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Abstract
We present an efficient method for adapting a
monolingual Large Language Model (LLM) to
another language, addressing challenges of catas-
trophic forgetting and tokenizer limitations. We
focus this study on adapting Llama 2 to Arabic.
Our two-stage approach begins with expanding
the vocabulary and training only the embeddings
matrix, followed by full model continual pre-
training on a bilingual corpus. By continually pre-
training on a mix of Arabic and English corpora,
the model retains its proficiency in English while
acquiring capabilities in Arabic. Our approach
results in significant improvements in Arabic and
slight enhancements in English, demonstrating
cost-effective cross-lingual transfer. We perform
ablations on embedding initialization techniques,
data mix ratios, and learning rates and release a
detailed training recipe. To demonstrate general-
izability of this approach we also adapted Llama
3 8B to Arabic and Llama 2 13B to Hindi.

1. Introduction
There has been a rapid advancement in open source English-
dominant foundation language models like Llama 2 (Tou-
vron et al., 2023), Mistral 7B (Jiang et al., 2023), and
Llama 3, primarily trained on extensive English corpora
with minimal inclusion of non-English languages. To cre-
ate models proficient in low-resource languages, two ap-
proaches can be taken: training a bilingual or multilingual
model from scratch or adapting an existing strong English-
dominant model to the target language. While bilingual and
monolingual models trained from scratch, like Jais (Sen-
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gupta et al., 2023b) and Bloom (et. al., 2023), have shown
promise in non-English capabilities, they are expensive to
train and have inferior capabilities in English. Adapting
strong English-dominant models to new languages also pose
challenges, such as catastrophic forgetting of English capa-
bilities, inefficiencies of English-dominant tokenizers, and
the need for hyperparameter adjustments. (Fujii et al., 2024;
Luo et al., 2024; French, 1999; Huang et al., 2024). Here we
address the challenges of the model adaptation approach.

Knowledge, reasoning and truthfulness capabilities of Large
Language Models (LLMs) are transferable across languages
(Yang et al., 2024; Sengupta et al., 2023b). This gives us
the basis and motivation to explore efficient methods for
cross-lingual transfer from English to Arabic through con-
tinual pre-training of a monolingual English-dominant LLM
without degradation of English capabilities. Several recent
works demonstrate cross-lingual transfer of foundation mod-
els (de Vries & Nissim, 2021; Marchisio et al., 2023; Csaki
et al., 2023; Zhao et al., 2024; Huang et al., 2024; Da Dalt
et al., 2024), yet they lack comprehensive analysis of hy-
perparameter tuning, tokenizer, data mix selections, and the
impact of different model sizes.

We study the following aspects of cross-lingual adaptation.

Vocabulary extension We find that adapting a pre-trained
model to a new language requires expanding the vocabulary,
along with employing the methods below to maintain the
model’s original capabilities while acquiring new linguistic
skills. We determine the optimal extension ratio of the
original vocabulary through experimentation.

Embedding alignment We find that ensuring alignment
between the embeddings of the original and newly added
vocabulary tokens is vital. We explore three techniques for
initializing newly added token embeddings. We follow with
embedding-only pre-training, which further aligns the em-
bedding scale and orientation for original and new tokens.

Continual pre-training Following the embedding align-
ment, we continually pre-train the model. We conduct ex-
periments at the 7B model scale to assess various English-
Arabic mix ratios and learning rates. We leverage the in-
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sights obtained from these experiments to perform cross-
lingual adaptation to Arabic with Llama 2 13B and Llama 2
70B models.

Careful empirical study of vocabulary extension, embed-
ding alignment, data mixtures and hyperparameter tuning,
results in a recipe for language adaptation with significant
performance improvements in Arabic and, uniquely, en-
hancements in English on Llama 2 models. To demonstrate
the generalizability of this recipe to other languages and
models, we adapt Llama 3 8B to Arabic and Llama 2 13B
to Hindi.

2. Pre-training Datasets
We use the AraV5 Arabic dataset, which includes docu-
ments from various sources such as web pages, Wikipedia,
Arabic news outlets, books and social media. It also in-
cludes high-quality English corpora, Books and Wikipedia,
translated to Arabic. Curated by (Sengupta et al., 2023b), it
was used for pre-training the Jais series of Arabic foundation
models. Prior domain adaptation studies have emphasized
the importance of using ”replay” data, which aligns with
the pre-training data domain, to preserve the foundational
model’s knowledge and reasoning capabilities, as proposed
in works by (Gupta et al., 2023; Chen et al., 2023; Azer-
bayev et al., 2024). We use the Pile corpus, comprising
data from 22 diverse sources including ArXiv, Wikipedia,
PubmedCentral, CommonCrawl, OpenWebText, and Github
(Gao et al., 2020). For Llama 2 7B adaptation, we utilize
20B tokens from AraV5, whereas for Llama 2-13B and 70B,
we utilize the entire AraV5 corpus, totaling 140B tokens.
For Hindi adaptation of Llama 2 13B we use a Hindi corpus
of 65B tokens curated from diverse resources and mix it
with Pile.

