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ABSTRACT

Query-focused table summarization requires generating natural language sum-
maries of tabular data conditioned on a user query, enabling users to access insights
beyond fact retrieval. Existing approaches face key limitations: table-to-text mod-
els require costly fine-tuning and struggle with complex reasoning, prompt-based
LLM methods suffer from token-limit and efficiency issues while exposing sen-
sitive data, and prior agentic pipelines often rely on decomposition, planning, or
manual templates that lack robustness and scalability. To mitigate these issues, we
introduce an agentic workflow, FACTS, a Fast, Accurate, and Privacy-Compliant
Table Summarization approach via Offline Template Generation. FACTS produces
offline templates, consisting of SQL queries and Jinja2 templates, which can be
rendered into natural language summaries and are reusable across multiple tables
sharing the same schema. It enables fast summarization through reusable offline
templates, accurate outputs with executable SQL queries, and privacy compliance
by sending only table schemas to LLMs. Evaluations on widely-used benchmarks
show that FACTS consistently outperforms baseline methods, establishing it as a
practical solution for real-world query-focused table summarization.

1 INTRODUCTION

Query-focused table summarization requires generating natural language summaries of tabular data
conditioned on a user query, enabling users to access insights that go beyond fact retrieval (Zhao
et al., 2023). Unlike generic table summarization (Lebret et al., 2016; Moosavi et al., 2021), which
aims to capture all salient table content, query-focused summarization adapts to diverse user intents.
Compared with table question answering (Pasupat & Liang, 2015; Nan et al., 2022), which typically
returns short factoid answers, query-focused summarization demands richer reasoning and explanatory
narratives. This distinction is especially critical in real-world domains such as finance, healthcare,
and law, where professionals rely on customized summaries for decision-making. For instance, in a
financial institution, analysts may request gross income summaries, one for each year over the past
ten years, providing a user query as in Figure 1 (top left).

We argue that a practical solution must handle large datasets efficiently, support reusability, ensure
correctness of outputs, and protect sensitive information. These four properties are essential for
query-focused table summarization methods in practice. First, the method must be fast, enabling
reusability across tables with the same schema and scalability to very large tables without passing all
rows to language models. Second, it must be accurate, grounding summaries in executable operations
rather than free-form text generation. Third, it must be privacy-compliant, since regulations such as
HIPAA and GDPR often prohibit exposing individual-level records to external LLM services.

Yet existing approaches fall short. Table-to-text models (Liu et al., 2022b; Zhao et al., 2022; Jiang
et al., 2022) require costly fine-tuning and still struggle with numerical reasoning and logical fidelity.
Prompt-based methods (Zhao et al., 2023; Zhang et al., 2024) directly query powerful LLMs but suffer
from token-limit and efficiency issues while exposing sensitive data from the tables. Prevalent agentic
frameworks (Cheng et al., 2023; Ye et al., 2023; Zhao et al., 2024; Zhang et al., 2025) mitigate some
challenges by grounding outputs in SQL or Python execution, but most rely on decomposition, natural
language planning, or manual template design, which lack robustness and scalability. Returning to
our previous example, an approach such as DirectSumm would require ten separate LLM generations

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Comparison between DirectSumm (Zhang et al., 2024) (left) and our proposed FACTS
framework (right). DirectSumm prompts a large language model (LLM) with the full table and query,
which may produce hallucinated values, exposes all table records to external services, and requires
regeneration for each new table even under the same schema and query. In contrast, FACTS generates
a reusable offline template consisting of schema-aware SQL queries and a Jinja2 template. The SQL
queries retrieve precise values through execution, while the Jinja2 template renders natural language
summaries, ensuring accuracy, reusability, scalability, and privacy compliance.

for ten yearly tables, with all values revealed to the model, leading to inefficiency and privacy risks,
as illustrated in Figure 1 (left).

To address these challenges, we introduce FACTS, a Fast, Accurate, and Privacy-Compliant Table
Summarization approach via Offline Template Generation. FACTS employs an agentic workflow
with three stages. First, it generates schema-aware guided questions and filtering rules to clarify user
query intent. Second, it synthesizes SQL queries to extract relevant information from tables. Third, it
produces a Jinja2 template to render SQL outputs into natural language. Crucially, FACTS integrates
an LLM Council, an ensemble of LLMs iteratively validating and refining outputs at each stage. This
feedback loop ensures correctness, consistency, and usability of the generated artifacts. The final
product, an offline template composed of SQL queries and a Jinja2 template, can be reused across
any tables with the same schema for a given query. Returning to our example, an offline template
produced by FACTS can summarize gross income across ten yearly tables, avoiding repeated LLM
calls while ensuring accurate and privacy-compliant outputs (Figure 1 (right)). To the best of our
knowledge, FACTS introduces the first agentic framework that automates offline template generation
for query-focused table summarization.

We evaluate FACTS on three public benchmarks: FeTaQA (Nan et al., 2022), QTSumm (Zhao
et al., 2023), and QFMTS (Zhang et al., 2024). Experimental results show that FACTS consistently
outperforms representative baselines, demonstrating its practicality for real-world query-focused
table summarization.

In summary, our contributions are as follows:

• We propose offline template generation, which produces reusable and schema-specific
templates in a privacy-compliant manner, enabling scalability to large tables and efficiency
across recurring queries.

• We design FACTS, an agentic workflow that integrates guided question generation, SQL
synthesis, and Jinja2 rendering, supported by iterative feedback loops to ensure correctness.

• We demonstrate the practicality of FACTS through comprehensive experiments on FeTaQA,
QTSumm, and QFMTS, showing promising improvements over representative baselines.
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Table 1: Comparison of paradigms for query-focused table summarization. Only FACTS satisfies all
four desired properties. TaPERA and SPaGe produce partially reusable plans, denoted as ∼.

