
MonarchAttention: Zero-Shot Conversion to Fast,
Hardware-Aware Structured Attention

Can Yaras
University of Michigan
cjyaras@umich.edu

Alec S. Xu
University of Michigan
alecx@umich.edu

Pierre Abillama
University of Michigan
pabillam@umich.edu

Changwoo Lee
University of Michigan
cwoolee@umich.edu

Laura Balzano
University of Michigan
girasole@umich.edu

Abstract

Transformers have achieved state-of-the-art performance across various tasks, but
suffer from a notable quadratic complexity in sequence length due to the attention
mechanism. In this work, we propose MonarchAttention – a novel approach to
sub-quadratic attention approximation via Monarch matrices, an expressive class
of structured matrices. Based on the variational form of softmax, we describe an
efficient optimization-based algorithm to compute an approximate projection of
softmax attention onto the class of Monarch matrices with Θ(N

√
Nd) computa-

tional complexity and Θ(Nd) memory/IO complexity. Unlike previous approaches,
MonarchAttention is both (1) transferable, yielding minimal performance loss
with no additional training, even when replacing every attention layer of the Trans-
former, and (2) hardware-efficient, utilizing the highest-throughput tensor core units
on modern GPUs. With optimized kernels, MonarchAttention achieves substan-
tial speed-ups in wall-time over FlashAttention-2: 1.4× for shorter sequences
(N = 256), 4.5× for medium-length sequences (N = 4K), and 8.2× for longer
sequences (N = 16K). We demonstrate the quality of MonarchAttention on
diverse tasks and architectures in vision and language problems, showing that it
flexibly and accurately approximates softmax attention in a variety of contexts. Our
code is available at https://github.com/cjyaras/monarch-attention.

1 Introduction

Over the past decade, Transformers (Vaswani et al., 2017) have become the dominant architecture
for generating and processing various data modalities, such as text (Brown et al., 2020), images
(Dosovitskiy et al., 2021), and speech (Radford et al., 2023). Central to the Transformer’s success is
attention, the mechanism through which complex interactions within sequential data are captured
through weighted combinations of embeddings at every position in the sequence. Famously, the
attention mechanism has a quadratic-time complexity Θ(N2d) in the length of the sequence N ,
where d is the head dimension, which is a key bottleneck for both training and inference, particularly
in long sequence problems. To address this, numerous works have proposed sub-quadratic
substitutes for attention. Yet, such approaches are either (1) not transferable, requiring training
from scratch or fine-tuning of existing models, or (2) do not yield speed-ups in practice (except on
extremely long sequences) due to a gap between theoretical complexity and practical considera-
tions for modern GPUs, especially compared to highly optimized implementations (Dao et al., 2022b).

In this work, we propose MonarchAttention: a novel sub-quadratic attention substitute

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/cjyaras/monarch-attention


cosformer linear-attention performer nystromformer monarch-attention softmax

Figure 1: Approximation of softmax attention via MonarchAttention. By directly optimizing the
softmax variational objective constrained to Monarch matrices, MonarchAttention yields accurate
zero-shot approximation to softmax attention compared to other hardware-friendly, efficient attention
baselines. Attention maps extracted from RoBERTa on the SQuAD dataset in Section 4.

based on approximating the attention matrix via Monarch matrices (Dao et al., 2022a), a class of
expressive structured matrices. At first glance, this is computationally infeasible – for sequence
length N , computing an exact projection onto the set of Monarch matrices has a super-quadratic
O(N2

√
N)-time complexity, not to mention that we need to form the entire N ×N attention matrix.

Instead, we reframe the computation of the attention matrix as an optimization problem in terms of
the variational form of softmax, and exploit low-dimensional structure in the variational objective
when constrained to the set of Monarch matrices – this yields a sub-quadratic Θ(N

√
Nd)-time

approximation, where d is the head dimension. This approach combines two optimization-based
improvements for its success: the variational form of the softmax nonlinearity with a structured
factorization approach analogous to those for low-rank approximation of a matrix (Chi et al., 2019),
where rather than computing a full SVD and truncating to the desired rank, one can more efficiently
minimize a Frobenius norm objective constrained to the set of low-rank matrices. We briefly review
prior work on structured matrices, including Monarch matrices, as well as existing approaches to
efficient attention.

Structured & Monarch Matrices. We use the phrase “structured matrices” to mean those that
admit sub-quadratic storage and matrix-vector multiplication, such as low-rank or sparse matrices.
There are many useful classes of structured matrices, such as those with low displacement rank
(Kailath et al., 1979), which includes Toeplitz, Hankel, Vandermonde, Cauchy matrices (Pan, 2001);
orthogonal polynomial transforms (Chihara, 2014), which includes discrete Fourier/cosine and
Hadamard transforms; butterfly factorizations (Dao et al., 2019), which implement fast matrix-vector
multiplication via a recursive divide-and-conquer algorithm similar to that of fast Fourier transforms
(FFTs); and Monarch matrices, an expressive family of structured matrices (generalizing butterfly
matrices and thereby many fast transforms) that overcome unfavorable memory access patterns typical
to FFT-like algorithms by implementing matrix products via batched dense matrix multiplications
(also called matmuls) on fast tensor cores found in modern GPUs.

Sub-Quadratic Attention. Nearly all approaches to sub-quadratic attention approximate the
attention matrix by a structured matrix, specifically low-rank and/or sparse.

• Low-Rank. Motivated by Johnson-Lindenstrauss embeddings, Wang et al. (2020) propose
sketching the key and value matrices along the sequence dimension via learnable projections.
Katharopoulos et al. (2020) introduce linear attention, where the exponential kernel is
approximated via inner products of queries and keys lifted via some feature map. Several
follow-up works proposed various feature maps, such as the exponential linear unit (ELU)
(Katharopoulos et al., 2020), random positive features (Choromanski et al., 2021), rectified
linear unit (ReLU) with cosine reweighting (Qin et al., 2022), and learnable single-layer
multi-layer perceptrons (MLPs) (Zhang et al., 2024). Xiong et al. (2021) use the Nyström
method for computing low-rank approximations by sampling rows and columns.

• Sparse. Child et al. (2019) introduce sparsity by applying fixed, structured sparse masks on
the attention matrix. In particular, Chen et al. (2022) propose a particular block butterfly
matrix for the sparse mask, which is more hardware-friendly at the cost of reduced expres-
siveness. Those that do not enforce a structure on the sparsity pattern include Kitaev et al.
(2020); Daras et al. (2020) where they utilize locality-sensitive hashing (LSH) on shared
query/key vectors to only compute attention within clusters of similar tokens.

2



• Low-Rank + Sparse. Inspired by robust PCA, Chen et al. (2021) decompose the attention
matrix into a sum of two matrices: an unstructured sparse component using LSH and a
low-rank component that is constructed via linear attention. Han et al. (2024) propose to
subsample columns of the non-normalized attention matrix based on row norms of the value
matrix, while estimating the softmax normalization factors from a few large elements via
LSH.

