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ABSTRACT

Coarse-grained soils are widely employed in infrastructure construction, and cap-
turing their strength behavior is vital for ensuring the structural integrity of en-
gineering systems. In recent years, artificial intelligence (AI) techniques have
shown significant promise in advancing investigations in this area. Nevertheless,
conventional AI models often exhibit limited robustness when confronted with
distributional shifts in the data. To tackle these limitations, this study introduces a
stable learning framework based on the Hilbert-Schmidt Independence Criterion,
referred to as HSIC-StableNet, for predicting deviatoric stress–axial strain (q–εa)
curves that represent the strength characteristics of coarse-grained soils. The pro-
posed method initially adopts HSIC with the exact kernel method to replace the
F-norm combined with the approximate kernel method, strategically reweighting
training samples to enhance the stable learning module and integrating it with a
deep neural network. The experimental results indicate that HSIC-StableNet con-
sistently surpasses conventional DNN models and a previously introduced sta-
ble learning approach, SNN, across key metrics such as R², MSE, MAE, and
MAPE. Furthermore, the model demonstrates strong performance in estimating
the strength behavior of coarse-grained soils with large particle sizes by utilizing
data samples from soils with smaller particles. This capability contributes to al-
leviating the data scarcity challenge in geotechnical engineering, where acquiring
adequate large-particle soil data through costly triaxial tests remains difficult.

1 INTRODUCTION

Coarse-grained soils, composed of over 50% particles larger than 0.075mm, are widely used in
infrastructure due to their favorable engineering properties. Their strength behavior, often described
by deviatoric stress–axial strain (q–εa) curves, is typically obtained through triaxial tests or discrete
element modeling (DEM) (Yan S., 2022; Bai J., 2022; Chen J., 2023; Wang L., 2022; Ren S., 2025;
H. et al., 2025; G. & S., 2000; Lin S., 2024). However, these methods are costly and time-consuming,
limiting their practical scalability (Zhang X., 2023; Ovalle C., 2020; Yao Y., 2012; Kidane M., 2021).

Artificial intelligence (AI) has shown promise in predicting soil strength behavior (Pham B. T.,
2018), but traditional machine learning (ML) assumes that training and test data share the same
distribution. In reality, coarse-grained soil data are often sparse or imbalanced, especially for large
particle sizes, leading to distribution shifts that degrade model generalization—a challenge known
as out-of-distribution (OOD) generalization (Shen Z., 2020; Yu H., 2024; Arjovsky M., 2019).

Domain Generalization (DG) methods attempt to address OOD by learning representations across
multiple source domains (Rahimian H., 2019; Creager E., 2021; Chen Y., 2022; Zhao Y., 2021),
but their reliance on diverse, well-labeled datasets limits their practicality. To overcome this, stable
learning has emerged as an effective strategy by reweighting training samples to reduce reliance
on spurious correlations (Cui P., 2022). This is achieved through feature decorrelation, typically
measured by the Hilbert-Schmidt Independence Criterion (HSIC). While HSIC is computationally
intensive and often approximated in large-scale applications (Yao J., 2023), the moderate size of soil
datasets allows for exact computation, enhancing prediction accuracy.
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Moreover, most stable learning methods are developed for classification tasks, whereas this study fo-
cuses on regression. To fill this gap, we propose HSIC-StableNet, a novel stable learning framework
for regression, aimed at robust prediction of coarse-grained soil strength. The key contributions of
this work include:

1.Incorporation of Exact Kernel-Based Dependency Measures into Stable Learning: This study
introduces the HSIC-StableNet framework, which utilizes the Hilbert-Schmidt Independence Crite-
rion (HSIC) to perform precise sample reweighting aimed at reducing feature dependencies. In
contrast to conventional stable learning approaches that rely on approximate kernel estimations, the
use of exact kernel methods enhances both the predictive accuracy and robustness of the model,
particularly in modeling the strength behavior of coarse-grained soils.

2.Generalization of Stable Learning to Regression Problems: While most existing stable learn-
ing methods are developed for classification tasks, this work extends the paradigm to regression
scenarios by embedding a stable learning mechanism within a regression framework. This exten-
sion enables effective feature decorrelation and improved generalization in regression-based predic-
tion tasks, thereby broadening the applicability of stable learning to complex engineering problems
involving limited and noisy data.