Method Reusable Scalable Accurate Privacy-Compliant
Table-to-Text Models ✗ ✗ ✗ ✗
Prompt-Based Models ✗ ✗ ✗ ✗

Binder (Cheng et al., 2023) ✗ ✗ ✓ ✗
Dater (Ye et al., 2023) ✗ ✗ ✓ ✗
TaPERA (Zhao et al., 2024) ∼ ✗ ✓ ✗
SPaGe (Zhang et al., 2025) ∼ ✗ ✓ ✗

FACTS (ours) ✓ ✓ ✓ ✓

2 RELATED WORK

This section reviews prior work related to our study. We first situate query-focused table summariza-
tion within the broader landscape of table summarization and question answering. We then survey
existing approaches and compare these paradigms against our proposed framework.

Query-Focused Table Summarization. Research on table-to-text generation has primarily aimed
at transforming structured tables into natural language statements or summaries (Parikh et al., 2020;
Chen et al., 2020; Cheng et al., 2022b; Lebret et al., 2016; Moosavi et al., 2021; Suadaa et al., 2021).
These works typically target either single-sentence descriptions or domain-specific summaries, with
the main goal of improving fluency and factual consistency. However, such outputs are not tailored to
a user’s specific information needs. In contrast, table question answering (Pasupat & Liang, 2015;
Iyyer et al., 2017; Nan et al., 2022) has focused on answering precise fact-based queries, usually
returning short values or entities. While table question answering captures query intent, it lacks
the ability to provide longer-form reasoning or explanatory summaries. To address this gap, Zhao
et al. (2023) introduced the task of query-focused table summarization, where a model generates a
narrative-style summary conditioned on both the table and a user query. Compared to generic table
summarization, query-focused table summarization explicitly accounts for diverse user intents, and
compared to table question answering, it produces extended summaries rather than minimal answers.

Existing Approaches. Existing work can be broadly grouped into three categories. (1) Table-to-text
models adapt language models to better capture table structure and reasoning. TAPEX (Liu et al.,
2022b) extends BART with large-scale synthetic SQL execution data, improving compositional
reasoning. ReasTAP (Zhao et al., 2022) follows a similar idea but uses synthetic QA corpora to
enhance logical understanding. OmniTab (Jiang et al., 2022) combines both natural and synthetic QA
signals for more robust pretraining. FORTAP (Cheng et al., 2022a) leverages spreadsheet formulas
as supervision to strengthen numerical reasoning. PLOG (Liu et al., 2022a) introduces a two-stage
strategy: first generating logical forms from tables, then converting them into natural language, to
improve logical faithfulness in summaries. (2) Prompt-based models instead rely directly on large
language models (LLMs) with carefully designed prompting. ReFactor (Zhao et al., 2023) extracts
query-relevant facts and concatenates them with the query to guide generation. DirectSumm (Zhang
et al., 2024) produces summaries in a single step, synthesizing text directly from the table and
query. Reason-then-Summ (Zhang et al., 2024) decomposes the task into two stages, first retrieving
relevant facts and then composing longer summaries. (3) Agentic frameworks use external tools
such as SQL or Python to ensure accuracy. Binder (Cheng et al., 2023) translates the input query
into executable programs, often SQL, to ground results in computation. Dater (Ye et al., 2023)
decomposes complex queries into smaller sub-queries, executes them individually, and aggregates
their outputs. TaPERA (Zhao et al., 2024) builds natural language plans that are converted into Python
programs for execution before aggregation. SPaGe (Zhang et al., 2025) moves beyond free-form
plans by introducing structured representations and graph-based execution, improving reliability in
multi-table scenarios. Table 1 contrasts our proposed FACTS with representative methods using
four criteria. Reusable: artifacts applicable to new tables with the same schema; Scalable: ability to
handle very large tables without feeding all rows; Accurate: correctness via executable programs;
Privacy-Compliant: avoiding exposure of raw table content to LLMs. Most prior methods fall short
on one or more dimensions: table-to-text and prompt-based models lack all four; agentic frameworks
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Example 1: An offline template generated by FACTS on the QFMTS dataset (Zhang et al., 2024).
The SQL query retrieves the top three accounts by savings balance, and the Jinja2 template renders
the results into natural language.
SQL Queries:
- SELECT a."name", s."balance"
FROM "ACCOUNTS" a
JOIN "SAVINGS" s
ON CAST(a."custid" AS DOUBLE) = s."custid"

ORDER BY s."balance" DESC, a."name" ASC
LIMIT 3;

Jinja2 Template:
{% if values and values|length > 0 %}

The three accounts with the highest savings balances are:
{% for row in values %}

- {{ row["name"] }} with a savings balance of {{ row["balance"]
}}.

{% endfor %}
Overall, these represent the top savers by balance in the dataset.

{% else %}
No results were found for the requested top savings accounts.

{% endif %}

improve accuracy but sacrifice scalability and privacy; and plan-based methods, such as TaPERA and
SPaGe, yield only partially reusable plans. FACTS is the only approach satisfying all four desired
properties.

3 METHODOLOGY

To avoid ambiguity, we first clarify the terminology used in this section. A user query denotes
the natural language input provided by the user, which specifies an information need over one or
more tables and may include rich contextual details. An SQL query refers to executable code
generated by our method to retrieve the information required to satisfy the user query. A Jinja2
template is a rendering program that verbalizes SQL outputs into natural language. An offline
template is the composite artifact introduced in this work, bundling one or more SQL queries
together with a Jinja2 template. Unless otherwise specified, the term schema refers to the structural
metadata of the table, e.g., column names and data types, rather than raw values. Finally, a summary
denotes the final natural language output returned to the user after executing the SQL queries and
rendering the Jinja2 template. The remainder of this section is structured as follows: Section 3.1
introduces the concept of offline templates and motivates their reusability; Section 3.2 details the LLM
Council, which provides iterative validation and feedback; and Section 3.3 presents the complete
FACTS framework and its three interconnected modules.