We note that there are significant drawbacks to the approaches described above. Pure low-rank
methods are often fast and hardware-friendly, but are typically not suitable as drop-in replacements
for attention in pre-trained Transformers due to the prevalence of “strongly diagonal”, high-rank
attention matrices where attention weights are concentrated locally in a sequence. Making up for
this with a fixed sparsity pattern does not allow for data-dependent support of the attention matrix,
necessary for zero-shot conversion. Finally, sparsity/LSH-based approaches that do not have a fixed
sparsity pattern improve on accuracy over low-rank approximations but suffer from significant
overhead due to GPU incompatibility. MonarchAttention, on the other hand, achieves the best of
both worlds: it is fast and hardware-friendly due to utilization of tensor cores for batched matmuls,
while computing highly accurate approximations to the extent that it can directly replace softmax
attention with no additional training.

We conclude this section by discussing closely related works. Dao et al. (2022b) propose
FlashAttention, an IO-aware streaming algorithm for computing exact softmax attention. We
show in Section 3 that each step of MonarchAttention can be written as a FlashAttention-like
computation, allowing for similar IO savings to FlashAttention – in fact, we demon-
strate that MonarchAttention achieves a strictly better worst-case IO complexity compared
to FlashAttention. We also note that Dao et al. (2022b) propose to further accelerate
FlashAttention using block butterfly attention masks, so MonarchAttention can be viewed
as a generalization of block-sparse FlashAttention to more general Monarch matrices. Finally,
MonarchAttention is closely related to Monarch Mixer (Fu et al., 2023), a mixer-type architecture
(Tolstikhin et al., 2021) that utilizes Monarch instead of dense matrices for token and channel mixing.
MonarchAttention also uses Monarch matrices for mixing tokens – however, it is based on the
attention operation which is data-dependent, unlike Monarch Mixer.

Organization. In Section 2, we discuss preliminaries on (softmax) attention, and Monarch matrices.
In Section 3, we describe the MonarchAttention algorithm and implementation. In Section 4, we
evaluate MonarchAttention in a variety of settings for zero-shot conversion to sub-quadratic atten-
tion and benchmark its implementation. In Section 5, we discuss limitations and future directions.

2 Preliminaries

Notation. We use [N ] to denote the index set {1, 2, . . . , N}. We use ∆N to denote the (N − 1)
dimensional unit simplex, given by ∆N = {a ∈ RN : a ⪰ 0, ⟨1N ,a⟩ = 1}. We denote the m×m
identity matrix by Im. We use the notation Aijk to denote an element of a 3-way tensor, and Ai,:,k

to denote a slice. We use δkl to denote the Kronecker delta that is 1 if k = l and otherwise 0.

Softmax. The softmax function RN → ∆N maps N real numbers to the (N − 1)-dimensional unit
simplex, and is defined as

[softmax(z)]i :=
exp(zi)∑
j exp(zj)

, ∀i ∈ [N ]. (1)

An alternative definition (Blondel et al., 2019) is given by the following variational form:
softmax(z) := argmax

a∈∆N

⟨a, z⟩+H(a), (2)

where H(a) = −
∑

i ai logai is Shannon entropy. See Appendix A for equivalence of (1) and (2).

Attention. Given query, key, value matrices Q,K,V ∈ RN×d, where N is the sequence length
and d is the head dimension, a single head of standard softmax attention1 computes

O = softmax
(
QK⊤)V , (3)

1Typically, the QK⊤ matrix is scaled by a factor of d−1/2, but this can be absorbed into Q.

3



where the softmax function is applied across rows. The computational complexity of attention is
Θ(N2d) for each forward pass, because the matrices Q,K,V are data-dependent.

Monarch Matrices. Given N = m × b for integers m, b, we define a block rank-one matrix
B ∈ RN×N as

B =

B11 . . . B1m

...
. . .

...
Bb1 . . . Bbm

 , where Bjk = LjkR
⊤
kj ∈ Rm×b

for some Ljk ∈ Rm,Rkj ∈ Rb for j ∈ [b] and k ∈ [m]. It follows that

B =


L⊤

1

L⊤
2

. . .
L⊤

b

P


R1

R2

. . .
Rm

 ,

where Lj ∈ Rm×m for j ∈ [b] and Rk ∈ Rb×b for k ∈ [m], and P ∈ RN×N is a “transpose”2

permutation matrix whose (i+ 1)-th row is given by eσ(i)+1 where

σ(i) = b · (i mod m) +

⌊
i

m

⌋
, i ∈ {0, . . . , N − 1}.

Given the above, a Monarch matrix M ∈ RN×N is given by M = P⊤B – in other words, it
is a row-permuted block rank-one matrix. When m = b =

√
N , storing such a matrix requires

only Θ(N
√
N) space, while matrix multiplication (matmul) with a matrix V ∈ RN×d can be

computed efficiently in Θ(N
√
Nd) operations (as opposed to Θ(N2d) for dense matrices) with

batched matmuls and transposes:

MV = O, where Ob·(l−1)+j,v =
∑
k

LjklYjkv, Yjkv =
∑
i

RkjiVb·(k−1)+i,v (4)

for i, j ∈ [b], k, l ∈ [m]. A useful characterization of M is in block form:

M =

M11 . . . M1m

...
. . .

...
Mm1 . . . Mmm

 , (5)

where Mlk ∈ Rb×b, [Mlk]ji = LjklRkji, ∀i, j ∈ [b], k, l ∈ [m].

3 MonarchAttention

The main goal of MonarchAttention is to find a Monarch matrix M ∈ RN×N in o(N2d) time
such that M ≈ softmax(QK⊤). Then, we can approximately compute the output O = MV using
efficient matmul. We can do this by viewing the softmax operation as an optimization problem via its
variational form (2), whose objective can be efficiently maximized with exact alternating steps when
constrained to Monarch matrices. As shown in Figure 1, this yields highly accurate approximations
to the softmax attention matrix.

Softmax Objective. First, from (2) we can write

σ(QK⊤) = argmax
A∈∆N×N

f(A;Q,K) := ⟨A,QK⊤⟩+H(A), (6)

where ∆N×N denotes a matrix whose rows lie on ∆N , and H(A) = −
∑

i,j Aij logAij . Here we
demonstrate how to handle this objective function when A has Monarch structure, and defer discus-
sion of the simplex constraint to the next paragraph. For a dense matrix A, computing f(A;Q,K)

2Px corresponds to row-major reshaping x ∈ RN to Rm×b, transposing to Rb×m, then row-major flattening
back to RN . See Appendix B for an example.

4



1 2 3 4 5 6 7
Total Attention FLOPs 1e8

0

20

40

60

80

100

To
p-
5 
ac
cu
ra
cy

ViT ImageNet

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
Total Attention FLOPs 1e9

0

20

40

60

80

100

F1

RoBERTa SQuAD

monarch-attention
performer
cosformer
linear-attention
nystromformer
softmax

Figure 2: Zero-shot conversion of attention layers for image classification and question answer-
ing. We vary hyperparameters for various baselines to evaluate model quality vs compute tradeoff.
Left. Top-5 accuracy vs. total attention FLOPs across all layers for ViT on ImageNet. Right. F1 score
vs total attention FLOPs across all layers for RoBERTa on SQuAD.

requires Θ(N2d) operations, which is the same as computing σ(QK⊤) directly. However, when A
is a Monarch matrix M = P⊤B, we have

f(P⊤B;Q,K) = ⟨P⊤B,QK⊤⟩+H(P⊤B)

= ⟨B, Q̃K⊤⟩+H(B) =
∑
j,k

f(Bjk; Q̃j ,Kk),

where Q̃ = PQ, and Q̃j ∈ Rm×d,Kk ∈ Rb×d are the j-th and k-th block of rows of Q̃,K
respectively. Then, for each j ∈ [b], k ∈ [m] we evaluate f on the rank-one matrix Bjk = LjkR

⊤
kj :

f(Bjk; Q̃j ,Kk) = ⟨LjkR
⊤
kj , Q̃jK

⊤
k ⟩ −

∑
l,i

LjklRkji log(LjklRkji)

= ⟨Q̃⊤
j Ljk,K

⊤
k Rkj⟩ −

∑
l,i

LjklRkji logLjkl −
∑
l,i

LjklRkji logRkji

= ⟨Q̃⊤
j Ljk,K

⊤
k Rkj⟩+

(
1⊤Rkj

)
·H(Ljk) +

(
1⊤Ljk

)
·H(Rkj).