3. Methodology
3.1. Vocabulary Extension

The first step in adapting a monolingual foundation model
for multilingual use is to construct a balanced vocabulary
that includes all target languages. Recent state-of-the-art
models such as Llama 2(Touvron et al., 2023) use byte pair
encoding (BPE) (Sennrich et al., 2016) tokenizers, primarily
trained on English data. These tokenizers often split non-
English words into characters or bytes, creating a significant
imbalance among languages. Fertility, which measures the
average number of subwords produced by a single word
upon tokenization, can be used to quantify this imbalance.

This imbalance introduces inefficiency in pre-training, fine-
tuning and inference. Table 1 shows that the Llama 2 tok-
enizer needs as many as 4 times the number of tokens to
represent the same Arabic text as Jais’ Arabic-English bilin-

gual tokenizer (MLV2) (Sengupta et al., 2023b). Balanced
multilingual tokenizer with low fertility in all languages
offers three main advantages (Petrov et al., 2023): 1) lower
training and inference cost; 2) reduced latency during in-
ference; 3) longer context windows. Models trained with
low fertility tokenizers tend to perform well on downstream
tasks as shown in (Ahuja et al., 2023)

We experiment with two methods, vocabulary replacement
and vocabulary extension, to create balanced tokenizers for
English and Arabic. Vocabulary replacement implies main-
taining the base vocabulary and replacing its least frequent
tokens with the most frequent Arabic tokens. Vocabulary
extension adds the most frequent Arabic tokens, increas-
ing the vocabulary size. In both methods, we ensure that
the newly introduced tokens are not present in the original
vocabulary. For both methods, we determine the optimal
number of new tokens to create a balanced multilingual vo-
cabulary. Using Arabic tokens from the MLV2 vocabulary,
we create two candidate tokenizers and perform intrinsic
and extrinsic evaluations following (Ali et al., 2024).

For intrinsic evaluation, we use fertility score to measure
the efficiency of the tokenization process. We define fertility
as f = S

W , where S is the total number of tokens in the
tokenized text and W is the number of words in the raw text.
Subsets of validation sets of Pile and AraV5 are used to cal-
culate the English and Arabic fertility, respectively. Table 1
shows the intrinsic evaluations of two tokenizers, i) Llama 2-
replace30, and ii) Llama 2-extend100. Llama 2-replace30
replaces 30% of the base Llama 2 tokens while Llama 2-
extend100 extends the Llama 2 vocabulary by 100%. Llama
2-extend100 reduces the fertility of Llama 2’s tokenizer by
72.17% while maintaining the fertility in English. It also
reaches a fertility in Arabic comparable to MLV2.

We perform extrinsic evaluation by continually training
Llama 2 7B on a mixture of AraV5 and Pile, and moni-
toring the AraV5 validation loss. For a fair comparison
of the tokenizers, we fix the raw text bytes at 67 GB for
Pile and 345 GB for AraV5. Using Llama 2-extend100 as
the candidate tokenizer and Llama 2 as the baseline, we
tokenize the raw corpora and continually pre-train Llama 2
7B. Although the base Llama 2 tokenizer achieves a lower
AraV5 validation loss compared to Llama 2-extend100 (see
Table 1), it is trained on significantly more Arabic tokens
due to its ≈ 3.5 times higher fertility in Arabic. In an iso-
token comparison, where the number of AraV5 tokens is
fixed, Llama 2-extend100 outperforms base Llama 2 tok-
enizer by ≈ 2%. Considering both the intrinsic and extrinsic
evaluations, we select Llama 2-extend100. We correct all
losses to align with the Llama 2 tokenizer (see A and B).
We performed a similar analysis for Llama 3 8B adaptation
to Arabic. Llama 3 8B has a four times larger vocabulary
than Llama 2 and possesses superior multilingual capabil-
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ities including in Arabic. We found that extending it by
20% brought the Arabic fertility within 10% of the MLV2
tokenizer’s fertility rate for Arabic. For Hindi adaptation of
Llama 2 we extended the base vocabulary by 100% just as
for Llama 2 Arabic adaptation.

3.2. Embedding initialization

For Llama-extend100, we add 32000 new Arabic tokens
to the Llama 2 vocabulary, expanding the embedding and
unembedding layers as [32000, d] → [64000, d] where d
is the hidden size of the transformer decoder block. Our
studies showed that the choice of embeddings initialization
for newly added tokens is critical such that tokens which
represent similar concepts in two languages are closer in the
embeddings latent space. Simple methods such as Xavier
(Glorot & Bengio, 2010) or Kaiming (He et al., 2015) ini-
tialization, or using the mean of the embedding vectors of
Llama 2 tokens, do not yield satisfactory results. Therefore,
we explore alternative methods, described below, which
demonstrated superior performances.