3.1 OFFLINE TEMPLATE

Formally, an offline template is defined as a composite artifact consisting of (1) one or more schema-
aware SQL queries that retrieve relevant facts from the underlying tables, and (2) a Jinja2 template
that transforms the retrieved outputs into a natural language summary. Crucially, offline templates
are bound to both the table schema and the user query semantics. Once generated, the same offline
template can be directly applied to any table sharing the same schema and answering the same user
query or semantically similar queries, enabling reusability across tables that differ only in values,
e.g., multiple years of financial records or multiple patients’ health records. In this work, we define
template reusability under an identical schema, without considering schema drift or renamed columns.
This design avoids repeated LLM inference, provides efficiency through lightweight SQL execution,
and ensures privacy compliance by never exposing raw table values to LLMs. Example 1 illustrates a
real template generated by FACTS on the QFMTS dataset (Zhang et al., 2024). Here, the SQL query
selects the top three accounts by savings balance from the ACCOUNTS and SAVINGS tables, and the
Jinja2 template verbalizes the results into a coherent narrative. This example demonstrates offline
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Algorithm 1 LLM Council: Evaluate-and-Refine

Input: artifact A (e.g., a guided question, SQL query, Jinja2 template, or summary), context X
(schema, guidance, execution logs), model set C = {M1, . . . ,Mm}
Output: decision DEC ∈ {YES,NO}, consensus feedback FB

1: R ← ∅ ▷ per-model results
2: for M ∈ C do ▷ independent judgments
3: p← BUILDPROMPT(A,X )
4: o← LLMCALL(M,p) ▷ LLM call
5: (d, f)← PARSE(o) ▷ d ∈ {YES,NO}, f=brief feedback
6: R ← R∪ {(d, f)}
7: DEC← MAJORITYVOTE({d : (d, f) ∈ R})
8: FB← AGGREGATE({f : (d, f) ∈ R},DEC) ▷ short consensus rationale
9: return (DEC,FB)

templates are executable and reusable artifacts that faithfully capture user intent and generalize across
tables with the same schema and query semantics.

3.2 LLM COUNCIL

The LLM Council is an ensemble of LLMs that collaboratively validate intermediate outputs at each
stage of the FACTS framework. Rather than relying on a single model, the Council prompts multiple
heterogeneous LLMs, each of which independently produces a structured judgment (YES/NO) and
brief feedback. A majority-voting scheme determines whether a candidate artifact is accepted, while
the collected feedback is aggregated into a consensus explanation that guides iterative refinement.
The Council provides feedback in four places: (1) evaluating guided questions and filtering rules, (2)
validating generated SQL queries, (3) checking alignment between SQL results and Jinja2 templates,
and (4) assessing whether the final summary satisfies the user query. These validation steps will be
described in detail in the next subsection. This mechanism reduces reliance on any single model,
mitigates hallucinations, and ensures correctness and usability of generated artifacts.

Algorithm 1 presents the Council’s evaluate-and-refine procedure in pseudocode. For each candidate
artifact, a task-specific prompt is built from the artifact and its context, e.g., table schema, guided
questions, execution logs, and passed independently to every model in the ensemble. Their responses
are parsed into decisions and feedback, after which majority voting determines the overall acceptance
decision, and aggregated feedback provides a concise rationale to guide refinement. Full prompt
templates are included in Appendix A.1.

3.3 FACTS FRAMEWORK

The FACTS framework is composed of three interconnected stages, shown in Figure 2, with full
pseudocode provided in Appendix A.2. At each stage, outputs generated by the LLM agent are
validated by the LLM Council introduced in Section 3.2, which provides structured feedback and
guides iterative refinement.

Stage 1: Schema-Guided Specification and Filtering. Given the user query and table schema, the
agent first generates schema-aware clarifications in two complementary forms: (i) guided questions
that identify which columns, relationships, and operations are relevant, and (ii) filtering rules that
specify which rows or categorical values should be excluded. Crucially, the LLM never accesses the
raw table contents. Instead, it proposes filtering rules in abstract form, e.g., "exclude rows where
category=’expense’", which are later expressed as WHERE clauses in SQL. This ensures the
filtering process remains privacy-compliant and syntactically verifiable. For example, in the financial
scenario introduced earlier, the agent may generate rules that remove irrelevant transaction categories,
e.g., "exclude expense transactions", before producing summaries of gross income. The resulting
schema-guided specifications serve as input to SQL synthesis in the next stage.

Stage 2: SQL Queries Generation. Using the approved specifications from Stage 1, the agent
synthesizes one or more candidate SQL queries. These SQL queries integrate the filtering rules as
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Figure 2: The FACTS framework for query-focused table summarization via Offline Template
Generation. (1) Schema-Guided Specification and Filtering: the agent enriches the user query with
guided questions and filtering rules over the table schema, with validation from the LLM Council. (2)
SQL Queries Generation: using these specifications, the agent synthesizes and iteratively improves
SQL queries through execution feedback and Council validation. (3) Jinja2 Template Generation
and Alignment: a Jinja2 template verbalizes SQL outputs into natural language, with LLM Council
checks ensuring alignment. The final output is a reusable offline template that combines validated
SQL queries with a Jinja2 template.

constraints, ensuring that only relevant subsets of the data are processed. Each query is executed
locally against the relevant tables to verify correctness. If a query fails or returns empty results,
the error traces and execution outputs are passed to the LLM Council for feedback. Based on this
feedback, the agent revises the query iteratively until it is executable. This refinement loop ensures
that the final SQL queries are robust, accurate, and faithfully grounded in the user specification.

Stage 3: Jinja2 Template Generation and Alignment. Once the SQL queries are validated,
the agent produces a Jinja2 template to render the results into natural language. The template is
required to reference exact column names, correctly iterate over the returned rows, and handle empty
results gracefully. The LLM Council then checks for alignment between SQL outputs and template
references. If mismatches occur, e.g., missing fields or shape incompatibilities, the SQL and template
are refined together until a consistent and valid pair is obtained. The final output is an offline template,
consisting of reusable SQL queries and a Jinja2 template that can generalize across new tables with
the same schema and query semantics.

