

000 001 ROBUST STRENGTH BEHAVIOR MODELING OF 002 COARSE-GRAINED SOILS USING HSIC-GUIDED STA- 003 BLE LEARNING 004

005
006 **Anonymous authors**
007 Paper under double-blind review
008

009 010 ABSTRACT 011

012
013 Coarse-grained soils are widely employed in infrastructure construction, and cap-
014 turing their strength behavior is vital for ensuring the structural integrity of en-
015 gineering systems. In recent years, artificial intelligence (AI) techniques have
016 shown significant promise in advancing investigations in this area. Nevertheless,
017 conventional AI models often exhibit limited robustness when confronted with
018 distributional shifts in the data. To tackle these limitations, this study introduces a
019 stable learning framework based on the Hilbert-Schmidt Independence Criterion,
020 referred to as HSIC-StableNet, for predicting deviatoric stress–axial strain ($q-\varepsilon_a$)
021 curves that represent the strength characteristics of coarse-grained soils. The pro-
022 posed method initially adopts HSIC with the exact kernel method to replace the
023 F-norm combined with the approximate kernel method, strategically reweighting
024 training samples to enhance the stable learning module and integrating it with a
025 deep neural network. The experimental results indicate that HSIC-StableNet con-
026 sistently surpasses conventional DNN models and a previously introduced sta-
027 ble learning approach, SNN, across key metrics such as R^2 , MSE, MAE, and
028 MAPE. Furthermore, the model demonstrates strong performance in estimating
029 the strength behavior of coarse-grained soils with large particle sizes by utilizing
030 data samples from soils with smaller particles. This capability contributes to al-
031 leviating the data scarcity challenge in geotechnical engineering, where acquiring
032 adequate large-particle soil data through costly triaxial tests remains difficult.
033

034 1 INTRODUCTION 035

036 Coarse-grained soils, composed of over 50% particles larger than 0.075mm, are widely used in
037 infrastructure due to their favorable engineering properties. Their strength behavior, often described
038 by deviatoric stress–axial strain ($q-\varepsilon_a$) curves, is typically obtained through triaxial tests or discrete
039 element modeling (DEM) (Yan S., 2022; Bai J., 2022; Chen J., 2023; Wang L., 2022; Ren S., 2025;
040 H. et al., 2025; G. & S., 2000; Lin S., 2024). However, these methods are costly and time-consuming,
041 limiting their practical scalability (Zhang X., 2023; Ovalle C., 2020; Yao Y., 2012; Kidane M., 2021).

042 Artificial intelligence (AI) has shown promise in predicting soil strength behavior (Pham B. T.,
043 2018), but traditional machine learning (ML) assumes that training and test data share the same
044 distribution. In reality, coarse-grained soil data are often sparse or imbalanced, especially for large
045 particle sizes, leading to distribution shifts that degrade model generalization—a challenge known
046 as out-of-distribution (OOD) generalization (Shen Z., 2020; Yu H., 2024; Arjovsky M., 2019).

047 Domain Generalization (DG) methods attempt to address OOD by learning representations across
048 multiple source domains (Rahimian H., 2019; Creager E., 2021; Chen Y., 2022; Zhao Y., 2021),
049 but their reliance on diverse, well-labeled datasets limits their practicality. To overcome this, stable
050 learning has emerged as an effective strategy by reweighting training samples to reduce reliance
051 on spurious correlations (Cui P., 2022). This is achieved through feature decorrelation, typically
052 measured by the Hilbert-Schmidt Independence Criterion (HSIC). While HSIC is computationally
053 intensive and often approximated in large-scale applications (Yao J., 2023), the moderate size of soil
datasets allows for exact computation, enhancing prediction accuracy.

054 Moreover, most stable learning methods are developed for classification tasks, whereas this study fo-
 055 cuses on regression. To fill this gap, we propose HSIC-StableNet, a novel stable learning framework
 056 for regression, aimed at robust prediction of coarse-grained soil strength. The key contributions of
 057 this work include:

058 **1. Incorporation of Exact Kernel-Based Dependency Measures into Stable Learning:** This study
 059 introduces the HSIC-StableNet framework, which utilizes the Hilbert-Schmidt Independence Crite-
 060 rion (HSIC) to perform precise sample reweighting aimed at reducing feature dependencies. In
 061 contrast to conventional stable learning approaches that rely on approximate kernel estimations, the
 062 use of exact kernel methods enhances both the predictive accuracy and robustness of the model,
 063 particularly in modeling the strength behavior of coarse-grained soils.

064 **2. Generalization of Stable Learning to Regression Problems:** While most existing stable learn-
 065 ing methods are developed for classification tasks, this work extends the paradigm to regression
 066 scenarios by embedding a stable learning mechanism within a regression framework. This exten-
 067 sion enables effective feature decorrelation and improved generalization in regression-based predic-
 068 tion tasks, thereby broadening the applicability of stable learning to complex engineering problems
 069 involving limited and noisy data.