Similarity-Based Token Embedding Initialization
This method is inspired by the approach proposed in (Minix-
hofer et al., 2022). For each new token, we identify the
top-k similar tokens using cosine similarity in the base
vocabulary, using an external embedding. We use Ope-
nAI’s text-embedding-3-large embeddings (Kusu-
pati et al., 2024) for their superior quality and multilingual
performance. Using cosine similarity, we find top-k similar
tokens for the new token and initialize the new token embed-
dings by taking the weighted average of base embeddings
of these similar tokens. After experimenting with different
values for the k, we achieve the best results with k = 5.
This initialization method was used for embeddings and
unembeddings layers of Llama 2 13B adapted to Hindi.

Embedding Space Transformation
In this initialization method, we leverage the pre-trained
embedding vectors of Jais-30B (Sengupta et al., 2023a).
We use 21377 embedding vectors corresponding to tokens
present in the intersection of the Llama 2 and Jais vocabu-
laries to transform the Jais embeddings of the added to-
kens to the Llama 2 embedding space. Let EJais and
ELlama2 to denote the embedding matrices of the overlap-
ping tokens of Jais and Llama 2, EJais ∈ R21377×7168 and
ELlama2 ∈ R21377×4096. We find a linear transformation
to project EJais to ELlama2’s space by solving for W and
b using the least squares method, WEJais + b = ELlama2.

We find W and b such that the Euclidean ℓ2 norm
∥WEJais + b − ELlama2∥2 is minimized. The parame-
ters W and b are then used to project added tokens into the
Llama 2 embedding space. This method performs better
than similarity-based initialization (see C).

3.3. Embedding-only pre-training

Even with Embedding Space Transformation initalization,
the scale and the orientation of English and resulting Arabic
embeddings are not aligned. Following (de Vries & Nissim,
2021), we do embedding-only pre-training using 15 billion
tokens of AraV5 and Pile, mixed in 9:1 ratio. During this
stage, gradient updates are applied to the embedding and
the unembedding layers only, while keeping the other layers
frozen. In our experiments, this method resulted in up to 2%
improvement in upstream loss for Arabic.

3.4. Hyper-parameter tuning

Hyperparameter sweep is important to determine best hyper-
parameters such as learning rate (lr), warm-up schedule and
batch size (bs). We use a linear warm-up for 1% of the
total steps followed by cosine decay (Loshchilov & Hutter,
2017) to 1/10th of the peak learning rate. We compare batch
sizes of 4M tokens and 6M tokens but don’t see a significant
difference in upstream losses. We pick 4M tokens as the
final batch size. We setup a learning rate sweep taking three
different learning rates in different ranges. Let lrpeak be
the peak Llama 2 learning rate which is 3e-4, we “re-warm”
the learning rate to i) lrpeak, ii) lrpeak/2, and iii) lrpeak/4.
These experiments use 14 billion AraV5 tokens mixed with
Pile in 1 : 1, 3 : 1 and 9 : 1 ratios. Across all ratios we find
that lrpeak performs the best as shown in table 2. We used
same hyperparameters for Hindi adaptation of Llama 2 13B.
For Llama 3 8B we performed a similar sweep and found
that for stable adaptation to new domain. a smaller learning
rate of 7.5e-5, a larger batch size of 6M tokens is required.

3.5. Data mixture

Domain adaptation involves continual pre-training a foun-
dation model on new data not seen during the pre-training.
When this new domain data is out-of-distribution, it can
cause significant forgetting of prior capabilities which is re-
ferred to as stability gap (Guo et al., 2024). Adding a small
proportion of replay data, which is closer in distribution to
the pre-training data, can mitigate the forgetting. We con-
duct exhaustive experiments to find a minimum proportion
of Pile data that should be mixed with AraV5 to mitigate
forgetting. Table 2 shows results from the experiments with
different data mixes. We found that mixing 1 part English
with 9 parts Arabic (1 : 9 En:Ar) is sufficient to mitigate
forgetting. We also don’t see any forgetting in downstream
evaluation as discussed in section 4. Interestingly, increasing
the amount of English data while keeping Arabic tokens con-
stant improves Arabic performance, indicating cross-lingual
capability transfer. We leave the exploration of cross-lingual
transfer to future work.

