Under review as a conference paper at ICLR 2026

VIBE CHECKER: ALIGNING CODE EVALUATION
WITH HUMAN PREFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have catalyzed vibe coding, where users lever-
age LLMs to generate and iteratively refine code through natural language inter-
actions until it passes their vibe check. Vibe check is tied to real-world human
preference and goes beyond functionality: the solution should feel right, read
cleanly, preserve intent, and remain correct. However, current code evaluation
remains anchored to pass@k and captures only functional correctness, overlook-
ing the non-functional instructions that users routinely apply. In this paper, we
hypothesize that instruction following is the missing piece underlying vibe check
that represents human preference in coding besides functional correctness. To
quantify models’ code instruction following capabilities with measurable signals,
we present VERICODE, a taxonomy of 30 verifiable code instructions together
with corresponding deterministic verifiers. We use the taxonomy to augment es-
tablished evaluation suites, resulting in VIBE CHECKER, a testbed to assess both
code instruction following and functional correctness. Upon evaluating 31 leading
LLMs, we show that even the strongest models struggle to comply with multiple
instructions and exhibit clear functional regression. Most importantly, a composite
score of functional correctness and instruction following correlates the best with
human preference, with the latter emerging as the primary differentiator among
advanced LLMs on real-world programming tasks. Our work identifies core fac-
tors of the vibe check, providing a concrete path for benchmarking and developing
models that better align with user preferences in coding.

1 INTRODUCTION

Large Language Models (LLMs) have reshaped how humans write code, fostering a workflow
termed “vibe coding” (Karpathy, 2025; Willison, 2025). In this paradigm, AI’s role shifts from
a one-shot code completion tool for developers to an interactive collaborator for a broader audience,
including users with limited coding experience. Through multi-turn natural language interactions,
users can create and refine solutions from scratch, requiring the model to maintain context, adapt
to evolving requirements, and iteratively improve the code until it meets their needs (Ross et al.,
2023; Yang et al., 2023). The user’s final accept/reject choice serves as a real-time evaluation: what
we call the “vibe check,” a subjective preference typically based on whether the solution feels right,
reads cleanly, avoids obvious issues or anti-patterns, and preserves intent and correct functionality.
This collaborative workflow, popularized by tools such as Copilot' and Cursor?, is rapidly becoming
standard practice in modern software development (Peng et al., 2023; Stack Overflow, 2025).

Despite the shift toward vibe coding, existing code evaluation remains anchored to functional cor-
rectness, typically measured as pass@k (Chen et al., 2021; Austin et al., 2021; Jimenez et al., 2024).
These metrics indicate whether code passes unit tests but abstract away non-functional expectations
that users apply when selecting a response, including adherence to project conventions, documen-
tation clarity, minimal and targeted edits, and preservation of prior intent across interactions. This
disconnection is evident in platforms such as Copilot Arena (Chi et al., 2025), a large-scale vibe-
checking scenario where human programmers choose preferred candidate snippets. Strikingly, rank-
ings of code LLMs from Copilot Arena exhibit weak or negative correlations with functional scores

'nttps://github.com/features/copilot
https://cursor.com

https://github.com/features/copilot
https://cursor.com

Under review as a conference paper at ICLR 2026

Vibe Coding Vibe Check X Vibe Check v

Write fib(n) to return

def fib(n):
a, b=0,1
for _in range(n):
a,b=b,a+b
return a

def fib(n):
if n<=1: returnn
return fib(n—1) +fib(n-2)

the n-th Fibonacci
7 ¢|[number. Use for loop!

)

Functional ey « :
EDjc=D
-

Figure 1: Vibe check goes beyond functionality, requiring code to satisfy non-functional instructions
such as coding style and logic patterns, which are also key factors of human preference.

on popular benchmarks. Moreover, pass@k remains a dominant verifiable reward signal in RLVR
training (DeepSeek-Al, 2025; Da et al., 2025), steering optimization toward an incomplete notion
of code quality. Consequently, models can achieve high leaderboard scores yet fail the vibe check
in practice, producing code that is technically correct but misaligned with user preferences.

To bridge this gap, we hypothesize that the non-functional signals emerging from interactions are
an important, yet under-measured, component of the vibe check. We first introduce VERICODE, a
taxonomy of verifiable code instructions designed to capture what users routinely screen for during
code selection. Grounded in hundreds of rules from industrial linters and style guides, we perform
manual curation and automated filtering to distill a core set of 30 instructions across five categories.
Each instruction is paired with a verifier implemented using standard linters and abstract syntax tree
analysis. These verifiers yield a binary pass or fail score, enabling reliable automatic evaluation
while also providing a verifiable and scalable reward source for model training.

Building on VERICODE, we augment established benchmarks, BigCodeBench (Zhuo et al., 2025)
and LiveCodeBench (Jain et al., 2025), with these verifiable instructions to better simulate real-world
interactions. We refer to the augmented variants as BigvibeBench and LivevibeBench. For each
user query, an LLM-driven selector chooses a relevant and non-conflicting subset of instructions
from our taxonomy to add as explicit constraints. Functional unit tests together with our instruction
verifiers constitute a unified testbed, VIBE CHECKER, which measures both functional correctness
and instruction following (IF). Using this testbed, we evaluate 31 LLMs from 10 model families in
two realistic settings: single-turn generation, in which the model must satisfy all constraints in one
pass, and multi-turn editing, in which constraints are introduced sequentially while preserving prior
intent. This setup allows us to study both dimensions across interaction contexts.

Our analysis on VIBE CHECKER testbed yields several key insights into the code evaluation:

* Non-functional instructions cause notable functional regression. Although the added instruc-
tions do not target functionality, pass@1 decreases across all models. Under five instructions,
average pass@ 1 drops by 5.85% and 6.61% on the two augmented benchmarks (Section §4.2).

* Following multiple instructions remains challenging for LLMs. Even the best performing
model reaches only 46.75% and 40.95% success rate under five instructions on BigVibeBench and
LiveVibeBench (Section §4.3). Models also exhibit a position bias for instruction following, with
mid-position instructions followed less reliably than those at the beginning or end (Section §4.4).

* Single-turn vs. multi-turn interactions alter LLM behavior. Under the same tasks, single-turn
generation better preserves functionality but follows fewer instructions, whereas multi-turn editing
achieves higher IF at the cost of more functional regressions (Sections §4.2 and §4.3).

¢ Human preference reflects a mixture of functional correctness and instruction following. On
the coding subset of LMArena (Chiang et al., 2024), a composite of functional correctness and
our IF score correlates better with model ratings than either metric alone, with IF emerging as the
key differentiator among advanced models on the real-world programming tasks (Section §4.5).

In summary, this work establishes IF as an essential, yet overlooked, component of code evaluation.
Our VERICODE taxonomy and VIBE CHECKER testbed offer a concrete path to benchmark and
develop models against a more human-aligned notion of code quality beyond functionality.

Under review as a conference paper at ICLR 2026

2 VERICODE: A TAXONOMY OF VERIFIABLE CODE INSTRUCTIONS

To quantify the IF capability, we first construct VERICODE, a taxonomy of verifiable code instruc-
tions. This section presents its design principles, construction process, and resulting structure.

2.1 DESIGN PRINCIPLES

We design VERICODE around four core principles to ensure it is rigorous, relevant, and useful:

* Verifiability. Each instruction is paired with an automated, deterministic verifier that returns a
binary pass/fail signal, enabling objective and scalable evaluation.

* Practice Grounding. Instructions reflect common developer expectations and conventions, draw-
ing on widely used standards rather than synthetic or adversarial constraints.

* Comprehensive Coverage. The set spans key non-functional aspects, including coding style,
logic patterns, documentation, error handling, and API or library constraints.

* Difficulty. Instructions are curated to be meaningfully challenging and diagnostic, ensuring that
recent advanced LLMs exhibit imperfect adherence.

2.2 TAXONOMY CONSTRUCTION PROCESS

We carefully curate VERICODE in three stages: sourcing a candidate pool, performing multi-stage
filtering, and finalizing the set with expert review and verifier implementation.

Candidate Pool Sourcing. We source our initial candidate pool from Ruff, an industry-standard
Python linter that aggregates more than 800 rules drawn from popular tools®. This provides a high-
coverage inventory of practices that users routinely follow and check. Static linting, however, in-
spects only code and cannot evaluate instructions that target the entire response (e.g., append a
JSON explanation after the code block). To close this gap, we add a set of instructions focusing on
documentation outside the code blocks, extending coverage beyond what static analysis can capture.

Scope and Relevance Filtering. The initial pool is first filtered for scope and relevance. We apply a
top-down consolidation to address rule overlap, prioritizing broader instructions over their more spe-
cific subsets. This stage ensures that each instruction is broadly applicable across common coding
tasks and not confined to niche scenarios.

Difficulty Filtering. We then screen the remaining candidates for difficulty. Using Gemini 2.5
Flash (Gemini Team, 2025) on a challenging test set, BigCodeBench-Hard (Zhuo et al., 2025), we
measure instruction following rate alongside functional correctness at pass@ 1. Any instruction with
a success rate above 90% and no degradation in pass@1 is removed. Borderline cases are flagged
for manual review. This step focuses on non-trivial constraints that challenge advanced LLMs.

Review and Verifier Implementation. The final instruction set is manually reviewed by domain ex-
perts on the author team with coding-research experience to ensure clarity and real-world relevance.
For verification, we prioritize linter-backed checks when available and implement deterministic tests
using Abstract Syntax Tree (AST) analysis and regular expressions when no direct rule exists. All
verifiers share a common interface: a testing function that returns a binary pass or fail, enabling
scalable evaluation and reproducibility.

2.3 RESULTING VERICODE TAXONOMY

The multi-stage construction process yields our final verifiable taxonomy VERICODE".

Taxonomy Structure. The final set contains 30 instructions organized into five categories: Coding
Style & Conventions (9), Logic & Code Patterns (9), Documentation & Commenting (6), Error Han-
dling & Exception Management (4), and Library & API Constraints (2). The taxonomy is organized
hierarchically: the root represents the overall concept of verifiable code instructions, the five cate-
gories form the top-level nodes, and the 30 individual instructions are the leaf nodes. Our current

*https://docs.astral.sh/ruff/rules
*We will publicly release the taxonomy together with the corresponding verifiers to support community use.

https://docs.astral.sh/ruff/rules

Under review as a conference paper at ICLR 2026

Category Prompt Verifier Parameter

line_length (int)

Coding S.tyle & Write che ensuring all lines are no longer ES01 Rule Recommended: 79 (classic),
Conventions than {1ine_length} characters.
88 (modern)
Logic & Code Ensure each function has at most PLR0912 Rule max_branches (int)
Patterns {max-branches} branches. Recommended: 24
. - convention (str)
Documentat{on Document _your Cofle using the D Rule Supported: Google, NumPy,
& Commenting {convention} docstring format.
PEP 257
Error Handling Replace all a}lases with the canonical OS- UP024 Rule None
& Management Error exception.
Library & API Replace all os, os.path, glob, and open
Constraints with their pathlib equivalents. PTH Rule None

Table 1: Refined examples from VERICODE taxonomy. Each instruction maps to a verifiable linter
rule and includes tunable parameters where applicable. Full versions are provided in Appendix B.2.

instantiation focuses on Python, the dominant language in code evaluation, but the framework is
language-agnostic and can be applied to other languages using standard linters.

Instruction Schema. Each instruction specifies five necessary elements: 1) category, 2) description,
3) distinct prompts for both single-turn generation and multi-turn editing, 4) configurable parameters
with recommended or supported values, and 5) the verification code that returns a binary score. A
full version of the instructions is available in Appendix B.2.

A key feature of our taxonomy is its extensibility, which is achieved through the Parameters field. As
illustrated in Table 1, parameters such as 1ine_length, max branches, or documentation con-
ventions allow a single instruction to generate multiple variants with different difficulty levels. This
flexibility enables our set of 30 core instructions to be programmatically expanded into hundreds of
distinct and checkable constraints, providing a scalable framework for future research.

3 VIBE CHECKER: A NEW TESTBED FOR CODE EVALUATION

Building on proposed VERICODE, we introduce VIBE CHECKER — a testbed that extends standard
code benchmarks with explicit, verifiable instructions. It evaluates models under both single- and
multi-turn protocols, measuring functional correctness as well as instruction following capabilities.