3.Alleviating Data Scarcity via Cross-Scale Learning Strategy: To address the limited availabil-
ity of triaxial test data for coarse-grained soils with large particle sizes, the proposed framework ex-
ploits information from smaller-particle soil samples to infer the strength behavior of larger-particle
materials. This multi-scale learning approach effectively reduces the dependence on costly physi-
cal experiments and facilitates reliable predictions in data-scarce settings, offering a practical and
economical solution for real-world geotechnical applications.

2 RELATED WORK

Domain Generalization (DG). DG aims to improve model robustness by learning representations
that generalize to unseen domains. Existing methods mainly fall into two categories: (1) invariant
feature learning, such as the entropy regularization approach by Zhao S. (2020), and (2) meta-
learning, exemplified by Finn C. (2017), which simulates domain shifts via meta-training/testing
splits. Despite their effectiveness, these methods often require domain labels, manual partitioning,
and balanced sampling, limiting scalability in real-world applications (Zhou K., 2022; Wang J.,
2022).

Stable Learning. Stable learning tackles out-of-distribution generalization by reweighting samples
to reduce spurious correlations. Zhang X. (2021) proposed decorrelating causal and spurious fea-
tures, while Ye W. (2024) introduced dependency-based weights to suppress unstable associations.
Although effective in computer vision, these methods often rely on approximate kernel techniques
with the Frobenius norm for efficiency, which may compromise accuracy and representation robust-
ness.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

This study aims to develop a data-driven model that predicts the deviatoric stress q of coarse-grained
soils under various triaxial test conditions. The task is formulated as a supervised regression prob-
lem, where the model learns the mapping from input features that represent test conditions and
soil states to the corresponding deviatoric stress value. Each data sample is represented as a tuple
(x, y), where x ∈ Rn denotes the input feature vector, and y ∈ R represents the target output, i.e.,
the deviatoric stress q. The input vector x includes both test conditions and soil state parameters:
x = [σ3, d, h, dmax, ρd, e,PSD, εa], where σ3 is the confining pressure; d and h are the container’s
diameter and height; dmax is the maximum particle size; ρd is the dry density; e is the void ratio;
PSD denotes the particle size distribution curve; and εa is the axial strain. The goal is to learn a
function f such that y = f(x), enabling robust and accurate stress prediction across diverse soil
conditions.
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3.2 OVERALL APPROACH OF HSIC-STABLENET

To explore the relationship between deviatoric stress and axial strain in coarse-grained soils, we
propose a novel stable learning framework, HSIC-StableNet, specifically designed to capture the
intrinsic correlations between deviatoric stress (q) and axial strain (q–εa). The HSIC-StableNet ar-
chitecture consists of two primary components: a deep neural network (DNN) and a stable learning
module. The stable learning module aims to reduce statistical dependencies among input features
within the DNN, thereby promoting feature independence and enhancing the overall learning pro-
cess. It comprises two key submodules, namely sample reweighting and sample weight globaliza-
tion, which function collaboratively to improve the model’s robustness and generalization capabili-
ties. The overall architecture of the proposed HSIC-StableNet is depicted in Figure 1.
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Figure 1: The model diagram of HSIC-StableNet.

3.3 STABLE LEARNING

Stable learning utilizes exact kernel methods rather than approximate alternatives to enhance the
generalization capability of the model. It generates sample weights through feature mapping and
independence testing, effectively removing statistical dependencies among features to build a more
robust model. The framework consists of two key components: a sample reweighting module and a
sample weight globalization module, as shown in Figure 1.

3.3.1 SAMPLE REWEIGHTING WITH HSIC

To ensure effective feature decorrelation during sample reweighting, this module applies the Hilbert-
Schmidt Independence Criterion (HSIC) to evaluate dependencies among input features. The fea-
tures are first mapped into a Reproducing Kernel Hilbert Space (RKHS), after which HSIC is used
to compute test statistics that quantify the degree of statistical dependence between feature pairs.