For Arabic adaptation of Llama 3 8B we found that a higher
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Llama 2 MLV2 (Jais) Llama 2-replace30 Llama 2-extend100
vocab size 32,000 84,992 32,000 64,000

En. Fertility 1.86 1.62 (-12.63%) 1.92 (+3.73%) 1.85 (-0.03%)
Ar. Fertility 5.06 1.29 (-74.55%) 1.66 (-67.26%) 1.41 (-72.17%)
Ar val. loss 0.6371 - 0.6440 0.6539

IsoToken Ar val. loss 0.6668 - - 0.6539

Table 1. Tokenizer intrinsic and extrinsic evaluation. We see that MLV2 tokenizer reduces the fertility in Arabic by 75.55%, Llama
2-replace30 by 62.26%, Llama 2-extend100 by 72.17% compared to Llama 2 tokenizer.

lr Mix En:Ar Total tokens AraV5 Tokens Pile Tokens Pile eval loss AraV5 eval loss
7.5e-5 1:9 15.6B 14B 1.56B 1.5397 2.5965
1.5e-4 1:9 15.6B 14B 1.56B 1.5396 2.3741
3e-4 1:9 15.6B 14B 1.56B 1.546 2.28

7.5e-5 1:3 18.67B 14B 4.67B 1.5225 2.556
1.5e-4 1:3 18.67B 14B 4.67B 1.5205 2.3628
3e-4 1:3 18.67B 14B 4.67B 1.5234 2.24

7.5e-5 1:1 28B 14B 14B 1.5044 2.5135
1.5e-4 1:1 28B 14B 14B 1.5007 2.349
3e-4 1:1 28B 14B 14B 1.5093 2.2135

Table 2. Llama 2-7B learning rate ablation experiments with different English to Arabic data mixtures. Data was tokenized with Llama
2-extend100 tokenizer and embeddings were initialized with subword-mean 3.2 approach. Base Llama 2-7B’s Pile and AraV5 validation
loss is 1.5466 and 2.95, respectively.

proportion of replay data is necessary.. Therefore, 1 : 1
English to Arabic dataset mixture was used where we saw
cross-lingual capability transfer between the two languages
similar to Llama 2 adaptation. For replay data we needed
a mix of textbooks, math, coding and reasoning datasets
mitigate forgetting.

4. Results
Using the methodology described in section 3 we adapt
Llama 2 7B, 13B and 70B models to Arabic. We use linear
warm up of the learning rate to lrpeak for the first 1% of
the tokens followed by cosine decay to 1/10th of the lrpeak.
For 7B and 13B models, we use 1 : 1 En:Ar mix as we
show in section 3.5 that higher proportion of English also
improves Arabic performance. For Llama 2 70B we use
1 : 9 En:Ar mix to reduce compute time. Llama 2 7B
adaptation uses 20 billion tokens each from AraV5 and
Pile. Llama 2-13B and Llama 2 70B use all 140 billion
tokens from AraV5 and 140 billion and 15.56 billion tokens
from Pile, respectively. Tables 3 and 4 show the 0-shot
downstream performance of the resulting models against
the base models and other Arabic models like Jais (Sengupta
et al., 2023a) and AceGPT (Huang et al., 2024). For Arabic
evaluations we translated the English downstream tasks
datasets using a similar approach as in (Sengupta et al.,
2023b).

We evaluated the models on the World Knowledge tasks
MMLU (Hendrycks et al., 2021) RACE (Lai et al., 2017)
and Exams (Hardalov et al., 2020); Commonsense rea-
soning tasks Hellaswag (Zellers et al., 2019), PIQA (Bisk

et al., 2020), SIQA (Sap et al., 2019), BoolQ (Clark et al.,
2019), Arc Challenge (Clark et al., 2018), OpenBookQA
(Mihaylov et al., 2018) and Winogrande (Sakaguchi et al.,
2019); Misinformation and Bias tasks TruthfulQA (Lin
et al., 2021) and CrowS-Pairs(Nangia et al., 2020).

For all models we see improvement in Arabic tasks - 7.5%
improvement in Arabic MMLU for Llama2 70B adapted
compared to Llama2 70B (see 3), while the smaller models
(7B and 13B) demonstrate 2% improvement in MMLU Ara-
bic. This can be attributed to the lower token-per-parameter
training regime resulting in less degradation from over-
training (Hoffmann et al., 2022; Dey et al., 2023). We also
observe slight improvement in average scores in English for
Llama2 70B adapted (see4). Furthermore, compared to the
state-of-the-art Arabic models, namely Jais and AceGPT,
Arabic adapted Llama2 models significantly improve on
Arabic downstream tasks.

For Arabic adaptation Llama 3 8B was continually pre-
trained for 65B tokens with 1 : 1 mix of English and Arabic
using hyper-parameters as discussed in 3.4. In 5 and 6 we
depict the performance of Llama 3 8B adapted on Arabic
and English tasks, respectively, and a comparison against
the Llama 3 8B base model. We see 4.5% improvement on
average in Arabic downstream tasks compared to the base
model performance while a 1% improvement in downstream
English tasks.