Thus, for each j ∈ [b], k ∈ [m] we only need Θ((m+ b)d) operations to compute f(Bjk; Q̃j ,Kk)

due to Q̃⊤
j Ljk and K⊤

k Rkj . We emphasize that the rank-one structure implies separability of the
entropy term, meaning we can compute the entropy on Ljk and Rkj individually and avoid the need
to materialize Bjk, which would incur Θ(mb) cost as opposed to Θ(m+ b). Since there are m · b
many Bjk matrices, we have in total Θ((m2b+ b2m)d) operations to compute f(M ;Q,K), which
for m = b =

√
N is Θ(N

√
Nd), improving on the dense computation by a factor of

√
N .

Alternating Maximization with Constraints. We will now explain the alternating maximization
approach for optimizing f . When L is fixed, the objective is concave in R, and vice-versa – therefore,
we can derive closed form expressions via KKT conditions for L and R that maximize f with one of
L or R fixed, which will constitute a single update step. Evaluating (and therefore differentiating) f
w.r.t. L and R can be done in Θ(N

√
Nd) time, which will be the same complexity as one of these

steps. For T steps, this will require Θ(TN
√
Nd) computation; provided that T = o(

√
N), this will

still be sub-quadratic. However, the constraint M ∈ ∆N×N presents a challenge in its current form,
since this requires materializing M to check that each entry is non-negative. Instead, we use the fact
that

Lj,:,l ∈ ∆m, Rkj ∈ ∆b, ∀j ∈ [b],∀k, l ∈ [m] =⇒ M ∈ ∆N×N ,

i.e., slices of L,R individually lying on the unit simplex is sufficient to enforce the constraint on M .
This is easily seen from (5) – obviously if Ljkl,Rkji ≥ 0, then [Mlk]ji ≥ 0. Moreover, this also

5



1010 1011
Total Attention FLOPs

30

31

32

33

34

35

RO
UG

E-
1

1010 1011
Total Attention FLOPs

15.0

15.2

15.4

15.6

15.8

16.0

16.2

16.4

16.6

RO
UG

E-
L

monarch-attention
nystromformer
softmax

monarch-attention
nystromformer
softmax

Sequence Length
1024
2048
4096
8192

Figure 3: Zero-shot conversion of attention layers for long sequence summarization. We vary
the sequence length of the text to be summarized to evaluate model quality vs compute tradeoff. We
report recall-based ROUGE-1 and ROUGE-L scores vs. total attention FLOPs across all layers for
BART on BookSum-chapters.

enforces the sum-to-one constraint, as rows of M sum as∑
k,i

[Mlk]ji =

(∑
k

Ljkl

)(∑
i

Rkji

)
= 1.

We now present the updates for L,R. Initializing L
(0)
jkl = δkl as identity, we have

R(t) = softmaxi(Z
(t)
R ), Z

(t)
R,kji = β

(t)
R,kji/c

(t)
R,kj , (7)

L(t) = softmaxk(Z
(t)
L ), Z

(t)
L,jkl = β

(t)
L,jkl − c

(t)
L,jk, (8)

for t ∈ [T ], where softmaxk, softmaxi are applied along k and i index dimensions respectively, and

β
(t)
R,kji =

∑
v

α
(t)
R,kjvKkiv, α

(t)
R,kjv =

∑
l

L
(t−1)
jkl Qjlv, c

(t)
R,kj =

∑
l

L
(t−1)
jkl , (9)

β
(t)
L,jkl =

∑
v

α
(t)
L,jkvQjlv, α

(t)
L,jkv =

∑
i

R
(t)
kjiKkiv, c

(t)
L,jk =

∑
i

R
(t)
kji logR

(t)
kji, (10)

where Qjl,Kki ∈ Rd are the (b · (l − 1) + j)-th and (b · (k − 1) + i)-th rows of Q and K
respectively. The full derivation is provided in Appendix C.1. After T steps, we obtain the final
Monarch approximation M (T ) ≈ σ(QK⊤) with factors L(T ) and R(T ), from which we output
M (T )V using (4). A naïve implementation of the full algorithm is provided in Appendix C.2. We
discuss in Appendix C.3 how padding can be incorporated into MonarchAttention for when N
is not divisible by b. We empirically demonstrate the fast convergence of MonarchAttention in
Appendix E.1.

Implementation. To minimize data movement and memory usage on GPU, we do not materialize
L or R in high-bandwidth memory (HBM). In addition to Q,K,V ,O, we only need to maintain
states3 α

(t)
R ,α

(t)
L , c

(t)
R , c

(t)
L from (9) and (10), resulting in Θ(Nd) additional memory. All other

intermediate values are only materialized in on-chip SRAM, fusing all operations between the α (and
similarly c) variables. For instance, from the above update equations, the computation of α(t)

L from
α

(t)
R is given by

α
(t)
L,jkv = softmaxi

(∑
v α

(t)
R,kjvKkiv

c
(t)
R,kj

)
Kkiv,

3The α and c variables can share the same memory location as those corresponding to R can be derived
from L (and vice-versa).

6



1 def al_cl_kernel(aR, cR, Kb): # Computes aL, cL from aR, cR
2 R = softmax(bmm(aR, Kb.transpose(1, 2)) / cR[:, :, None], dim=2)
3 cL = sum(R * log(R), dim=2).transpose(0, 1)
4 aL = bmm(R, Kb).transpose(0, 1)
5 return aL, cL
6

7 def ar_cr_kernel(aL, cL, Qb): # Computes aR, cR from aL, cL
8 L = softmax(bmm(aL, Qb.transpose(1, 2)) - cL[:, :, None], dim=1)
9 cR = sum(L, dim=2).transpose(0, 1)

10 aR = bmm(L, Qb).transpose(0, 1)
11 return aR, cR
12

13 def al_y_cl_kernel(aR, cR, Kb, Vb): # Fuse al_cl_kernel + Monarch matmul 1st step
14 R = softmax(bmm(aR, Kb.transpose(1, 2)) / cR[:, :, None], dim=2)
15 cL = sum(R * log(R), dim=2).transpose(0, 1)
16 aL = bmm(R, Kb).transpose(0, 1)
17 y = bmm(R, Vb).transpose(0, 1)
18 return aL, y, cL
19

20 def z_kernel(aL, y, cL, Qb): # Monarch matmul 2nd step
21 L = softmax(bmm(Qb, aL.transpose(1, 2)) - cL[:, None, :], dim=2)
22 z = bmm(L, y).transpose(0, 1)
23 return z
24