Together, these three stages ensure FACTS achieves its key desired properties. Offline templates
provide fast summarization by reusing validated SQL queries and Jinja2 template rendering logic,
accurate outputs by grounding summaries in executed SQL queries rather than free-form generation,
and privacy-compliant operation by exposing only schemas, without revealing raw table values. For
completeness, the full prompts used in the FACTS framework are provided in Appendix A.3.

4 EXPERIMENTAL RESULTS

In this section, we present a comprehensive evaluation of the proposed FACTS framework. Our
experiments are designed to address the following research questions: RQ1: Does FACTS, through
offline templates, outperform existing methods for query-focused table summarization? RQ2: How
does FACTS compare with non-agentic alternatives, such as directly prompting an LLM to generate
an offline template in a single step? RQ3: To what extent does FACTS provide practical benefits in
reusability and scalability, particularly when the schema and user query remain fixed or semantically
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similar, or when table sizes increase? RQ4: Do human evaluators confirm that FACTS produces
more factually correct and complete summaries with fewer hallucinations than existing baselines?

To answer these questions, we first introduce the datasets, evaluation metrics in Section 4.1, and
baseline methods in Section 4.2. We then provide implementation details for FACTS and all baselines
in Section 4.3, present the main results and analysis in Section 4.4, conduct ablation studies contrasting
agentic versus single-call template generation in Section 4.5, and finally evaluate reusability and
scalability in Section 4.6.

4.1 DATASET AND EVALUATION

Datasets. We evaluate FACTS on the test splits of three widely used benchmarks: FeTaQA (Nan
et al., 2022), QTSumm (Zhao et al., 2023), and QFMTS (Zhang et al., 2024). FeTaQA consists
of 2,003 examples from Wikipedia, each pairing a single relational table with a query and a short
factual summary. QTSumm, also derived from Wikipedia, includes 1,078 examples where queries are
linked to single tables but require generating longer, paragraph-style summaries. QFMTS contains
608 examples, with each query associated with an average of 1.8 tables, demanding reasoning and
integration across multiple table schemas. QFMTS is based on the Spider dataset (Yu et al., 2018),
which includes 200 databases spanning 138 distinct domains, such as university courses, online
SQL tutorials, textbook examples, and public CSV repositories. Together, these datasets provide a
complementary testbed: FeTaQA evaluates concise summarization, QTSumm emphasizes extended
narrative responses, and QFMTS challenges systems with compositional multi-table reasoning.

Evaluation Metrics. We assess summarization quality using three standard automatic metrics.
BLEU (Papineni et al., 2002) measures n-gram precision by computing exact word overlap between
generated and reference summaries; we report SacreBLEU scores. ROUGE-L (Lin & Hovy, 2003)
evaluates recall via the longest common subsequence, indicating how much reference content is
covered; we report the F1 variant. METEOR (Banerjee & Lavie, 2005) balances precision and recall
by considering unigram matches with stemming and synonymy. Together, these metrics provide a
comprehensive assessment of both fluency and factual alignment in generated summaries.

4.2 BASELINE METHODS

We restrict our comparisons to training-free and fine-tuning-free approaches, since FACTS itself does
not rely on supervised model adaptation. The baselines fall into two categories: prompt-based models
and agentic frameworks. Prompt-based models include: (1) Chain-of-Thought (CoT) (Wei et al.,
2022) prompts the LLM to explicitly verbalize intermediate reasoning steps before producing the final
summary. (2) DirectSumm (Zhang et al., 2024) generates summaries in a single pass, conditioning
directly on the table and user query. (3) ReFactor (Zhao et al., 2023) extracts query-relevant facts
from the table and concatenates them with the user query as augmented input to the LLM. (4) Reason-
then-Summ (Zhang et al., 2024) decomposes the process into two stages: first retrieving relevant
facts, then composing a longer narrative summary. Agentic frameworks include: (5) Binder (Cheng
et al., 2023) translates the query into executable SQL programs to ground the results in computation.
(6) Dater (Ye et al., 2023) decomposes large tables into smaller ones and complex queries into
simpler sub-queries, executes them individually, and aggregates their outputs. (7) TaPERA (Zhao
et al., 2024) generates natural language plans that are converted into Python programs for execution
and aggregation. (8) SPaGe (Zhang et al., 2025) introduces structured graph-based plans, improving
reliability in multi-table scenarios. Together, these baselines cover the spectrum of training-free
methods: (i) direct prompting of LLMs with or without explicit reasoning, and (ii) agentic approaches
that couple LLMs with external executors.

4.3 IMPLEMENTATION DETAILS

The main LLM agent employs GPT-4o-mini as the backbone model, chosen for its strong performance
in table reasoning and summarization tasks (Nguyen et al., 2025; Zhang et al., 2025). To further
align outputs with target writing style, we employ in-context learning (Brown et al., 2020): when
generating Jinja2 templates, the prompt includes three demonstration examples drawn from the corpus,
encouraging summaries that are stylistically and structurally consistent with reference outputs.

At the workflow level, we allow a fixed upper bound of 10 guided questions and filtering rules, and
set the patience for revision at 3 iterations for guided questions, filtering rules, SQL queries, and
Jinja2 templates. SQL execution is handled by DuckDB (Raasveldt & Mühleisen, 2019), which
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Table 2: Evaluations on the test sets of three benchmarks. FeTaQA and QTSumm are single-table
datasets, while QFMTS is a multi-table dataset. The best and second-best results are shown in bold
and underline, respectively. FACTS achieves the best or the second-best results on all datasets.