Llama 2 13B was trained on 72B tokens with 1 : 9 English
to Hindi dataset mixture. Learning rate was re-warmed to
the pre-training peak learning rate of 3e-4 and a batch size
of 4M tokens. We evaluate on XNLI-Hindi (Conneau et al.,
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Model Knowledge Average Commonsense Reasoning Average Misinformation, Bias Average Overall Average
llama 2-70b adapted 38.4% 52.1% 51.4% 49.2%
llama 2-13b adapted 34.1% 49.2% 48.8% 46.1%
llama 2-7b adapted 33.8% 46.1% 49.1% 43.5%
llama 2-70b base 31.4% 42.8% 48.9% 41.8%
llama 2-13b base 29.4% 40.3% 47.7% 39.6%
llama 2-7b base 27.3% 39.3% 47.5% 38.5%
Acegpt-13b 32.3% 45.4% 50.8% 43.8%
Jais 30b 38.0% 52.1% 51.2% 49.1%

Table 3. Arabic summarized comparisons between: (1) Llama 2 models pre and post adaptation; (2) other notable English-Arabic bilingual
models: Jais 30b (Sengupta et al., 2023a) and AceGPT (Huang et al., 2024)

Model Knowledge Average Commonsense Reasoning Average Misinformation, Bias Average Overall Average
llama 2-70b adapted 45.9% 66.6% 56.0% 60.9%
llama 2-13b adapted 38.4% 62.8% 49.3% 55.9%
llama 2-7b adapted 36.2% 57.8% 51.6% 52.3%
llama 2-70b base 48.8% 64.4% 57.1% 60.2%
llama 2-13b base 37.9% 60.8% 53.7% 55.3%
llama 2-7b base 36.1% 58.9% 55.4% 54.1%
Acegpt-13b 37.2% 62.0% 56.6% 56.5%
Jais 30b 41.3% 64.6% 56.3% 58.8%

Table 4. English summarized comparisons between: (1) Llama 2 models pre and post adaptation; (2) other notable English-Arabic
bilingual models: Jais 30b (Sengupta et al., 2023a) and AceGPT (Huang et al., 2024)

Model Knowledge Average Commonsense Reasoning Average Misinformation, Bias Average Overall Average
llama 3-8b base 33.0% 45.2% 47.3% 43.2%
llama 3-8b adapted 38.8% 49.2% 53.3% 47.9%

Table 5. Arabic summarized comparisons between Llama 3 8B model pre and post adaptation where we see a 4.5% average improvement
across all domains

Model Knowledge Average Commonsense Reasoning Average Misinformation, Bias Average Overall Average
llama 3-8b base 51.1% 63.7% 53.2% 59.5%
llama 3-8b adapted 49.9% 64.0% 58.9% 60.5%

Table 6. English summarized comparisons between Llama 3 8B model pre and post adaptation where we see a 1% average improvement
across all domains. There is a 1% drop in knowledge tasks which can be attributed to stability gap during domain adaptation

Model XNLI Hindi English downstream average
llama 2-13b base 37,44% 57.1%
llama 2-13b adapted 45.68% 55.3%

Table 7. Downstream performance comparison between Llama 2 13B pre and post adaptation on i) XNLI-Hindi, ii) English downstream
task average of World Knowledge tasks, Commonsense reasoning tasks, and Misinformation and Bias tasks.

2018) where the goal is to predict textual entailment. We
see 8% improvement compared to Llama 2 13B while in
English there is 1.8% degradation as shown in 7.

5. Conclusion
We present an efficient recipe to significantly enhance capa-
bilities of an English-dominant foundation LLM in another
language. Our approach includes extending the vocabulary,
applying a novel method for embedding initialization and
alignment, and continually pre-training the foundation LLM
on a bilingual data mix. We perform hyper-parameter opti-

mization for batch size, learning rate schedule, and data mix
ratio to ensure successful adaptation without experiencing
“catastrophic forgetting”. We successfully use this approach
to enhance Arabic capability of Llama 2 base models, result-
ing in a state-of-the-art 70B Arabic base language model.
Furthermore, we apply this approach to other languages
such as Hindi and other foundation LLMs such as Llama 3
- while we briefly discuss these two studies but will leave
the details for future work. We also intend to extend this
approach to low resource languages and architecture such
as depth-up scaling (Kim et al., 2024) and adapter layers
methods as discussed in D.
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A. Tokenizer ablations
We experimented with one more tokenizer variant, Llama3-
replace5 in addition to Llama 2-extend100 and Llama3-
replace30. Here we replace only 5% of the Llama 2 to-
kenizaer vocabulary with that of MLV2’s most frequent
Arabic tokens. Experiment design:

• Continually pre-train a monolingual LLM on native +
target language (Arabic) mix tokenized with the new
vocabulary.

• Use the same hyperparameters across the ablations.

• Fix the raw text corpus for each language – this will
ensure fairness as the total information/bytes are fixed.

• Select the size of raw text corpus for each language
such that when tokenized, by a monolingual tokenizer
in the respective language, the total tokens are in the
same range.

• Pre-trained base model: Llama 2-7B

• Datasets: Pile and AraV5.

• Embedding initialization: mean or subword-mean
(discussed in the next section).

• Learning rate of 1.5e− 4 and batch size of 4M tokens.