070 **3. Alleviating Data Scarcity via Cross-Scale Learning Strategy:** To address the limited availabil-
 071 ity of triaxial test data for coarse-grained soils with large particle sizes, the proposed framework ex-
 072 ploits information from smaller-particle soil samples to infer the strength behavior of larger-particle
 073 materials. This multi-scale learning approach effectively reduces the dependence on costly physi-
 074 cal experiments and facilitates reliable predictions in data-scarce settings, offering a practical and
 075 economical solution for real-world geotechnical applications.

077 2 RELATED WORK

080 **Domain Generalization (DG).** DG aims to improve model robustness by learning representations
 081 that generalize to unseen domains. Existing methods mainly fall into two categories: (1) invariant
 082 feature learning, such as the entropy regularization approach by Zhao S. (2020), and (2) meta-
 083 learning, exemplified by Finn C. (2017), which simulates domain shifts via meta-training/testing
 084 splits. Despite their effectiveness, these methods often require domain labels, manual partitioning,
 085 and balanced sampling, limiting scalability in real-world applications (Zhou K., 2022; Wang J.,
 086 2022).

087 **Stable Learning.** Stable learning tackles out-of-distribution generalization by reweighting samples
 088 to reduce spurious correlations. Zhang X. (2021) proposed decorrelating causal and spurious fea-
 089 tures, while Ye W. (2024) introduced dependency-based weights to suppress unstable associations.
 090 Although effective in computer vision, these methods often rely on approximate kernel techniques
 091 with the Frobenius norm for efficiency, which may compromise accuracy and representation robust-
 092 ness.

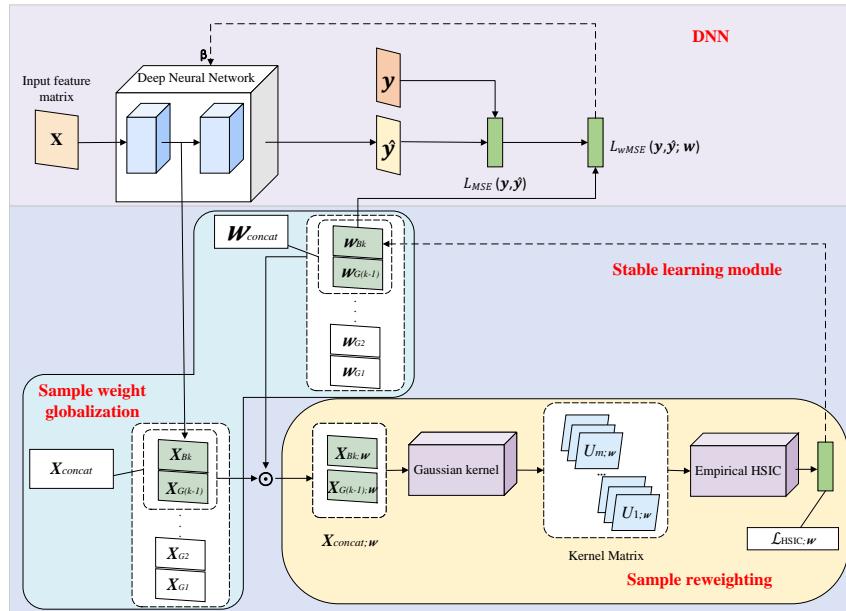
094 3 METHODOLOGY

095 3.1 PROBLEM FORMULATION

098 This study aims to develop a data-driven model that predicts the deviatoric stress q of coarse-grained
 099 soils under various triaxial test conditions. The task is formulated as a supervised regression prob-
 100 lem, where the model learns the mapping from input features that represent test conditions and
 101 soil states to the corresponding deviatoric stress value. Each data sample is represented as a tuple
 102 (\mathbf{x}, y) , where $\mathbf{x} \in \mathbb{R}^n$ denotes the input feature vector, and $y \in \mathbb{R}$ represents the target output, i.e.,
 103 the deviatoric stress q . The input vector \mathbf{x} includes both test conditions and soil state parameters:
 104 $\mathbf{x} = [\sigma_3, d, h, d_{\max}, \rho_d, e, \text{PSD}, \varepsilon_a]$, where σ_3 is the confining pressure; d and h are the container's
 105 diameter and height; d_{\max} is the maximum particle size; ρ_d is the dry density; e is the void ratio;
 106 PSD denotes the particle size distribution curve; and ε_a is the axial strain. The goal is to learn a
 107 function f such that $y = f(\mathbf{x})$, enabling robust and accurate stress prediction across diverse soil
 108 conditions.

108 3.2 OVERALL APPROACH OF HSIC-STABLENET
109

110 To explore the relationship between deviatoric stress and axial strain in coarse-grained soils, we
111 propose a novel stable learning framework, HSIC-StableNet, specifically designed to capture the
112 intrinsic correlations between deviatoric stress (q) and axial strain ($q-\varepsilon_a$). The HSIC-StableNet ar-
113 chitecture consists of two primary components: a deep neural network (DNN) and a stable learning
114 module. The stable learning module aims to reduce statistical dependencies among input features
115 within the DNN, thereby promoting feature independence and enhancing the overall learning pro-
116 cess. It comprises two key submodules, namely sample reweighting and sample weight globaliza-
117 tion, which function collaboratively to improve the model's robustness and generalization capabili-
118 ties. The overall architecture of the proposed HSIC-StableNet is depicted in Figure 1.