25 def monarch_attention(Q, K, V, T): # Q, K, V: (N, d), T: number of steps
26 Qb = Q.reshape(m, b, d).transpose(0, 1)
27 Kb = K.reshape(m, b, d)
28 Vb = V.reshape(m, b, d)
29 aR = Q.reshape(m, b, d)
30 cR = ones(m, b)
31

32 for t in range(T-1):
33 aL, cL = al_cl_kernel(aR, cR, Kb)
34 aR, cR = ar_cr_kernel(aL, cL, Qb)
35

36 aL, y, cL = al_y_cl_kernel(aR, cR, Kb, Vb)
37 z = z_kernel(aL, y, cL, Qb)
38 o = z.reshape(N, d)
39 return o

Figure 4: Python-like code for MonarchAttention. Each kernel materializes all intermediate
arrays in SRAM to reduce data movement.

which can be seen as a batched attention computation, meaning we can implement a
FlashAttention-like kernel to reduce IO between HBM and SRAM. However, several aspects of
this computation make it particularly IO-efficient. Besides the fact that K acts as both the K and V
matrices in (3), the effective sequence length is

√
N . This eliminates the need for tiling along the

sequence length, except for very long sequences having Θ(
√
Nd) > S, where S is the size of on-chip

SRAM. This means that we have an optimal IO complexity of Θ(Nd) for a single call, as opposed to
the worst-case O(N2d2/S) complexity of FlashAttention. The computation of α(t)

R from α
(t)
L , as

well as the Monarch matmul, can be written in a similar fashion. Based on this, MonarchAttention
not only achieves significant speed-up over FlashAttention for longer sequences, but also for
shorter ones. Python-like code for MonarchAttention is given in Figure 4.

4 Experiments

In this section, we evaluate the zero-shot performance (no additional training) of MonarchAttention
for converting pre-trained/fine-tuned Transformer attention layers to sub-quadratic attention in four
different model/task settings. We compare with previous low-rank attention methods (Katharopoulos
et al., 2020; Choromanski et al., 2021; Xiong et al., 2021; Qin et al., 2022); see Appendix D.1 for

7



(a) Softmax (b) MonarchAttention (c) Nyströmformer

Figure 5: Visual quality of generated images for zero-shot conversion of attention layers. Example
images generated by with softmax (left), MonarchAttention (middle), and Nyströmformer (right).
Only the first half of the attention layers of DiT are replaced.

more details on the baselines. We specifically exclude low-rank methods with learnable components
(Wang et al., 2020; Zhang et al., 2024), since we are focused on the zero-shot setting, as well as
sparsity/LSH-based approaches (Kitaev et al., 2020; Daras et al., 2020; Chen et al., 2021; Han et al.,
2024), since these do not admit efficient implementations on current GPUs. We also benchmark our
fast implementation of MonarchAttention, comparing with FlashAttention-2 (Dao, 2024).

Image Classification with Vision Transformer. We convert all 12 attention layers, each having
12 heads with sequence length N = 197 and head dimension d = 64, of the 87M parameter ViT-
B (Dosovitskiy et al., 2021) that has been pre-trained on ImageNet-21K (Deng et al., 2009) and
fine-tuned on ImageNet-1K (Russakovsky et al., 2015) for image classification. To evaluate the perfor-
mance at different FLOP counts, we vary the number of steps T ∈ {1, 2, 3} for MonarchAttention,
and vary the rank for Performer and Nyströmformer; see Appendix D.2 for more details on the
set-up. The results are shown in the left panel of Figure 2. MonarchAttention achieves significant
improvement over other baselines – compared to the original softmax attention, MonarchAttention
loses only 5% accuracy to reduce attention FLOPs by 80%, or matches the performance to reduce
attention FLOPs by 50%.

Question Answering with Encoder-Only Transformer. We convert the initial 4 and final 4 layers
of the 12 attention layers, each having 12 heads with sequence length N = 384 and head dimen-
sion d = 64, of the 125M parameter RoBERTa-B (Liu et al., 2019) that has been pre-trained on a
large English corpus and fine-tuned on SQuAD1.1 (Rajpurkar et al., 2016) for question answering.
To evaluate the performance at different FLOP counts, we fix T = 1 and vary the block size b
for MonarchAttention, and vary the rank for Performer and Nyströmformer; see Appendix D.3
for more details on the set-up. The results are shown in the right panel of Figure 2. Once again,
MonarchAttention achieves significant improvement over other baselines – compared to the orig-
inal softmax attention, MonarchAttention loses only 10 points in F1 score to reduce attention
FLOPs by 60%, or matches the performance to reduce attention FLOPs by 35%. We additionally
provide a per-layer ablation study in Appendix E.2 to understand the impact of converting different
layers in this setting.

Summarization with Encoder-Decoder Transformer. We convert all 6 attention layers, each
having 12 heads with head dimension d = 64, in the encoder of the 139M parameter BART-B (Lewis
et al., 2020) that has been pre-trained on a large English corpus and fine-tuned on BookSum-chapters
(Kryściński et al., 2022) for summarization. We only convert the encoder model and leave the decoder
intact. To evaluate the benefits of sub-quadratic attention for processing longer sequences, we truncate
the text to be summarized to various sequence lengths N for each method, with T ∈ {2, 3} for
MonarchAttention depending on the sequence length; see Appendix D.4 for more details on the
set-up. The results are shown in Figure 3. We see that MonarchAttention achieves a strictly better
ROUGE score (Lin, 2004) vs. FLOPs tradeoff than even softmax attention, due to accurate and
efficient processing of longer sequences. In particular, the N = 8192 MonarchAttention model

8



Table 1: Quantitative results for zero-shot conversion of attention layers for image generation.
We report FID and sFID (using the original softmax attention model as reference) of DiT when
replacing all or half of the attention layers.

Layers Replaced Method Total Attention FLOPs (109) FID (↓) sFID (↓)

– Softmax 8.46 – –

All Nyströmformer 3.30 5.97 13.47
MonarchAttention 3.44 2.82 5.09

First Half Nyströmformer 5.88 8.17 19.01
MonarchAttention 5.95 0.39 0.66

Second Half Nyströmformer 5.88 6.76 13.58
MonarchAttention 5.95 1.98 3.36

improves on the N = 2048 softmax attention model by 0.75 on ROUGE-1 and 0.5 on ROUGE-L
with slightly fewer FLOPs, while the N = 8192 Nyströmformer model with similar FLOPs does
strictly worse than softmax. Although we are mainly focused on the zero-shot setting, we also
investigate the post-swap fine-tuning performance and stability of MonarchAttention on this task
in Appendix E.3.

Image Generation with Diffusion Transformer. We convert a subset of the 28 attention lay-
ers, each having 16 heads with sequence length N = 256 and head dimension d = 72, of the
675M parameter DiT-XL (Peebles and Xie, 2023) that has been trained on ImageNet (Deng et al.,
2009). We consider replacing either all layers, the first 14 layers, or the last 14 layers, and fix
T = 3 for MonarchAttention; see Appendix D.5 for more details on the set-up. Examples
of generated images with each method for replacing the first 14 layers are shown in Figure 5,
where MonarchAttention produces clear images resembling those of softmax attention, while
the Nyströmformer ones are extremely noisy. We also quantitatively evaluate the (s)FID scores
(Heusel et al., 2017) of MonarchAttention compared with Nyströmformer, using images gener-
ated with the original softmax attention model as reference – the results are reported in Table 1.
MonarchAttention noticeably outperforms Nyströmformer with similar FLOP count. In particular,
using MonarchAttention in the first half of the DiT layers results in extremely small FID and sFID
from the softmax attention model’s images, while reducing FLOPs by nearly 30%. We provide a
more fine-grained version of Table 1 for MonarchAttention in Appendix E.4 to investigate the
impact of replacing different quarters of the DiT model.