3.1 BENCHMARK AUGMENTATION

We ground our evaluation in established benchmarks, which allows us to leverage their unit tests to
consistently measure functional correctness and situate our analysis within widely used evaluation
suites. Concretely, we construct two augmented variants:

» BigVibeBench, adapted from BigCodeBench to cover real-world programming tasks.
 LiveVibeBench, adapted from LiveCodeBench to cover algorithmic/contest problems.

This combination ensures that our evaluation covers a diverse range of coding challenges. Our
augmentation process involves the following stages:

Instruction Selection. For each user query, we randomly permute the full set of 30 taxonomy
instructions to form an ordered list. An LLM-based selector then scans this permuted list once,
deciding whether to keep or discard each instruction based on two criteria: 1) Relevance: the in-
struction must pertain to the query and plausibly influence the implementation, and 2) Non-conflict:
the instruction must not contradict any instruction already selected earlier in the pass. The accepted
instructions, in this permuted order, constitute the constraint set used to evaluate all models.

Parameter Selection and Validation. Once the instructions are selected, we prompt an LLM to
assign specific parameter values to each one. To guide this generation, the prompt includes the
supported keys, types, ranges, and recommended values in our taxonomy, as well as the context of
the user query, aiming for parameters that are both achievable and challenging. Finally, the generated

https://docs.astral.sh/ruff/rules/line-too-long
https://docs.astral.sh/ruff/rules/too-many-branches
https://docs.astral.sh/ruff/settings/#lintpydocstyle
https://docs.astral.sh/ruff/rules/os-error-alias
https://docs.astral.sh/ruff/rules/#flake8-use-pathlib-pth

Under review as a conference paper at ICLR 2026

Single-Turn Generation Multi-Turn Editing

[
& USER @ USER

[Base Prompt from Benchmark] [Base Prompt from Benchmark]

Also, generate the code to meet the following MODEL

requirements:

1. Each function has at most two branches [Initial Code Generation]

2. Add Google-style docstrings Py
® USER
MODEL Each functions has at most 2 branches
[Code Generated to Meet All Instructions] MODEL
[Revised Code 1]
[
0 o L4 USER
Evaluation Metrics
Add Google-style docstrings
Functionality Instruction Following MODEL
o
o Unit Tests Our Verifier [Revised Code 2]
N

Figure 2: Our evaluation protocol simulates two real-world interaction patterns: single-turn gener-
ation, where all instructions are given upfront in one prompt, and multi-turn editing, where instruc-
tions are introduced sequentially to refine a solution. Both are measured for functionality and IF.

parameters undergo a rule-based validation step: any parameter keys not explicitly defined for that
instruction are removed, and any invalid values are reverted to predefined defaults.

Both Gemini 2.5 Pro (Gemini Team, 2025) and Claude 4 Opus (Anthropic, 2025) are tested as
selectors in our augmentation pipeline, yielding similar instruction-category distributions. The final
benchmark is augmented by Claude 4 Opus, chosen for its lower invalid-parameter rate (0.96% vs.
2.47% for Gemini 2.5 Pro). The resulting distributions show that instructions for Coding Logic,
Coding Style, and Documentation are most prevalent, with Coding Logic being particularly frequent
in the algorithm-focused LiveCodeBench (see Figure 12 in the Appendix for a full breakdown).

3.2 EVALUATION PROTOCOL

Our evaluation protocol, illustrated in Figure 2, mirrors real-world usage by providing single- and
multi-turn interactive settings with two evaluation metrics.

Interactive Settings. We use two settings that differ in how instructions are presented:

 Single-Turn Generation presents all selected instructions after the original query within one
prompt. The model returns a single implementation.

* Multi-Turn Editing first elicits an initial implementation in response to the original query, then
reveals the selected instructions one at a time. At each round, the model sees the full interaction
history and updates the solution. The code from the last round is used for evaluation.

Evaluation Metrics. For both settings, we evaluate the code on two axes:

* Functionality: We measure functional correctness with unit tests and report functional regression
FRy from adding k instructions. Let Sj denote the functional score (typically pass@1) after
injecting k instructions, with Sy the score on the original prompt. The rate is calculated as:

So — Sk
So
* Instruction Following: We report IF at two granularities. For a task with k instructions, let I; €

{0, 1} indicate whether instruction j passes its verifier. The instruction-level score averages per-
instruction passes, and the task-level score requires all passes:

FR, =

k k
1
IFinstruction = % Z Ija IFtask =1 Z Ij =k
j=1

j=1

Here, a task refers to a benchmark problem together with its selected instruction set.

Under review as a conference paper at ICLR 2026

Single-Turn Generation | Multi-Turn Editing |

Model
Base 1 Inst 2 Inst 3 Inst 4 Inst 5 Inst 1 Inst 2 Inst 3 Inst 4 Inst 5 Inst

BigVibeBench: Real-World Programming Tasks

Gemini 2.5 Pro 50.35 0.34 2.60 0.87 -0.36 1.39 1.75 2.44 4.01 4.89 5.04
Gemini 2.5 Flash 47.37 0.74 1.12 2.60 1.31 241 0.93 1.12 1.48 2.98 3.72
Claude 4 Opus 51.05 -0.86 -2.23 -4.31 -1.72 -2.08 0.51 1.02 2.06 3.25 3.78
Claude 4 Sonnet 51.84 -0.17 -0.52 0.33 0.50 0.50 0.85 2.03 3.55 4.05 5.40
GPT 5 46.49 0.56 5.66 2.26 3.20 1.89 1.70 2.82 4.35 5.27 5.46
04 mini 52.28 4.02 9.39 5.87 7.38 9.56 2.18 4.71 7.04 7.04 8.05
Kimi K2 47.19 -1.12 -0.19 -0.93 0.17 2.03 2.23 4.09 2.78 4.45 6.12

LiveVibeBench: Algorithmic Programming Contest Problems

Gemini 2.5 Pro 85.31 -0.11 3.45 245 2.45 2.45 0.67 1.34 1.01 1.89 P98
Gemini 2.5 Flash 74.50 3.56 5.34 8.01 5.60 6.74 0.12 1.14 1.65 3.44 3.69
Claude 4 Opus 68.72 4.55 8.56 8.41 8.13 8.96 2.07 1.38 1.51 2.34 2.34
Claude 4 Sonnet 66.35 4.57 5.00 3.71 6.99 9.00 0.42 0.86 1.15 1.72 2.14
GPT 5 71.47 1.72 2.13 3.32 7.16 6.76 225 4.24 5.57 7.43 9.02
04 mini 80.95 5.74 9.02 9.02 11.37 12.29 3.63 8.91 10.19 11.71 15.92
Kimi K2 63.58 8.92 15.48 16.07 15.48 16.36 2.64 5.63 9.50 12.49 12.79

Table 2: Top-performing models still suffer from functional regression when non-functional instruc-
tions are added. Base is pass@1 on the original query. All other columns report the regression rate
(%) relative to Base. k Inst is the number of added instructions. Light red marks > 5% regression
and deep red denotes > 10%. Full results for all 31 LLMs are listed in the Appendix D.2.

4 EXPERIMENTS

Based on VIBE CHECKER, this section investigates the trade-off between functionality and instruc-
tion following, analyzes LLM behaviors, and ultimately correlates our metrics with user preference.

4.1 EXPERIMENTAL SETUP

Models. To ensure a comprehensive analysis, we select a cohort of 31 powerful LLMs spanning 10
distinct model families, including Gemini (Gemini Team, 2025), Claude (Anthropic, 2024; 2025),
OpenAl (OpenAl, 2024; 2025), DeepSeek (DeepSeek-Al, 2024; 2025), Qwen (Hui et al., 2024;
Qwen Team, 2025), Grok (xAl, 2025a;b), Gemma (Gemma Team, 2025), Mistral (Mistral Al, 2025),
MiniMax (MiniMax, 2025), and Kimi (Kimi Team, 2025).

Benchmarks. We construct BigVibeBench and LiveVibeBench by augmenting the full sets of Big-
CodeBench (1,140 instances) and LiveCodeBench v1-v6 (1,055 problems, May 2023 to May 2025).
Each instance across both benchmarks is augmented with 5 instructions from VERICODE taxonomy,
resulting in a total of over 10K instruction-level evaluations.

Implementation Details. All models are queried via the Vertex AI° and OpenRouter® APIs. During
benchmark augmentation, we use a deterministic temperature of 0.0. During evaluation, we follow
the defaults of the underlying benchmarks: 0.0 for BigVibeBench and 0.2 for LiveVibeBench. We
enable thinking mode on all models that support it. For Claude models with thinking mode enabled,
the API requires temperature 1.0, so we set it accordingly; all other models use the benchmark
defaults. The context length is set to each model’s supported maximum, capped at 32,768 tokens.

4.2 RESULTS FOR FUNCTIONALITY

Adding non-functional instructions leads to functional regression. Table 2 reports regression
rates on BigVibeBench for real-world programming and LiveVibeBench for algorithmic problems.
Handling multiple non-functional instructions is routine in practice, yet it still causes notable func-
tional loss even for state-of-the-art models. On BigVibeBench, under multi-turn editing with five

Shttps://cloud.google.com/vertex—ai/docs/reference/rest
Shttps://openrouter.ai

https://cloud.google.com/vertex-ai/docs/reference/rest
https://openrouter.ai

Under review as a conference paper at ICLR 2026

BigVibeBench LiveVik I BigVik | LiveVik N

o0 o
IF Score
3

=
vel

Task-I
g

Functional Regression (%)
°
1
g

5 1 4 5 1 4 5

°

0 3
of Instn

1 2 3 4 1 2 3 2 3
Number of Instructions Number of Instructions of Instr
Single-Turn Generation Multi-Turn Editing Single-Turn Generation Multi-Turn Editing

(a) Functional Regression Rate. (b) Task-Level Instruction Following.

Figure 3: Trends averaged over all evaluated models. As the number of instructions increases, func-
tional regression grows steadily, while the task-level IF score drops markedly. Single-turn generation
better preserves functionality, whereas multi-turn editing achieves higher instruction following.

Single-Turn Generation 1 Multi-Turn Editing 1

Model
1 Inst 2 Inst 3 Inst 4 Inst 5 Inst 1 Inst 2 Inst 3 Inst 4 Inst 5 Inst

BigVibeBench: Real-World Programming Tasks

Gemini 2.5 Pro 82.19 60.70 48.16 37.46 30.70 84.56 68.33 55.61 4421 33.68
Gemini 2.5 Flash 81.67 61.05 43.68 30.53 25.70 78.68 56.75 40.96 29.12 21.75
Claude 4 Opus 88.77 76.32 64.21 52.98 46.75 87.02 73.16 61.05 51.32 42.11
Claude 4 Sonnet 84.91 67.19 52.28 42.98 35.26 86.40 72.54 61.23 51.05 42.89
GPT 5 82.89 67.63 54.04 42.98 34.39 84.91 72.37 62.98 55.26 48.51
04 mini 84.82 70.79 57.11 47.98 41.32 88.51 74.74 61.23 50.09 41.84
Kimi K2 85.00 68.86 53.68 41.23 30.18 89.12 77.11 66.40 53.95 44.04

LiveVibeBench: Algorithmic Programming Contest Problems

Gemini 2.5 Pro 75.83 56.78 45.50 37.63 29.57 78.96 61.61 51.18 41.04 32.80
Gemini 2.5 Flash 66.54 45.97 32.89 23.03 17.06 72.80 51.09 34.98 25.31 17.82
Claude 4 Opus 78.86 57.91 47.96 38.96 35.17 85.59 72.89 61.71 52.04 43.70
Claude 4 Sonnet 75.73 56.40 44.17 35.36 28.53 84.45 73.46 62.37 52.70 44.64
GPT 5 82.18 68.53 55.17 47.01 40.95 85.59 74.50 66.64 57.35 50.14
04 mini 73.18 53.93 4322 33.36 27.20 81.52 66.64 54.60 42.84 32.61
Kimi K2 62.75 41.61 27.77 19.05 11.94 76.97 57.35 44.17 35.73 27.87

Table 3: Following multiple instructions remains challenging for top-performing models. We report
the task-level IF scores on both benchmarks. Light red marks IF score < 50 and deep red indicates
IF < 30. Full results for all 31 LLMs are provided in the Appendix D.3.

instructions, every model shows a regression above 5% except Gemini 2.5 Flash and Claude 4 Opus.
The effect is amplified on LiveVibeBench: regressions above 5% occur frequently for all models ex-
cept Gemini 2.5 Pro, with the impact particularly pronounced for 04 mini and Kimi K2, which
exceed 10% in more than half of the test configurations.