We take the raw corpus (bytes) of Pile and AraV5 such that
when tokenized by the MLV2 Arabic tokenizer, the number
of tokens for Pile and AraV5 are same. In table 8 we show
extrinsic evaluation of different bilingual tokenizers using
either extend or replace new token injection/merge schemes.
Overall Llama 2 base performed the best but it had > 3.5x
more Arabic tokens compared to Llama 2-extend100 which
is not compute efficient. But if we compare isoToken in
terms of Arabic, Llama 2-extend100 performs the best. An-
other factor is the tokens per parameter (TPP), with Llama
2-replace5 and Llama 2-base the TPP is much larger, and
as we’re going to be training for higher TPPs, using a high
fertility tokenizer would drift far from the pareto-frontier or
in other words there will be TPP degradation. Another thing
to consider here is inference cost of high fertility tokenizers
as more tokens for the given text mean limited context for
the model, more memory requirements.

B. Cross Entropy Loss Correction
When comparing cross-entropy loss between models trained
with data tokenized by different tokenizers, we need to apply
correction or normalization to the losses. This normalization
is required because cross-entropy’s units of measurement
are nats/tokens, and therefore, the definition of a token

becomes very important. Depending on the size of the vo-
cabulary and type of tokenizer, the information represented
per token varies. The loss correction factor to compare
cross-entropy loss between two models is then the ratio of
the number of tokens in the validation sets for each model.

C. Embedding initialization
Here we discuss the ablations that we performed with dif-
ferent embeddings initialization methods as discussed in
the main body. We also ablated an additional initialization
method which we refer to as Subword Mean. Following are
the initialization methods under consideration:

• Mean: Initialize all the new tokens’ embeddings with
the mean of source language token embeddings.

• Subword Mean: For a newly added Arabic token, tok-
enize it using base Llama tokenizer and use the mean
of the token embeddings ot the sequence of tokens.

• Semantic similarity search based: This method was
introduced in Wechsel multilingual initialization work
where a pre-trained embeddings like Fasttext or Ope-
nAI embeddings are used.

• Projection based: Use least squared to Learn a trans-
formation matrix from a learned embedding space
(MLV2) to the Llama token embeddings space using
the overlapping tokens. Then apply this transformation
to the newly added tokens from MLV2 vocab to Llama
vocab.

Note that for LLMs with untied embeddings and unembed-
dings, the new tokens embeddings (or unembeddings) are
initialized independently using the above methods.

In table 9 we compare different initialization methods for
Llama2 7B continual pre-training on AraV5 and Pile mix
tokenized with Llama2-extend100.

D. Block expansion adapter approach for
multilingual models

Following the work outlined in (Wu et al., 2024) we leverage
the block expansion approach for multilingual models, mak-
ing it highly effective for language adaptation. By adding
and fine-tuning additional Transformer blocks initialized
to identity mappings, the model can integrate new domain-
specific knowledge without forgetting previous information.
Although, the techniques described in the original paper fo-
cus on code and math, we were able to successfully adapt the
approach for our experiments with English and Arabic. We
initialized our base model with Llama-2 7B and expanded
the number of blocks from 32 to 40 using an interleaved
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variant merge Emb. initialization Vocab size Total Tokens Arabic Tokens English Tokens Pile loss AraV5 loss
Llama 2 base N/A N/A 32000 87.5B 67.31B 20.22B 1.508 0.637

Llama 2-replace5 replace Mean 32000 51B 30.7B 20.3B 1.504 0.6493
Llama 2-replace5 replace Subword Mean 32000 51B 30.7B 20.3B 1.508 0.646

Llama 2-replace30 replace Subword Mean 32000 43.7B 22.76B 20.94B 1.516 0.6439
Llama 2-extend100 extend Mean 64000 39.7B 19.35B 20.35B 1.499 0.6591
Llama 2-extend100 extend Subword Mean 64000 39.7B 19.35B 20.35B 1.499 0.6539

Table 8. Extrinsic evaluation of different bilingual tokenizers using either extend or replace new token injection/merge schemes. Due to
varying fertility in Arabic we can see that tokenizer with smaller number of Arabic tokens in its vocabulary has a higher fertility and thus
a higher token count. So this is not an iso-token comparison.

Emb. initialization Total Tokens Arabic Tokens English Tokens Pile loss AraV5 loss
Mean 39.7B 19.35BB 20.35B 1.4995 0.6591
Subword Mean 39.7B 19.35BB 20.35B 1.4994 0.653
Wechsel k = 5 39.7B 19.35BB 20.35B 1.4988 0.64898
Wechsel k = 10 39.7B 19.35BB 20.35B 1.4999 0.656
MLV2 Projection 39.7B 19.35BB 20.35B 1.5013 0.64857

Table 9. Comparison of different embedding initialization techniques in terms of upstream eval loss of Llama2 7B when trained on Pile
and AraV5 mic for 39.7 billion tokens.