Method FeTaQA QTSumm QFMTS
BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR

CoT 28.2 51.0 56.9 19.3 39.0 47.2 31.5 54.3 58.1
ReFactor 26.2 53.6 57.2 19.9 39.5 48.8 - - -
DirectSumm 29.8 51.7 58.2 20.7 40.2 50.3 33.6 57.0 62.8
Reason-then-Summ 31.7 52.6 60.7 21.8 42.3 51.5 40.8 62.7 66.2

Binder 25.5 47.9 51.1 18.2 40.0 39.0 42.5 65.3 70.7
Dater 29.8 54.0 59.4 16.6 35.2 35.5 - - -
TaPERA 29.5 53.4 58.2 14.6 33.0 33.2 - - -
SPaGe 33.8 55.7 62.3 20.9 41.3 47.7 45.7 68.3 73.4
FACTS (GPT-Only) (ours) 30.8 55.7 66.0 20.1 43.1 50.5 45.4 70.5 73.2
FACTS (ours) 32.6 58.9 67.7 21.9 45.8 51.3 46.0 70.8 73.2

enables efficient in-memory querying and integrates seamlessly with pandas DataFrames in Python.
The LLM Council consists of GPT-4o-mini, Claude-4 Sonnet, and DeepSeek v3. To further isolate
the impact of Council composition, we also evaluate a FACTS (GPT-Only) variant, in which all
three models in the Council are replaced with GPT-4o-mini, enabling us to assess the effectiveness of
FACTS independent of cross-model diversity.

For baseline methods and other hyperparameters, we follow the setup of Zhang et al. (2025). All
prompt-based and agentic baselines are implemented using the same GPT-4o-mini backbone to ensure
comparability, and we directly cite reported results from Zhang et al. (2025) where available.

4.4 RESULTS AND ANALYSIS

Effectiveness. Table 2 reports results on the test splits of FeTaQA, QTSumm, and QFMTS. Overall,
FACTS consistently achieves the best or second-best performance across all datasets and metrics,
demonstrating the effectiveness of offline template generation with iterative validation. When
compared with prompt-based methods, FACTS outperforms CoT, ReFactor, and DirectSumm across
most metrics. These approaches lack grounding in executable programs, which makes them prone
to hallucinations and incomplete coverage. Reason-then-Summ achieves relatively strong results
on QTSumm, showing that explicitly structuring the generation process into fact retrieval and
composition can sometimes improve the quality of the generated summaries. However, its gains are
inconsistent across datasets, and like other prompt-based models, it lacks execution-level validation
and remains vulnerable to factual errors and hallucinations in intermediate steps that may propagate
into the final summary. Against agentic frameworks, FACTS surpasses Binder, Dater, and TaPERA,
which often struggle with complex logic or multi-table reasoning. SPaGe remains a strong competitor
by leveraging graph-based planning. Nevertheless, FACTS outperforms SPaGe on every dataset in at
least two of the reported metrics, suggesting that FACTS generates more faithful and well-formed
summaries that are better aligned with reference outputs. We further compare the full FACTS system
with its GPT-Only variant, in which all three models in the LLM Council are replaced by GPT-4o-mini.
While the full FACTS framework achieves the best overall performance, which we attribute in part to
the diversity of reasoning behaviors introduced by heterogeneous Council members, the GPT-Only
variant remains competitive and still outperforms baseline methods on most datasets and metrics.
This result demonstrates that the core FACTS workflow itself is effective even without cross-model
diversity, and that Council heterogeneity further amplifies these strengths.

Computation Cost. Across the three datasets evaluated, each sample involves on average 2.47
accepted guiding questions or filtering rules (2.25 initially accepted and 0.22 accepted after one round
of revision), 1.36 SQL refinement rounds, and 1.84 template refinement rounds, with the maximum
patience set to three rounds in our experiments. We further provide token-level efficiency analysis
showing that the entire FACTS workflow requires 9, 922 input tokens and 1, 045 output tokens per
sample on average (including all stages and Council outputs), offering a comprehensive view of
runtime and generation cost.

Taken together, these findings provide a clear answer to RQ1, showing that FACTS reliably produces
offline templates that deliver strong and stable performance across both single-table and multi-table
summarization tasks, benefiting from the three interconnected stages introduced in Section 3.3. For
additional qualitative insight, Appendix A.4 provides a step-by-step case study of FACTS, including
intermediate outputs at each stage.
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Table 3: Evaluations of Single-Call on the test sets of three benchmarks.

Method FeTaQA QTSumm QFMTS
BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR Pass Rate

Single-Call 29.4 52.1 58.4 14.2 37.9 40.6 35.4 63.2 69.8 83.2%

FACTS (ours) 32.6 58.9 67.7 21.9 45.8 51.3 46.0 70.8 73.2 100.0%
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Figure 3: Reusability analysis. Runtime for
generating summaries with 1 versus 100
tables under the same schema and query.
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Figure 4: Scalability analysis. Runtime
for generating summaries as the number of
rows in each table increases.

4.5 ABLATION STUDY

To better assess the role of iterative refinement, we compare FACTS with a simplified Single-Call
variant. In this setting, the user query, table schema, and three in-context demonstration examples,
identical to those used in our main experiments, are provided to GPT-4o-mini, which is prompted
to generate an entire offline template in a single step, including both SQL queries and the Jinja2
template. Unlike FACTS, this approach does not incorporate iterative validation or feedback from
the LLM Council, nor does it leverage local SQL execution traces during refinement. To capture
robustness, we report the SQL pass rate, defined as the proportion of generated SQL queries that
execute successfully without error.

Results are shown in Table 3. While Single-Call attains moderate text-level scores, it suffers from a
substantially lower pass rate. This illustrates the brittleness of one-shot template generation: SQL
queries often contain syntax errors, reference non-existent columns, or yield empty outputs, which
directly undermines summary quality. By contrast, FACTS consistently achieves a 100% pass rate
across datasets, as its iterative refinement loop with Council validation and execution feedback detects
and corrects errors before finalization. This not only ensures robustness but also translates into
consistently higher BLEU, ROUGE-L, and METEOR scores. In summary, these results directly
address RQ2, confirming that FACTS substantially outperforms non-agentic single-step alternatives
by combining structured stages with iterative validation.