Single-turn generation better preserves functionality than multi-turn editing. As illustrated in
Figure 3a, regression increases monotonically with the number of instructions. On BigVibeBench,
average regression for single-turn climbs from 2.48% with one instruction to 5.76% with five, while
multi-turn rises from 3.18% to 9.31% over the same range. On LiveVibeBench, the gap is smaller:
with two instructions, the two interaction modes are comparable, but as constraints increase, the
single-turn setting gradually opens a clearer lead. Overall, single-turn generation more reliably
preserves functionality, and its advantage grows with the number of instructions.

4.3 RESULTS FOR INSTRUCTION FOLLOWING

Task-level success collapses under multiple instructions. Table 3 presents the task-level IF score,
where success requires satisfying all constraints simultaneously. The performance decay is rapid:
with three or more instructions, most advanced models fall below 50 across both benchmarks. The
decline is sharper on LiveVibeBench, where 5 of the 7 leading models do not reach 30 in the single-
turn setting. Such a steep drop is not entirely unexpected, as even the best models remain below

Under review as a conference paper at ICLR 2026

90 on a single instruction. With each added instruction, the probability of satisfying all constraints
decreases multiplicatively, yielding an exponential decay in task-level success. Such performance
degradation indicates that IF remains a challenge for state-of-the-art models and should be priori-
tized in both evaluation and training to meet the demands of real-world, multi-instruction scenarios.

Multi-turn editing is more effective for following instructions. In contrast to the functionality
results, multi-turn editing consistently outperforms single-turn generation in instruction following,
as shown in Figure 3b. On BigVibeBench, the multi-turn setting maintains a 3% to 4.5% advantage
in the task-level IF score. This gap widens on LiveVibeBench, where the advantage reaches around
8%. Given that the tasks are identical across settings, the consistent gap plausibly reflects the dif-
ference between the interactive patterns: single-turn must integrate all constraints in one pass and
tends to prioritize preserving overall correctness, whereas the iterative nature of multi-turn supports
targeted revisions that better satisfy newly introduced instructions.

4.4 INSTRUCTION POSITION ANALYSIS

Models exhibit position bias in instruction following. We

define instruction position as the index of each constraint: for | Bigi o Livevi
single-turn generation, the number in the list appended to the
base prompt; for multi-turn editing, the round in which the
constraint is introduced, starting at 1. On BigVibeBench, Fig-
ure 4 shows a clear U-shape, the classic “lost-in-the-middle” e Jd
pattern typically reported for long-context generation (Liu o e =]

et al., 2024), despite our prompts being only a few hundred

tokens long. Furthermore, single-turn generation shows a Figure 4: Average instruction-level
primacy bias, performing best on the first instruction, while IF trends by instruction position.
multi-turn editing displays a clear recency bias, peaking on

the final position. While the distinct U-shape does not generalize to the algorithmic tasks in Live-
VibeBench, the underlying positional preferences remain consistent: single-turn generation favors
the first instruction, while multi-turn editing consistently performs best on the last.

Instruction-level IF

4.5 CORRELATING WITH HUMAN PREFERENCE

Pearson Spearman Pearson Spearman

Optimal: 0.4 x IF + 0.6 x Func Optimal: 0.7 x IF + 0.3 x Func Optimal: 0.4 x IF + 0.6 x Func Optimal: 0.6 x IF + 0.4 x Func
] pr— , / ~v ~_ | 8-
S g & S, P \,
£ . . £
2 ~._ g \

~ /
H / 5 Y
B ' R .
& / s, \
o / o N\
£ / £ N\
] / G N,
o, £ L™ |
Instruction Following Ratio Instruction Following Ratio Instruction Following Ratio Instruction Following Ratio

(a) Real-World Programming (b) Algorithmic Programming

Figure 5: Human preference aligns best with a mix of IF and functionality. We correlate LM Arena
coding Elo with a composite score o IF + (1 — &) Func, where « € [0, 1] is the weight on IF (x-axis).
The peak correlation (starred) for both benchmarks is achieved with a mixture of the two metrics.

Having established metrics for both functionality and instruction following, we now investigate how
these signals relate to overall human preference in coding tasks.

To explore this, we use LMArena (Chiang et al., 2024), currently the largest source of human pref-
erence data for LLMs. Its coding subset alone contains over 800K human votes, aggregated into
Elo ratings for each model”. We take the latest default Elo ratings from this subset (see Appendix
Table 4) and compute correlations against two metrics derived from VIBE CHECKER: Func, defined
as pass@1 on the original problems, and IF, taken from the single-turn setting under one instruction.
We then evaluate a composite score « IF 4 (1 — «) Func with « € [0, 1], and report correlations.

Human preference correlates best with a mixture of instruction following and functionality.
Across both benchmarks, the peak correlation occurs at intermediate « (starred in Figure 5), indi-

"https://lmarena.ai/leaderboard/text/coding

https://lmarena.ai/leaderboard/text/coding

Under review as a conference paper at ICLR 2026

cating that neither IF nor Func alone explains preference as well as their combination. Concretely,
on BigVibeBench, the optimum for Pearson correlation places a 40% weight on IF (o« = 0.4), while
for Spearman correlation, the weight on IF rises to 70% (o = 0.7). The optimal blend for Live-
VibeBench is remarkably similar. In all cases, the mixture outperforms either isolated metric by a
clear margin. Additional correlation types and results with LM Arena style control (Li et al., 2024)
disabled are reported in Appendix E.2, with conclusions remaining consistent.

Which single factor users value depends on the coding scenario. While a mix is always best,
the importance of each metric considered alone differs by the type of programming task. For the
real-world programming tasks in BigVibeBench, instruction following plays a more critical role. On
the Spearman correlation, pure IF (o = 1) correlates over 0.1 points higher with human preference
than pure Func (o = 0). For algorithmic programming tasks in LiveVibeBench, the opposite is true:
pure Func holds a clear advantage over pure IF. This suggests that for practical, day-to-day coding,
users place a high value on a model’s ability to adhere to non-functional instructions, whereas, in
competitive programming scenarios, functional correctness is the paramount factor.

Overall implication. Our results provide evidence that instruction following is a critical, under-
measured component of human preference in coding tasks. Beyond functional correctness, adher-
ence to non-functional constraints offers a strong signal for distinguishing real-world utility. Con-
sequently, integrating instruction following alongside functionality in both evaluation and training
provides a practical path toward models that align more closely with real-world user preferences.

5 RELATED WORK

Instruction Following. Research in general instruction following focuses on stress-testing mod-
els with synthetic constraints (e.g., forced word repetition) and evaluates with either deterministic
checkers (Zhou et al., 2023; Wang et al., 2025; Pyatkin et al., 2025) or LLM-as-a-judge (Jiang et al.,
2024; Qin et al., 2024). A prevailing trend leverages large-scale, verifiable instructions to boost
capabilities via post-training, such as SFT and RL (Wang et al., 2025; Pyatkin et al., 2025). In
contrast, instructions in the coding domain are tied to practical software development, concerning
aspects such as logic patterns, coding style, and library usage. Prior work is sparse, and existing
benchmarks for such code instructions lack verifiability. They typically compare to ground truth
with DiffBLEU (Singhal et al., 2024) or use LLM and human judgment (Yan et al., 2025), which is
unreliable and hard to scale. To bridge this gap, our work introduces a taxonomy of verifiable code
instructions, each paired with a binary verifier, enabling scalable evaluation and training.

Code Evaluation. Functional correctness dominates code evaluation: the generated code is run
against unit tests, from snippet-level functions (Chen et al., 2021; Austin et al., 2021; Hendrycks
et al., 2021; Du et al., 2023; Lai et al., 2023; Liu et al., 2023; Jain et al., 2025; Zhuo et al., 2025;
Zheng et al., 2025) to repository-level tasks (Jimenez et al., 2024; Chowdhury et al., 2024; Miindler
et al., 2024; Yang et al., 2025; Zhao et al., 2025; Zan et al., 2025; Zhang et al., 2025). Research
on non-functional requirements is a relatively small branch of research, covering aspects like ad-
herence to task-oriented instructions (Yan et al., 2025), runtime efficiency, maintainability, and se-
curity (Singhal et al., 2024). We move beyond evaluating these aspects in isolation. On top of
VIBE CHECKER testbed, we systematically analyze the trade-off between functional correctness
and instruction following, and provide evidence that human preference reflects a composite of both
dimensions. This work aims to align the code evaluation with the real-world user preferences.

6 CONCLUSION

In this paper, we challenged the prevailing focus on functional correctness in code evaluation. We
study the vibe check as a subjective judgment tied to real-world human preference and approximate
it with measurable signals. We present VERICODE, a verifiable taxonomy of non-functional code
instructions, and VIBE CHECKER, a testbed that augments established evaluation suites. Across
31 leading LLMs, a composite of functional correctness and instruction following predicts human
preference substantially better than either metric alone. Our work calls for moving beyond pass @k
and for optimizing both functional and non-functional qualities in future research for coding.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

VERICODE. VERICODE is the taxonomy of verifiable non-functional code instructions. Section 2
details the design process and categories of VERICODE. Appendix B provides all the necessities to
reproduce VERICODE: we present not only the verification code, but also five concrete case studies
that contain all the elements in each category: category, description, generation prompt, parame-
ters, notes, and verification code. Following Section 2 while referring to the concrete examples in
Section 2 is sufficient to reproduce VERICODE.

VIBE CHECKER. VIBE CHECKER is the testbed, which we augment existing evaluation suites
from BigCodeBench and LiveCodeBench by proposing new evaluation metrics and deploying
VERICODE. We show the definition and calculation of our evaluation metrics in Section 3.2. For
experiments conducted on VIBE CHECKER, Section 4.1 contains all the details, including the tem-
perature we use, context window, etc. Meanwhile, Appendix C displays the system instructions and
evaluation prompts we adopt for BigVibeBench and LiveVibeBench.

Code and Data Release. While the paper provides all necessary details for reproducing both the
taxonomy (VERICODE) and benchmark results (VIBE CHECKER), we recognize that code and data
release will further facilitate community use. We plan to publicly release the taxonomy along with
the corresponding verifiers. We will also make every effort to release the generated code outputs
from all 31 LLMs evaluated in the paper.

REFERENCES

Anthropic. Introducing claude 3.5, 2024. URL https://www.anthropic.com/news/
claude-3-5-sonnet.

Anthropic. Introducing claude 4, 2025. URL https://www.anthropic.com/news/
claude—4.

Jacob Austin, Augustus Odena, Maxwell 1. Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Pro-
gram synthesis with large language models. CoRR, abs/2108.07732, 2021. URL https:
//arxiv.org/abs/2108.07732.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavar-
ian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plap-
pert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol,
Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William
Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Pe-
ter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code. CoRR, abs/2107.03374, 2021.
URL https://arxiv.org/abs/2107.03374.

Wayne Chi, Valerie Chen, Anastasios Nikolas Angelopoulos, Wei-Lin Chiang, Aditya Mittal, Na-
man Jain, Tianjun Zhang, Ion Stoica, Chris Donahue, and Ameet Talwalkar. Copilot arena: A
platform for code LLM evaluation in the wild. In Forty-second International Conference on Ma-
chine Learning, 2025. URL https://openreview.net/forum?id=9bYOgqwtAud.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
Dacheng Li, Banghua Zhu, Hao Zhang, Michael I. Jordan, Joseph E. Gonzalez, and Ion Sto-
ica. Chatbot arena: An open platform for evaluating llms by human preference. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024. URL https://openreview.net/forum?id=3MW8GKNyzI.

10

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=9bYOqwtAud
https://openreview.net/forum?id=3MW8GKNyzI

Under review as a conference paper at ICLR 2026

Neil Chowdhury, James Aung, Chan Jun Shern, Oliver Jaffe, Dane Sherburn, Giulio
Starace, Evan Mays, Rachel Dias, Marwan Aljubeh, Mia Glaese, Carlos E. Jimenez,
John Yang, Leyton Ho, Tejal Patwardhan, Kevin Liu, and Aleksander Madry. Introduc-
ing SWE-bench verified. OpenAl Blog, 2024. URL https://openai.com/index/
introducing-swe-bench-verified/.