Node Classification with Graph Transformer. Beyond image and language tasks, we also evaluate
the performance of MonarchAttention for converting attention in Graph Transformers on a graph
node classification task in Appendix E.5.

Benchmarking MonarchAttention. Finally, we validate that the computational/IO complexity
reduction achieved by MonarchAttention translates into actual speed-ups on the NVIDIA A40, a
modern GPU. We implement the pseudo-code described in Section 3 as four separate Triton kernels
and compare it against the fastest available implementations of FlashAttention-2 – either the
Triton implementation or PyTorch’s scaled_dot_product_attention, which calls the CUDA
backend for FlashAttention-2. Using a fixed batch size E, number of heads H , and head
dimension d, we sweep the input sequence length N , generate random Q,K,V matrices, and
compare the run-times of FlashAttention-2 and MonarchAttention (with b =

√
N and T = 1)

in Figure 6 (left). As sequence length increases, MonarchAttention consistently outperforms
FlashAttention-2, notably achieving up to 8.2× speed-up with N = 16384. To highlight gains
for shorter sequences, we implement MonarchAttention as a single fully-fused Triton kernel, with
a single thread block computing a single head. For fixed sequence length N = 256, number of heads
H , and head dimension d, we sweep the batch size E and compare the run-time of the fully-fused
MonarchAttention kernel against FlashAttention-2 in Figure 6 (right). With smaller batch
sizes, we have low utilization of hardware, since we compute a single head with a single thread block.
However, as we increase the batch size, MonarchAttention achieves up to 1.4× speed-up over
FlashAttention-2.

9



1024 2048 4096 8192 16384
Sequence Length (N)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 R

un
ti

me

Normalized Runtime vs. Sequence Length (E = 1)

8 16 32 64 128 256 512 1024 2048 4096 8192
Batch Size (E)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 R

un
ti

me

Normalized Runtime vs. Batch Size (N = 256)

monarch-attention
flash-attention-2

Figure 6: Run-times of MonarchAttention and FlashAttention-2 across various se-
quence lengths. Normalized runtime (1 = slowest, 0 = fastest) of MonarchAttention and
FlashAttention-2 on NVIDIA A40 GPU. Left: sweep of sequence length N with E = 1, H = 12,
and d = 64. Right: sweep of batch size E with N = 256, H = 12, and d = 64.

5 Conclusion

To conclude, we discuss several limitations and future directions for this work.

Autoregressive Transformers. In this paper, we have primarily focused on zero-shot approxima-
tion of attention in encoder-based Transformers, yet most generative language models of interest
today are decoder-based autoregressive Transformers. One limitation of MonarchAttention is
that it fundamentally cannot be applied to autoregressive generation, since there is no “attention
matrix” to approximate – instead, single queries are passed through the attention mechanism in a
streaming fashion, and discarded after each decode step. Instead, MonarchAttention could be used
during prefill to efficiently compute keys/values for a provided prefix (e.g., long prompt or context).
Moreover, MonarchAttention can be applied to emerging non-autoregressive paradigms such as
diffusion language models (DLMs) to accelerate language generative models.

Accelerating Training. While we have presented MonarchAttention as a direct replacement for
softmax attention with no additional training, it can also accelerate pre-training or fine-tuning as well.
Although MonarchAttention cannot be applied at inference time for autoregressive Transformers,
it can be applied to training such models. However it is not obvious how to efficiently incorporate the
causal mask into MonarchAttention.

Beyond Monarch & Softmax. Finally, although MonarchAttention is specifically designed
for approximating softmax attention via Monarch, this idea can be generalized to other (possibly
dynamic) structured matrix classes, as well as other nonlinear mappings. Monarch, while efficient,
allocates the same number of parameters to each uniformly sized block. Yet, in practice, different
regions of the attention matrix may require more fine-grained approximation. On the other hand,
α-entmax mappings (Peters et al., 2019), which generalize softmax, can produce sparser attention
matrices, thereby resulting in better approximations via block rank-one type matrices.

Acknowledgement

LB and CY were supported in part by NSF CAREER award CCF-1845076, NSF award CCF-2331590,
and an Intel Early Career award. LB was also supported by the University of Michigan Crosby
award. CY and AX were supported by NSF CCF 312842. PA and CL were supported in part by
COGNISENSE, one of seven centers in JUMP 2.0, a Semiconductor Research Corporation (SRC)
program sponsored by DARPA. We thank Samet Oymak (University of Michigan) for discussion
and use of computational resources provided by an Amazon Research Award on Foundation Model
Development.

10



References
Mathieu Blondel, Andre Martins, and Vlad Niculae. Learning classifiers with fenchel-young losses:

Generalized entropies, margins, and algorithms. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 606–615. PMLR, 2019.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain:
Unifying sparse and low-rank attention. Advances in Neural Information Processing Systems, 34:
17413–17426, 2021.

Beidi Chen, Tri Dao, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and Christopher Ré.
Pixelated butterfly: Simple and efficient sparse training for neural network models. In International
Conference on Learning Representations, 2022.

Yuejie Chi, Yue M Lu, and Yuxin Chen. Nonconvex optimization meets low-rank matrix factorization:
An overview. IEEE Transactions on Signal Processing, 67(20):5239–5269, 2019.

Theodore S Chihara. An Introduction to Orthogonal Polynomials. Courier Corporation, 2014.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, et al.
Rethinking attention with performers. In International Conference on Learning Representations,
2021.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In The
Twelfth International Conference on Learning Representations, 2024.

Tri Dao, Albert Gu, Matthew Eichhorn, Atri Rudra, and Christopher Ré. Learning fast algorithms for
linear transforms using butterfly factorizations. In International conference on machine learning,
pages 1517–1527. PMLR, 2019.

Tri Dao, Beidi Chen, Nimit S Sohoni, Arjun Desai, Michael Poli, Jessica Grogan, Alexander Liu,
Aniruddh Rao, Atri Rudra, and Christopher Ré. Monarch: Expressive structured matrices for
efficient and accurate training. In International Conference on Machine Learning, pages 4690–
4721. PMLR, 2022a.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems, 35:
16344–16359, 2022b.

Giannis Daras, Nikita Kitaev, Augustus Odena, and Alexandros G Dimakis. Smyrf-efficient attention
using asymmetric clustering. Advances in Neural Information Processing Systems, 33:6476–6489,
2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248–255. IEEE, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In International Conference
on Learning Representations, 2021.

Dan Fu, Simran Arora, Jessica Grogan, Isys Johnson, Evan Sabri Eyuboglu, Armin Thomas, Benjamin
Spector, Michael Poli, Atri Rudra, and Christopher Ré. Monarch mixer: A simple sub-quadratic
gemm-based architecture. Advances in Neural Information Processing Systems, 36:77546–77603,
2023.