(1) Feature Mapping

To capture potential hidden dependencies among features, especially nonlinear relationships that are
not evident in the original input space, this study adopts a feature mapping approach. Kernel methods
are used to implicitly project data into a higher-dimensional space, which enables the learning of
complex patterns through linear models. Instead of explicitly transforming the data, the method
computes inner products between samples in the mapped space using a kernel function, as defined
below:

K(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩ (1)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Here, xi and xj represent the i-th and j-th data samples in the original input space, and ϕ(xi) is an
implicit mapping function. Kernel methods are particularly suitable for small-scale datasets, such as
the coarse-grained soils dataset used in this study, where computational efficiency and high precision
are essential.

In this study, the Gaussian kernel, a positive definite kernel function, is chosen to map data samples
into the RKHS due to its mathematically simple form. It is defined as:

K(xi, xj) = exp

(
−∥xi − xj∥2

2σ2

)
, σ > 0 (2)

where ∥xi − xj∥2 represents the squared Euclidean distance between data samples xi and xj , and σ
is a positive parameter known as the bandwidth, which controls the width of the kernel.

In this work, the Gaussian kernel is utilized to construct a kernel matrix for each input feature.
Specifically, let X ∈ RN×D denote the input feature matrix, where N is the number of data samples
and D is the number of features. The resulting kernel matrix Um for the m-th feature is defined as:

Um =


U11 U12 · · · U1N

U21 U22 · · · U2N

...
...

. . .
...

UN1 UN2 · · · UNN

 (3)

Here, Uij = K(Xi,m, Xj,m) = exp
(
−∥Xi,m−Xj,m∥2

2σ2

)
, where K represents the Gaussian ker-

nel function applied to the m-th feature, Xi,m and Xj,m denote the m-th feature of the i-th and
j-th data samples, respectively. Uij represents the inner product between two data points Xi,m

and Xj,m in the Reproducing Kernel Hilbert Space (RKHS). Accordingly, a set of kernel matrices
{U1, . . . ,Um, . . . ,UD} is obtained, which will be utilized for removing correlations among features
as discussed in the following.

(2) Removing Dependencies among Features with HSIC

Eliminating dependencies helps reduce spurious correlations by preventing the model from relying
on coincidental or non-causal feature associations that may not hold across different datasets. This
enhances the model’s ability to focus on robust patterns, thereby improving generalization to unseen
data.

In this study, the Hilbert-Schmidt Independence Criterion (HSIC) is employed to quantify dependen-
cies among features, followed by minimizing HSIC values through sample reweighting to enhance
feature independence.

• Hilbert-Schmidt Independence Criterion(HSIC)

Definition 1 (Hilbert-Schmidt Independence Criterion) (Gretton A., 2005): Let X ∈ RN×D be the
input matrix with N samples and D features. Suppose X:,m and X:,n are the vectors representing
the m-th and n-th feature vectors across all samples, respectively. The cross-covariance operator
between these two vectors is denoted as CX:,m,X:,n

. The HSIC between X:,m and X:,n is defined
as:

HSIC(X:,m, X:,n;F ,G) = ∥CX:,m,X:,n∥2HS (4)

According to Theorem 4 in Gretton et al. (Gretton A., 2005), the squared Hilbert-Schmidt norm
of the cross-covariance operator ∥CX:,m,X:,n

∥2HS is zero if and only if the features are statistically
independent. This relationship is expressed in Equation (5).

∥CX:,m,X:,n
∥2HS = 0 ⇐⇒ X:,m ⊥ X:,n (5)

Empirical HSIC (Gretton A., 2005) provides a sample-based estimation of the Hilbert-Schmidt In-
dependence Criterion, which quantifies the statistical dependence between two random variables
using kernel methods. The empirical HSIC computes this dependence based on finite data samples,
as shown in Equation (6):
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HSIC(X:,m, X:,n) =
1

(N − 1)2
tr(UmHUnH) (6)

where tr represents the trace of a matrix, H is the centering matrix, H = I − 1
N 11T , where I is

the identity matrix and 1 is a column vector of ones. Um and Un are the kernel matrices (as defined
in Equation (3)) corresponding to the feature vectors X:,m and X:,n, respectively. Correspondingly,
UmH can be obtained by Equation (7).

UmH =


U11 − Ū1 U12 − Ū1 · · · U1N − Ū1

U21 − Ū2 U22 − Ū2 · · · U2N − Ū2

...
...