Jeff Da, Clinton Wang, Xiang Deng, Yuntao Ma, Nikhil Barhate, and Sean Hendryx. Agent-
rlvr: Training software engineering agents via guidance and environment rewards. CoRR,
abs/2506.11425, 2025. doi: 10.48550/ARXIV.2506.11425. URL https://doi.org/10.
48550/arXiv.2506.11425.

DeepSeek-Al. Deepseek-v3 technical report. CoRR, abs/2412.19437, 2024. doi: 10.48550/ARXIV.
2412.19437. URL https://doi.org/10.48550/arXiv.2412.19437.

DeepSeek-Al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning.
CoRR, abs/2501.12948, 2025. doi: 10.48550/ARXIV.2501.12948. URL https://doi.org/
10.48550/arXiv.2501.12948.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. Classeval: A manually-crafted benchmark for evalu-
ating llms on class-level code generation. CoRR, abs/2308.01861, 2023. doi: 10.48550/ARXIV.
2308.01861. URL https://doi.org/10.48550/arXiv.2308.01861.

Gemini Team. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long
context, and next generation agentic capabilities. CoRR, abs/2507.06261, 2025. doi: 10.48550/
ARXIV.2507.06261. URL https://doi.org/10.48550/arXiv.2507.06261.

Gemma Team. Gemma 3 technical report. March 2025. doi: 10.48550/arXiv.2503.19786. URL
https://arxiv.org/abs/2503.19786. First posted March 25, 2025.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo,
Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring
coding challenge competence with APPS. In Joaquin Vanschoren and Sai-Kit Yeung (eds.),
Proceedings of the Neural Information Processing Systems Track on Datasets and Bench-
marks 1, NeurlPS Datasets and Benchmarks 2021, December 2021, virtual, 2021. URL
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
hash/c24cd76elced1366adbbe8ad9b02a028-Abstract—round2.html.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, An Yang, Rui Men, Fei Huang, Xingzhang Ren, Xuancheng Ren, Jingren
Zhou, and Junyang Lin. Qwen2.5-coder technical report. CoRR, abs/2409.12186, 2024. doi: 10.
48550/ARX1IV.2409.12186. URL https://doi.org/10.48550/arXiv.2409.12186.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. In The Thirteenth International Conference on
Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025.
URL https://openreview.net/forum?id=chfJJYC31iL.

Yuxin Jiang, Yufei Wang, Xingshan Zeng, Wanjun Zhong, Liangyou Li, Fei Mi, Lifeng Shang, Xin
Jiang, Qun Liu, and Wei Wang. Followbench: A multi-level fine-grained constraints following
benchmark for large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 4667-4688.
Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024. ACL-LONG.257. URL
https://doi.org/10.18653/v1/2024.acl-long.257.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R.
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
VTF8yNQM66.

11

https://openai.com/index/introducing-swe-bench-verified/
https://openai.com/index/introducing-swe-bench-verified/
https://doi.org/10.48550/arXiv.2506.11425
https://doi.org/10.48550/arXiv.2506.11425
https://doi.org/10.48550/arXiv.2412.19437
https://doi.org/10.48550/arXiv.2501.12948
https://doi.org/10.48550/arXiv.2501.12948
https://doi.org/10.48550/arXiv.2308.01861
https://doi.org/10.48550/arXiv.2507.06261
https://arxiv.org/abs/2503.19786
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://doi.org/10.48550/arXiv.2409.12186
https://openreview.net/forum?id=chfJJYC3iL
https://doi.org/10.18653/v1/2024.acl-long.257
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66

Under review as a conference paper at ICLR 2026

Andrej Karpathy. Vibe coding — wikipedia, 2025. URL https://en.wikipedia.org/
wiki/Vibe_coding.

Kimi Team. Kimi k2: Open agentic intelligence. July 2025. doi: 10.48550/arXiv.2507.20534. URL
https://arxiv.org/abs/2507.20534.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-
Tau Yih, Daniel Fried, Sida I. Wang, and Tao Yu. DS-1000: A natural and reliable bench-
mark for data science code generation. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Confer-
ence on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research, pp. 18319-18345. PMLR, 2023. URL
https://proceedings.mlr.press/v202/1ai23b.html.

Tianle Li, Anastasios Angelopoulos, and Wei-Lin Chiang. Does style matter? disentangling style
and substance in chatbot arena, August 2024. URL https://blog.lmarena.ai/blog/
2024 /style—-control/.

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. In
Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023,2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
43e9d647ccd3ed4b7b5baabb3f0368686-Abstract-Conference.html.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157-173, 2024. doi: 10.1162/tacl_a_00638. URL
https://aclanthology.org/2024.tacl-1.9/.

MiniMax. Minimax-m1: Scaling test-time compute efficiently with lightning attention. June 2025.
doi: 10.48550/arXiv.2506.13585. URL https://arxiv.org/abs/2506.13585.

Mistral Al Mistral medium 3, 2025. URL https://mistral.ai/news/
mistral-medium-3.

Niels Miindler, Mark Niklas Miiller, Jingxuan He, and Martin T. Vechev. Swt-bench: Testing
and validating real-world bug-fixes with code agents. In Amir Globersons, Lester Mackey,
Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.),
Advances in Neural Information Processing Systems 38: Annual Conference on Neural In-
formation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
15, 2024,2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
94£093b41£fc2666376fb1f667£fe282f3-Abstract-Conference.html.

OpenAl. Gpt-4o system card. CoRR, abs/2410.21276, 2024. doi: 10.48550/ARXIV.2410.21276.
URL https://doi.org/10.48550/arXiv.2410.21276.

OpenAl. Openai 03 and 04-mini system card. Technical report, OpenAl, April 2025. URL https:
//openai.com/index/03-04-mini-system-card/.

Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. The impact of Al on developer
productivity: Evidence from github copilot. CoRR, abs/2302.06590, 2023. doi: 10.48550/ARXIV.
2302.06590. URL https://doi.org/10.48550/arXiv.2302.06590.

Valentina Pyatkin, Saumya Malik, Victoria Graf, Hamish Ivison, Shengyi Huang, Pradeep Dasigi,
Nathan Lambert, and Hannaneh Hajishirzi. Generalizing verifiable instruction following. CoRR,
abs/2507.02833, 2025. doi: 10.48550/ARXIV.2507.02833. URL https://doi.org/10.
48550/arXiv.2507.02833.

Yiwei Qin, Kaigiang Song, Yebowen Hu, Wenlin Yao, Sangwoo Cho, Xiaoyang Wang, Xuansheng
Wau, Fei Liu, Pengfei Liu, and Dong Yu. Infobench: Evaluating instruction following ability in
large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of

12

https://en.wikipedia.org/wiki/Vibe_coding
https://en.wikipedia.org/wiki/Vibe_coding
https://arxiv.org/abs/2507.20534
https://proceedings.mlr.press/v202/lai23b.html
https://blog.lmarena.ai/blog/2024/style-control/
https://blog.lmarena.ai/blog/2024/style-control/
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
https://aclanthology.org/2024.tacl-1.9/
https://arxiv.org/abs/2506.13585
https://mistral.ai/news/mistral-medium-3
https://mistral.ai/news/mistral-medium-3
http://papers.nips.cc/paper_files/paper/2024/hash/94f093b41fc2666376fb1f667fe282f3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/94f093b41fc2666376fb1f667fe282f3-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2410.21276
https://openai.com/index/o3-o4-mini-system-card/
https://openai.com/index/o3-o4-mini-system-card/
https://doi.org/10.48550/arXiv.2302.06590
https://doi.org/10.48550/arXiv.2507.02833
https://doi.org/10.48550/arXiv.2507.02833

Under review as a conference paper at ICLR 2026

the Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meet-
ing, August 11-16, 2024, pp. 13025-13048. Association for Computational Linguistics, 2024.
doi: 10.18653/V1/2024 FINDINGS-ACL.772. URL https://doi.org/10.18653/v1/
2024 .findings-acl.772.

Qwen Team. Qwen3 technical report. CoRR, abs/2505.09388, 2025. doi: 10.48550/ARXIV.2505.
09388. URL https://doi.org/10.48550/arXiv.2505.09388.

Steven I. Ross, Fernando Martinez, Stephanie Houde, Michael J. Muller, and Justin D. Weisz. The
programmer’s assistant: Conversational interaction with a large language model for software
development. In Proceedings of the 28th International Conference on Intelligent User Inter-
faces, TUI 2023, Sydney, NSW, Australia, March 27-31, 2023, pp. 491-514. ACM, 2023. doi:
10.1145/3581641.3584037. URL https://doi.org/10.1145/3581641.3584037.

Manav Singhal, Tushar Aggarwal, Abhijeet Awasthi, Nagarajan Natarajan, and Aditya Kanade.
Nofuneval: Funny how code Ims falter on requirements beyond functional correctness. CoRR,
abs/2401.15963, 2024. doi: 10.48550/ARXIV.2401.15963. URL https://doi.org/10.
48550/arXiv.2401.15963.

Stack Overflow. Ai — 2025 stack overflow developer survey, 2025. URL https://survey.
stackoverflow.co/2025/ai. Survey report.

Zhaoyang Wang, Jingi Jiang, Huichi Zhou, Wenhao Zheng, Xuchao Zhang, Chetan Bansal, and
Huaxiu Yao. Verifiable format control for large language model generations. In Luis Chiruzzo,
Alan Ritter, and Lu Wang (eds.), Findings of the Association for Computational Linguistics:
NAACL 2025, Albugquerque, New Mexico, USA, April 29 - May 4, 2025, pp. 3499-3513. Asso-
ciation for Computational Linguistics, 2025. doi: 10.18653/V1/2025 . FINDINGS-NAACL.194.
URL https://doi.org/10.18653/v1/2025.findings—naacl.194.

Simon Willison. Not all ai-assisted programming is vibe coding (but vibe coding rocks), March
2025. URL https://simonwillison.net/2025/Mar/19/vibe-coding/. Blog
post, Simon Willison’s Weblog.

xAlL Grok 3 beta — the age of reasoning agents, 2025a. URL https://x.ai/news/grok—3.

xAL Grok 4 model card. 2025b. URL https://data.x.ai/
2025-08-20-grok—4-model-card.pdf.

Kaiwen Yan, Hongcheng Guo, Xuanqing Shi, Shaosheng Cao, Donglin Di, and Zhoujun Li. CodelF:
Benchmarking the instruction-following capabilities of large language models for code gen-
eration. In Georg Rehm and Yunyao Li (eds.), Proceedings of the 63rd Annual Meeting of
the Association for Computational Linguistics (Volume 6: Industry Track), pp. 1272-1286, Vi-
enna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-288-
6. doi: 10.18653/v1/2025.acl-industry.89. URL https://aclanthology.org/2025.
acl-industry.89/.

John Yang, Akshara Prabhakar, Karthik Narasimhan, and Shunyu Yao. Intercode: Stan-
dardizing and benchmarking interactive coding with execution feedback. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
Advances in Neural Information Processing Systems 36: Annual Conference on Neural In-
formation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/
hash/4b175d846fb008d540d233¢c188379ff9-Abstract-Datasets_and_
Benchmarks.html.

John Yang, Carlos E. Jimenez, Alex L. Zhang, Kilian Lieret, Joyce Yang, Xindi Wu, Ori Press,
Niklas Muennighoff, Gabriel Synnaeve, Karthik R. Narasimhan, Diyi Yang, Sida Wang, and
Ofir Press. Swe-bench multimodal: Do Al systems generalize to visual software domains? In
The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore,
April 24-28, 2025. OpenReview.net, 2025. URL https://openreview.net/forum?id=
riTig3i21b.