139 Figure 1: The model diagram of HSIC-StableNet.
140141 3.3 STABLE LEARNING
142

143 Stable learning utilizes exact kernel methods rather than approximate alternatives to enhance the
144 generalization capability of the model. It generates sample weights through feature mapping and
145 independence testing, effectively removing statistical dependencies among features to build a more
146 robust model. The framework consists of two key components: a sample reweighting module and a
147 sample weight globalization module, as shown in Figure 1.

148 3.3.1 SAMPLE REWEIGHTING WITH HSIC
149

150 To ensure effective feature decorrelation during sample reweighting, this module applies the Hilbert-
151 Schmidt Independence Criterion (HSIC) to evaluate dependencies among input features. The fea-
152 tures are first mapped into a Reproducing Kernel Hilbert Space (RKHS), after which HSIC is used
153 to compute test statistics that quantify the degree of statistical dependence between feature pairs.

154 (1) Feature Mapping
155

156 To capture potential hidden dependencies among features, especially nonlinear relationships that are
157 not evident in the original input space, this study adopts a feature mapping approach. Kernel methods
158 are used to implicitly project data into a higher-dimensional space, which enables the learning of
159 complex patterns through linear models. Instead of explicitly transforming the data, the method
160 computes inner products between samples in the mapped space using a kernel function, as defined
161 below:

$$K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle \quad (1)$$

162 Here, x_i and x_j represent the i -th and j -th data samples in the original input space, and $\phi(x_i)$ is an
 163 implicit mapping function. Kernel methods are particularly suitable for small-scale datasets, such as
 164 the coarse-grained soils dataset used in this study, where computational efficiency and high precision
 165 are essential.

166 In this study, the Gaussian kernel, a positive definite kernel function, is chosen to map data samples
 167 into the RKHS due to its mathematically simple form. It is defined as:
 168

$$169 \quad K(x_i, x_j) = \exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right), \quad \sigma > 0 \quad (2)$$

172 where $\|x_i - x_j\|^2$ represents the squared Euclidean distance between data samples x_i and x_j , and σ
 173 is a positive parameter known as the *bandwidth*, which controls the width of the kernel.

174 In this work, the Gaussian kernel is utilized to construct a kernel matrix for each input feature.
 175 Specifically, let $X \in \mathbb{R}^{N \times D}$ denote the input feature matrix, where N is the number of data samples
 176 and D is the number of features. The resulting kernel matrix U_m for the m -th feature is defined as:
 177

$$178 \quad U_m = \begin{bmatrix} U_{11} & U_{12} & \cdots & U_{1N} \\ U_{21} & U_{22} & \cdots & U_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ U_{N1} & U_{N2} & \cdots & U_{NN} \end{bmatrix} \quad (3)$$

183 Here, $U_{ij} = K(X_{i,m}, X_{j,m}) = \exp\left(-\frac{\|X_{i,m} - X_{j,m}\|^2}{2\sigma^2}\right)$, where K represents the Gaussian ker-
 184 nel function applied to the m -th feature, $X_{i,m}$ and $X_{j,m}$ denote the m -th feature of the i -th and
 185 j -th data samples, respectively. U_{ij} represents the inner product between two data points $X_{i,m}$
 186 and $X_{j,m}$ in the Reproducing Kernel Hilbert Space (RKHS). Accordingly, a set of kernel matrices
 187 $\{U_1, \dots, U_m, \dots, U_D\}$ is obtained, which will be utilized for removing correlations among features
 188 as discussed in the following.

189 (2) Removing Dependencies among Features with HSIC

191 Eliminating dependencies helps reduce spurious correlations by preventing the model from relying
 192 on coincidental or non-causal feature associations that may not hold across different datasets. This
 193 enhances the model's ability to focus on robust patterns, thereby improving generalization to unseen
 194 data.

195 In this study, the Hilbert-Schmidt Independence Criterion (HSIC) is employed to quantify dependen-
 196 cies among features, followed by minimizing HSIC values through sample reweighting to enhance
 197 feature independence.

198 • Hilbert-Schmidt Independence Criterion(HSIC)

200 **Definition 1** (Hilbert-Schmidt Independence Criterion) (Gretton A., 2005): Let $X \in \mathbb{R}^{N \times D}$ be the
 201 input matrix with N samples and D features. Suppose $X_{:,m}$ and $X_{:,n}$ are the vectors representing
 202 the m -th and n -th feature vectors across all samples, respectively. The cross-covariance operator
 203 between these two vectors is denoted as $C_{X_{:,m}, X_{:,n}}$. The HSIC between $X_{:,m}$ and $X_{:,n}$ is defined
 204 as:
 205

$$206 \quad \text{HSIC}(X_{:,m}, X_{:,n}; \mathcal{F}, \mathcal{G}) = \|C_{X_{:,m}, X_{:,n}}\|_{\text{HS}}^2 \quad (4)$$