. . .
...

UN1 − ŪN UN2 − ŪN · · · UNN − ŪN

 (7)

where Ūi =
1
N

∑N
j=1 Uij . The computation of UnH follows a similar procedure.

• Learning sample weights for feature decorrelation via HSIC-Loss

As noted earlier, the closer the HSIC value between two feature vectors X:,m and X:,n approaches
zero, the weaker their statistical dependence. In empirical HSIC, dependence is estimated using
finite data samples, with each sample typically assigned equal weight. However, to effectively
reduce this dependence for feature decorrelation, we initially propose optimizing the sample weights
ω = [ω1, ω2, . . . , ωN ] to minimize the weighted HSIC, ideally driving it toward zero as expressed
in Equation (8).

HSIC(ωX:,m, ωX:,n) =
1

(N − 1)2
tr(Um;ωHUn;ωH) (8)

where ω ∈ RN represents the sample weights, while Um;ω and Un;ω denote the weighted kernel
matrices corresponding to X:,m and X:,n, respectively. In Um;ω , the standard kernel computation
Uij = K(Xi,m, Xj,m) is adjusted to Uij = K(ωiXi,m, ωjXj,m), where ωi and ωj are the weights
assigned to the i-th and j-th samples. The computation of Un;ω follows in a similar manner.

To achieve independence between the m-th and n-th features, we minimize the HSIC value as defined
in Equation (8). Accordingly, the HSIC values for all feature pairs are calculated, and Equation (9)
is employed as the loss function to guide the optimization of sample weights.

LHSIC;ω =

N−1∑
m=1

N∑
n=m+1

HSIC(ωX:,m, ωX:,n) (9)

Theoretically, with an infinite sample size, it is possible to derive a set of weights that entirely
eliminates feature dependence, resulting in LHSIC;ω = 0. In practice, however, given the finite
dataset size, we minimize the sum of weighted HSIC values, as expressed in Equation (10).

ω = argmin
ω

LHSIC;ω (10)

In this study, we employ Mini-Batch Gradient Descent(MBGD) to minimize the objective func-
tion in Equation (9). By iteratively adjusting the parameters ω to minimize the objective function
LHSIC;ω , feature correlations in the original dataset can be effectively reduced, enhancing model
stability and generalization performance.

3.3.2 GLOBALIZING SAMPLE WEIGHTS

As mentioned earlier, MBGD is used to iteratively update sample weights. However, since MBGD
processes only a subset of samples in each batch, the resulting weights remain localized, which
can limit the effectiveness of reweighting in addressing statistical dependencies across the entire
dataset. To address this issue, we propose a sample weight globalization module. This module
aggregates and stores features and sample weights from previous batches. As depicted in Figure
1, the accumulated information is reloaded as global context, enabling comprehensive updates to
sample weights throughout the entire dataset.

5
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As shown in Figure 1, assume that the model has been trained with k − 1 batches of data.
Let XB1, XB2, . . . , XBi, . . . , XB(k−1) represent the input feature matrices, where XBi corre-
sponds to the input features of the i-th batch (with i denoting the batch number), capturing lo-
cal information. Similarly, the accumulated global information after each batch is denoted as
XG1, XG2, . . . , XGi, . . . , XG(k−1), where each XGi represents the global context captured up to
the i-th batch.

Additionally, let ωB1, ωB2, . . . , ωBi, . . . , ωB(k−1) represent the sample weights for the first k − 1
batches XB1, XB2, . . . , XBi, . . . , XB(k−1), all initialized to 1. The global sample weights corre-
sponding to XG1, XG2, . . . , XGi, . . . , XG(k−1) are denoted as ωG1, ωG2, . . . , ωGi, . . . , ωG(k−1).