Tokenizer variant Emb. initialization First step train loss
Llama 2 replace5 Random 16.31
Llama 2 replace5 Mean 9.15
Llama 2 extend5 Mean 9.43
Llama 2 extend100 Mean 7.22
Llama 2 extend100 Subword Mean 5.47
Llama 2 extend100 Wechsel k = 5 5.49
Llama 2 extend100 MLV2 projection 4.8

Table 10. Comparison of different embedding initialization techniques across multiple tokenizers.

approach. In our experiments for language adaptation, we
found that an optimal data mix of 1:9(En:Ar) yielded the
best results (in downstream 0 shot tasks in both English and
Arabic) relative to adapting the newly added layers only on
domain specific data. In both experiments we trained on a
total of 67B tokens in Arabic in order to maintain the same
token count for the appropriate comparison. Our results
show that the block-expansion approach is a strong candi-
date for language adaptation with a faster time to train and
lower training costs. In the future, this work could expand
to other types of models(like MoE models) and modalities
and would be interesting to analyse the impact on overall
accuracy in downstream tasks For language adaptation with
block expansion [sectionD], we experiment with different
number of adapter layers. We find that the optimal adapter
layer is 25% of the existing layer. Similarly, 960 is the
optimal batch size. Table 11 summarizes our results using
the above approach for language adaptation at the LLama 2
7B scale

E. Fine-tuning
Upstream loss is typically assumed to indicate downstream
performance [(Isik et al., 2024), (Gadre et al., 2024)]. In
order to verify performance on downstream tasks in the

adapted domain, we fine-tune both pre-trained and adapted
pre-trained models. Instruction fine-tuning allows us to
assess both performance and generation quality, which may
not always match upstream performance (Tay et al., 2022).

The data used is an extended fine-tuning dataset following
from (Sengupta et al., 2023b). We add additional data in En-
glish and Arabic, focusing on bilingual examples and quality
for language and style adaptation. In total, our instruction
fine-tuning dataset contains approximately 10 million En-
glish and 4 million Arabic examples in both single-turn and
multi-turn settings

We fine-tuned for 3 epochs with a standard linear learning
rate decay. Instead of padding, examples are packed together
up to the sequence length and separated with EOS tokens,
increasing training efficiency by up to 8 times. As in Jais,
we calculate loss on answer tokens only.

We observe that downstream performance of the fine-tuned
model trained on top of the pre-trained model is lower than
that of the fine-tuned model trained after domain adaptation.
It suggests that, similar to the findings in (Isik et al., 2024),
downstream task performance after fine-tuning is highly
dependent on the alignment between pre-training data and
downstream tasks which is improved through adaptation.
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Model Data Mix(En:Ar) Block expansion % Arabic tokens Arabic downstream eval acc% English downstream eval acc%
Llama 2 7B N/A N/A N/A 38.34 54.68
Llama 2 7B 0:1 25 67B 42.52 55.69
Llama 2 7B 1:9 25 67B 43.16 57.80

Table 11. Evaluation of block expansion adapter approach with data mixes across various downstream evaluation tasks. Arabic tasks are
evaluated across Knowledge, Commonsense reasoning and Misinformation, bias. English tasks are evaluated for Commonsense reasoning

F. Hardware setup
The training runs were conducted on two Condor Galaxy su-
percomputers, each equipped with 64 Cerebras CS-2 Wafer-
Scale Engines (WSE-2). Each CS-2 features 40 GB of
SRAM and achieves a peak throughput of 7.5 PetaFLOP/s
in half precision, providing a total of 960 PetaFLOP/s in half
precision across both supercomputers. Utilizing the weight
streaming mode of the Cerebras software stack, the Con-
dor Galaxy supercomputers can flexibly schedule multiple
jobs based on hardware resource requirements and priority.
The number of CS-2s allocated to a job can be dynamically
adjusted during training, with performance scaling linearly
up to 64 CS-2s per job. This scalability is facilitated by
the Cerebras software stack’s use of pure data parallelism
to distribute the workload across multiple CS-2s. Jobs are
managed by a priority queue system, ensuring efficient allo-
cation of computational resources.

G. Downstream Tasks
In 12 and 13 we present downstream task performance
breakdown on Arabic and English downstream tasks, re-
spectively. We draw the comparison between Llama 2 series
of Arabic adapted models compared against base Llama
2 models and open source state of the art Arabic models.
Llama 2 13B, Llama 2 13B adapted.