207 According to Theorem 4 in Gretton et al. (Gretton A., 2005), the squared Hilbert-Schmidt norm
 208 of the cross-covariance operator $\|C_{X_{:,m}, X_{:,n}}\|_{\text{HS}}^2$ is zero if and only if the features are statistically
 209 independent. This relationship is expressed in Equation (5).
 210

$$211 \quad \|C_{X_{:,m}, X_{:,n}}\|_{\text{HS}}^2 = 0 \iff X_{:,m} \perp X_{:,n} \quad (5)$$

213 Empirical HSIC (Gretton A., 2005) provides a sample-based estimation of the Hilbert-Schmidt In-
 214 dependence Criterion, which quantifies the statistical dependence between two random variables
 215 using kernel methods. The empirical HSIC computes this dependence based on finite data samples,
 as shown in Equation (6):

216

$$\text{HSIC}(X_{:,m}, X_{:,n}) = \frac{1}{(N-1)^2} \text{tr}(U_m H U_n H) \quad (6)$$

219 where tr represents the trace of a matrix, H is the centering matrix, $H = I - \frac{1}{N}\mathbf{1}\mathbf{1}^T$, where I is
220 the identity matrix and $\mathbf{1}$ is a column vector of ones. U_m and U_n are the kernel matrices (as defined
221 in Equation (3)) corresponding to the feature vectors $X_{:,m}$ and $X_{:,n}$, respectively. Correspondingly,
222 $U_m H$ can be obtained by Equation (7).

223

$$U_m H = \begin{bmatrix} U_{11} - \bar{U}_1 & U_{12} - \bar{U}_1 & \cdots & U_{1N} - \bar{U}_1 \\ U_{21} - \bar{U}_2 & U_{22} - \bar{U}_2 & \cdots & U_{2N} - \bar{U}_2 \\ \vdots & \vdots & \ddots & \vdots \\ U_{N1} - \bar{U}_N & U_{N2} - \bar{U}_N & \cdots & U_{NN} - \bar{U}_N \end{bmatrix} \quad (7)$$

229

230 where $\bar{U}_i = \frac{1}{N} \sum_{j=1}^N U_{ij}$. The computation of $U_n H$ follows a similar procedure.

231

• Learning sample weights for feature decorrelation via HSIC-Loss

232

233 As noted earlier, the closer the HSIC value between two feature vectors $X_{:,m}$ and $X_{:,n}$ approaches
234 zero, the weaker their statistical dependence. In empirical HSIC, dependence is estimated using
235 finite data samples, with each sample typically assigned equal weight. However, to effectively
236 reduce this dependence for feature decorrelation, we initially propose optimizing the sample weights
237 $\omega = [\omega_1, \omega_2, \dots, \omega_N]$ to minimize the weighted HSIC, ideally driving it toward zero as expressed
in Equation (8).

238

$$\text{HSIC}(\omega X_{:,m}, \omega X_{:,n}) = \frac{1}{(N-1)^2} \text{tr}(U_{m;\omega} H U_{n;\omega} H) \quad (8)$$

240

241 where $\omega \in \mathbb{R}^N$ represents the sample weights, while $U_{m;\omega}$ and $U_{n;\omega}$ denote the weighted kernel
242 matrices corresponding to $X_{:,m}$ and $X_{:,n}$, respectively. In $U_{m;\omega}$, the standard kernel computation
243 $U_{ij} = K(X_{i,m}, X_{j,m})$ is adjusted to $U_{ij} = K(\omega_i X_{i,m}, \omega_j X_{j,m})$, where ω_i and ω_j are the weights
244 assigned to the i -th and j -th samples. The computation of $U_{n;\omega}$ follows in a similar manner.

245

246 To achieve independence between the m -th and n -th features, we minimize the HSIC value as defined
247 in Equation (8). Accordingly, the HSIC values for all feature pairs are calculated, and Equation (9)
is employed as the loss function to guide the optimization of sample weights.

248

$$\mathcal{L}_{\text{HSIC};\omega} = \sum_{m=1}^{N-1} \sum_{n=m+1}^N \text{HSIC}(\omega X_{:,m}, \omega X_{:,n}) \quad (9)$$

251

252 Theoretically, with an infinite sample size, it is possible to derive a set of weights that entirely
253 eliminates feature dependence, resulting in $\mathcal{L}_{\text{HSIC};\omega} = 0$. In practice, however, given the finite
254 dataset size, we minimize the sum of weighted HSIC values, as expressed in Equation (10).

255

$$\omega = \arg \min_{\omega} \mathcal{L}_{\text{HSIC};\omega} \quad (10)$$

257

258 In this study, we employ Mini-Batch Gradient Descent(MBGD) to minimize the objective function
259 in Equation (9). By iteratively adjusting the parameters ω to minimize the objective function
260 $\mathcal{L}_{\text{HSIC};\omega}$, feature correlations in the original dataset can be effectively reduced, enhancing model
261 stability and generalization performance.