To allow samples from previous batches to contribute to the training of the current batch, we define
Xconcat and ωconcat as concatenated input feature matrices and corresponding global sample weights,
respectively. The concatenation is performed as follows:

Xconcat =
[
XG(k−1)

T XBk
T
]T

(11)

ωconcat =
[
ωG(k−1)

T ωBk
T
]T

(12)

LHSIC;ω =

N−1∑
m=1

N∑
n=m+1

HSIC
(
ωconcatXconcat:,m , ωconcatXconcat:,n

)
(13)

During the training process, ωG(k−1) is kept fixed while ωBk is updated using the modified loss
function LHSIC;ω , defined in Equation (13) as an updated version of Equation (9). Xconcat:,m denotes
the m-th feature of concatenated matrix Xconcat. Once the training reaches the maximum number
of iterations, ωBk is obtained. We then fuse the global information (XG(k−1), ωG(k−1)) with the
local information (XBk, ωBk) using Equations (14) and (15). This process effectively incorporates
information from all previous batches to optimize the current sample weights.

XGk = αXG(k−1) + (1− α)XBk (14)

ωGk = αωG(k−1) + (1− α)ωBk (15)

Here, the parameter α controls the balance between long-term and short-term memory of global
information, with a larger α favoring long-term memory and a smaller α emphasizing short-term
memory. Equation equation 14 describes the fusion of global information accumulated from the
first k − 1 batches with the local information of the k-th batch to construct XGk. Equation equa-
tion 15 represents the fusion of global sample weights ωG(k−1) with the local sample weights ωBk

to construct ωGk. XGk and ωGk are then used to optimize the training of the subsequent (k + 1)-th
batch.

Through cumulative learning and fusion, the weight updates for the current batch become more
comprehensive by incorporating information from all previously seen data, thereby achieving the
globalization of sample weights.

These weights are incorporated into the DNN’s training process by modifying the conventional Mean
Squared Error loss function, giving more emphasis to samples that support stable generalization. The
original MSE loss is defined as:

LMSE(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)
2 (16)

where yi and ŷi represent the true and predicted values for the i-th sample, respectively. Incorporat-
ing the learned sample weights ωi, we revise the loss function as follows:

LωMSE(y, ŷ;ω) =
1

n

n∑
i=1

ωi (yi − ŷi)
2 (17)

6
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This reweighted loss allows the DNN to focus more on samples that are less likely to be affected by
spurious dependencies, thereby aligning the learning process with more invariant and generalizable
patterns. Through iterative training, the stable learning module continuously updates the weights
based on cumulative feature statistics, and the DNN adjusts its parameters accordingly, achieving a
synergistic balance between predictive accuracy and stability.

4 EXPERIMENTS

To evaluate the generalization performance of HSIC-StableNet under distribution shifts, we conduct
an experiment using synthetically biased training samples to simulate out-of-distribution scenarios.

Figure 2: Overview of Synthetic Biased Datasets Constructed Based on P5

Figure 3: Distribution of training and test datasets by confining pressure

4.1 PERFORMANCE EVALUATION

Predicting the deviatoric stress–axial strain (q–εa) curves of coarse-grained soils is fundamentally a
regression task. To evaluate the experimental results, four standard metrics are employed: R-squared
(R2), Mean Squared Error (MSE), Mean Absolute Error (MAE), and Mean Absolute Percentage
Error (MAPE).

4.2 EVALUATING THE GENERALIZATION PERFORMANCE OF HSIC-STABLENET

To assess the generalization capability of the proposed HSIC-StableNet, seven experimental groups
were constructed using synthetic biased datasets, generated based on variations in the particle size
parameter P5 and confining pressure σ3. The first six groups were created by systematically modify-
ing P5, and their distribution characteristics are shown in Figure 2. In this figure, positive histogram
values indicate left-skewed distributions, while negative values indicate right-skewed ones. The
green curve represents the distributional deviation between the training and test sets for each group.

7
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The seventh biased dataset, constructed based on confining pressure σ3, is illustrated in Figure 3,
where training samples are marked with purple circles and test samples with blue triangles.

4.2.1 EXPERIMENTAL RESULTS ON SYNTHETIC BIASED DATASETS

In HSIC-StableNet, the DNN module comprises four layers, including two hidden layers with 128
and 30 neurons, respectively. The module is trained using a learning rate of 0.0001 and a batch size
of 100, with PReLU as the activation function and the Adam optimizer for parameter updates.