11



Insu Han, R Jayaram, A Karbasi, V Mirrokno, D Woodruff, and A Zandieh. Hyperattention: Long-
context attention in near-linear time. In International Conference on Learning Representations,
2024.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Thomas Kailath, Sun-Yuan Kung, and Martin Morf. Displacement ranks of matrices and linear
equations. Journal of Mathematical Analysis and Applications, 68(2):395–407, 1979.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International conference on machine
learning, pages 5156–5165. PMLR, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd International
Conference for Learning Representations, 2014.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, 2020.

Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong, and Dragomir Radev.
Booksum: A collection of datasets for long-form narrative summarization. In Findings of the
Association for Computational Linguistics: EMNLP 2022, pages 6536–6558, 2022.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pages 7871–7880, 2020.

Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen,
Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, et al. Datasets: A
community library for natural language processing. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, pages 175–184,
2021.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pages 74–81, 2004.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Victor Pan. Structured matrices and polynomials: unified superfast algorithms. Springer Science &
Business Media, 2001.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pages 4195–4205, 2023.

Hongbin Pei, Bingzhe Wei, Kevin Chen Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In 8th International Conference on Learning Representations, ICLR
2020, 2020.

Ben Peters, Vlad Niculae, and André FT Martins. Sparse sequence-to-sequence models. In Pro-
ceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages
1504–1519, 2019.

Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yunshen Wei, Baohong Lv, Junjie Yan, Lingpeng
Kong, and Yiran Zhong. cosformer: Rethinking softmax in attention. In International Conference
on Learning Representations, 2022.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision. In International conference on
machine learning, pages 28492–28518. PMLR, 2023.

12



Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 2383–2392, 2016.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An
all-mlp architecture for vision. Advances in neural information processing systems, 34:24261–
24272, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and
Vikas Singh. Nyströmformer: A nyström-based algorithm for approximating self-attention. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, pages 14138–14148,
2021.

Michael Zhang, Kush Bhatia, Hermann Kumbong, and Christopher Ré. The hedgehog & the
porcupine: Expressive linear attentions with softmax mimicry. In International Conference on
Learning Representations, 2024.

13



Appendix

A Equivalence of Softmax Definitions

Consider the optimization problem in (2):

max
a

f(a) :=
∑
i

aizi −
∑
i

ai logai s.t. ai ≥ 0,
∑
i

ai = 1.

From the KKT stationarity condition, we have

∂

∂ai

(
f(a) + λ

(
1−

∑
i

ai

)
+
∑
i

µiai

)
= 0 =⇒ zi − (1 + logai)− λ+ µi = 0,

where λ ∈ R,µ ∈ RN are dual variables. From complementary slackness aiµi = 0 and the fact that
logai is not defined for ai = 0, we must have µi = 0, which gives

logai = zi − λ− 1 =⇒ ai = exp(zi)/ exp(λ+ 1).

Finally, from the constraint
∑

i ai = 1, we must have exp(λ+ 1) =
∑

j exp(zj), which gives the
form of softmax in (1).

B Monarch Background

We provide an example of the transpose permutation P in Section 2. Recall that applying P ∈ RN×N

to a vector x ∈ RN corresponds to row-major reshaping x to Rm×b, transposing to Rb×m, then
row-major flattening back to RN . This is equivalent to applying a permutation matrix whose (i+1)-th
row is given by eσ(i)+1 where

σ(i) = b · (i mod m) +

⌊
i

m

⌋
, i ∈ {0, . . . , N − 1}.

As an illustrative example, let N = 6, b = 3, and m = 2. The action of P is given by the following
steps: 

1
2
3
4
5
6

 reshape 2×3

[
1 2 3
4 5 6

]
transpose

[
1 4
2 5
3 6

]
flatten


1
4
2
5
3
6

 .

In matrix form, we have

P =


1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1

 .

C Details for MonarchAttention

C.1 Updates

Derivatives. We evaluate f with A = M as a Monarch matrix. Using (5), we have

f(M ;Q,K) =
∑

LjklRkjiQjlvKkiv −
∑

LjklRkji log(LjklRkji)

=
∑

LjklRkjiQjlvKkiv −
∑

LjklRkji logRkji −
∑

RkjiLjkl logLjkl.

14



The derivatives of f w.r.t. each factor are given by
∂f(M ;Q,K)

∂Ljkl
= βL,jkl − cL,jk − (1 + logLjkl)γL,jk, (11)

∂f(M ;Q,K)

∂Rkji
= βR,kji − γR,kj − (1 + logRkji)cR,kj , (12)

where

βL,jkl =
∑
v

Qjlv

∑
i

(RkjiKkiv), cL,jk =
∑
i

Rkji logRkji, γL,jk =
∑
i

Rkji,

βR,kji =
∑
v

Kkiv

∑
l

(LjklQjlv), γR,kj =
∑
l

Ljkl logLjkl, cR,kj =
∑
l

Ljkl.

We derive updates for each factor based on maximizing f with the other factor fixed.

L update. First, we fix R ∈ ∆m×b×b and consider

max
L

f(M ;Q,K) s.t. Ljkl ≥ 0,
∑
k

Ljkl = 1.

From the KKT stationarity condition, we have

∂

∂Ljkl

(
f(M ;Q,K) +

∑
λL,jl

(
1−

∑
k

Ljkl

)
+
∑

µL,jklLjkl

)
= 0

where λL ∈ Rb×m,µL ∈ Rb×m×m are dual variables. Along with (11), we have

βL,jkl − cL,jk − (1 + logLjkl)γL,jk − λL,jl + µL,jkl = 0.

Now, from complementary slackness µL,jklLjkl = 0 and the fact that logLjkl is not defined for
Ljkl = 0, we must have µL,jkl = 0. Moreover, since R ∈ ∆m×b×b, we have γL,jk = 1. Altogether,
we have

logLjkl = βL,jkl − cL,jk − λL,jl − 1 =⇒ Ljkl =
exp(βL,jkl − cL,jk)

exp(λL,jl + 1)
.

Finally, from the constraint
∑

k Ljkl = 1, we must have exp(λL,jl +1) =
∑

k exp(βL,jkl − cL,jk),
which gives the final closed form update:

L = softmaxk(ZL), ZL,jkl = βL,jkl − cL,jk,

where softmaxk is applied along the k index dimension.

R update. Similarly, we fix L ∈ ∆b×m×m and consider

max
R

f(M ;Q,K) s.t. Rkji ≥ 0,
∑
i

Rkji = 1.

From the KKT stationarity condition, we have

∂

∂Rkji

(
f(M ;Q,K) +

∑
λR,kj

(
1−

∑
i

Rkji

)
+
∑

µR,kjiRkji

)
= 0

where λR ∈ Rm×b,µR ∈ Rm×b×b are dual variables. Along with (12), we have

βR,kji − γR,kj − (1 + logRkji)cR,kj − λR,kj + µR,kji = 0.

As before, from complementary slackness µR,kjiRkji = 0 and the fact that logRkji is not defined
for Rkji = 0, we must have µR,kji = 0. Altogether, we have

logRkji =
βR,kji − γR,kj − λR,kj

cR,kj
− 1 =⇒ Rkji =

exp(βR,kji/cR,kj)

exp(γR,kj/cR,kj + λR,kj/cR,kj + 1)
.