13

https://doi.org/10.18653/v1/2024.findings-acl.772
https://doi.org/10.18653/v1/2024.findings-acl.772
https://doi.org/10.48550/arXiv.2505.09388
https://doi.org/10.1145/3581641.3584037
https://doi.org/10.48550/arXiv.2401.15963
https://doi.org/10.48550/arXiv.2401.15963
https://survey.stackoverflow.co/2025/ai
https://survey.stackoverflow.co/2025/ai
https://doi.org/10.18653/v1/2025.findings-naacl.194
https://simonwillison.net/2025/Mar/19/vibe-coding/
https://x.ai/news/grok-3
https://data.x.ai/2025-08-20-grok-4-model-card.pdf
https://data.x.ai/2025-08-20-grok-4-model-card.pdf
https://aclanthology.org/2025.acl-industry.89/
https://aclanthology.org/2025.acl-industry.89/
http://papers.nips.cc/paper_files/paper/2023/hash/4b175d846fb008d540d233c188379ff9-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4b175d846fb008d540d233c188379ff9-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/4b175d846fb008d540d233c188379ff9-Abstract-Datasets_and_Benchmarks.html
https://openreview.net/forum?id=riTiq3i21b
https://openreview.net/forum?id=riTiq3i21b

Under review as a conference paper at ICLR 2026

Daoguang Zan, Zhirong Huang, Wei Liu, Hanwu Chen, Linhao Zhang, Shulin Xin, Lu Chen, Qi Liu,
Xiaojian Zhong, Aoyan Li, Siyao Liu, Yongsheng Xiao, Lianggiang Chen, Yuyu Zhang, Jing Su,
Tianyu Liu, Rui Long, Kai Shen, and Liang Xiang. Multi-swe-bench: A multilingual benchmark
for issue resolving. CoRR, abs/2504.02605, 2025. doi: 10.48550/ARXIV.2504.02605. URL
https://doi.org/10.48550/arXiv.2504.02605.

Linghao Zhang, Shilin He, Chaoyun Zhang, Yu Kang, Bowen Li, Chengxing Xie, Junhao Wang,
Maoquan Wang, Yufan Huang, Shengyu Fu, Elsie Nallipogu, Qingwei Lin, Yingnong Dang, Sar-
avan Rajmohan, and Yudong Zhang. Swe-bench goes live! CoRR, abs/2505.23419, 2025. doi: 10.
48550/ARX1IV.2505.23419. URL https://doi.org/10.48550/arXiv.2505.23419.

Wenting Zhao, Nan Jiang, Celine Lee, Justin T. Chiu, Claire Cardie, Matthias Gall¢, and Alexan-
der M. Rush. CommitO: Library generation from scratch. In The Thirteenth International Confer-
ence on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net,
2025. URL https://openreview.net/forum?id=MMwaQEVsAg.

Zihan Zheng, Zerui Cheng, Zeyu Shen, Shang Zhou, Kaiyuan Liu, Hansen He, Dongruixuan Li,
Stanley Wei, Hangyi Hao, Jianzhu Yao, Peiyao Sheng, Zixuan Wang, Wenhao Chai, Aleksandra
Korolova, Peter Henderson, Sanjeev Arora, Pramod Viswanath, Jingbo Shang, and Saining Xie.
Livecodebench pro: How do olympiad medalists judge llms in competitive programming? CoRR,
abs/2506.11928, 2025. doi: 10.48550/ARXIV.2506.11928. URL https://doi.org/10.
48550/arXiv.2506.11928.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. Instruction-following evaluation for large language models. CoRR, abs/2311.07911,
2023. doi: 10.48550/ARXIV.2311.07911. URL https://doi.org/10.48550/arXiv.
2311.07911.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon Brunner, Chen Gong, James
Hoang, Armel Randy Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kaddour, Ming Xu, Zhihan
Zhang, Prateek Yadav, and et al. Bigcodebench: Benchmarking code generation with diverse
function calls and complex instructions. In The Thirteenth International Conference on Learn-
ing Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net, 2025. URL
https://openreview.net/forum?id=YrycTjl1LO0.

14

https://doi.org/10.48550/arXiv.2504.02605
https://doi.org/10.48550/arXiv.2505.23419
https://openreview.net/forum?id=MMwaQEVsAg
https://doi.org/10.48550/arXiv.2506.11928
https://doi.org/10.48550/arXiv.2506.11928
https://doi.org/10.48550/arXiv.2311.07911
https://doi.org/10.48550/arXiv.2311.07911
https://openreview.net/forum?id=YrycTjllL0

Under review as a conference paper at ICLR 2026

Appendix Table of Contents

A LLM Usage Statement

B VERICODE Taxonomy
B.1 Verification Code withRuff
B.2 Case Studies from VERICODE v v v ittt i e

C VIBE CHECKER Testbed
C.1 Instruction Category Distributions

C.2 Evaluation Prompts

D Experiments
D.1 Details of Evaluated Models
D.2 Detailed Results for Functionality

D.3 Detailed Results for Instruction Following

E Analysis
E.1 Instruction Position Analysis

E.2 Correlation Analysis e

15

16

16
16
17

22
22
22

24
24
25
27

Under review as a conference paper at ICLR 2026

A LLM USAGE STATEMENT

In the preparation of this manuscript, we use LLMs (e.g., Gemini) only to assist with language
polishing. Its function is strictly limited to improving grammar, correcting spelling, and optimizing
phrasing for clarity and readability. The LLMs do not contribute to any substantive part of the
research, such as ideation, literature review, data analysis, or the generation of core arguments and
conclusions. All technical content, claims, and conclusions come from the authors. The authors
review and approve the final text and take full responsibility for its accuracy and integrity. LLMs
are not authors or contributors.

B VERICODE TAXONOMY

B.1 VERIFICATION CODE WITH RUFF

Given that 27 of the 30 verifiers in our VERICODE taxonomy are implemented via Python linter
Ruff, we present the helper function in Figure 6.

def _run_ruff_check(response: str, *ruff_args: str) -> bool:
A generic helper function to run Ruff with specific arguments.
Uses stdin to pass code content to avoid file I/O overhead.
if not shutil.which("ruff"):
raise RuntimeError(

"Ruff is not installed or not in the system's PATH.

"

"Please install it with 'pip install ruff'.

try:

command = [
"ruff", "check", "-", # "-" means read from stdin
*ruff_args,
"--no-fix",
"--force-exclude"

1

result = subprocess.run(
command,
input=response,
capture_output=True,

text=True,
encoding="utf-8"

)

return result.returncode == 0

except Exception:
return False

Figure 6: Implementation of the core helper function used to run Ruff checks within VERICODE.

16

Under review as a conference paper at ICLR 2026

B.2 CASE STUDIES FROM VERICODE

The full version of 5 instructions in Table 1 are presented in Figures 7, 8, 9, 10, and 11.

ID: style_3 Category: Coding Style & Conventions

Description

Enforce a maximum line length on the code, breaking long lines into multiple shorter lines to improve
readability and conform to a specific constraint.

Generation Prompt

Write code ensuring all lines are no longer than {line_length} characters.

Edit Prompt

Review the code and break any lines that are longer than {line length} characters to ensure
everything fits within that limit.

Parameters

line_length: int = 79

Notes

This check verifies that all lines of code are at or below a given length using the pycodestyle rule

E501 . To test for compliance with common conventions, a recommended value is in the 79-88
character range (default: 79). This range covers the classic PEP 8 standard for code (79), and the
popular black formatter default (88).

Verification Code

def test_line_length(response: str, line_length: int = 79) -> bool:
Checks if the Python code adheres to a specific maximum line length
(rule 'E501").
return _run_ruff_check(
response,
"--select", "E501",
"--line-length", str(line_length)

Figure 7: Full version of style_3 instruction from VERICODE taxonomy.

17

Under review as a conference paper at ICLR 2026

ID: logic_3 Category: Logic & Code Patterns

Description
Enforce strict limits on the number of branches within functions to reduce cyclomatic complexity and
improve maintainability.

Generation Prompt

Ensure each function or method has at most {max_branches} branches, where branches include
if”, Celif’, Celse’ statements, for’ loops, ‘try-except’ clauses, and “match-case statements.

Edit Prompt

Simplify code so that each function or method has at most {max_branches} branches, where

branches include “if", “elif", “else’ statements, for" loops, ‘try-except’ clauses, and "match-case’
statements.

Parameters

max_branches: int = 2

Notes

This instruction limits the total number of branches per function using Ruff's PLRO912 rule.
Recommended values for challenging snippet-level evaluation settings are 2-4, with 2 as the
default.

Verification Code

def test_max_branch(response: str, max_branches: int = 2) -> bool:

Checks for maximum branches per function.
return _run_ruff_check(
response,
"--select", "PLRO912",
"--config", f"lint.pylint.max-branches={max_branches}"

Figure 8: Full version of logic_3 instruction from VERICODE taxonomy.

18

Under review as a conference paper at ICLR 2026

ID: doc_3 Category: Documentation & Commenting

Description

Ensure all docstrings comply with the specified convention (Google, NumPy, or PEP 257) for proper
formatting, placement, and content.

Generation Prompt

Document the code fully by including docstrings that follow the {convention}-style convention.

Edit Prompt

Update the code to be fully documented by adding missing docstrings and formatting all existing
docstrings to follow the {convention}-style convention.

Parameters

convention: str = "pep257"

Notes

This instruction enforces the pydocstyle (D) ruleset with a specific convention. Valid conventions
are "google", "numpy",or "pep257" . Each convention has different requirements for docstring
structure, sections, and formatting. Google-style uses Args/Returns sections, NumPy-style uses

Parameters/Returns with underlines, and PEP 257 provides basic formatting rules. The default is
"pep257" for standard Python conventions.

Verification Code

def test_docstring_convention(response: str, convention: str = "pep257") -> bool:

Checks for docstrings following the specified convention.
return _run_ruff_check(

response,

"__select", "D",

"--config", f"lint.pydocstyle.convention="{convention}"'"

Figure 9: Full version of doc_3 instruction from VERICODE taxonomy.

19

Under review as a conference paper at ICLR 2026

ID: error_3 Category: Error Handling & Exception Management

Description

Modernize exception handling by replacing legacy OSError aliases with the idiomatic and future-proof
OSError base exception.

Generation Prompt

Use the canonical "OSError” exception instead of its aliases.

Edit Prompt

Replace all uses of "OSError” aliases with the canonical "OSError” exception itself.

Parameters

None

Notes

This instruction enforces the pyupgrade (UP@24) rule. It identifies uses of exception types that are
aliases for the built-in 0SError . The refactoring requires replacing these legacy aliases, such as
I0Error and WindowsError , with OSError inall raise and except statements to create
more modern, future-proof code.

Verification Code

def test_os_error_alias(response: str) -> bool:

Checks for uses of exceptions that alias OSError.

return _run_ruff_check(response, "--select", "UP024")

Figure 10: Full version of error_3 instruction from VERICODE taxonomy.

20

Under review as a conference paper at ICLR 2026

ID: library_1 Category: Library & API Constraints

Description

Replace all legacy file system operations—including os and os.path functions, the built-in open(), and
glob—with their modern pathlib equivalents.

Generation Prompt

Use pathlib equivalents instead of functions from “os’, ‘os.path’, ‘glob", and the built-in "open’.
Wrap the resulting Path object with ‘str() " where the surrounding code requires a string path to

maintain functionality.

Edit Prompt

Replace all functions from “os’, ‘os.path’, ‘glob’, and the built-in ‘open’ with their pathlib
equivalents. Wrap the resulting Path object with “str()* where the surrounding code requires a
string path to maintain functionality.

Parameters

None

Notes

This instruction enforces the complete flake8-use-pathlib (PTH) ruleset. It identifies functions from
os, os.path, glob, and the builtin open() that have pathlib.Path equivalents and requires
replacing them. To preserve unit test compatibility, operations that originally returned strings (like
os.path.dirname) should have their pathlib equivalents wrapped in str() . This maintains the
same return types while modernizing the implementation.

Note: This may cause failures in test environments that mock open() butnot pathlib, leading to
a FileNotFoundError . Therefore, it is advisable to avoid this instruction for code snippets that
use the built-in open() function.

Verification Code
def test_use_pathlib(response: str) -> bool:

Checks that all file system operations use pathlib.

return _run_ruff_check(response, "--select", "PTH")

Figure 11: Full version of library_I instruction from VERICODE taxonomy.

21

Under review as a conference paper at ICLR 2026

C VIBE CHECKER TESTBED

C.1 INSTRUCTION CATEGORY DISTRIBUTIONS

Figure 12 illustrates the complete distribution of instruction categories selected for both augmented
benchmarks. As shown, the three most frequent categories are Coding Logic, Coding Style, and
Documentation. The distributions also reflect the distinct focus of each benchmark: the algorithm-
oriented LiveVibeBench features a higher proportion of Coding Logic instructions (42.3% vs.
35.9%), while the real-world-task-focused BigVibeBench includes more instructions related to Error
Management and Library Constraint instructions (6.3% vs. 0.9% and 2.2% vs. 0.1% respectively).

45

w
=)

42.3%

Percentage (%)

-
[

30.6%

Coding Logic Coding Style Documentation Error Management

‘- BigVibeBench | LiveVibeBench‘

Figure 12: Percentage distribution of instruction categories on both augmented benchmarks.