To evaluate the effectiveness of HSIC-StableNet, we conduct a comparative analysis against two
baseline models: DNN and SNN. The SNN model incorporates a stable learning module that com-
bines the Frobenius norm with an approximate kernel method based on Random Fourier Features
(RFF), alongside a standard deep neural network. The DNN components in all models are imple-
mented using the same network architecture and hyperparameter settings.

Table 1: Comparison of R2 across seven synthetic biased datasets

Model Index of Synthetic Biased Datasets

1 2 3 4 5 6 7

DNN 0.845 0.905 0.856 0.869 0.908 0.807 0.927
SNN 0.859 0.923 0.898 0.890 0.928 0.833 0.929
Ours 0.869 0.937 0.915 0.898 0.939 0.848 0.943

Table 2: Comparison of MSE across seven synthetic biased datasets

Model Index of Synthetic Biased Datasets

1 2 3 4 5 6 7

DNN 7.1e5 5.2e5 8.6e5 9.7e5 6.2e5 9.8e5 3.1e6
SNN 6.5e5 4.8e5 7.2e5 8.7e5 4.8e5 8.3e5 2.9e6
Ours 6.1e5 4.2e5 6.4e5 7.5e5 4.4e5 7.8e5 2.0e6

Table 3: Comparison of MAE across seven synthetic biased datasets

Model Index of Synthetic Biased Datasets

1 2 3 4 5 6 7

DNN 461.7 557.7 686.6 670.0 586.4 643.3 1044.0
SNN 447.7 530.9 606.6 631.8 523.0 582.0 1026.0
Ours 434.2 521.2 579.7 615.8 512.7 568.6 953.0

Tables 1–4 summarize the comparative performance of the three models. On the first six datasets,
where distribution shifts are introduced based on P5, the proposed model achieves an average im-
provement of 3.6% in R2 compared to the standard DNN and 1.3% compared to SNN. On Dataset
7, which features distribution shifts based on σ3, HSIC-StableNet continues to outperform both
baselines, with R2 gains of 1.6% over DNN and 1.4% over SNN.

4.2.2 PERFORMANCE ANALYSIS OF THE PROPOSED MODEL

Figure 4 presents a radar chart comparing performance across four metrics for all seven synthetic bi-
ased datasets. Datasets 1, 2, and 3 share identical training sets, each exhibiting a 5% left-biased shift
based on P5, while their test sets vary, incorporating a 10% left-biased shift, a 5% right-biased shift,
and a 10% right-biased shift, respectively. The parameter v represents the distribution deviation
between training and test sets.

In Figure 4(a), the green line representing HSIC-StableNet consistently aligns closer to the outer
edge than the red (DNN) and purple (SNN) lines, indicating superior R2 performance. Notably, the
proposed HSIC-StableNet shows greater improvements as the distribution deviation (v) between the

8
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Table 4: Comparison of MAPE across seven synthetic biased datasets

Model Index of Synthetic Biased Datasets

1 2 3 4 5 6 7

DNN 0.247 0.295 0.361 0.465 0.299 0.308 0.328
SNN 0.230 0.282 0.301 0.414 0.257 0.270 0.425
Ours 0.224 0.276 0.293 0.345 0.243 0.257 0.395

Figure 4: Overview of performance comparisons among HSIC-StableNet, SNN, and DNN models
based on synthetic biased datasets.

training and test sets increases, as evidenced by the R2 values across datasets 1, 2, and 3. Addition-
ally, HSIC-StableNet outperforms the baseline methods on dataset 7, which introduces distribution
shifts based on σ3. These results indicate that HSIC-StableNet consistently maintains robust gen-
eralization performance under varying distributional inconsistencies, with its superiority in general-
ization becoming more pronounced as the degree of distribution deviation increases.

5 CONCLUSION

In this paper, we propose HSIC-StableNet, a stable learning framework that combines HSIC-based
feature decorrelation with deep neural networks to improve the generalization of strength behavior
prediction for coarse-grained soils. Unlike traditional neural networks that struggle under distri-
bution shifts, HSIC-StableNet reduces spurious correlations through sample reweighting. Experi-
mental results show that it outperforms both baseline DNN and existing stable learning methods,
achieving robust performance on biased data. Additionally, the model enables accurate prediction
for large-particle soils using data from smaller particles, offering an efficient solution to data scarcity
in geotechnical applications.
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