262

263

3.3.2 GLOBALIZING SAMPLE WEIGHTS

264

265

266 As mentioned earlier, MBGD is used to iteratively update sample weights. However, since MBGD
267 processes only a subset of samples in each batch, the resulting weights remain localized, which
268 can limit the effectiveness of reweighting in addressing statistical dependencies across the entire
269 dataset. To address this issue, we propose a sample weight globalization module. This module
aggregates and stores features and sample weights from previous batches. As depicted in Figure
1, the accumulated information is reloaded as global context, enabling comprehensive updates to
sample weights throughout the entire dataset.

As shown in Figure 1, assume that the model has been trained with $k - 1$ batches of data. Let $X_{B1}, X_{B2}, \dots, X_{Bi}, \dots, X_{B(k-1)}$ represent the input feature matrices, where X_{Bi} corresponds to the input features of the i -th batch (with i denoting the batch number), capturing local information. Similarly, the accumulated global information after each batch is denoted as $X_{G1}, X_{G2}, \dots, X_{Gi}, \dots, X_{G(k-1)}$, where each X_{Gi} represents the global context captured up to the i -th batch.

Additionally, let $\omega_{B1}, \omega_{B2}, \dots, \omega_{Bi}, \dots, \omega_{B(k-1)}$ represent the sample weights for the first $k - 1$ batches $X_{B1}, X_{B2}, \dots, X_{Bi}, \dots, X_{B(k-1)}$, all initialized to 1. The global sample weights corresponding to $X_{G1}, X_{G2}, \dots, X_{Gi}, \dots, X_{G(k-1)}$ are denoted as $\omega_{G1}, \omega_{G2}, \dots, \omega_{Gi}, \dots, \omega_{G(k-1)}$.

To allow samples from previous batches to contribute to the training of the current batch, we define X_{concat} and ω_{concat} as concatenated input feature matrices and corresponding global sample weights, respectively. The concatenation is performed as follows:

$$X_{\text{concat}} = [X_{G(k-1)}^T \quad X_{Bk}^T]^T \quad (11)$$

$$\omega_{\text{concat}} = [\omega_{G(k-1)}^T \quad \omega_{Bk}^T]^T \quad (12)$$

$$\mathcal{L}_{\text{HSIC};\omega} = \sum_{m=1}^{N-1} \sum_{n=m+1}^N \text{HSIC}(\omega_{\text{concat}} X_{\text{concat};,m}, \omega_{\text{concat}} X_{\text{concat};,n}) \quad (13)$$

During the training process, $\omega_{G(k-1)}$ is kept fixed while ω_{Bk} is updated using the modified loss function $\mathcal{L}_{\text{HSIC};\omega}$, defined in Equation (13) as an updated version of Equation (9). $X_{\text{concat};,m}$ denotes the m -th feature of concatenated matrix X_{concat} . Once the training reaches the maximum number of iterations, ω_{Bk} is obtained. We then fuse the global information $(X_{G(k-1)}, \omega_{G(k-1)})$ with the local information (X_{Bk}, ω_{Bk}) using Equations (14) and (15). This process effectively incorporates information from all previous batches to optimize the current sample weights.

$$X_{Gk} = \alpha X_{G(k-1)} + (1 - \alpha) X_{Bk} \quad (14)$$

$$\omega_{Gk} = \alpha \omega_{G(k-1)} + (1 - \alpha) \omega_{Bk} \quad (15)$$

Here, the parameter α controls the balance between long-term and short-term memory of global information, with a larger α favoring long-term memory and a smaller α emphasizing short-term memory. Equation 14 describes the fusion of global information accumulated from the first $k - 1$ batches with the local information of the k -th batch to construct X_{Gk} . Equation 15 represents the fusion of global sample weights $\omega_{G(k-1)}$ with the local sample weights ω_{Bk} to construct ω_{Gk} . X_{Gk} and ω_{Gk} are then used to optimize the training of the subsequent $(k + 1)$ -th batch.

Through cumulative learning and fusion, the weight updates for the current batch become more comprehensive by incorporating information from all previously seen data, thereby achieving the globalization of sample weights.

These weights are incorporated into the DNN’s training process by modifying the conventional Mean Squared Error loss function, giving more emphasis to samples that support stable generalization. The original MSE loss is defined as:

$$L_{\text{MSE}}(y, \hat{y}) = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2 \quad (16)$$

where y_i and \hat{y}_i represent the true and predicted values for the i -th sample, respectively. Incorporating the learned sample weights ω_i , we revise the loss function as follows:

$$L_{\omega\text{MSE}}(y, \hat{y}; \omega) = \frac{1}{n} \sum_{i=1}^n \omega_i (y_i - \hat{y}_i)^2 \quad (17)$$

This reweighted loss allows the DNN to focus more on samples that are less likely to be affected by spurious dependencies, thereby aligning the learning process with more invariant and generalizable patterns. Through iterative training, the stable learning module continuously updates the weights based on cumulative feature statistics, and the DNN adjusts its parameters accordingly, achieving a synergistic balance between predictive accuracy and stability.

4 EXPERIMENTS

To evaluate the generalization performance of HSIC-StableNet under distribution shifts, we conduct an experiment using synthetically biased training samples to simulate out-of-distribution scenarios.

