing infeasibility and minimizing route costs.

Table 7: The impact of different penalty sizes.

n pr
RRoutes RCost

count cost gap % count cost gap %

20
10 1000 781.389 22.7755 1000 779.776 22.5761
100 1000 795.328 25.0404 1000 801.331 25.9821
1000 1000 807.909 27.0326 1000 810.345 27.3681

50
10 964 1281.325 30.5171 824 1353.882 38.9164
100 988 1300.021 32.2313 986 1308.405 33.0451
1000 988 1302.226 32.4832 953 1328.623 35.4243

Alternative Reward Functions Our results show that neither reward func-
tion dominates the other across all problem sizes and models. In our models
trained with SymNCO (Tables 6 and 7), RRoutesoutperforms consistently. Most
models also perform best with RRoutes . However, POMO finds better solutions
using the RCost function on n = 50, see Table 4. The main conclusion is that the
reward function plays a significant role in the quality of the resulting model.

6 Conclusion

In this work, we applied NCO approaches to the challenging skill VRP. We
formulated the solution generation process as a Markov Decision Process, in-
corporating penalty mechanisms for infeasible solutions, and evaluated various
learning-based optimization methods from the literature. To facilitate effective
training, we designed an instance generator that ensures at least one feasible
solution per problem instance. Furthermore, we explored different penalization
and reward strategies to guide the models toward feasible solutions. Our results
demonstrate that NCO approaches can effectively tackle complex routing prob-
lems, opening avenues for future research on more constrained and real-world
VRP scenarios.
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