4.6 REUSABILITY AND SCALABILITY ANALYSIS

Finally, we examine whether FACTS delivers the promised advantages of reusability and scalability,
addressing RQ3. We compare against two strong baselines, Reason-then-Summ and SPaGe, using
100 randomly sampled examples from QTSumm.

Experiment 1: Reusability across tables. We fix the user query and table schema but vary the cell
values. As shown in Figure 3, with a single table, FACTS is slightly slower than Reason-then-Summ,
since it must generate the offline template for the first time, and comparable to SPaGe. We emphasize
that the latency reported in Figure 3 already includes the cost of the initial offline template generation.
However, once the template is generated, FACTS achieves a substantial speed advantage when reusing
it across multiple tables with the same schema. With 100 tables under the same schema, FACTS
dramatically outperforms both baselines: new summaries require only SQL execution and Jinja2
rendering, while the other methods must reprocess the entire table for every example.

Experiment 2: Reusability across semantically similar queries. To assess robustness to semanti-
cally similar user queries, we conduct an additional experiment on the same 100 randomly sampled
QTSumm examples. We use GPT-5 to paraphrase both the user queries and corresponding refer-
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ence summaries, creating semantically similar but lexically different variants. The original offline
templates are then applied without regeneration. FACTS maintains comparable performance with
BLEU = 21.8, ROUGE-L = 43.5, and METEOR = 50.8, confirming that it generalizes robustly to
semantic variations of the same query while preserving effectiveness.

Experiment 3: Scalability with table size. We next test how runtime scales as the number of rows in
each table increases, ranging from 100 to 1000. Figure 4 shows that FACTS remains flat in runtime,
as templates depend only on the schema. By contrast, Reason-then-Summ and SPaGe incur steadily
increasing cost, since larger tables must be serialized and passed into the LLM.

Together, these results show that FACTS achieves both reusability and scalability, while preserving
summary quality. This combination of speed, reliability, and accuracy makes it particularly well-suited
for real-world deployments.

4.7 HUMAN EVALUATION AND HUMAN PREFERENCE STUDY

To complement the automatic and computational evaluations, we perform human assessments.

Human Evaluation. We conduct a comprehensive human evaluation on 100 randomly sampled
examples from QTSumm and 100 from QFMTS to assess four aspects: (1) whether each generated
SQL semantically matches the user query (intent match), (2) whether the SQL execution results
correctly correspond to the numerical or factual content in the reference summary (SQL execution
accuracy), (3) whether the numbers and facts rendered in the final summary faithfully reflect the
SQL execution results (template rendering accuracy), and (4) whether the LLM Council unanimously
accepts a specification or SQL query that leads to an incorrect result (Council consensus error rate).
FACTS achieves 97% intent match, 94% SQL execution accuracy, and 98% template rendering
accuracy, with a very low Council consensus error rate of about 3%. The Council consensus error
rate is computed across two stages: (i) schema-guided specification and filtering, and (ii) SQL query
generation. While no errors occur during the specification stage, about 6% of the SQL queries
approved by the Council lead to incorrect results during the generation stage, yielding an overall
average error rate of approximately 3%. The SQL execution accuracy is lower than the template
rendering accuracy because some SQL queries compute incorrect values with respect to the reference
summary, while the rendering accuracy reflects whether the template correctly verbalizes the SQL
execution results. Therefore, the overall factual correctness of the generated summaries can be
estimated as 94%× 98% ≈ 92%. Although FACTS achieves high factual accuracy, the automatic
metrics primarily capture surface-level overlap and semantic similarity rather than factual correctness.
Human evaluation thus provides complementary insights beyond what automatic metrics can measure.

Human Preference Study. We further conduct a side-by-side human preference study comparing
FACTS with the strongest baseline SPaGe on QFMTS. Human evaluators are presented with the same
user query and two randomly ordered system outputs, one from FACTS and one from SPaGe, without
method identifiers. Evaluators are then asked to choose the preferred output or indicate no preference
based on three criteria: (1) whether the summary fully answers the user query (completeness), (2)
whether the reported numbers and facts are accurate (correctness), and (3) whether unsupported
or ungrounded content is introduced (hallucination). FACTS is preferred in 55% of cases for
completeness, 59% for correctness, and 60% for hallucination reduction, indicating that human
evaluators consistently favor FACTS for producing more accurate, complete, and faithful summaries.
These findings confirm that human judgments align with the automatic metrics and computational
analyses, collectively addressing RQ4.

5 CONCLUSION

In this work, we address the challenges in query-focused table summarization by proposing FACTS,
an agentic framework that generates reusable offline templates by combining schema-guided spec-
ifications, SQL synthesis, and Jinja2 rendering, with iterative validation from an LLM Council.
Extensive experiments show that FACTS consistently outperforms strong baselines, while offering
unique advantages in reusability, scalability, and privacy compliance. We also acknowledge that
FACTS assumes a practical privacy model where only table schemas and queries are shared with
external LLMs, while raw values remain local. A detailed discussion of this privacy scope, limitations,
and possible extensions is provided in Appendix A.5. These results highlight FACTS as a practical
solution for query-focused table summarization in real-world applications.
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REPRODUCIBILITY STATEMENT

For reproducibility, Section 4.3 outlines the implementation details of our method, while Appendix A.1
and Appendix A.3 provides the detailed prompts used in our method. We will publicly release the
complete codebase once this paper is accepted.
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LLM USAGE

We made use of large language models solely for improving the presentation of this paper. Their
role was limited to refining wording and verifying grammar to enhance clarity and readability. No
assistance from LLMs was involved in the design of methods, implementation of experiments, or
analysis of results.