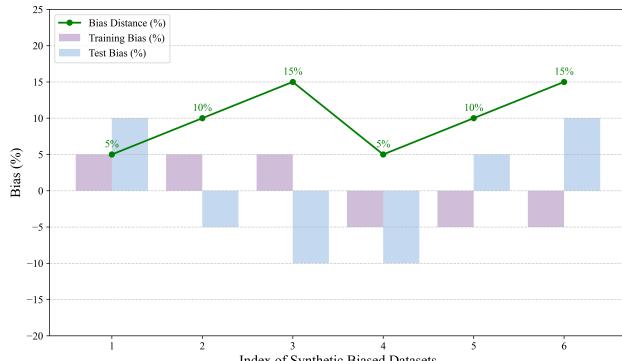


Figure 2: Overview of Synthetic Biased Datasets Constructed Based on P_5

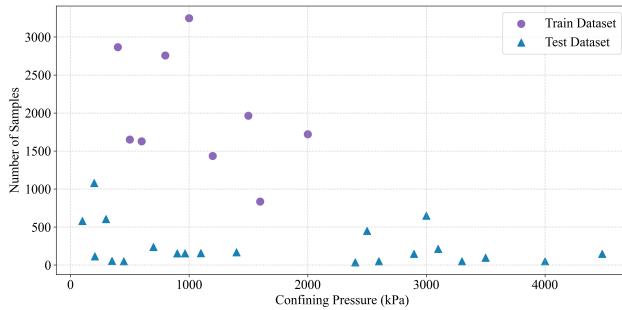


Figure 3: Distribution of training and test datasets by confining pressure

4.1 PERFORMANCE EVALUATION

Predicting the deviatoric stress–axial strain ($q-\varepsilon_a$) curves of coarse-grained soils is fundamentally a regression task. To evaluate the experimental results, four standard metrics are employed: R-squared (R^2), Mean Squared Error (MSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE).

4.2 EVALUATING THE GENERALIZATION PERFORMANCE OF HSIC-STABLENET

To assess the generalization capability of the proposed HSIC-StableNet, seven experimental groups were constructed using synthetic biased datasets, generated based on variations in the particle size parameter P_5 and confining pressure σ_3 . The first six groups were created by systematically modifying P_5 , and their distribution characteristics are shown in Figure 2. In this figure, positive histogram values indicate left-skewed distributions, while negative values indicate right-skewed ones. The green curve represents the distributional deviation between the training and test sets for each group.

378 The seventh biased dataset, constructed based on confining pressure σ_3 , is illustrated in Figure 3,
 379 where training samples are marked with purple circles and test samples with blue triangles.
 380

381 4.2.1 EXPERIMENTAL RESULTS ON SYNTHETIC BIASED DATASETS

383 In HSIC-StableNet, the DNN module comprises four layers, including two hidden layers with 128
 384 and 30 neurons, respectively. The module is trained using a learning rate of 0.0001 and a batch size
 385 of 100, with PReLU as the activation function and the Adam optimizer for parameter updates.

386 To evaluate the effectiveness of HSIC-StableNet, we conduct a comparative analysis against two
 387 baseline models: DNN and SNN. The SNN model incorporates a stable learning module that com-
 388 bines the Frobenius norm with an approximate kernel method based on Random Fourier Features
 389 (RFF), alongside a standard deep neural network. The DNN components in all models are imple-
 390 mented using the same network architecture and hyperparameter settings.

391
 392 **Table 1: Comparison of R^2 across seven synthetic biased datasets**

Model	Index of Synthetic Biased Datasets						
	1	2	3	4	5	6	7
DNN	0.845	0.905	0.856	0.869	0.908	0.807	0.927
SNN	0.859	0.923	0.898	0.890	0.928	0.833	0.929
Ours	0.869	0.937	0.915	0.898	0.939	0.848	0.943

400
 401 **Table 2: Comparison of MSE across seven synthetic biased datasets**

Model	Index of Synthetic Biased Datasets						
	1	2	3	4	5	6	7
DNN	7.1e5	5.2e5	8.6e5	9.7e5	6.2e5	9.8e5	3.1e6
SNN	6.5e5	4.8e5	7.2e5	8.7e5	4.8e5	8.3e5	2.9e6
Ours	6.1e5	4.2e5	6.4e5	7.5e5	4.4e5	7.8e5	2.0e6

408
 409 **Table 3: Comparison of MAE across seven synthetic biased datasets**

Model	Index of Synthetic Biased Datasets						
	1	2	3	4	5	6	7
DNN	461.7	557.7	686.6	670.0	586.4	643.3	1044.0
SNN	447.7	530.9	606.6	631.8	523.0	582.0	1026.0
Ours	434.2	521.2	579.7	615.8	512.7	568.6	953.0

410
 411
 412
 413
 414
 415
 416
 417 Tables 1–4 summarize the comparative performance of the three models. On the first six datasets,
 418 where distribution shifts are introduced based on P_5 , the proposed model achieves an average im-
 419 provement of 3.6% in R^2 compared to the standard DNN and 1.3% compared to SNN. On Dataset
 420 7, which features distribution shifts based on σ_3 , HSIC-StableNet continues to outperform both
 421 baselines, with R^2 gains of 1.6% over DNN and 1.4% over SNN.
 422