Tables 14 and 15 show the downstream task performance
breakdown on Arabic and English downstream tasks, re-
spectively, for Llama 3 8B base and Llama 3 8B adapted.
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Knowledge Commonsense Reasoning Misinformation, bias
model mmlu (acc norm) exams Hellaswag PIQA BoolQ(acc) SIQA ARC Challenge Openbook QA TruthfulQA CrowS-Pairs(pct stereotype) Average
llama 2-70b adapted 37.7% 39.1% 61.6% 68.2% 66.9% 41.4% 41.2% 33.2% 45.6% 57.2% 49.2%
llama 2-13b adapted 30.6% 37.7% 54.9% 67.1% 64.5% 40.6% 36.1% 32.0% 43.6% 54.0% 46.1%
llama 2-7b adapted 28.7% 39.0% 48.0% 62.8% 63.9% 38.5% 32.0% 31.4% 43.9% 54.2% 43.51%
llama 2-70b base 30.2% 32.6% 41.2% 54.6% 64.2% 35.2% 30.5% 31.4% 47.0% 50.9% 41.8%
llama 2-13b base 28.4% 30.4% 34.3% 52.9% 63.8% 36.4% 24.3% 30.0% 45.5% 49.9% 39.6%
llama 2-7b base 27.8% 26.7% 32.3% 50.0% 63.8% 35.6% 25.0% 29.0% 46.7% 48.3% 38.5%
Acegpt-13b 29.9% 34.7% 45.6% 60.3% 63.2% 38.1% 32.8% 32.2% 45.1% 56.4% 43.8%
Jais 30b 34.0% 42.0% 60.4% 69.0% 67.7% 42.2% 39.2% 33.8% 45.1% 57.3% 49.1%

Table 12. Detailed break down of Knowledge, Commonsense Reasoning and Misinformation, bias downstream Arabic task performance
of Llama 2 adapted models, and comparison against base Llama 2 and state of the art Arabic open source models

Knowledge Commonsense Reasoning Misinformation, Bias
model mmlu race Hellaswag PIQA BoolQ SIQA ARC Challenge Openbook QA Winogrande TruthfulQA CrowS-Pairs(pct stereotype) Average
llama 2-70b adapted 52.2% 39.6% 82.0% 81.5% 82.8% 46.2% 52.1% 45.8% 75.9% 43.8% 68.2% 60.9%
llama 2-13b adapted 37.3% 39.5% 76.5% 78.6% 77.8% 44.6% 45.9% 44.4% 71.4% 34.6% 64.0% 55.9%
llama 2-7b adapted 33.9% 38.6% 74.0% 75.4% 44.4% 42.2% 43.6% 67.3% 37.6% 65.7% 52.3%
llama 2-70b base 55.6% 42.0% 80.8% 81.0% 76.8% 42.6% 48.0% 44.4% 76.9% 44.5% 69.6% 60.2%
llama 2-13b base 34.9% 40.8% 76.6% 79.1% 69.0% 44.9% 44.3% 42.0% 69.6% 37.6% 69.8% 55.3%
llama 2-7b base 32.0% 40.1% 73.0% 77.0% 71.1% 42.7% 40.5% 40.8% 67.2% 39.6% 71.1% 54.1%
Acegpt-13b 34.6% 39.7% 77.0% 79.6% 77.6% 45.7% 44.2% 40.0% 70.1% 39.4% 73.7% 56.5%
Jais 30b 42.3% 40.3% 79.1% 80.5% 80.9% 49.3% 48.4% 43.2% 70.6% 40.3% 72.3% 58.8%

Table 13. Detailed break down of Knowledge, Commonsense Reasoning and Misinformation, bias downstream English task perfor-
mance of Llama 2 adapted models, and comparison against base Llama 2 and state of the art Arabic open source models

Knowledge Commonsense Reasoning Misinformation, bias
model mmlu (acc norm) exams Hellaswag PIQA BoolQ(acc) SIQA ARC Challenge Openbook QA TruthfulQA CrowS-Pairs(pct stereotype) Average
llama 3-8b 31.0% 34.7% 45.2% 57.7% 66.4% 37.5% 34.6% 30.0% 48.3% 46.4% 43.2%
llama 3-8b adapted 36.0% 41.5% 51.8% 64.5% 71.4% 41.2% 35.8% 31.0% 52.1% 54.4% 47.9%

Table 14. Detailed break down of Knowledge, Commonsense Reasoning and Misinformation, bias downstream Arabic task performance
of Llama 3 8B adapted model, and comparison against base Llama 3 8B

Knowledge Commonsense Reasoning Misinformation, Bias
model mmlu race Hellaswag PIQA BoolQ SIQA ARC Challenge Openbook QA Winogrande TruthfulQA CrowS-Pairs(pct stereotype) Average
llama 3-8b 62.0% 40.1% 79.2% 80.9% 81.2% 33.1% 53.4% 45.0% 72.8% 43.9% 62.3% 59.5%
llama 3-8b adapted 60.6% 39.0% 79.1% 80.5% 82.3% 33.2% 53.5% 46.2% 73.3% 51.1% 66.7% 60.5%

Table 15. Detailed break down of Knowledge, Commonsense Reasoning and Misinformation, bias downstream English task perfor-
mance of Llama 3 8B adapted model, and comparison against base Llama 3 8B
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