A APPENDIX

A.1 LLM COUNCIL PROMPTS

For completeness, we include the full prompts used by the LLM Council for evaluation. These
prompts directly correspond to the four validation steps described in Section 3.2 and formalized
in Algorithm 1. Each prompt is presented independently to all LLMs in the Council, and their
structured outputs are aggregated via majority voting with feedback consolidation. We provide the
exact versions here to ensure transparency and reproducibility of our experiments.

Example 2: Prompt for evaluating guided questions and filtering rules.
You are evaluating a question or filtering rule for table summarization.

Table Information:
[table schema here]

User Query:
[original user query]

Previously Generated Questions or Filtering Rules:
[list of previously accepted guided questions and filtering rules]

Current Question or Filtering Rule to Evaluate:
[proposed guiding question or filtering rule]

Is this a good question or filtering rule that will help guide SQL query
generation? Answer with YES or NO only.

If NO, provide a brief reason why this question is not helpful.

Output format:
Decision: [YES/NO]
Feedback: [Brief reason if NO, or ’Question is good’ if YES]
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Example 3: Prompt for evaluating SQL queries.
You are evaluating a SQL query execution for table summarization.

Table Information:
[table schema here]

Guidance:
[generated guided questions and filtering rules]

SQL Query:
[proposed SQL query]

Execution Result:
[empty results or error message]

Evaluate whether this SQL query is valid and appropriate:
1. Does it execute without errors?
2. Does it return the non-empty data for summarization?
3. Does it filter and select appropriate columns?

Answer with YES or NO only. If NO, provide a brief reason.

Output format:
Decision: [YES/NO]
Feedback: [Brief reason if NO, or ’SQL query is good’ if YES]

Example 4: Prompt for evaluating SQL–template alignment.
You are evaluating whether a SQL query result aligns with a Jinja2

template for table summarization.

Table Information:
[table schema here]

SQL Query:
[proposed SQL query]

Jinja2 Template:
[proposed Jinja2 template]

Evaluate:
1. Does the SQL return all fields that the template tries to access?
2. Is the data structure compatible (e.g., if template expects multiple

rows, does SQL return them)?
3. Are field names in the template matching the column names returned by

SQL?

Answer with YES or NO only. If NO, provide a brief reason.

Output format:
Decision: [YES/NO]
Feedback: [Brief reason if NO, or ’SQL and template are well-aligned’ if

YES]
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Example 5: Prompt for evaluating generated summaries.
You are evaluating a generated summary for table summarization.

Table Information:
[table schema here]

User Query:
[original user query]

Generated Summary:
[system-produced summary]

Evaluate summary quality:
1. Relevance to the query
2. Accuracy of information
3. Clarity and coherence
4. Completeness

Answer with YES or NO only. If NO, provide a brief reason.

Output format:
Decision: [YES/NO]
Feedback: [Brief reason if NO, or ’Summary is good’ if YES]

A.2 PSEUDO CODE OF FACTS

Algorithm 2 summarizes the FACTS workflow. The process begins with Schema-Guided Specifica-
tion and Filtering, where the agent proposes schema-aware clarifying questions and filtering rules
based on the user query q and table schema S . Each specification is vetted by the LLM Council, and
accepted ones are accumulated in U to progressively refine the query intent. Next, in SQL Queries
Generation, candidate SQL queries are synthesized using (q,U ,S), executed locally against the
table, and validated both by execution feedback and the LLM Council. Invalid queries are iteratively
revised until a correct and executable query Q is obtained. Finally, in Jinja2 Template Generation
and Alignment, the agent generates a Jinja2 template J to render SQL results into natural language.
The LLM Council checks alignment between template references and SQL outputs; if misalignments
are detected, the template is refined until valid. The resulting offline template T = (Q,J ) can then
be reused across any table with the same schema, enabling fast, accurate, and privacy-compliant
summarization without exposing raw table values to the LLMs.

A.3 FACTS PROMPTS

FACTS relies on a set of carefully designed prompts to guide schema-aware question and filtering rule
generation, SQL synthesis, and Jinja2 template construction. Below we provide a few representative
examples; the complete set of prompts, including dataset-specific variants due to multi-table schemas,
is released with our code for reproducibility.
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Algorithm 2 FACTS Framework

Input: user query q, table schema S, LLMs Council C, max number of guiding specifications
Kq , patience Pq, Psql, Ptpl
Output: offline template T = (Q,J ) whereQ is a set of SQL queries and J is a Jinja2 template

1: /* Component 1: Schema-Guided Specification and Filtering */
2: U ← ∅ ▷ accepted guiding spefications
3: for k = 1 to Kq do ▷ how many guiding specifications we can generate
4: u← GENSPECIFICATION(q,S,U)
5: (vote, fb)← COUNCILJUDGE(C, u)
6: if vote = YES then
7: U ← U ∪ {u} ▷ added to the accepted set of guiding specifications
8: else
9: t← 0

10: while vote ̸= YES and t < Pq do ▷ refine until Council satisfied or reach patience
11: u← REVISESPECIFICATION(u, fb, q,S,U)
12: (vote, fb)← COUNCILJUDGE(C, u)
13: t← t+ 1
14: if vote = YES then
15: U ← U ∪ {u}
16: if SUFFICIENT(U) then break ▷ final set of guiding specifications
17: /* Component 2: SQL Queries Generation */
18: Q ← ∅; vote← false
19: t← 0
20: while not vote and t < Psql do
21: Q̃ ← GENSQL(q,U ,S)
22: exec← EXECUTESQL(Q̃,S)
23: (vote, fb)← COUNCILJUDGE(C, (Q̃, exec))
24: if vote = YES and VALID(exec) then
25: Q ← Q̃; vote← true
26: else
27: Q̃ ← REVISESQL(Q̃, exec, fb) ▷ handle errors, empties, shape mismatches
28: t← t+ 1
29: /* Component 3: Jinja2 Template Generation and Alignment */
30: vote← false; t← 0
31: while not vote and t < Ptpl do
32: J ← GENJINJA2(q,Q,S)
33: (vote, fb)← COUNCILJUDGE(C, (J ,Q,S))
34: vote← (vote = YES) and ALIGNED(J ,Q,S) ▷ fields match SQL outputs
35: if not vote then
36: (Q,J )← REFINE(Q,J , fb) ▷ fix unknown fields, shapes
37: t← t+ 1
38: return T = (Q,J ) ▷ reusable offline template

Example 6: Prompt for generating a schema-aware guiding question and filtering rule.
Based on the table information and user query below, generate ONE

specific, detailed question or filtering rule that will help guide
SQL query generation.