Finally, from the constraint
∑

i Rkji = 1, we must have exp(γR,kj/cR,kj + λR,kj/cR,kj + 1) =∑
i exp(βR,kji/cR,kj), which gives the final closed form update:

R = softmaxi(ZR), ZR,kji = βR,kji/cR,kj ,

where softmaxi is applied along the i index dimension.

15



C.2 Naïve Algorithm

We provide pseudo-code for the naive version of MonarchAttention in Figure 7. This is a direct
implementation of alternating maximization for finding the Monarch factors, where we highlight
the choices to (1) initialize L to be block identity, and (2) update R before L in each iteration. We
include this here for completeness, so that readers can directly compare this code with the algorithmic
steps. The implementation in Figure 4 is a reorganization of Figure 7 where L,R are not materialized
in HBM, resulting in FlashAttention-like kernels.

1 # Q: array of size (N, d)
2 # K: array of size (N, d)
3 # V: array of size (N, d)
4 # T: number of steps
5

6 def monarch_attention(Q, K, V, T):
7 L = stack(b * [eye(m)])
8 Qb = einshape("(lj)v->jlv", Q, j=b)
9 Kb = einshape("(ki)v->kiv", K, i=b)

10

11 # Alternating maximization for L, R
12 for t in range(T):
13 # R update
14 aR = einsum("jkl,jlv->kjv", L, Qb)
15 bR = einsum("kjv,kiv->kji", aR, Kb)
16 cR = einsum("jkl->kj", L)
17 R = softmax(bR / cR[:, :, None], axis=2)
18

19 # L update
20 aL = einsum("kji,kiv->jkv", R, Kb)
21 bL = einsum("jkv,jlv->jkl", aL, Qb)
22 cL = einsum("kji->jk", R * log(R))
23 L = softmax(bL - cL[:, :, None], axis=1)
24

25 # Monarch multiply
26 Vb = einshape("(ki)v->kiv", V, i=b)
27 Y = einsum("kji,kiv->jkv", R, Vb)
28 Z = einsum("jkl,jkv->ljv", L, Y)
29 O = einshape("ljv->(lj)v", Z)
30

31 return O

Figure 7: Naïve implemention of MonarchAttention

C.3 Padding and Masking

In practice, the sequence length N may not be divisible by the desired block size b. In such cases,
we round the number of blocks m to m′ = ⌈N/b⌉, and set the new sequence length N ′ = m′b,
post-padding Q,K,V to have N ′ rows. However, we need to take special care that the final N ′ −N

columns of the padded Monarch attention matrix M ∈ ∆N ′×N ′
are zero, since these correspond to

padded rows of V . This is also an issue when batched sequences of different lengths are padded to a
maximum length to avoid dynamic resizing.

From (5), it is clear that to set all columns of M beyond the N -th column to zero, it is
sufficient to set Rkji to zero whenever b(k − 1) + i > N . Thus, we simply form the mask
ω ∈ Rm′×b×b given by

ωkji =

{
0 b(k − 1) + i ≤ N

−∞ otherwise,

which we then add to ZR before softmax in (7). We can also pre-pad the sequence, which would be
change the above condition to b(k − 1) + i ≥ N ′ −N .

16



D Experimental Details

D.1 Baselines

We describe the baselines used in Section 4.

• linear-attention (Katharopoulos et al., 2020) approximates exp(q⊤k) ≈ ϕ(q)⊤ϕ(k)
where ϕ : Rd → Rr is a kernel feature map, resulting in a rank r approximation to softmax
attention:

softmax(QK⊤) ≈ ϕ(Q)ϕ(K)⊤

ϕ(Q)ϕ(K)⊤1N1⊤
N

.

Katharopoulos et al. (2020) propose the map ϕ(x) = 1 + elu(x) with r = d where elu is
the exponential linear unit applied element-wise.

• performer (Choromanski et al., 2021) is a linear attention method using the fact that

exp(q⊤k) = Eω∼N (0,Id)

[
exp

(
ω⊤q − ∥q∥2

2

)
exp

(
ω⊤k − ∥k∥2

2

)]
to construct a random kernel feature map

ϕ(x) =
1√
r
exp

(
−∥x∥2

2

)[
exp(ω⊤

1 x) . . . exp(ω⊤
r x)

]⊤
,

where ω1, . . . ,ωr
iid∼ N (0, Id).

• cosformer (Qin et al., 2022) is a linear attention method utilizing position-dependent kernel
feature maps of the form

ϕi(x) =
[
sin
(

πi
2N

)
relu(xi) cos

(
πi
2N

)
relu(xi)

]
, ∀i ∈ [N ],

which produces a rank r = 2d approximation.

• nystromformer (Xiong et al., 2021) computes landmark Q̃, K̃ ∈ Rr×d from Q,K by
averaging N/r consecutive spans of rows, which are used to approximate softmax attention
via the quadrature method:

F̃ = softmax(QK̃⊤), B̃ = softmax(Q̃K⊤), Ã = softmax(Q̃K̃⊤)

softmax(QK⊤) ≈ F̃ Ã+B̃,

where Ã+ denotes the pseudoinverse of Ã, producing a rank r approximation.

D.2 Image Classification with ViT

The ViT-B model fine-tuned on ImageNet-21K is retrieved from the Hugging Face transformers
library (Wolf et al., 2019) as google/vit-base-patch16-224. The ImageNet-1K evaluation
dataset is retrieved from the Hugging Face datasets library (Lhoest et al., 2021) as imagenet-1k
using the validation split. We vary the following hyperparameters:

• monarch-attention: b = 14 and T ∈ {1, 2, 3}
• performer: r ∈ {16, 32, 48, 64, 80, 96}
• nystromformer: r ∈ {16, 24, 32, 40}

The choice of b = 14 for monarch-attention is due to the fact that images are patched in a 14×14
grid. We also apply post-padding as described in Appendix C.3 for the [CLS] token, since it is
appended at the end of the sequence.

D.3 Question Answering with RoBERTa

The RoBERTa-B model fine-tuned on SQuAD1.1 is retrieved from the Hugging Face transformers
library as csarron/roberta-base-squad-v1. The SQuAD1.1 evaluation dataset is retrieved from
the Hugging Face datasets library as squad using the validation split. For evaluation, we
truncate and pad to sequence length of 384. We vary the following hyperparameters:

17



Table 2: Hyperparameters used for BART summarization.

Sequence Length Method (b, T ) r Total Attention FLOPs (109)

1024
Softmax – – 9.66

Nyströmformer – 64 1.93
MonarchAttention (32, 3) – 1.96

2048
Softmax – – 38.7

Nyströmformer – 80 4.41
MonarchAttention (32, 2) – 3.93

4096
Softmax – – 155.

Nyströmformer – 112 10.6
MonarchAttention (64, 2) – 10.9

8192
Softmax – – 619.

Nyströmformer – 160 35.0
MonarchAttention (64, 2) – 31.4

• monarch-attention: T = 1 and b ∈ {24, 48, 96, 128}
• performer: r ∈ {32, 64, 96, 128, 160, 192}
• nystromformer: r ∈ {16, 32, 48, 64}

D.4 Summarization with BART

The pre-trained BART-B model is retrieved from the Hugging Face transformers library as
facebook/bart-base. The BookSum-chapters training/evaluation dataset is retrieved from the
Hugging Face datasets library as kmfoda/booksum using the train and validation splits
respectively. BART employs learned positional embeddings up to 1024 sequence length, and since
we are interested in long-sequence summarization up to 8192 tokens, we linearly interpolate the
encoder positional embeddings up to 8192 tokens, before fine-tuning on BookSum-chapters – we
leave the decoder positional embeddings intact. We fine-tune for 5 epochs with batch size of 32 and
learning rate of 10−4 using the Adam optimizer (Kingma and Ba, 2014) without weight decay, with
the input and summary sequences truncated and padded to 8192 and 512 tokens respectively. For
evaluation, we truncate the input sequence to the corresponding sequence length in Figure 3. The
hyperparameters for each method across sequence lengths are shown in Table 2.