C.2 EVALUATION PROMPTS

0.9%

2.2%
0.1%

Library Constraint

System Prompt

Objective:

complete and runnable code solution for every request.

Output Formats:
You must strictly adhere to one of these two formats:

1. Format 1: Markdown-Wrapped Code

explanation in addition to the code.

code block (e.g., ~“python ... 7).
2. Format 2: Raw Code Only

the code solution.

text.

Requirements:

entire conversation while keeping the functionality intact.

are needed from the previous version.

You are an expert code generation assistant. Your primary objective is to provide a

o Use Case: Use this format if your response contains ANY text or

o Specification: Place the entire code solution within the first Markdown

o Use Case: Use this format ONLY if your response consists exclusively of

o Specification: Provide the raw code directly, with no Markdown or other

1. When generating or editing code, satisfy ALL user instructions throughout the

2. Always include complete, runnable code in every response, even if no changes

Figure 13: System prompt used for BigVibeBench. LiveVibeBench keeps the same wording with
one minor change: “complete, runnable code” = “complete Python functions,” since algorithmic

contest tasks often require only functions rather than full programs.

22

Under review as a conference paper at ICLR 2026

For BigVibeBench and LiveVibeBench, the system instruction and the evaluation prompts are shown
in Figures 13 and 14. As we adopt BigCodeBench'’s original “instruct_prompt”, we do not provide
any additional evaluation prompt on this benchmark.

e A

Evaluation Prompts for LiveVibeBench

— Standard Input/Output Tasks

Your Task:
Write an executable Python function that solves the problem described in the prompt
below.

Requirements:

e The function must read all necessary input from stdin .
e The function must print the final output to stdout .

e Simply call the function after the definition.

Evaluation:
We will evaluate your solution by running the code and comparing its standard output
with the expected solution.

— Functional Implementation Tasks

Your Task:

Implement a function to solve the problem described in the prompt below.
Requirements:
e The primary function, which takes arguments as input and returns the final

result, must be named solve() .

e The function must NOT read from standard input (e.g., using input() or
sys.stdin). All required data will be passed in as function arguments.

e Any helper functions are permitted.
e Your code must only contain function definitions. Strictly do not include a
call to solve() .
Evaluation:
We will evaluate your solution by first executing your code to load the function

definitions, and then calling your solve() function directly with various test cases.

- J/

Figure 14: Evaluation prompts used in LiveVibeBench for the two task types.

23

Under review as a conference paper at ICLR 2026

D EXPERIMENTS

D.1 DETAILS OF EVALUATED MODELS

For completeness and reproducibility, we list the comprehensive details of the 31 LLMs evaluated
in our study, including their specific LM Arena designations and the Elo ratings (Sep. 18, 2025) used
for our human preference correlation analysis in Table 4.

Notably, on the LiveVibeBench benchmark, models demonstrate a significantly higher rate of failure
to generate complete responses. These failures are attributed to either OpenRouter provider errors
or exceeding the 32,768-token limit. In our experiments, each task is attempted up to three times,
and a persistent failure is recorded as an error. To ensure the reliability of our results, we exclude
models with an error rate exceeding 10%. Consequently, the LiveVibeBench analysis is conducted
on the remaining 24 LLMs, with full results presented in Tables 6, 9, 10, and 12.

Elo Rating
Model LMArena Name
w/o SC w/ SC
Gemini 2.5 Pro gemini-2.5-pro 1468 1470
Gemini 2.5 Flash gemini-2.5-flash 1422 1419
Gemini 2.0 Flash - - -
Gemini 2.0 Flash Lite gemini-2.0-flash-lite-preview-02-05 1336 1352
""" Claude 4 Opus ~ claude-opus-4-20250514-thinking-16k 1430 1481
Claude 4 Sonnet claude-sonnet-4-20250514-thinking-32k 1407 1460
Claude 3.7 Sonnet claude-3-7-sonnet-20250219-thinking-32k 1353 1430
Claude 3.5 Sonnet Claude 3.5 Sonnet (10/22) 1337 1418
Claude 3.5 Haiku claude-3-5-haiku-20241022 1285 1370
Claude 3 Haiku claude-3-haiku-20240307 1202 1287
""" DeepSeek R10528 ~ deepseek-rl-0528 1436 1458
DeepSeek V3 0324 deepseek-v3-0324 1389 1431
""" GPT5 gpt5-high 1440 1467
04 mini 04-mini-2025-04-16 1380 1428
03 mini high 03-mini-high 1379 1421
GPT 4.1 gpt-4.1-2025-04-14 1399 1447
GPT 4.1 mini gpt-4.1-mini-2025-04-14 1371 1423
GPT 4o GPT-40 (08/06) 1289 1352
GPT 40 mini GPT-40-mini (07/18) 1297 1340
""" Grok4 grok-4-0709 1431 1440
Grok 3 mini beta grok-3-mini-beta 1375 1384
""" Qwen3235BA22B qwen3-235b-a22b 1392 1423
Qwen 3 32B qwen3-32b 1375 1407
Qwen 3 30B A3B qwen3-30b-a3b 1346 1378
Qwen 2.5 72B Instruct qwen2.5-72b-instruct 1298 1346
Qwen 2.5 Coder qwen2.5-coder-32b-instruct 1274 1325
""" Gemma327B gemma-3-27bsit 1348 1370
Gemma 3 12B gemma-3-12b-it 1309 1332
""" Mistral Medium 3~ mistral-medium-2505 1386 1421
""" MiniMax M1~ minimax-ml 1368 1409
""" KimiK2 ~ kimi-k2-071l-preview 1391 1454

Table 4: Details of the 31 LLMs evaluated in our experiments. For each model, we list its name as
reported in this paper, its LM Arena designation, and the Elo ratings used to analyze correlations with
human preference. These ratings are from the September 18, 2025 leaderboard, presented under two
conditions: with Style Control (w/ SC) and without (w/o SC).

24

Under review as a conference paper at ICLR 2026

D.2 DETAILED RESULTS FOR FUNCTIONALITY

We present the detailed results for functionality on both benchmarks in Tables 5 and 6.

Single-Turn Generation | Multi-Turn Editing |
Models
Base 1 Inst 2 Inst 3 Inst 4 Inst 5 Inst 1 Inst 2 Inst 3 Inst 4 Inst 5 Inst
Gemini 2.5 Pro 50.35 0.34 2.60 0.87 -0.36 . 1.75 2.44 4.01 4.89 5.04
Gemini 2.5 Flash 47.37 0.74 1.12 2.60 1.31 d 0.93 1.12 1.48 2.98 3.72
Gemini 2.0 Flash 48.42 2.54 0.35 1.63 3.61 o 2.89 5.08 6.53 8.32 9.42
Gemini 2.0 Flash Lite 46.93 5.05 729 7.10 6.93 : 2.98 4.67 5.24 8.61 8.78
Claude4Opus 5105 086 -223
Claude 4 Sonnet 51.84 -0.17 -0.52 0.33 0.50 0.50 0.85 2.03 3.55 4.05 5.40
Claude 3.7 Sonnet 51.32 1.54 1.03 1.71 222 2.92 1.03 1.38 3.08 4.25 5.30
Claude 3.5 Sonnet 48.42 5.08 5.62 5.43 5.43 8.16 5.08 6.69 8.69 10.86 12.87
Claude 3.5 Haiku 46.58 5.28 4.34 6.98 7.34 9.42 6.98 9.98 15.44 17.13 21.28
Claude 3 Haiku 38.07 0.24 1.16 7.38 7.14 7.38 6.67 10.82 13.61 17.28 17.97
 DeepSeckR10528 4921 124 018 -124 161 303 161 108 392 303 427
DeepSeek V3 0324 50.18 1.93 0.88 2.99 4.90 2.99 5.08 7.87 9.27 11.90 16.26
CGpeTs 4649 056 566 226 320 189 170 28 435 527 546
04 mini 52.28 4.02 9.39 5.87 7.38 9.56 2.18 4.71 7.04 7.04 8.05
03 mini high 49.91 4.57 10.02 9.84 14.93 13.34 2.62 5.79 7.19 9.48 10.20
GPT 4.1 47.54 -1.85 -0.19 1.28 4.80 6.63 2.40 5.53 7.19 7.36 7.93
GPT 4.1 mini 49.04 0.55 1.61 2.69 4.49 5.38 4.30 6.44 6.99 8.24 8.77
GPT 4o 49.82 1.22 2.99 4.40 3.87 3.33 2.45 4.58 6.50 7.03 7.91
GPT 40 mini 46.05 591 5.52 7.23 6.28 7.99 7.80 6.47 9.71 11.62 11.62
CGrok4 $307 017 115 149 364 100 132 215 198 330 447
Grok 3 mini beta 48.77 2.52 4.86 791 8.10 9.35 2.15 4.86 5.76 7.73 9.17
Qwen3235BA2B 4886 125 199 180 342 305 108 395 594 827 880
Qwen 3 32B 47.63 0.36 2.58 4.60 5.14 6.99 2.94 4.41 6.99 9.03 10.69
Qwen 3 30B A3B 46.40 2.63 3.58 3.41 5.09 7.18 1.87 491 5.86 7.56 7.93
Qwen 2.5 72B Instruct ~ 44.39 6.53 8.52 10.88 11.08 12.05 8.90 10.88 12.26 14.24 16.02
Qwen 2.5 Coder 49.39 5.87 3.20 6.22 11.56 11.91 5.87 8.89 12.43 12.98 12.98
 Gemma327B 4570 672 786 691 958 805 363 536 672 864 1171
Gemma 3 12B 40.00 527 3.73 7.45 9.65 7.90 5.47 6.58 9.65 12.27 15.35
 Mistral Medium 3 4544 522 830 907 946 1081 579 618 869 907 986
 MinMaxMI 4868 485 468 341 52 350 035 197 378 540 647
CKimik2 4719 <12 019 093 017 203 223 409 278 445 612

Table 5: Results for functionality on BigVibeBench. Base is the pass@1 score for the original
query. All other cells report the functional regression rate (%) relative to the base. Lower is better,
and negative values indicate improvement. Here, k Inst denotes the number of added instructions.

25

Under review as a conference paper at ICLR 2026

Single-Turn Generation | Multi-Turn Editing |
Models
Base 1 Inst 2 Inst 3 Inst 4 Inst 5 Inst IInst 2Inst 3Inst 4Inst 5Inst
Gemini 2.5 Pro 85.31 -0.11 3.45 2.45 2.45 245 0.67 1.34 1.01 1.89 223
Gemini 2.5 Flash 74.50 3.56 5.34 8.01 5.60 6.74 0.12 1.14 1.65 3.44 3.69
Gemini 2.0 Flash 41.33 0.92 1.38 0.70 1.62 3.44 0.00 1.62 3.00 2.76 4.36
Gemini 2.0 Flash Lite 34.12 1.11 -7.50 -8.06 -10.58 -6.95 2.25 5.88 8.95 1093 13.18
Claude4Opus 6870 455 856 841 813 896 207 138 151 234 234
Claude 4 Sonnet 66.35 4.57 5.00 3.71 6.99 9.00 0.42 0.86 1.15 1.72 2.14
Claude 3.7 Sonnet 61.80 -0.31 2.30 3.37 1.68 4.90 -0.47 0.45 0.92 1.23 1.99
Claude 3.5 Sonnet 45.40 1.67 2.49 2.09 522 6.48 2.09 5.22 7.09 8.06 11.70
Claude 3.5 Haiku 37.63 1.51 5.53 9.06 7.81 11.08 6.54 1486 17.88 19.90 23.92
Claude 3 Haiku 22.09 11.18 19.74 21.05 25.35 30.06 6.02 8.60 12.04 1331 16.34
DeepSeek V30324 5725 115 430 629 711 695 148 695 762 1357 1755
CGers 747 17 213 332 716 676 225 424 557 743 902
04 mini 80.95 5.74 9.02 9.02 11.37 12.29 3.63 8.91 10.19 11.71 15.92
CGpTar 5308 286 160 160 215 375 107 518 625 678 929
GPT 4.1 mini 58.86 3.53 7.88 8.85 9.97 10.79 1.44 4.99 7.73 8.21 8.85
GPT 40 42.75 0.23 0.23 4.00 2.67 1.54 1.78 5.10 8.65 8.42 9.75
GPT 40 mini 2227 -11.50 -11.50 -18.77 -15.36 -12.80 2.51 9.34 8.94 10.60 12.75
Grok3minibew 6597 258 315 675 1293 1193 086 330 546 603 790
Qwen330BAIB 7242 026 066 105 040 L19 052 196 184 353 420

Qwen 2.5 72B Instruct ~ 39.05 0.97 1.95 4.84 533 8.02 3.87 6.79 9.22 8.96 10.68

Gemma 3 27B 35.92 3.42 3.67 5.01 5.01 9.49 1.03 6.32 10.27 8.16 12.67
Gemma 3 12B 29.29 2.90 -4.85 -1.60 -2.90 1.30 4.54 10.99 15.23 14.24 18.44
| Mistal Medum3 4066 303 745 698 371 489 025 278 278 465 536
CKmik2 6358 892 1548 1607 1548 1636 264 563 950 1249 1279

Table 6: Results for functionality on LiveVibeBench. Base is the pass@]1 score for the original
query. All other cells report the functional regression rate (%) relative to the base. Lower is better,
and negative values indicate improvement. Here, k Inst denotes the number of added instructions.