Table Information:
[table schema here]

User Query: [user query here]

Previously generated questions and filtering rules:
[None or list of prior questions and filtering rules]

Generate ONE new question or filtering rule that:
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1. Is different from previously generated questions and filtering rules
2. Clarifies what specific information is needed or what information is

irrelevant
3. Helps understand data relationships
4. Guides the SQL query structure

Output format:
Specification: [Your single question or filtering rule here]

Example 7: Prompt for SQL query synthesis.
Based on the table information, user query, and refined questions below,

generate a valid DuckDB SQL query.

Table Information:
[table schema here]

Guided Specifications:
[final set of guided questions and filtering rules]

IMPORTANT: You are querying a pandas DataFrame named ’df’ that contains
the table data.

Generate valid DuckDB SQL SELECT query that:
1. Retrieves the necessary information to answer the user query
2. Uses proper DuckDB syntax
3. References the DataFrame as ’df’
4. Quotes column names exactly as they appear
5. Handles data types appropriately

Output format:
SQL queries:
[Your SQL query here]

Example 8: Prompt for Jinja2 template generation.
Based on the demonstration examples below and the current SQL result,

generate a Jinja2 template.

--- Demonstration Examples ---
[table, user query, and reference summary triples]

--- Current Task ---
Table Information: [table schema here]
User Query: [user query here]
SQL Query: [SQL query here]

Generate a Jinja2 template that:
1. Uses the variable name ’values’ to access the data
2. Iterates with {% for row in values %}
3. Accesses fields with row["Column Name"]
4. Produces a coherent paragraph summary in the style of the examples
5. Handles empty results gracefully

Output format:
Jinja2 template:
[Your Jinja2 template here]

For space reasons, we only show these representative prompts here. The full set, including iterative
improvement and alignment prompts, is available in our code release.
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A.4 CASE STUDY: STEP-BY-STEP OUTPUTS ON QFMTS

We illustrate FACTS end-to-end on a QFMTS example, ID #303. The user asks: "Show all document
names using templates with template type code BK." We show the intermediate artifacts produced at
each stage.

Example 9: Input (QFMTS #303): user query and schemas.
User Query:

Show all document names using templates with template type code BK.

Schemas:
Templates(Template_ID, Version_Number, Template_Type_Code,

Date_Effective_From, Date_Effective_To, Template_Details)
Documents(Document_ID, Template_ID, Document_Name, Document_Description

, Other_Details)

Example 10: Stage 1 — Accepted guided specifications.
Q1: Should results include only documents whose associated BK templates

are currently effective
(i.e., Date_Effective_From <= today and (Date_Effective_To is null or

>= today)),
or should all BK templates be considered regardless of dates?

Q2: Should we return all documents whose Template_ID links to a Templates
row with Template_Type_Code = ’BK’
regardless of the templates’ effective date range, or limit results

to BK templates that are currently effective based on
Date_Effective_From and Date_Effective_To?

Example 11: Stage 2 — Synthesized SQL (validated by Council).
SELECT d."Document_Name"
FROM "Documents" AS d
JOIN "Templates" AS t

ON d."Template_ID" = t."Template_ID"
WHERE t."Template_Type_Code" = ’BK’;

Example 12: Stage 3 — Final Jinja2 template (after refinement).
{% set names = (values | map(attribute=’Document_Name’) | select() | list

) %}
{% set unique_names = names | unique | list %}
{% if unique_names and unique_names|length > 0 %}
There are {{ unique_names|length }} documents that use templates with the

template type code BK.
The document names are {% for n in unique_names %}{{ n }}{% if not loop.

last %}{% if loop.revindex == 1 %}, and {% else %}, {% endif %}{%
endif %}{% endfor %}.

{% else %}
There are 0 documents that use templates with the template type code BK.
{% endif %}

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Example 13: Final output vs. reference.
Generated summary:

There are 5 documents that use templates with the template type code BK
. The document names are Robbin CV, Data base, How to read a book,
Palm reading, About Korea.

Reference summary:
There are 5 document names that use templates with the template type

code BK. The document names are Robbin CV, Data base, How to read a
book, Palm reading, and About Korea.

Single-example scores:
SacreBLEU = 83.2, ROUGE-L = 93.5, METEOR = 95.2

Summary. The accepted guided specifications focus the retrieval criterion, the synthesized SQL
grounds the result set, and the refined Jinja2 template ensures correct counting and list formatting.
The final output faithfully matches the reference.

A.5 PRIVACY SCOPE AND THREAT MODEL

To clarify the privacy assumptions of FACTS, we adopt a practical enterprise-level threat model in
which the large language model (LLM) is treated as an external API that can observe schema-level
prompts but cannot access any local data or SQL execution results. Raw table cell values (e.g.,
personal identifiers, transaction records, or numerical measurements) are considered sensitive and
never leave the local environment. All interactions with LLMs occur solely at the schema or query
level during guided-question generation, SQL synthesis, and template rendering, while SQL execution
and summary rendering are performed locally. This design ensures that only structural information,
not actual data, is exposed. We acknowledge that schema structures or user queries may still reveal
limited information about domain or intent. Future work may integrate stronger defenses such as
schema abstraction, name obfuscation, or query redaction to further strengthen privacy protection.
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