423 4.2.2 PERFORMANCE ANALYSIS OF THE PROPOSED MODEL

424 Figure 4 presents a radar chart comparing performance across four metrics for all seven synthetic bi-
 425 ased datasets. Datasets 1, 2, and 3 share identical training sets, each exhibiting a 5% left-biased shift
 426 based on P_5 , while their test sets vary, incorporating a 10% left-biased shift, a 5% right-biased shift,
 427 and a 10% right-biased shift, respectively. The parameter v represents the distribution deviation
 428 between training and test sets.

429 In Figure 4(a), the green line representing HSIC-StableNet consistently aligns closer to the outer
 430 edge than the red (DNN) and purple (SNN) lines, indicating superior R^2 performance. Notably, the
 431 proposed HSIC-StableNet shows greater improvements as the distribution deviation (v) between the

Table 4: Comparison of MAPE across seven synthetic biased datasets

Model	Index of Synthetic Biased Datasets						
	1	2	3	4	5	6	7
DNN	0.247	0.295	0.361	0.465	0.299	0.308	0.328
SNN	0.230	0.282	0.301	0.414	0.257	0.270	0.425
Ours	0.224	0.276	0.293	0.345	0.243	0.257	0.395

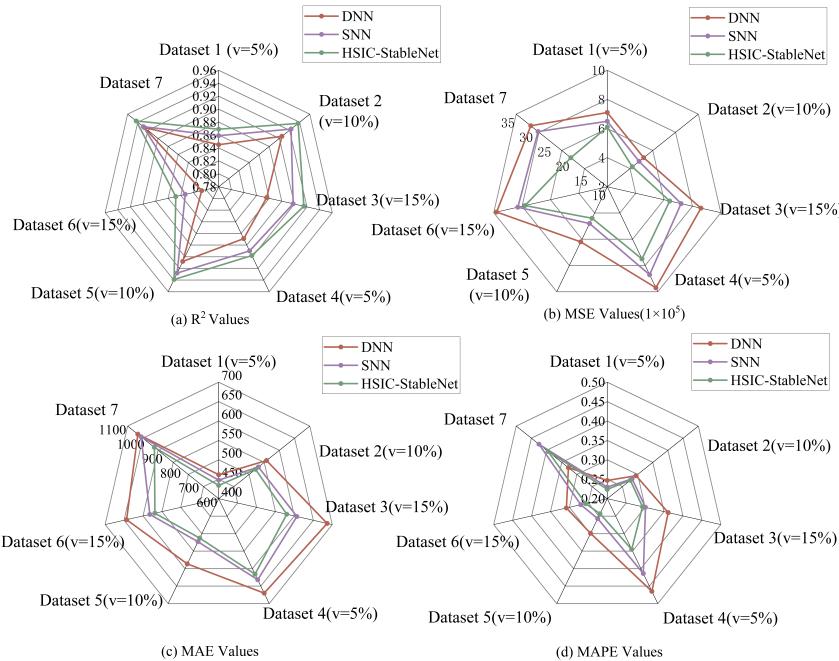


Figure 4: Overview of performance comparisons among HSIC-StableNet, SNN, and DNN models based on synthetic biased datasets.

training and test sets increases, as evidenced by the R^2 values across datasets 1, 2, and 3. Additionally, HSIC-StableNet outperforms the baseline methods on dataset 7, which introduces distribution shifts based on σ_3 . These results indicate that HSIC-StableNet consistently maintains robust generalization performance under varying distributional inconsistencies, with its superiority in generalization becoming more pronounced as the degree of distribution deviation increases.

5 CONCLUSION

In this paper, we propose HSIC-StableNet, a stable learning framework that combines HSIC-based feature decorrelation with deep neural networks to improve the generalization of strength behavior prediction for coarse-grained soils. Unlike traditional neural networks that struggle under distribution shifts, HSIC-StableNet reduces spurious correlations through sample reweighting. Experimental results show that it outperforms both baseline DNN and existing stable learning methods, achieving robust performance on biased data. Additionally, the model enables accurate prediction for large-particle soils using data from smaller particles, offering an efficient solution to data scarcity in geotechnical applications.

REFERENCES

Gulrajani I, Arjovsky M, Bottou L. Invariant risk minimization. *arXiv preprint*, 2019. arXiv:1907.02893.

486 Jia C. Bai J., Diao Y. A review of advances in triaxial tests: Instruments, test techniques and
 487 prospects. *KSCE Journal of Civil Engineering*, 26(8):3325–3341, 2022.

488

489 Yang Y. Chen J., Zhang Y. Influence of coarse grain content on the mechanical properties of red
 490 sandstone soil. *Sustainability*, 15(4):3117, 2023.

491

492 Ma Z. M. Chen Y., Xiong R. When does group invariant learning survive spurious correlations?
 493 *Advances in Neural Information Processing Systems*, 35:7038–7051, 2022.