D.5 Image Generation with DiT

The pre-trained model DiT-XL is retrieved from the Hugging Face transformers library as
facebook/DiT-XL-2-256. Following Peebles and Xie (2023), we generate images using 32 sam-
pling steps, a 2 × 2 patch size, and a classifier-free guidance scale of 1.5. We use the following
hyperparameters:

• monarch-attention: b = 16 and T = 3

• nystromformer: r = 32

To create the images in Figure 5, we used a random seed of 0 input the same 36 random Gaussian
samples into all three models. To obtain the results in Table 1, we again used a random seed of 0, and
generated 50K images from each type of model, again using the same 50K random samples across
all models.

E Additional Experimental Results

E.1 Convergence of MonarchAttention

We empirically show that MonarchAttention converges very quickly in the ViT image classification
setting described in Appendix D.2. We measure of the value of the softmax variational objective

18



f(M (T );Q,K) as defined in (6) in the 0-th layer and 5-th head for the first few T – the results are
shown in Table 3. We see that by T = 2, the variational objective has already reached a stationary
point, with even T = 1 closing most of the gap. This demonstrates how MonarchAttention is able
to reach an accurate solution with even just one step.

Table 3: Convergence of f(M (T );Q,K).
T 0 1 2 3

f(M (T )) 418 937 940 940

E.2 Layer Ablation for RoBERTa Question Answering

We investigate the impact of replacing different layers with MonarchAttention in the RoBERTa
question answering setting described in Appendix D.3. The results are shown in Table 4.

Table 4: F1 score when replacing a given layer of RoBERTa with MonarchAttention.
Layer 0 1 2 3 4 5 6 7 8 9 10 11

F1 (↑) 92.7 92.5 92.6 92.0 91.4 91.9 86.3 91.1 92.7 93.2 93.0 92.3

The initial and final layers are more amenable to replacement compared to the middle layers.

E.3 Post-Swap Fine-Tuning for BART Summarization

We demonstrate the improved performance of MonarchAttention when fine-tuning on BART
summarization post-replacement. We follow the setting and hyperparameters of Appendix D.4, but
fine-tune with MonarchAttention or Nyströmformer instead of the standard softmax attention for
sequence length N = 8192. The results are shown in Table 5, where we also copy the zero-shot
results from the main body for reference.

Table 5: Post-swap fine-tuning vs zero-shot performance on BART summarization.

Type Method Total Attention FLOPs (109) ROUGE-1 (↑)

– Softmax 618 35.57

Fine-tuned MonarchAttention 31 35.38
Nyströmformer 35 33.94

Zero-shot MonarchAttention 31 34.60
Nyströmformer 35 32.86

We see that MonarchAttention is stable under fine-tuning, and is indeed a strong approxima-
tion even beyond the zero-shot setting. In particular, we can almost fully close the gap with
MonarchAttention to the original softmax model, while benefiting from more efficient fine-tuning
with roughly 5% of the attention FLOPs.

E.4 Layer Ablation for DiT Image Generation

We investigate the impact of replacing different quarters with MonarchAttention in the DiT image
generation setting described in Appendix D.5. The results are shown in Table 6. We see that replacing
earlier layers is more favorable than later layers, with the most degradation resulting from replacing
the final layers of the DiT.

E.5 Graph Node Classification with GraphGPS

We evaluate the efficacy of MonarchAttention beyond language and image modalities by consid-
ering zero-shot conversion of attention in the GPS graph Transformer (GPS-GT) (Rampášek et al.,

19



Table 6: (s)FID scores when replacing different quarters of DiT with MonarchAttention.
Quarter First Second Third Fourth

FID (↓) 0.07 0.21 0.34 1.35
sFID (↓) 0.14 0.39 0.52 2.23

2022) on the Actor graph dataset (Pei et al., 2020) for node classification. In particular, we convert the
attention layer in a single-layer 170K parameter GPS-GT with 2 heads, sequence length N = 7600,
and head dimension d = 48. We train for 1500 steps with learning rate of 5× 10−4 using the Adam
optimizer, and also evaluate on the train split4. To evaluate the performance at different FLOP counts,
we vary the number of steps T ∈ {1, 2, 3, 4} while fixing b = 128 for MonarchAttention, and vary
the rank r ∈ {128, 192, 256, 320} for Nyströmformer. The results are shown in Figure 8.

109 1010
Total Attention FLOPs

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Tr
ai

n 
Ac

cu
ra

cy

GPS Actor

monarch-attention
nystromformer
softmax

Figure 8: Zero-shot conversion of attention layers for graph node classification. We vary
hyperparameters to evaluate training accuracy vs. total attention FLOPs across all layers for GPS on
the Actor dataset.

MonarchAttention achieves a favorable quality-efficiency tradeoff, almost matching the softmax
model quality with an order of magnitude less FLOPs. On the other hand, Nyströmformer achieves
roughly 18% less accuracy with 2-3× more FLOPs than MonarchAttention.

4We evaluate on the train split due to low performance on the validation/test sets due to limited data/training
from scratch. Since we are primarily interested in the post-train zero-shot approximation capabilities of
MonarchAttention, this does not introduce bias in the evaluation.

20



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We support the claims made made in the abstract and introduction through
extensive experiments in Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss several limitations of the proposed algorithm in Section 5, whose
addressing we pose as future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

21



Answer: [NA]

Justification: No theoretical results in this paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide exact Python-like pseudocode for the proposed algorithm, along
with precise set-ups for each experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

22



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will release code for all experiments after the review process. We also
specify publicly-available model checkpoints used for each experiment.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide full details for hyperparameters and settings used in Section 4 and
the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: There is little to no randomness in the experiments carried out in this paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specify the GPU used for benchmarking run-times in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All research conducted conforms to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We believe this work to be foundational and not tied to any specific application
or societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

24

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release any new data or models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite and provide publicly available links to all data and models used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

25

paperswithcode.com/datasets


• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets are developed.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

26



16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

27

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Preliminaries
	MonarchAttention
	Experiments
	Conclusion
	Equivalence of Softmax Definitions
	Monarch Background
	Details for MonarchAttention
	Updates
	Naïve Algorithm
	Padding and Masking

	Experimental Details
	Baselines
	Image Classification with ViT
	Question Answering with RoBERTa
	Summarization with BART
	Image Generation with DiT

	Additional Experimental Results
	Convergence of MonarchAttention
	Layer Ablation for RoBERTa Question Answering
	Post-Swap Fine-Tuning for BART Summarization
	Layer Ablation for DiT Image Generation
	Graph Node Classification with GraphGPS