26

Under review as a conference paper at ICLR 2026

D.3 DETAILED RESULTS FOR INSTRUCTION FOLLOWING

The detailed results for instruction-level and task-level IF scores on both benchmarks are provided
in Tables 7, 8, 9, and 10.

Single-Turn Generation 1 Multi-Turn Editing 1

Models
1 Inst 2 Inst 3 Inst 4 Inst 5 Inst 1 Inst 2 Inst 3 Inst 4 Inst 5 Inst
Gemini 2.5 Pro 82.19 78.03 79.18 78.82 79.47 84.56 82.54 81.73 81.54 80.47
Gemini 2.5 Flash 81.67 77.81 77.34 75.35 75.91 78.68 75.35 74.62 73.57 73.25
Gemini 2.0 Flash 73.42 72.76 72.95 72.35 72.04 78.86 75.39 74.65 73.95 73.30
i 2.0 Flash Lite 69.39 68.82

N N 784.3(7)7 |

Claude 4 Sonnet 84.12 83.98
Claude 3.7 Sonnet 78.62 78.18
Claude 3.5 Sonnet 78.49 77.49
Claude 3.5 Haiku 68.20 65.60

DeepSeek R1 0528
DeepSeek V3 0324

GPT 5 85.83 86.39
04 mini 83.60 83.28
03 mini high 78.38 78.16
GPT 4.1 78.36 77.79
GPT 4.1 mini 74.08 73.09
GPT 40 79.45 78.35
GPT 40 mini 74.10 73.60
Grok 4 86.29 85.37
Grok 3 mini beta 75.37 75.05
Qwen 3 235B A22B 80.13 78.89
Qwen 3 32B 77.39 76.33
Qwen 3 30B A3B 77.17 76.54
Qwen 2.5 72B Instruct 73.88 72.75
Qwen 2.5 Coder 69.76 68.86
Gemma 3 27B 68.14 66.72
Gemma 3 12B 66.05 64.95
Mistral Medium 3 73.11 71.65
MiniMax M1 73.60 72.95
Kimi K2 85.09 84.19

Table 7: Instruction-level IF scores on BigVibeBench. Higher is better.

27

Under review as a conference paper at ICLR 2026

Single-Turn Generation 1 Multi-Turn Editing 1
Models
1 Inst 2 Inst 3 Inst 4 Inst 5 Inst 1 Inst 2 Inst 3 Inst 4 Inst 5 Inst
Gemini 2.5 Pro 82.19 60.70 48.16 37.46 30.70 84.56 68.33 55.61 4421 33.68
Gemini 2.5 Flash 81.67 61.05 43.68 30.53 25.70 78.68 56.75 40.96 29.12 21.75
Gemini 2.0 Flash 73.42 53.77 39.47 26.40 18.16 78.86 59.39 44.56 32.46 22.46
Gemini 2.0 Flash Lite 70.44 48.60 32.63 22.02 15.26 74.39 50.61 35.18 24.12 15.35
 Claude4Opus 8877 7632 6421 5298 4675 87.02 7316 6105 5132 4211
Claude 4 Sonnet 84.91 67.19 52.28 42.98 35.26 86.40 72.54 61.23 51.05 42.89
Claude 3.7 Sonnet 80.26 56.93 39.91 27.46 22.28 81.58 63.51 48.51 38.16 29.39
Claude 3.5 Sonnet 80.61 59.74 42.98 32.37 24.47 84.21 66.40 52.54 42.02 32.28
Claude 3.5 Haiku 64.56 42.46 26.14 15.53 10.09 79.91 57.63 42.72 30.00 19.82
Claude 3 Haiku 67.89 41.84 26.05 16.93 11.93 76.32 53.60 37.89 26.49 18.77
© DeepSeckR10528 7404 4921 3342 2500 1763 7702 5508 3816 2667 1851
DeepSeek V3 0324 67.89 39.21 24.74 15.00 10.88 73.95 52.02 37.19 24.65 14.74
G 8280 6763 5404 4298 3439 8491 7237 6298 5526 4851
04 mini 84.82 70.79 57.11 47.98 41.32 88.51 74.74 61.23 50.09 41.84
03 mini high 80.70 60.61 45.88 36.40 28.25 82.46 66.32 53.16 42.11 34.56
GPT 4.1 81.40 59.91 47.81 35.44 28.16 82.63 65.26 50.88 39.82 31.58
GPT 4.1 mini 78.16 56.23 41.49 30.26 21.75 79.21 59.39 44.74 33.68 25.53
GPT 4o 77.46 55.00 39.56 27.63 20.79 85.09 68.33 52.72 40.88 30.70
GPT 40 mini 76.40 53.86 38.68 29.30 21.84 78.16 59.74 44.12 32.54 23.42
Grok4 711 7342 6018 5184 4316 8851 7640 6605 5596 4719
Grok 3 mini beta 82.81 64.21 48.86 36.58 28.42 79.21 61.40 46.93 3491 25.96
Qwen323SBA2B 8395 6675 5228 4228 3193 8509 67.63 S84 4132 3228
Qwen 3 32B 76.75 53.86 36.49 26.58 20.70 82.02 65.79 51.49 39.82 30.70
Qwen 3 30B A3B 73.42 52.46 36.23 25.79 19.56 79.91 62.46 48.16 37.46 29.56
Qwen 2.5 72B Instruct 73.68 53.07 37.37 24.56 16.84 79.47 60.53 45.70 33.25 24.21
Qwen 2.5 Coder 71.40 44.82 30.70 20.09 12.81 73.33 52.46 36.93 24.04 15.88
 Gemma327B 6842 4456 2711 1693 1096 7360 4842 3333 2193 1412
Gemma 3 12B 65.96 44.39 27.98 18.42 11.05 67.54 46.75 31.58 20.09 12.81
© Mistral Mediom 3 7360 5193 3632 2509 1605 7605 5833 4158 2860 1930
 MiniMaxMI 7412 5123 3798 2807 2035 7763 5719 4211 3175 2298
Ckimik2 8500 6886 5368 4123 30.18 8912 7711 6640 5395 4404

Table 8: Task-level IF scores on BigVibeBench. Higher scores are better.

28

Under review as a conference paper at ICLR 2026

Single-Turn Generation 1 Multi-Turn Editing 1
Models
1 Inst 2 Inst 3 Inst 4 Inst 5 Inst 1 Inst 2 Inst 3 Inst 4 Inst 5 Inst
Gemini 2.5 Pro 75.83 74.60 76.21 77.37 76.87 78.96 71.87 78.99 78.89 78.98
Gemini 2.5 Flash 66.54 67.11 67.84 68.01 68.13 72.80 71.42 69.64 68.93 67.89
Gemini 2.0 Flash 61.71 61.37 61.42 62.01 62.48 74.41 71.37 70.36 69.45 69.52

Gemini 2.0 Flash Lite 62.94 63.93 65.28 65.40 65.69 67.30 64.36 63.06 61.37 61.19

Claude 4 Opus 78.86 76.02 77.54 77.65 78.75 85.59 85.36 85.21 84.31 84.11
Claude 4 Sonnet 75.73 74.69 75.29 74.27 75.20 84.45 85.40 85.24 84.50 83.87
Claude 3.7 Sonnet 72.42 68.53 68.18 68.06 68.38 79.53 78.48 77.91 77.18 76.76
Claude 3.5 Sonnet 70.52 68.25 68.56 68.15 67.28 80.57 76.40 75.23 74.29 73.12
Claude 3.5 Haiku 63.22 60.19 61.45 61.80 62.77 78.67 75.50 72.51 70.52 68.99
Claude 3 Haiku 61.61 59.91 60.98 60.97 60.45 72.80 71.28 69.23 67.39 67.45
| DeepSeck V30324 5280 5474 5567 5581 5579 7005 6649 6572 6483 671
Coets $218 218 8186 8209 8282 8559 8630 §7.05 8585 8576
04 mini 73.18 72.27 73.33 73.08 73.82 81.52 80.47 79.53 76.99 75.81
CoeTal 6863 6512 6676 6630 6667 7412 7289 7197 7175 7081
GPT 4.1 mini 67.20 66.40 68.63 67.89 67.41 71.75 69.72 69.23 68.53 67.72
GPT 40 60.85 60.85 61.48 61.75 61.93 76.40 73.13 71.94 70.31 69.93
GPT 40 mini 65.88 65.40 65.72 65.64 65.63 73.93 71.85 70.36 68.39 67.22
 Grok3miniben 72005 7005 6961 6912 6899 7867 7545 7346 7223 7109
Quen330BAB 6177 6289 6376 6410 6300 7327 7104 7074 6898 6891

Qwen 2.5 72B Instruct 64.83 63.65 65.97 64.88 66.14 74.50 69.43 69.38 67.70 67.51

Gemma 3 27B 61.99 62.09 62.53 63.51 63.56 66.92 64.83 64.01 63.44 63.41
Gemma 3 12B 61.33 62.09 62.46 63.25 62.29 66.92 63.65 63.44 61.73 60.76
© Mistral Mediuom3 237 6128 6190 6244 6245 6967 6431 6395 6367 6337
Ckmik2 6275 6365 6480 6438 6476 7697 7464 7431 7294 T35

Table 9: Instruction-level IF scores on LiveVibeBench. Higher is better.

29

Under review as a conference paper at ICLR 2026

Single-Turn Generation 1 Multi-Turn Editing 1
Models
1 Inst 2 Inst 3 Inst 4 Inst 5 Inst 1 Inst 2 Inst 3 Inst 4 Inst 5 Inst
Gemini 2.5 Pro 75.83 56.78 45.50 37.63 29.57 78.96 61.61 51.18 41.04 32.80
Gemini 2.5 Flash 66.54 45.97 32.89 23.03 17.06 72.80 51.09 34.98 25.31 17.82
Gemini 2.0 Flash 61.71 37.25 22.18 13.46 8.44 74.41 51.28 36.02 24.64 17.73

Gemini 2.0 Flash Lite 62.94 4133 27.68 18.39 12.89 67.30 42.75 27.11 17.35 10.62

Claude 4 Opus 78.86 57.91 47.96 38.96 35.17 85.59 72.89 61.71 52.04 43.70
Claude 4 Sonnet 75.73 56.40 44.17 35.36 28.53 84.45 73.46 62.37 52.70 44.64
Claude 3.7 Sonnet 72.42 47.01 31.85 23.51 18.96 79.53 62.46 48.53 38.58 30.33
Claude 3.5 Sonnet 70.52 47.01 31.94 22.37 14.88 80.57 60.28 44.45 35.73 27.20
Claude 3.5 Haiku 63.22 35.92 22.84 16.40 11.66 78.67 58.58 41.23 30.52 22.46
Claude 3 Haiku 61.61 36.68 23.13 15.83 9.95 72.80 52.32 36.59 26.82 18.58
| DeepSeck V30324 5280 2976 1924 1128 777 7005 4531 3156 2038 1137
Coers S.18 6853 5517 4701 4095 8559 7450 6664 5735 S04
04 mini 73.18 53.93 43.22 33.36 27.20 81.52 66.64 54.60 42.84 32.61
GPT 4.1 68.63 42.27 29.48 20.57 13.65 74.12 54.31 41.04 32.70 24.08
GPT 4.1 mini 67.20 43.60 30.71 21.99 14.88 71.75 49.67 34.60 26.26 18.20
GPT 40 60.85 36.40 22.75 14.98 9.95 76.40 53.93 37.91 28.44 20.38
GPT 40 mini 65.88 42.65 28.25 20.19 14.41 73.93 52.32 36.21 24.93 17.06
 Grok3minibetn 72005 5109 3810 2815 2066 7867 5839 4389 3299 2464
Quen33BAB 77 4200 967 2265 1450 7327 528 3972 2900 2090

Qwen 2.5 72B Instruct 64.83 40.76 28.63 18.86 15.92 74.50 50.24 37.06 26.73 19.24

Gemma 3 27B 61.99 37.73 24.17 16.30 11.00 66.92 41.71 27.30 17.91 12.32
Gemma 3 12B 61.33 38.20 24.17 16.30 9.19 66.92 41.71 26.54 16.40 10.05
© Mistal Medium3 237 3725 2313 1583 986 6967 4294 2796 1848 1166
CKmik2 6275 4161 2177 1905 1194 7697 5735 4417 3573 2787

Table 10: Task-level IF scores on LiveVibeBench. Higher is better.