494

495 Zemel R. Creager E., Jacobsen J. H. Environment inference for invariant learning. In *International
 Conference on Machine Learning*, pp. 2189–2200. PMLR, 2021.

496

497 Athey S. Cui P. Stable learning establishes some common ground between causal inference and
 498 machine learning. *Nature Machine Intelligence*, 4(2):110–115, 2022.

499

500 Levine S. Finn C., Abbeel P. Model-agnostic meta-learning for fast adaptation of deep networks. In
 501 *International Conference on Machine Learning*, pp. 1126–1135. PMLR, 2017.

502

503 Sitharam T. G. and Nimbkar M. S. Micromechanical modelling of granular materials: effect of
 504 particle size and gradation. *Geotechnical & Geological Engineering*, 18:91–117, 2000.

505

506 Smola A. Gretton A., Bousquet O. Measuring statistical dependence with hilbert-schmidt norms. In
 507 *International Conference on Algorithmic Learning Theory*, pp. 63–77. Springer, 2005.

508

509 Wang H., Wang W., and Yang J. A deterministic-stochastic dfn-dem numerical modeling method
 510 with application in stability of fractured rock slope in bda hydropower station. *Engineering Ge-
 511 ology*, pp. 108111, 2025.

512

513 Cudmani R. Kidane M., Olarte A. A. P. Coupled dem-fdm simulation of cone penetration tests in
 514 coarse grained soils. *EPJ Web of Conferences*, 249:11012, 2021.

515

516 Cheng Z. Lin S., Xu D. A continuous-discontinuous deformation analysis method for research on
 517 the mechanical properties of coarse granular materials. *Computers and Geotechnics*, 168:106152,
 518 2024.

519

520 Dano C. Ovalle C., Linero S. Data compilation from large drained compression triaxial tests on
 521 coarse crushable rockfill materials. *Journal of Geotechnical and Geoenvironmental Engineering*,
 522 146(9):06020013, 2020.

523

524 Nguyen D. M. Pham B. T., Hoang T. A. Prediction of shear strength of soft soil using machine
 525 learning methods. *Catena*, 166:181–191, 2018.

526

527 Mehrotra S. Rahimian H. Distributionally robust optimization: A review. *arXiv preprint*, 2019.
 528 arXiv:1908.05659.

529

530 Ni W. Ren S., Wang H. Deformation characteristics and influencing factors of loess fill foundation
 531 based on insar technique. *Engineering Geology*, pp. 108098, 2025.

532

533 Zhang T. Shen Z., Cui P. Stable learning via sample reweighting. In *Proceedings of the AAAI
 Conference on Artificial Intelligence*, volume 34, pp. 5692–5699, 2020.

534

535 Liu C. Wang J., Lan C. Generalizing to unseen domains: A survey on domain generalization. *IEEE
 Transactions on Knowledge and Data Engineering*, 35(8):8052–8072, 2022.

536

537 Wang Z. Wang L., Li K. Description and prediction of stress-strain curve of loess. *Engineering
 538 Geology*, 308:106827, 2022.

539

540 Shao X. Yan S., Chi S. Effect of size and strain rate on particle strength and stress-strain properties
 541 of rockfill materials. *Soil Dynamics and Earthquake Engineering*, 162:107422, 2022.

542

543 Lopes M. E. Yao J., Erichson N. B. Error estimation for random fourier features. pp. 2348–2364,
 544 2023.

545

546 Zhu J. Yao Y., Zhang B. Behaviors, constitutive models and numerical simulation of soils. *China
 547 Civil Engineering Journal*, 45(3):127–150, 2012. DOI: 10.15951/j.tmgcxb.2012.03.001.

540 Cao X. Ye W., Zheng G. Spurious correlations in machine learning: A survey. *arXiv preprint*, 2024.
541 arXiv:2402.12715.

542

543 Zhang X. Yu H., Liu J. A survey on evaluation of out-of-distribution generalization. *arXiv preprint*,
544 2024. arXiv:2403.01874.

545 Wang T. Zhang X., Luo K. Microscopic mechanism of coarse-grained soils under triaxial test based
546 on pfc-flac coupling method. *Soil Mechanics and Foundation Engineering*, 60(4):323–329, 2023.

547

548 Xu R. Zhang X., Cui P. Deep stable learning for out-of-distribution generalization. In *Proceedings*
549 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 5372–5382, 2021.

550 Liu T. Zhao S., Gong M. Domain generalization via entropy regularization. In *Advances in Neural*
551 *Information Processing Systems*, volume 33, pp. 16096–16107, 2020.

552

553 Yang F. Zhao Y., Zhong Z. Learning to generalize unseen domains via memory-based multi-source
554 meta-learning for person re-identification. In *Proceedings of the IEEE/CVF Conference on Com-*
555 *puter Vision and Pattern Recognition*, pp. 6277–6286, 2021.

556 Qiao Y. Zhou K., Liu Z. Domain generalization: A survey. *IEEE Transactions on Pattern Analysis*
557 *and Machine Intelligence*, 45(4):4396–4415, 2022.

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593