30

Under review as a conference paper at ICLR 2026

E ANALYSIS

E.1 INSTRUCTION POSITION ANALYSIS

As listed in Tables 11 and 12, we also provide detailed results for per-position instruction-level IF
scores on both benchmarks.

Single-Turn Generation 1 Multi-Turn Editing 1
Models
Pos 1 Pos 2 Pos 3 Pos 4 Pos 5 Pos 1 Pos 2 Pos 3 Pos 4 Pos 5
Gemini 2.5 Pro 81.40 79.91 78.86 78.60 78.60 79.91 78.16 79.56 81.58 83.16
Gemini 2.5 Flash 79.82 74.04 75.44 75.00 75.26 72.19 69.74 72.81 73.25 78.25
Gemini 2.0 Flash 74.56 71.23 72.02 70.96 71.40 72.81 71.75 74.47 73.77 73.68
Gemini 2.0 Flash Lite 72.11 68.77 67.89 67.89 67.81 68.16 67.81 69.12 68.25 70.79
© Claude4Opus 87.46 8518 8518 8395 8623 8456 8281 8482 8360 8570
Claude 4 Sonnet 83.77 79.65 80.26 81.67 81.49 84.21 80.18 83.95 84.39 87.19
Claude 3.7 Sonnet 77.81 73.16 72.19 73.07 75.09 77.63 76.75 76.93 78.60 80.88
Claude 3.5 Sonnet 77.46 72.81 72.72 75.18 75.35 76.40 75.53 75.09 78.33 82.11
Claude 3.5 Haiku 65.00 62.46 61.49 62.89 67.28 60.70 63.68 64.65 65.79 73.16
Claude 3 Haiku 67.89 62.72 62.28 63.86 65.88 72.11 66.40 69.47 68.95 75.88
© DeepSeckR10528 6930 6658 6658 67.63 6798 6886 6833 7053 7132 7623
DeepSeek V3 0324 67.63 62.81 64.47 64.74 65.79 61.67 63.95 68.25 69.12 75.61
CepeTs §272 8140 8105 8158 8211 8605 8605 87.02 8596 8684
04 mini 85.53 82.81 83.07 83.77 86.05 81.40 80.44 82.11 84.04 88.42
03 mini high 73.25 72.19 69.04 71.84 72.11 77.46 74.65 77.19 78.95 82.54
GPT 4.1 78.95 76.75 76.40 78.33 78.33 78.68 75.88 77.63 77.19 79.56
GPT 4.1 mini 75.00 72.63 72.63 71.49 75.35 75.26 70.26 71.84 72.02 76.05
GPT 4o 78.77 72.72 71.40 71.75 72.54 78.42 75.79 77.19 78.42 81.93
GPT 40 mini 76.14 71.32 71.84 72.81 74.47 71.58 71.84 72.89 73.51 78.16
CGrok4 8632 8377 8439 §386 8570 8491 8456 8570 8474 8693
Grok 3 mini beta 79.56 76.40 76.40 75.44 79.47 73.07 72.89 72.89 75.26 81.14
Qwen323SBA2B 8254 7816 7728 7728 7789 7798 7684 7154 8061 8149
Qwen 3 32B 73.68 70.61 71.75 69.82 70.88 76.49 73.42 76.23 77.02 78.51
Qwen 3 30B A3B 71.67 67.81 68.60 68.95 72.02 77.19 74.39 77.02 75.53 78.60
Qwen 2.5 72B Instruct 73.07 71.05 69.47 68.33 69.74 73.07 70.88 72.89 72.72 74.21
Qwen 2.5 Coder 68.07 64.74 64.74 64.39 66.93 67.98 65.96 69.12 69.56 71.67
 Gemma327B 6807 6430 6386 6474 6412 6596 6535 6163 6675 6789
Gemma 3 12B 67.98 66.14 64.30 63.60 62.98 65.00 62.98 65.35 63.77 67.63
© Mistral Medium 3 7465 6982 6842 7079 6904 7088 6886 6974 7175 77.02
 MiniMaxMI 7237 7070 7000 7000 7132 7061 7061 7289 7386 7675
Ckimik2 8342 79.12 7746 7825 7746 8447 8386 8219 8351 8693

Table 11: Instruction-position analysis on BigVibeBench. We report instruction-level IF scores
under the setting of five instructions, comparing positions 1-5 in each setting. In Single-Turn Gen-
eration, position ¢ denotes the ¢-th item in the numbered instruction list given to the model. In
Multi-Turn Editing, position ¢ indicates the ¢-th instruction introduced as a separate turn.

31

Under review as a conference paper at ICLR 2026

Single-Turn Generation 1 Multi-Turn Editing 1
Models
Pos 1 Pos 2 Pos 3 Pos 4 Pos 5 Pos 1 Pos 2 Pos 3 Pos 4 Pos 5
Gemini 2.5 Pro 76.78 75.83 77.54 76.97 77.25 76.49 76.59 78.77 80.57 82.46
Gemini 2.5 Flash 70.52 67.39 69.57 67.58 65.59 66.16 64.93 67.39 67.87 73.08
Gemini 2.0 Flash 63.41 60.95 63.79 61.33 62.94 69.10 67.87 68.53 69.76 72.32

Gemini 2.0 Flash Lite 67.39 65.21 65.97 63.60 66.26 60.38 60.09 61.42 60.19 63.89

Claude 4 Opus 79.91 7791 78.29 77.06 80.57 84.83 84.64 83.41 82.75 84.93
Claude 4 Sonnet 75.64 75.45 75.26 74.03 75.64 81.90 85.31 84.17 82.75 85.21
Claude 3.7 Sonnet 70.81 65.97 69.38 67.01 68.72 76.30 76.40 76.02 75.73 79.34
Claude 3.5 Sonnet 67.87 67.01 67.77 65.78 67.96 72.32 71.94 71.94 72.51 76.87
Claude 3.5 Haiku 63.03 62.46 61.52 62.65 64.17 67.58 66.26 68.06 68.44 74.60
Claude 3 Haiku 62.65 57.82 60.66 60.38 60.76 68.63 66.35 68.25 64.74 69.29

| DeepSeck V30324 5564 611 S611 5555 5555 5829 5934 6275 6474 6844

Coers $351 8237 $370 8133 $322 8626 8692 8607 8455 8502
04 mini 75.17 74.31 74.41 71.56 73.65 73.46 74.31 76.11 75.55 79.62
GPT 4.1 67.20 65.97 68.44 64.55 67.20 71.28 69.76 72.42 69.29 71.28
GPT 4.1 mini 68.82 67.49 69.95 63.79 67.01 67.30 66.54 69.38 65.97 69.38
GPT 4o 62.84 61.61 63.32 60.28 61.61 68.44 68.15 71.09 68.06 73.93
GPT 40 mini 67.01 64.83 66.26 64.45 65.59 67.30 65.97 67.49 64.83 70.52

C Grok3minibetw .00 6739 6948 6844 7052 6.1 6986 6976 7223 7649

Quen330BAIB 6294 6303 6436 6265 6199 6673 6806 6986 69.19 7071

Qwen 2.5 72B Instruct 66.54 64.08 68.25 65.88 65.97 66.35 65.88 68.82 67.20 69.29

Gemma 3 27B 65.97 62.56 64.17 63.41 61.71 62.27 61.80 62.65 63.13 67.20
Gemma 3 12B 64.36 62.37 63.13 60.76 60.85 60.76 58.67 60.57 58.96 64.83
© Mistral Mediuom3 6332 6123 6341 6171 6256 6038 5867 6379 6483 69.19
Ckmik2 6664 6417 6597 6294 6408 7261 7251 746 7327 T50T

Table 12: Instruction-position analysis on LiveVibeBench. We report instruction-level IF scores
under the setting of five instructions, comparing positions 1-5 in each setting. In Single-Turn Gen-
eration, position ¢ denotes the i-th item in the numbered instruction list given to the model. In
Multi-Turn Editing, position ¢ indicates the ¢-th instruction introduced as a separate turn.

32

Under review as a conference paper at ICLR 2026

E.2 CORRELATION ANALYSIS

Pearson
Optimal: 0.4 x IF + 0.6 x Func

Spearman
Optimal: 0.7 x IF + 0.3 x Func

Kendall
Optimal: 0.7 x IF + 0.3 x Func

\ —_—
Son SN\ 068 052 0/ SN
£ .
5 070 y | oes ; 050
2 Y
2
H y
S oes 062 046 2
0.64 0.60 0.44 /
s
y
Instruction Following Ratio Instruction Following Ratio Instruction Following Ratio
(a) BigVibeBench w/ Style Control
Pearson Spearman Kendall
Optimal: 0.4 x IF + 0.6 x Func Optimal: 0.6 x IF + 0.4 x Func Optimal: 0.6 x IF + 0.4 x Func
-
0800 _— = 0.825
— \
o \ 0.800 — / f\
/ 0625
w0750 o ors L \\ / p&‘“‘\
g = — “
S 0725 Y 0,600
g
H \
oo
: . .
0.625 0.500 3
3
Instruction Following Ratio Instruction Following Ratio Instruction Following Ratio
(b) LiveVibeBench w/ Style Control
Pearson Spearman Kendall
Optimal: 0.4 x IF + 0.6 x Func Optimal: 0.8 x IF + 0.2 x Func Optimal: 0.8 x IF + 0.2 x Func
/ .
o~ e
065 ; 050 / -~
Son _— —f— ’
H o
& ~. 060 3 045 /
£ — g
Sl g — /
2 o
k] 0.55 0.40 .
H /
04549 030
Instruction Following Ratio Instruction Following Ratio Instruction Following Ratio
(c) BigVibeBench w/o Style Control
Pearson Spearman Kendall
Optimal: 0.3 x IF + 0.7 x Func Optimal: 0.6 x IF + 0.4 x Func Optimal: 0.6 x IF + 0.4 x Func
I
0.80 S 065
/ — e
\‘k _— — _—
£ 0.60
5
H
2
*) . : .
5
4
\
A
3
055 0.40

Instruction Following Ratio

Instruction Following Ratio

Instruction Following Ratio

(d) LiveVibeBench w/o Style Control

Figure 15: Human preference aligns best with a mix of IF and functionality. We correlate LM Arena
coding Elo with a composite score o IF+ (1 —) Func, where o € [0, 1] is the weight on IF (x-axis).
We also vary the correlation type and toggle the style-control function on/off. Nevertheless, the peak
correlation (starred) consistently occurs at a mixture of the two metrics across all settings.

33

	Introduction
	VeriCode: A Taxonomy of Verifiable Code Instructions
	Design Principles
	Taxonomy Construction Process
	Resulting VeriCode Taxonomy

	Vibe Checker: A New Testbed for Code Evaluation
	Benchmark Augmentation
	Evaluation Protocol

	Experiments
	Experimental Setup
	Results for Functionality
	Results for Instruction Following
	Instruction Position Analysis
	Correlating with Human Preference

	Related Work
	Conclusion
	LLM Usage Statement
	VeriCode Taxonomy
	Verification Code with Ruff
	Case Studies from VeriCode

	Vibe Checker Testbed
	Instruction Category Distributions
	Evaluation Prompts

	Experiments
	Details of Evaluated Models
	Detailed Results for Functionality
	Detailed Results for Instruction Following

	Analysis
	Instruction Position Analysis
	Correlation Analysis

